AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation, Deemed to be University, Salem, Tamil Nadu, India) (AICTE APPROVED AND NAAC ACCREDITED)

FACULTY OF ENGINEERING AND TECHNOLOGY

REGULATIONS 2021 DEPARTMENT OF COMPUER SCIENCE AND ENGINEERING PROGRAMME: B.E - COMPUTER SCIENCE AND ENGINEERING FULL TIME (4 YEARS) CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM (SEMESTER I TO VIII) REGULATION 2021

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

<u>VISION</u>

• To establish a centre of excellence in computer education and research and to create a platformfor professionals thereby reaching a pinnacle of glory.

MISSION

Computer Science and Engineering is committed

- To develop innovative , competent and quality computer engineers by imparting the state-ofthe –art technology
- To enrich the knowledge of students through value based education
- To develop consultancy activities for industrial sectors
- To endeavour for constant up gradation of technical expertise of students to cater to the needsof the society.

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
PO2	problems reaching substantiated conclusions using first principles of mathematics, natural
	sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems and design
PO3	system components or processes that meet the specified needs with appropriate consideration for
	the public health and safety, and the cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and research methods
PO4	including design of experiments, analysis and interpretation of data, and synthesis of the information
	to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO5	engineering and IT tools including prediction and modeling to complex engineering activities with an
	understanding of the limitations.
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,
PO6	health, safety, legal and cultural issues and the consequent responsibilities relevant to the
	professional engineering practice.
	Environment and sustainability: Understand the impact of the professional engineering solutions in
PO7	societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
	development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
	the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse
	teams, and in multidisciplinary settings.
DO10	Communication: Communicate effectively on complex engineering activities with the engineering
POI0	community and with society at large, such as, being able to comprehend and write elective reports
	and design documentation, make elective presentations, and give and receive clear instructions.
DO11	and management principles and apply these to app's own work as a member and loader in a team
POIT	to manage projects and in multidisciplinary onvironments
	Life-long learning: Recognize the need for and have the preparation and ability to opgage in
PO12	independent and life-long learning in the broadest context of technological change
	independent and incriving rearring in the broadest context of technological change.

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

PROGRAMME SPECIFIC OUTCOMES (PSOS)

Graduating Students of Computer Science and Engineering programme will be able to:

PSO1	Demonstrate understanding of the principles and working of the hardware and software aspects of
	computer systems.
	Understand, analyze and develop computer programs in the areas related to algorithms, system
PSO2	software, multimedia, web design, big data analytics and networking for efficient design of
	computer-based systems of varying complexity.
	Apply standard Software Engineering practices and strategies in software project development
DCO2	using open-source programming environment to deliver a quality product for business success
PS03	and to be acquainted with the contemporary issues, latest trends in technological development
	and thereby innovate new ideas and solutions to existing problems.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

PEO1	Technical Expertise: Implement fundamental domain knowledge of core courses for developing
	effective computing solutions by incorporating creativity and logical reasoning.
	Graduate will establish effective professionals by solving real world problems using investigative
PEO2	and analytical skills along with the knowledge acquired in the field of Computer Science and
	Engineering.
DEO2	Graduate will prove a ability to work and communicate effectively as a team member and /or
PEUS	leader to complete the task with minimal resources, meeting deadlines.
	Graduate will demonstrate his/her ability to adapt to rapidly changing environment in advanced
PEO4	areas of Computer Science and scale new height in their profession through lifelong learning.

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

STRUCTURE OF UNDERGRADUATE ENGINEERING PROGRAM – REGULAR STUDENTS

SI. No.	Category of Courses		Types of Courses	Suggested Breakup of Credits (Min – Max)					
1	A. Foundation	Humanities Managemento	and Social Sciences including ourses	9-12					
	0001000	Basic Science	courses	18 - 25					
		Engineering S drawing, bas computer etc.	cience courses including workshop, ics of electrical / mechanical /	18 - 24					
2	B. Professional Core Courses	Core courses		48-54					
	C. Elective Courses	Professional E	lectives	12					
	O. Lietlive Jourses	Industry Desig Offered/Indust	gned/ Industry Supported/ Industry ry Sponsored courses	6					
3	Innovation, Entrepreneurship, Skill Development etc.		6-9						
		Electives	Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things ete	6-9					
	D.Courses for	Project work		8					
	technical Skills	Mini Project		3					
4	related to the	Seminar		1					
	specialization	Internship in in	dustry or elsewhere	3					
5	**E. Mandatory Courses	Environmental Constitution, Knowledge, I Added Cou Sports and G Abhiyan, Swad	Sciences, Induction training, Indian Essence of Indian Traditional Employability Enhancement Value rses, Yoga/NCC/NSS/RRC/YRC/ ames, Student Clubs, Unnat Bharat chh Bharat etc.	Zero credit (Minimum 2 courses to be completedother than yoga and Practice)					
			Minimum Credits to be earned	160					
** de	** The credits earned in category 'E' Courses will not be counted in CGPA calculation for awarding of the								

M. Hith

Dr. M. NITHYA, Prof & Head. Dopt. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

STRUCTURE OF UNDERGRADUATE ENGINEERING PROGRAM – LATERAL ENTRY STUDENTS

SI. No.	Category of Courses		Types of Courses	Suggested Breakup ofCredits (110 – 120)
1	A. Foundation	Humanities and S courses	ocial Sciences including Management	3-6
	Courses	Basic Science cours	es	3 – 6
		Engineering Scienc basics of electrical /	e courses including workshop, drawing, mechanical / computer etc.	5 – 9
2	B. Professional Core Courses	Core courses		48-54
		Professional Elective	es	12
2	C Elective	Industry Designed/ Industry Sponsored	Industry Supported/ Industry Offered/ Courses	6
3	Courses		Innovation, Entrepreneurship, Skill Development etc.	6-9
		Open Electives	Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things etc.	6-9
		Project work		8
	Presentation of	Mini Project		3
4	technical Skills	Seminar		1
	specialization	Internship in industry	y or elsewhere	3
5	**E. Mandatory Courses	Environmental Scier Constitution, Essence Employability Enhan NSS, RRC, YRC, Sj Clubs, Unnat Bharat	nces, Induction training, Indian ce of Indian Traditional Knowledge, ncement Value Added Courses, NCC, ports and Games, Student t Abhiyan, Swachh Bharat etc.	Zero Credit Course (Minimum 2 courses to be completed)
	Minimum Credits to	be earned		120
** The	credits earned in category	'E' Courses will not	be counted in CGPA calculation for aw	arding of the degree.

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

DEPARTMENT COMPUTER SCIENCE AND ENGINEERING Regulation - 2021 B.E - COMPUTER SCIENCE AND ENGINEERING CURRICULUM

	A. Foundation Courses										
		Humanities and Social Sciences includi	ng Management co	ourses-Credits	(9-12)						
SI. No	Course Code	Course	Offering Dept	Category	L	Т	Р	С	Pre - requisite		
1	34121H01	TECHNICAL ENGLISH	ENG	FC-HS	3	0	0	3	NIL		
2	34121H04	BUSINESS ENGLISH	ENG	FC-HS	3	0	0	3	NIL		
3	34121H81	ENGLISH LANGUAGE LAB	ENG	FC-HS	0	0	4	2	NIL		
4	34121H82	PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENTLAB	ENG	FC-HS	0	0	2	1	NIL		
5	34121H02	TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL		
6	34121H83	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL		
		Basic Science Cours	ses –Credits (18-25)							
SI. No	Course Code	Course	Offering Dept	Category	L	т	Р	С	Pre - requisite		
1	34121B01	ENGINEERING MATHEMATICS	MATH	FC-BS	2	1	0	3	NIL		
2	34121B10	MATHEMATICS FOR COMPUTERENGINEERS	МАТН	FC-BS	2	1	0	3	NIL		
3	34121B04	PHYSICAL SCIENCES	PHY &CHEM	FC-BS	4	0	0	4	NIL		
4	34121B14	NUMERICAL METHODS AND NUMBER THEORY	MATH	FC-BS	2	1	0	3	NIL		
5	34121B17	PROBABILITY AND QUEUING THEORY	MATH	FC-BS	2	1	0	3	NIL		
6	34121B05	SMART MATERIALS AND NANO TECHNOLOGY	PHY	FC-BS	3	0	0	3	PHYSICAL SCIENCES		
7	34121B21	DISCRETE MATHEMATICS	MATH Dr. M. I	FC-BS	2	1	0	3	NIL		

Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

-												
8	34121B36	STATISTICAL FOUNDATION	MATH	FC-BS	2	1	0	3	NIL			
9	34121B81	PHYSICAL SCIENCES LAB	PHY &CHEM	FC-BS	0	0	4	2	NIL			
10	34121B19	ENVIRONMENTAL SCIENCES	CHEM	FC-BS	3	0	0	3	NIL			
Engineering Science courses including Workshop, Drawing, Basics of Electrical/Mechanical/Computer etc.,Credits – (18-24)												
SI. No	Course Code	Course	Offering Dept	Category	L	т	Ρ	с	Pre - requisite			
1	35021E01	FOUNDATIONS OF COMPUTING AND PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL			
2	34621E01	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC-ES	4	0	0	4	NIL			
3	35021E02	PYTHON PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL			
4	34421E01	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECH	FC-ES	4	0	0	4	NIL			
5	34621E81	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB	EEE &ECE	FC-ES	0	0	4	2	NIL			
6	34421E84	ENGINEERING SKILLS PRACTICALS LAB	CIVIL & MECH	FC-ES	0	0	4	2	NIL			
7	34421E81	ENGINEERING GRAPHICS AND DESIGN	MECH	FC-ES	1	0	4	3	NIL			
8	35021E03	PROGRAMMING FOR PROBLEM SOLVING	CSE	FC-ES	3	0	0	3	NIL			
			B. Professional	Core Courses	- Credi	ts (48-54	4)	-				
SI. No	Course Code	Course	Offering Dept	Category	L	т	Р	С	Pre - requisite			
1.	35021C02	DATA STRUCTURES	CSE	СС	3	0	0	3	NIL			
2.	35021C01	COMPUTER ARCHITECTUREAND ORGANIZATION	CSE	M .cc	3	0	0	3	NIL			
3.	35021C18	OPERATING SYSTEM(THEORY AND PRACTICALS)	GSE M. N	ITH'CC,	3	0	2	4	NIL			

Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

4.	35021C05	DESIGN AND ANALYSIS OF ALGORITHMS	CSE	CC	3	0	0	3	NIL
5.	35021C04	DATABASE MANAGEMENT SYSTEMS	CSE	СС	3	0	0	3	NIL
6.	35021C06	OBJECT ORIENTED PROGRAMMING	CSE	СС	3	0	0	3	NIL
7.	35021C08	COMPILER DESIGN AND AUTOMATA THEORY	CSE	CC	3	0	0	3	NIL
8.	35021C09	COMPUTER NETWORKS (THEORY AND PRACTICALS)	CSE	СС	3	0	2	4	NIL
9.	35021C13	SOFTWARE ENGINEERING	CSE	СС	3	0	0	3	NIL
10.	35021C16	JAVA PROGRAMMING	CSE	СС	3	0	0	3	NIL
11.	35021C20	WEB TECHNOLOGY (THEORY AND PRACTICALS)	CSE	СС	3	0	2	4	NIL
12.	35021C07	ARTIFICIAL INTELLIGENCE	CSE	СС	3	0	0	3	NIL
13.	35021C03	PROBLEM SOLVING USING COMPUTER	CSE	СС	3	0	0	3	NIL
14.	35021C85	ARTIFICIAL INTELLIGENCE LAB	CSE	СС	0	0	4	2	NIL
15.	35021C83	DATABASE MANAGEMENT SYSTEMS LAB	CSE	CC	0	0	4	2	NIL
16.	35021C84	OBJECT ORIENTED PROGRAMMING LAB	CSE	СС	0	0	4	2	NIL
17.	35021C88	JAVA PROGRAMMING LAB	CSE	СС	0	0	4	2	NIL
18.	35021C82	DATA STRUCTURES LAB	CSE	СС	0	0	4	2	NIL
19.	35021C14	ADVANCED JAVA PROGRAMMING	CSE	CC	3	0	0	3	JAVA PROGRA M MING
20.	35021C86	ADVANCED JAVA PROGRAMMINGLAB	CSE	СС	0	0	4	2	JAVA PROGRAM MING LAB
21.	35021C89	PYTHON FOR DATA SCIENCE LAB	CSE	CC	0 م	0	4	2	NIL
22.	35021C12	PROBLEM SOLVING USING PYTHON PROGRAMMING (THEORY AND PRACTICALS)	CSE I	Dr. M. NITHYA	3	0	2	4	NIL

Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

23.	35021C19	THEORY OF COMPUTATION	CSE	CC	3 0 0 3			NIL		
24.	35021C81	COMPUTER PROGRAMMING LAB	CSE	CC	0	0	4	2		NIL
		C. E	ective Courses							
		Professional Electiv	e Courses Cred	its-(12)						
1.	35021P03	BIG DATA AND ANALYTICS	CSE	EC	PS	3	0	0	3	NIL
2.	35021P17	ETHICAL HACKING	CSE	EC	PS	3	0	0	3	NIL
3.	35021P24	MOBILE COMPUTING	CSE	EC	PS	3	0	0	3	NIL
4.	35021P01	UNIX INTERNALS	CSE	EC	PS	3	0	0	3	NIL
5.	35021P36	WIRELESS AND SENSOR NETWORKS	CSE	EC	PS	3	0	0	3	NIL
6.	35021P32	SOFT COMPUTING	CSE	EC	PS	3	0	0	3	NIL
7.	35021P05	C# AND .NET APPLICATION DEVELOPMENT	CSE	EC	PS	3	0	0	3	OBJECT ORIENTED PROGRAMMI NG
8.	35021P06	CLOUD COMPUTING	CSE	EC	PS	3	0	0	3	NIL
9.	35021P02	AGILE METHODOLOGIES	CSE	EC	PS	3	0	0	3	NIL
10.	35021P23	MACHINE LEARNING	CSE	EC	PS	3	0	0	3	NIL
11.	35021P13	DEEP LEARNING	CSE	EC	PS	3	0	0	3	NIL
12.	35021P12	DATA VIRTUALIZATION	CSE	EC	PS	3	0	0	3	NIL
13.	35021P10	DATA MINING	CSE	EC	PS	3	0	0	3	DATABASE MANAGEMENT SYSTEMS
14.	35021P08	COMPUTER GRAPHICS AND MULTIMEDIA	CSE	EC	PS	3	0	0	3	NIL
15.	35021P16	E-LEARNING TECHNIQUES	CSE	EC	·PS	3	0	0	3	NIL
16.	35021P26	NETWORK DESIGN AND MANAGEMENT	CSE	EC	ÐŞ	3	0	0	3	NIL
17.	35021P34	SOFTWARE TESTING	CSE	EC	PS	3	0	0	3	NIL
			Dr. M Dept. of Com V.M.K.V. E	M. NITHY Prof & Hea puter Science ingg. College	d. e & En , Saleo	5.8 5.8	_		_	

18.	35021P22	IT INFRASTRUCTURE MANAGEMENT	CSE	EC-PS	3	0	0	3	NIL
19.	35021P04	BLOCK CHAIN TECHNOLOGY	CSE	EC-PS	3	0	0	3	NIL
20.	35021P19	GO PROGRAMMING	CSE	EC-PS	3	0	0	3	NIL
21.	35021P28	R PROGRAMMING	CSE	EC-PS	3	0	0	3	NIL
22.	35021P30	RICH INTERNET APPLICATION	CSE	EC-PS	3	0	0	3	NIL
23.	35021P27	OBJECT ORIENTED ANALYSIS AND DESIGN	CSE	EC-PS	3	0	0	3	NIL
24.	35021P18	GAME THEORY	CSE	EC-PS	3	0	0	3	ENGINERRING MATHEMATICS
25.	35021P20	INFORMATION RETRIEVAL TECHNIQUES	CSE	EC-PS	3	0	0	3	NIL
26.	35021P33	SOFTWARE QUALITY MANAGEMENT	CSE	EC-PS	3	0	0	3	NIL
27.	35021P25	NATURAL LANGUAGE PROCESSING	CSE	EC-PS	3	0	0	3	NIL
28.	35021P31	SCALA PROGRAMMING	CSE	EC-PS	3	0	0	3	JAVA PROGRAM MING
29.	35021P35	THEORETICAL APPROACH FOR WEB APPLICATION DEVELOPMENT	CSE	EC-PS	3	0	0	3	NIL
30.	35021P11	DATA SCIENCE IN PYTHON	CSE	EC-PS	3	0	0	3	NIL
31.	35021P14	DIGITAL MARKETING	CSE	EC-PS	3	0	0	3	NIL
32.	35021P09	CYBER SECURITY PRINCIPLES	CSE	EC-PS	3	0	0	3	NIL
33.	35021P21	INTERNET OF THINGS AND ITS APPLICATIONS	CSE	EC-PS	3	0	0	3	NIL
	In	dustry Designed/ Industry Supported/ Industry	Offered/ Industry Spo	onsored cours	ses – Cr	edits-(6)			
SI. No	Course Code	Course	Offering Dept	Category	L	т	Ρ	с	Pre - requisite
1	34121107	BUSINESS INTELLIGENCE AND ITS APPLICATIONS	INFOSYS	EC-IE	3	0	0	3	NIL

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engy Y.M.K.V. Engg. College, Salem.

2	34121106	BUILDING ENTERPRISE APPLICATIONS	INFOSYS	EC-IE	3	0	0	3	NIL	
3	34121115	INTERNET AND WEB TECHNOLOGY	INFOSYS	EC-IE	3	0	0	3	NIL	
4	35021101	LEARNING IT ESSENTIALS BY DOING	INFOSYS	EC-IE	3	0	0	3	NIL	
5	34121 13	ESSENTIALS OF INFORMATIONTECHNOLOGY	INFOSYS	EC-IE	3	0	0	3	NIL	
6	34121116	INTRODUCTION TO MAINFRAMES	INFOSYS	EC-IE	3	0	0	3	NIL	
7	34121120	MOBILE APPLICATION DEVELOPMENT	INFOSYS	EC-IE	3	0	0	3	NIL	
8	34121110	CYBER FORENSICS	AVANZO TECH	EC-IE	3	0	0	3	NIL	
9	34121109	CRYPTOGRAPHY AND NETWORK SECURITY	AVANZO TECH	EC-IE	3	0	0	3	NIL	
10	34121108	CLOUD DATABASE MANAGEMENT AND SECURITY	SALEM INFO TECH	EC-IE	3	0	0	3	NIL	
Open Electives – Electives from Innovation, Entrepreneurship, Skill Development etc. Credits -(6-9)										
	1	1			1	1		1		
SI. No	Course Code	Course	Offering Dept	Category	L	т	Р	с	Pre - requisite	
SI. No	Course Code 34121003	Course FINANCE AND ACCOUNTING FOR ENGINEERS	Offering Dept MANAG	Category OE-IE	L 3	т 0	Р 0	с 3	Pre - requisite NIL	
SI. No	Course Code 34121003 34121004	Course FINANCE AND ACCOUNTING FOR ENGINEERS INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION	Offering Dept MANAG MANAG	Category OE-IE OE-IE	L 3 3	T 0 0	р 0 0	с 3 3	Pre - requisite NIL NIL	
SI. No 1. 2. 3.	Course Code 34121003 34121004 34121007	Course FINANCE AND ACCOUNTING FOR ENGINEERS INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION SOCIAL ENTREPRENEURSHIP	Offering Dept MANAG MANAG MANAG	Category OE-IE OE-IE OE-IE	L 3 3 3	T 0 0 0 0	P 0 0	с 3 3 3	Pre - requisite NIL NIL NIL	
SI. No 1. 2. 3. 4.	Course Code 34121003 34121004 34121007 34121001	Course FINANCE AND ACCOUNTING FOR ENGINEERS INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION SOCIAL ENTREPRENEURSHIP ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	Offering Dept MANAG MANAG MANAG MANAG	Category OE-IE OE-IE OE-IE	L 3 3 3 3	T 0 0 0 0 0 0	P 0 0	с 3 3 3 3 3	Pre - requisite NIL NIL NIL	
SI. No	Course Code 34121003 34121004 34121007 34121001 34121006	Course FINANCE AND ACCOUNTING FOR ENGINEERS INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION SOCIAL ENTREPRENEURSHIP ENGINEERING STARTUPS AND ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT NEW VENTURE PLANNING AND MANAGEMENT	Offering Dept MANAG MANAG MANAG MANAG	Category OE-IE OE-IE OE-IE OE-IE	L 3 3 3 3 3 3	T 0 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 0	с 3 3 3 3 3 3	Pre - requisite NIL NIL NIL NIL	

Open Courses -Electives from other Emerging Areas Credits-(6-9)

Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SI. No	Course Code	Course	Offering Dept	Category	L	T	Ρ	C	Pre - requisite
1.	34421001	3D PRINTING AND ITS APPLICATIONS	MECH	OE-EA	3	0	0	3	NIL
2.	34421002	INDUSTRIAL ROBOTICS	MECH	OE-EA	3	0	0	3	NIL
3.	36921001	BIOMOLECULES – STRUCTURE AND FUNCTION	PE	OE-EA	3	0	0	3	NIL
4.	36921002	PHARMACOGENOMICS	PE	OE-EA	3	0	0	3	NIL
5.	34221002	MUNICIPAL SOLID WASTE MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
6.	34221001	DISASTER RISK MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
7.	34621001	GREEN POWER GENERATION SYSTEMS	EEE	OE-EA	3	0	0	3	NIL
8.	34621002	INDUSTRIAL DRIVES ANDAUTOMATION	EEE	OE-EA	3	0	0	3	NIL
9.	38121001	FOOD AND NUTRITION TECHNOLOGY	BTE	OE-EA	3	0	0	3	NIL
10.	38121002	INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	NIL
11.	35321003	PRINCIPLES OF BIOMEDICAL INSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL
12.	35321002	BIOSENSORS AND TRANSDUCERS	BME	OE-EA	3	0	0	3	NIL
13.	34721002	INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET OF THINGS	ECE	OE-EA	3	0	0	3	NIL
14.	34721001	DESIGN OF ELECTRONIC EQUIPMENT	ECE	OE-EA	3	0	0	3	NIL
		D. Courses for Presentation of Technical Sk	ills related to the spe	ecialization (15	5)				
SI No	Course Code	Course	Offering Dept	Category	L	T	Р	C	Pre - requisite
1	35021R01	PROJECT WORK	CSE	PI-P	0	0	16	8	NIL
2	35021M81	MINI PROJECT	CSE	PI-M	0	0	6	3	NIL
3	35021581	SEMINAR	CSE	H PI-S	0	0	2	1	NIL
4	35021T81	INTERNSHIP	CSE Dr. M. N	PI-IT ITHYA,		3 WE	EKS	3	NIL

Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

E. Mandatory courses (No Credits) (Not included for CGPA calculations)													
SI No	Course Code	Course	Offering Dept	Category	L	T	P	C	Pre - requisite				
1	34121Z81	YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL				
		Any two of the F	ollowing Course	es	1 1								
2	34121Z82	GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL				
3	34121Z83	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL				
4	34121Z84	INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL				
5	34121Z86	SPORTS AND GAMES	PHED	AC	0	0	2	0	NIL				
6	34121Z85	NCC / NSS / RRC / YRC/ STUDENT CLUBS/UNNAT BHARATH ABHIYAN/SWACTH BHARAT	GEN	AC	0	0	2	0	NIL				
		SPECIALIZATION IN	CLOUD COMPUTIN	G									
1	35021 CC 01	CLOUD COMPUTING ARCHITECTURE	CSE	SE	3	0	0	3	NIL				
2	35021CC02	SECURITY IN CLOUD	CSE	SE	3	0	0	3	NIL				
3	35021CC03	CLOUD APPLICATION DEVELOPMENT	CSE	SE	3	0	0	3	NIL				
4	35021CC04	CLOUD STORAGE INFRASTRUCTURES	CSE	SE	3	0	0	3	NIL				
5	35021CC05	CRYPTOGRAPHY TECHNIQUES	CSE	SE	3	0	0	3	NIL				
6	35021CC06	DISTRIBUTED COMPUTING	CSE	SE	3	0	0	3	NIL				
7	35021CC07	INTERNET SECURITY AND COMPUTER FORENSICS	CSE	SE	3	0	0	3	NIL				
8	35021CC08	CLOUD DEPLOYMENT MODEL LAB	CSE	SE	0	0	4	2	NIL				
		SPECIALIZATION - ARTIFICIAL INTE	LLIGENCE AND MA	CHINE LEARN	ING								
1	35021 AI 01	GENETIC ALGORITHM AND ITSAPPLICATION	IS CSE	SEM	3	0	0	3	NIL				
2	35021AI02	ARTIFICIAL NEURAL NETWORKS	CSENT	SE	3	0	0	3	NIL				
3	35021AI03	FUZZY LOGIC AND ITS APPLICATIONS	CSEM.	NITHYA,	3	0	0	3	NIL				

4	35021AI04	COMPUTER VISION	CSE	SE	3	0	0	3	NIL
5	35021AI05	INFORMATION PROCESSING USING NLP	CSE	SE	3	0	0	3	NIL
6	35021AI06	STATISTICAL MACHINE LEARNING	CSE	SE	3	0	0	3	NIL
8	35021AI07	DEEP STRUCTURED LEARNING	CSE	SE	3	0	0	3	NIL
9	35021AI08	REINFORCEMENT LEARNING	CSE	SE	3	0	0	3	NIL
10	35021AI09	ARTIFICIAL INTELLIGENCE AND AGENTS	CSE	SE	3	0	0	3	NIL
		SPECIALIZATION - CYB	ER SECUR	ITY					
1	35021CS01	DIGITAL FORENSICS	CSE	SE	3	0	0	3	NIL
2	35021CS02	CYBER - CRIMES AND LAWS	CSE	SE	3	0	0	3	NIL
3	35021CS03	INTRUSION DETECTION ANDPREVENTION SYSTEM	CSE	SE	3	0	0	3	NIL
4	35021CS04	PENETRATION TESTING	CSE	SE	3	0	0	3	NIL
5	35021CS05	MOBILE COMMUNICATION SECURITY	CSE	SE	3	0	0	3	NIL
6	35021CS06	BIG DATA SECURITY	CSE	SE	3	0	0	3	NIL
7	35021CS07	CLOUD COMPUTING SECURITY	CSE	SE	3	0	0	3	NIL
8	35021CS08	DATA VISUALIZATION TECHNIQUES	CSE	SE	3	0	0	3	NIL

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

SPECIALIZATION -BLOCK CHAIN TECHNOLOGY													
1	35021BC01	DESIGN AND DEVELOPMENT OF BLOCKCHAIN APPLICATIONS	CSE	SE	3	0	0	3	NIL				
2	35021BC02	CRYPTOGRAPHY AND INFORMATION SECURITY	CSE	SE	3	0	0	3	NIL				
3	35021BC03	BITCOIN MINING	CSE	SE	3	0	0	3	NIL				
4	35021BC04	PUBLIC KEY INFRASTRUCTURE AND TRUST MANAGEMENT	CSE	SE	3	0	0	3	NIL				
5	35021BC05	BLOCK CHAIN TECHNOLOGIES: BUSINESS INNOVATION AND APPLICATIONS	CSE	SE	3	0	0	3	NIL				
6	35021BC06	BLOCK CHAIN ARCHITECTURE DESIGN	CSE	SE	3	0	0	3	NIL				
7	35021BC07	GRAPHICS AND GAMING	CSE	SE	3	0	0	3	NIL				
8	35021BC08	CRYPTO CURRENCY TECHNOLOGIES	CSE	SE	3	0	0	3	NIL				
9	35021BC09	ANDROID SECURITY	CSE	SE	3	0	0	3	NIL				
10	35021BC10	CYBER FORENSICS AND INVESTIGATION	CSE	SE	3	0	0	3	NIL				
		SPECIALIZATIO	N – IOT					Π					
1	35021IOT01	IOT ARCHITECTURE AND PROTOCOLS	CSE	SE	3	0	0	3	NIL				
2	35021IOT02	MACHINE LEARNING-I	CSE	SE	3	0	0	3	NIL				
3	35021IOT03	ARTIFICIAL NEURAL NETWORKS	CSE	SE	3	0	0	3	NIL				
4	35021IOT04	NETWORK PROGRAMMING	CSE	SE	3	0	0	3	NIL				
5	35021IOT05	INTERNET AND WEB TECHNOLOGY	CSE	SE	3	0	0	3	NIL				
6	35021IOT06	WIRELESS AND MOBILE COMMUNICATION	CSE	SE	3	0	0	3	NIL				
7	35021IOT07	IOT METHODOLOGY AND APPLICATIONS	CSE	SE	3	0	0	3	NIL				
8	35021IOT08	ADVANCED DATABASE SYSTEM	CSE	SE	3	0	0	3	NIL				
9	35021IOT09	BIG DATA VISUALIZATION	CSE	T SEN	3	0	0	3	NIL				
10	35021IOT10	INDUSTRIAL INTERNET OF THINGS	CSE	SE	3	0	0	3	NIL				

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

		SPECIALIZATION - DATA SCI	ENCE AND A	NALYTICS	5				
1	35021DS01	BIG DATA TOOLS AND TECHNIQUES	CSE	SE	3	0	0	3	NIL
2	35021DS02	DATA MINING AND ANALYTICS	CSE	SE	3	0	0	3	NIL
3	35021DS03	BASCIS OF DATA SCIENCE	CSE	SE	3	0	0	3	NIL
4	35021DS04	INFORMATION STORAGE AND MANAGEMENT	CSE	SE	3	0	0	3	NIL
5	35021DS05	TEXT MINING	CSE	SE	3	0	0	3	NIL
6	35021DS06	BUSINESS INTELLIGENCE AND ANALYTICS	CSE	SE	3	0	0	3	NIL
7	35021DS07	WEB INTELLIGENCE	CSE	SE	3	0	0	3	NIL
8	35021DS08	DATABASE SECURITY AND PRIVACY	CSE	SE	3	0	0	3	NIL
9	35021DS09	BIG DATA VISUALIZATION	CSE	SE	3	0	0	3	NIL
10	35021DS10	MACHINE LEARNING - I	CSE	SE	3	0	0	3	NIL

CHITH.M

Dr. M. NITHYA, 17 Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

34121H01	TECHNICAL ENGLISH	Category	L	Т	Р	Credit
		FC-HS	3	0	0	3

PREAMBLE

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario.

F NEN	I REREQUISITE. NIL														
COU	COURSE OBJECTIVES														
1.	To en	able st	tudents	s to de	velop I	LSRW	skills in Ei	nglish.	(Liste	ning, Sp	eaking,	Reading	, and V	Vriting.)	
2.	To m	ake the	em be	come e	effectiv	ve com	municators	5							
3.	. To ensure that learners use Electronic media materials for developing language														
4.	To aid the students with employability skills.														
5.	5. To develop the students communication skills in formal and informal situations														
COUI	RSE O	UTCO)MES												
On the	succes	ssful c	omple	tion of	the co	ourse, st	udents wil	l be at	ole to						
CO1.	Listen,	remen	nber a	nd resp	ond to	o others	in differen	nt scen	nario			Reme	ember		
CO2.	Under	stand	and sp	peak f	luently	and c	correctly w	vith co	orrect	pronunc	iation	in Unde	rstand		
differe	ent situa	ation.													
CO3.	To mal	ke the	studen	ts expe	erts in	profess	ional writi	ng				Appl	У		
CO4.	To ma	ke the	studer	nts in p	oroficie	ent tech	nical com	munica	ator			Appl	у		
CO5.	To mal	ke the	studen	ts reco	gnize	the role	e of technic	al wri	ting in	their ca	reers in	Anal	yze		
busine	ss, tech	nnical	and sc	ientific	field										
MAPI	PING V	WITH	PRO	GRAN	AME (OUTC	OMES AN	ND PR	OGR	AMME	SPEC	FIC OU	ГСОМ	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO 1	PSO2	PSO3
CO1	-	-	•	L	L	М	М	М	-	S	-	S	S	-	S
CO2	-	-	-	-	-	-	L	-	-	S	-	S	М	-	S
CO3	-	-	-	L	-	-	-	L	-	-	-	L	Μ	Μ	-
CO4	L	-	-	-	-	Μ	-	L	Μ	S	L	S	S	Μ	S
CO5	Μ	-	L	S	-	-	-	-	-	-	-	S	Μ	-	S
S- Stro	ong; M	-Medi	um; L-	Low											

N. Hit

Dr. M. NITHYA, 18 Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

SELF INTRODUCTION

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English -Scientific Vocabulary (definition and meaning)– Technical Abbreviations and Acronyms -Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

STRESS

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homopyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks, New Norms) - Extempore.

SPEAKING SKILLS

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue- Interpersonal Skills.

READING SKILLS

English as language of Opportunity and Employability- Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation – Technical Jargons

TECHNICAL WRITING

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) – Informal and Formal letters – Application letter- Resume Writing- Difference among Bio data, Resume and Curriculum Vitae.

TEXTBOOK

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

COUP	(SE DESIGNERS			
S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr. Jennifer G Joseph	Prof. and Head, H&S	AVIT	Jennifer@avit.ac.in
2.	Dr.P.Saradha	Associate Professor	VMKVEC	saradhap@vmkvec.edu.in
		/		

34121	H04			В	USIN	ESS E	NGLI	SH			Catego	ory	L	Т	P	Credit
											FC-H	S	3	0	0	3
PREA	MBLE	E														
Langu	age is	one o	f the	most v	alued	posses	sions	of me	n. It a	cts as a	reposit	ory o	of wise	dom. A	mong	all other
langua	ges En	glish, ⁻	the int	ernatio	nal lar	nguage	plays	a vital	role as	s a prop	eller for	the a	dvanc	ement o	of know	ledge in
differe	nt field	ls and	as a tel	lescope	e to vie	w the	dream	of the	future.							
PRER	EQUI	SITE:	NIL													
COUH	RSE O	BJEC	FIVES	5												
1.	To impart and enhance corporate communication.															
2.	To enable learners to develop presentation skills															
3.	To build confidence in learners to use English in Business context															
4.	To make them experts in professional writing															
5.	To eq	uip stu	idents	with er	nploya	bility a	and jot	searc	hing sk	cills						
COU	RSE O	UTCO	MES													
On the	succes	ssful co	omplet	ion of	the cou	ırse, st	udents	will be	e able t	.0						
CO1.	Comm	unicate	e with a	a range	of for	mal an	d infor	mal co	ontext				Under	stand		
CO2.	demons	strate i	nteract	ion ski	ills and	l consid	der hov	w own	comm	unicatio	n is		Apply	7		
adjuste	ed in di	fferent	scena	rio												
CO3.	Use str	engthe	ned or	al and	writter	n skills	in the	busine	ss cont	text			Apply	7		
CO4.	Create	intere	est in a	ı topic	by exp	oloring	g thoug	ghts ar	nd idea	IS			Apply	7		
CO5.	Have b	better p	perforn	nance i	n the a	rt of co	ommur	nication	n				Apply	7		
MAPI	PING V	VITH	PROG	GRAM	IME C	OUTCO	OMES	AND	PROG	GRAMN	IE SPE	CIFI	C OU'	ТСОМ	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSO2	PSO3
CO1	М	-	L	-	L	S	S	-	М	S	-	S	5	S	-	-
CO2	2 - M S M - M M - L S -											S	5	М	-	-
CO3	3 L M M - L - S L											Ν	1	-	М	-
CO4	4 - L M M L M M S L												1	М	-	М
CO5	05 - L - M - L L S -												5	М	М	S
S- Stro	ong; M-	Mediu	ım; L-]	Low												

Basics of Language and Listening Skills: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills

STRESS: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology) Jargons- Technical and Business

SPEAKING SKILLS AND READING SKILLS: Extempore, Listening to TED Talks and discussion on the topic heard, Speaking activities- pair and group designed by the faculty, Group Discussion-Types of Interviews, Watching Documentary Films and Responding to Questions, Reading Skills-Understanding Ideas and making Inferences—FAQs - E - Mail Netiquette - Sample E – mails , Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions

CORPORATE COMMUNICATION: What is Corporate Communication? Types of Office communications -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda -Discourse Markers - Rearranging Jumbled Sentences

WRITING SKILLS Technical Articles – Written communication Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

TEXTBOOK

1. English for Effective Communication - Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English - Writing, Reading and Speaking - Pickett and Lester, Harper and Row

Course Designers:

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. Jennifer G Joseph	Professor & Head	English	jennifer@avit.ac.in
2.	Dr. P. Saradha	Associate Professor	English	saradhap@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

3412 [,]	1H81	ENGLISH LANGUAGE LABCategoryLTPCEC HS0047														Credit
0112			-								FC-H	S 0	0	4		2
PREA	MBLE	2														
Englis	h Lang	uage l	Labora	tory pi	ovides	techn	ologica	al supp	oort to	student	s. It ac	ts as a	platfor	m fo	or lea	rning,
practic	ing and	l produ	icing la	inguag	e skills	throug	gh inter	active	lessons	and con	mmunic	ative m	ode of	each	ing.	_
PRER	EQUIS	SITE:	NIL													
COUR	RSE OI	BJECI	TIVES													
1.	To understand communication nuisances in the corporate sector.															
2.	To understand the role of mother tongue in second language learning and to avoid interference of mother															
	tongue.															
3.	To improve the oral skills of the students communicate effectively through different activities															
4.	To understand and apply the telephone etiquette															
5.	Case study to understand the practical aspects of communication															
	(SE O U	$\frac{\text{JTCO}}{1}$		6.0	1		1 /	'11 1	11 /							
On the	succes	stul co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to			T 1 4	1			
COL	Give be	est per	formar	ice in g	roup d	1SCUSS1	on and	interv	1ew			Understa	and			
CO2.	$\frac{\text{Best pe}}{C}$	riorma	ince in	the art	of con	versati	on and	public	speakn	ng.		Apply				
003.	Give be	etter jo	b oppo	rtunitie	es in co	rporate	e comp	anies			4	Арріу				
CO4.	Better	unders	tanding	g of n	uances	of Er	nglish	langua	ge thro	ough au	dio-	Apply				
visual	experie	nce an	d grou	p activ	ities											
CO5.	Speakir	ng skil	ls with	clarity	and c	onfide	nce wh	nich in	turn en	hances	their .	Apply				
employ	yability	SK111S				unaa			DOGD						a	
MAP	'ING V	VITH	PROG	KAM.	ME O	UTCO	MES A	AND F	'ROGR	AMM	E SPEC	CIFIC C	DUTCC	DME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	l PS	SO2	PSO3
CO1	-	S	М	S	-	L	-	-	S	S	М	-	-		-	М
CO2	М	-	-	-	-	-	-	-	М	S	-	М	М		-	М
CO3	М	-	-	-	-	-	-	-	-	S	-	М	-		-	М
CO4	М	-	-	-	-	-	-	-	-	М	-	-	Μ		-	М
CO5	М	-	-	S	-	-	-	-	-	М	-	-	Μ		-	S
S-Stro	ong; M-	Mediu	m; L-I	LOW												

MODULE I: Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to songs, videos and understanding- (fill in the blanks) Telephone Conversation

MODULE II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

MODULE III: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual. Role Play

MODULE IV: Telephone Etiquette, Dining Etiquette, Meeting Etiquette, Corporate Etiquette, Business Etiquette.

MODULE V: Case study of Etiquette in different scenario.

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. Jennifer G Joseph,	Prof. and Head, H&S	English	jennifer@avit.ac.in
2.	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

3412	1H82	P	ROFE	SSION	AL C	OMM	UNICA	ATION	AND		Catego	ry L	Т	Р	(Credit
			Pl	ERSO	NALII	FY DE	VELO	ENT I	LAB		FC-H	IS 0	0	2		1
PRE	MABL	E:								•		•				
To de	evelop	studen	ts with	n good	presei	ntation	and w	vriting	skills ((Profess	ionally	& techn	ically)	. Ar	ticula	te and
enunc	iate w	ords a	nd sen	tences	clearly	y and	effectiv	vely. D	Develop	proper	listeni	ng skills	. Unde	ersta	nd dif	fferent
writin	ig techr	niques	and sty	les bas	ed on	the con	nmunic	cation b	being us	sed.		-				
PRER	EQUI	SITE:	NIL													
COUI	RSE OI	BJEC	ΓIVES													
1.	To de	evelop	comm	inicatio	on and	person	ality sk	cills.								
2.	To improve Aptitude skills, train to improve self-learning / researching abilities, presentation skills &															
-	techn	ical wr	iting.		,	1	L		U		υ	<i>,</i> 1				
3.	To improve students employability skills.															
4.	To develop professional with idealistic, practical and moral values.															
5.	To produce cover letters, resumes and job application strategies.															
COUI	RSE OI	UTCO	MES							-						
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to							
CO1.	Improv	e com	munica	tion ar	d perso	onality	skills.					Apply				
CO2.]	Demon	strate e	effectiv	e use c	of team	work	skills a	nd pres	sentatio	n skills	to .	Apply				
compl	ete give	en task	s.													
CO3.	Speak v	with cl	arity ar	nd conf	idence	thereb	y enha	ncing e	employ	ability s	kills .	Apply				
of the	student	s.														
CO4 .	Have b	alance	d value	syster	n that c	can be	practic	ed for e	enhance	ed		Apply				
profes	sional l	ife.														
CO5.	Improv	e their	vocab	ulary a	nd use	them in	n appro	opriate	situatic	n		Understa	nd			
MAPI	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	PROGE	RAMM	E SPEC	CIFIC O	UTCC	ME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	М	М	-	-	-	М	М	-	М	S	-	-	-		-	-
CO2	12 M S M												-			
CO3	-	-	-	-	-	-	М	-	S	S	-	-	-		-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
CO5	S	-	-	-	-	-	-	-	Μ	S	-	М	-		-	-
S-Stro	ong; M-	Mediu	m; L-I	LOW												

UNIT – I: COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication, Barriers and Filters in Listening Skill, Active and Passive listening, exposure to English language through various activities and maintaining a vocabulary dairy improving confidence in Language usage using activities,

UNIT – II: GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

Dr. M. NITHYA, Prof & Head. prehension: and suggesting title for given UNIT - III. READING AND WRITING SKILLS: Read

passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

UNIT IV. SPEAKING SKILLS AND ESSENCE OF SOFT SKILLS: Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation, Time management, Team work skills, Leadership skills, Adaptability and bettering oneself, Persuasion skills.

UNIT V TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

TEXTBOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria& Sons, New Delhi, Rep''nt 2007

REFERENCES

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India
- **3.** Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C. and Krishna Mohan, Tata Mc Graw Hill.

Course Designers:

COURSE DESIGNERS

S.No.	Name of the Faculty	Mail ID											
1.	Dr. Jennifer G Joseph, Prof. and Head	jennifer@avit.ac.in											
2.	Dr. P.Saradha, Associate Professor	saradhap@vmkvec.edu.in											

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

34121H02 MANAGEMENT FC-HS 3 0 0 3 PREAMBLE: Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth. PREREQUISITE: Not Required COURSE OBJECTIVES: 1. To understand the Total Quality Management concepts. 2. To practice the TQM principles. 3. To apply the statistical process control 4. To analyze the various TQM tools 5. To adopt the quality systems. COURSE OUTCOMES: After successful completion of the course, students will be able to CO2: Practice the relevant quality improvement tools to implement TQM. Apply CO3: Analyse various TQM parameters with help of statistical tools. Analysing CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO1 M <th></th> <th></th> <th></th> <th>ТО</th> <th>TAL</th> <th>ΟΠΑΙ</th> <th>ITY</th> <th></th> <th></th> <th>Ca</th> <th>tegorv</th> <th>T.</th> <th>Т</th> <th>Р</th> <th></th> <th>Credit</th>				ТО	TAL	ΟΠΑΙ	ITY			Ca	tegorv	T.	Т	Р		Credit	
PREAMBLE: Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth. PREREQUISITE: Not Required COURSE OBJECTIVES: 1. To understand the Total Quality Management concepts. 2. 2. To practice the TQM principles. 3. 3. To apply the statistical process control 4. 4. To analyze the various TQM tools 5. 5. To adopt the quality systems. COURSE OUTCOMES: After successful completion of the course, students will be able to Understand CO2: Practice the relevant quality improvement tools to implement TQM. Apply CO3: Analyse various TQM parameters with help of statistical tools. Analysing CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment. Apply CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment.	341211	H02		M	ANA	ZEMF	ENT				C-HS	3	0	0		3	
Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth. PREREQUISITE: Not Required COURSE OBJECTIVES: 1. To understand the Total Quality Management concepts. 2. 2. To practice the TQM principles. 3. 3. To apply the statistical process control 4. 4. To analyze the various TQM tools 5. 5. To adopt the quality systems. COURSE OUTCOMES: After successful completion of the course, students will be able to Understand CO2: Practice the relevant quality improvement tools to implement TQM. Apply CO3: Analyse various TQM parameters with help of statistical tools. Analysing CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 CO4 N N N N N	PREA	MBL	E:	101						-		5	U	U		5	
S. To adopt the quality systems. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Understand the importance of quality and TQM at managerial level. Understand CO2: Practice the relevant quality improvement tools to implement TQM. Apply CO3: Analyse various TQM parameters with help of statistical tools. Analysing CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO4: M - O O PO6 PO7 PO8 PO1 PO1 <th colsp<="" td=""><td colspan="15">Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth. PREREQUISITE: Not Required COURSE OBJECTIVES: 1. To understand the Total Quality Management concepts. 2. To practice the TQM principles. 3. To apply the statistical process control 4. To analyze the various TQM tools 5. The height of the principles.</td><td>this ditional vement ocesses. develop h.</td></th>	<td colspan="15">Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth. PREREQUISITE: Not Required COURSE OBJECTIVES: 1. To understand the Total Quality Management concepts. 2. To practice the TQM principles. 3. To apply the statistical process control 4. To analyze the various TQM tools 5. The height of the principles.</td> <td>this ditional vement ocesses. develop h.</td>	Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth. PREREQUISITE: Not Required COURSE OBJECTIVES: 1. To understand the Total Quality Management concepts. 2. To practice the TQM principles. 3. To apply the statistical process control 4. To analyze the various TQM tools 5. The height of the principles.															this ditional vement ocesses. develop h.
COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Understand the importance of quality and TQM at managerial level. Understand CO2: Practice the relevant quality improvement tools to implement TQM. Apply CO3: Analyse various TQM parameters with help of statistical tools. Analysing CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO4 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 M - - L L M L M - - - M CO3 S S M S S - L L M L - - M CO3: S M S S - - L M M <	5. To	adopt	the qu	ality s	ystems	5.											
After successful completion of the course, students will be able to Understand CO1: Understand the importance of quality and TQM at managerial level. Understand CO2: Practice the relevant quality improvement tools to implement TQM. Apply CO3: Analyse various TQM parameters with help of statistical tools. Analysing CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO1 M - - CO2 M - - L L M L M - - CO3 S S M S S - - L M M - - - M CO3 S S M S S - - L M M - - - M CO4 L M S L M - L - - - - - CO3 S S M -	COUR	RSE O	OUTC	OMES	5:												
CO1: Understand the importance of quality and TQM at managerial level.UnderstandCO2: Practice the relevant quality improvement tools to implement TQM.ApplyCO3: Analyse various TQM parameters with help of statistical tools.AnalysingCO4: Assess various TQM Techniques.EvaluateCO5: Practice the Quality Management Systems in a different organization Environment.ApplyMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCO6< PO1PO1PO1PO1PS02PS03CO3SMSCo4LLLLMCO4PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS03CO4MSSMCMNPO6PO7PO8PO9PO10PO11PO12PS01PS02PS03CO3SMSSC <th co<="" td=""><td>After s</td><td>succes</td><td>sful co</td><td>mplet</td><td>ion of</td><td>the co</td><td>urse, s</td><td>tudent</td><td>ts will</td><td>be abl</td><td>e to</td><td></td><td></td><td></td><td></td><td></td></th>	<td>After s</td> <td>succes</td> <td>sful co</td> <td>mplet</td> <td>ion of</td> <td>the co</td> <td>urse, s</td> <td>tudent</td> <td>ts will</td> <td>be abl</td> <td>e to</td> <td></td> <td></td> <td></td> <td></td> <td></td>	After s	succes	sful co	mplet	ion of	the co	urse, s	tudent	ts will	be abl	e to					
CO2: Practice the relevant quality improvement tools to implement TQM. Apply CO3: Analyse various TQM parameters with help of statistical tools. Analysing CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 PO1 PO1 PO1 PO1 PO1 PSO2 PSO3 CO3 S M S CO4 L L L L MAPPING PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 PO1 PO1 <th cols<="" td=""><td>CO1:</td><td>Unde</td><td>rstand</td><td>the in</td><td>nportai</td><td>nce of</td><td>quality</td><td>y and T</td><td>ГQM а</td><td>at man</td><td>agerial</td><td>level.</td><td></td><td>Underst</td><td>and</td><td></td></th>	<td>CO1:</td> <td>Unde</td> <td>rstand</td> <td>the in</td> <td>nportai</td> <td>nce of</td> <td>quality</td> <td>y and T</td> <td>ГQM а</td> <td>at man</td> <td>agerial</td> <td>level.</td> <td></td> <td>Underst</td> <td>and</td> <td></td>	CO1:	Unde	rstand	the in	nportai	nce of	quality	y and T	ГQM а	at man	agerial	level.		Underst	and	
CO3: Analyse various TQM parameters with help of statistical tools. Analysing CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO6 PO1 PO1 PO1 PO1 PSO1 PSO2 PSO3 CO4 M - L L M CO4 L M C CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO1 M - C CO2 PO1 PO2 PO6 PO7 PO8 PO10 PO11 PO12 PS01 PS02 PS03 CO2 M -	CO2:	Practi	ice the	releva	ant qua	ality in	nprove	ement	tools t	o impl	ement '	ГQM.		Apply			
CO4: Assess various TQM Techniques. Evaluate CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5: Po1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 M L L L L M L M M CO2 M L L L M M - L M M CO3 S S M S S L L M M L M - L M L CO4 L M S L M - L - L M L M L M	CO3:	Analy	yse var	rious T	CQM p	arame	ters wi	ith hel	p of st	atistic	al tools	•		Analysi	ng		
CO5: Practice the Quality Management Systems in a different organization Environment. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - - L L M L M - - - CO2 M - - L L M M - - M CO3 S S M S S - - L - L M L M - - - CO3 S S M S S - - L - L M L M L M L - - - - - - M L M L M L M L M L M L M L M - </td <td>CO4:</td> <td>Asses</td> <td>ss vario</td> <td>ous T(</td> <td>QM Te</td> <td>chniqu</td> <td>ies.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Evaluat</td> <td>e</td> <td></td>	CO4:	Asses	ss vario	ous T(QM Te	chniqu	ies.							Evaluat	e		
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Cos P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 C01 M - - - L L L M L M - - - C02 M - - - L L L M M - - - - C02 M - - L L - L M M - - M C03 S S M S S - - L - L M L M L M L C03 S S M S S - - L - L M L M L M L M L M L M L M L L L L L L	CO5:	Practi Enviro	ice the	Quali t.	ty Mai	nagem	ent Sy	stems	in a d	ifferen	t organ	ization		Apply			
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - - - L L L M L M - - - - CO2 M - - L L - L M - - M CO3 S S M S S - - L - L - L M L - M L M L M L M L M L M L M L M L M L M L M L M L M L M L M L M L M L L L L L L L L L </th <th colspan="9">MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES</th>	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
CO1 M - - - - L L L M L M - M - - - M - - - - M -	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO2 M - - L L - L M M - L - M CO3 S S M S S - - L - L - M L CO3 S S M S S - - L - L L M L CO4 L M S L M - L - L M L M L CO4 L M S L M - L - L M L M - - - CO4 L M S L M - L - L M L M - - - C04 L M S L M - L - L M L M - - - - - - - - - -	C01	М	-	-	-	-	-	L	L	L	М	L	М	-	-	-	
CO3 S S M S S - - L - L L M L CO4 L M S L M - L - L M L M L CO4 L M S L M - L - L M L M - </td <td>CO2</td> <td>М</td> <td>-</td> <td>-</td> <td>-</td> <td>L</td> <td>L</td> <td>-</td> <td>L</td> <td>М</td> <td>М</td> <td>-</td> <td>L</td> <td>-</td> <td>-</td> <td>М</td>	CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М	
CO4 L M S L M - L - L M L M	CO3	S	S	M	S	S	-	-	L	-	L	-	L	Ĺ	М	L	
		L	M	S	Ĺ	M	-	L	-		M	L	M	-	-	- M	

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

With M

Dr. M. NITHYA,

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TOM Principless and Barriers & Implementation – Leadership – Concepts- Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting -- Strategic Planning.

TQM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward-Performance Appraisal - Continuous Process Improvement : Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve- Control Charts for variables and attributes - OC curve - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process- Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA - Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	A. Mani	Associate Professor	mani@vmkvec.edu.in	
2.	Dr. V. Sheela Mary	Dr. V. Sheela Mary Associate Professor		sheelamary@avit.ac.in

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

34121H83

UNIVERSAL HUMAN VALUES -UNDERSTANDING HARMONY

Category	L	Т	Р	
	2	•	•	

Credit

	UNDERSTANDING HARMONY											0	0	3	
COL	JRSE O	BJECTIVE	S												
1.	Develo	pment of a l	nolistic persp	ective ba	sed or	n se	elf- explor	atio	n						
2.	Unders nature/	tanding (or existence	developing	clarity)	of t	he	harmony	in	the	human	being	, fam	ily,	society	and
3.	Strengt	thening of se	elf-reflection.												
4.	Develo	pment of co	mmitment ar	id courag	e to a	ict.									

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. -Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body- Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -.Interconnectedness and mutual fulfilment among the four orders of nature-recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence. Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -.Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

UNIT V Gender Sensitization Introduction to Gender Sensitization- Sex Vs Gender- Social Construction of Gender-Gender Roles- Gender Stereotypes- Gender Division of Labour- Patriarchy- Masculinity- Ending violence against girls/women: Advance safety and rights- Gender Equality.

TEXT BOOKS:

Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCES:

M.H.M

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

2.Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.THYA,

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhiad.

COU	RSE DESIGNERS	V.M.K.V. Engg. College, Salem.							
S.N o	Name of the Faculty	Designation	Name of the College	Mail ID					
1.	Dr.S.P.Sangeetha	Vice Principal(Academics)	AVIT	sangeetha@avit.ac.in					
2.	Dr.Jennifer G Joseph	HoD-H&S	AVIT	Jennifer@avit.a.cin					

24121001		Category	L	Т	Р	Credit
34121D01	ENGINEERING MATHEMATICS	FC-BS	2	1	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PREREQUISITE

NIL

INL															
COUR	RSE O	BJEC	TIVES	5											
1.	To re	call the	e advai	nced m	atrix k	nowle	dge to	Engin	eering	problen	18.				
2.	To equip themselves familiar with the functions of several variables.														
3.	3. To improve their ability in solving geometrical applications of differential calculus problems														
4.	To ex	kamine	know	ledge i	n mult	iple in	tegrals	•							
5.	5. To improve their ability in Vector calculus.														
COUF	RSE O	UTCC	OMES												
On tl	he succ	cessful	compl	letion of	of the c	course,	studer	nts will	be ab	le to					
CO1. A	Apply t	he con	cept of	f ortho	gonal 1	reducti	on to c	liagona	alise th	e given	matrix			Apply	
CO2.Find the radius of curvature, circle of curvature and centre of curvature for a given Apply															
curve.	curve.														
CO3.	Classif	y the r	naxima	a and n	ninima	for a	given f	unctio	n with	several	variable	es, throu	ıgh by	Apply	
finding	g statio	nary p	oints											Аррту	
CO4.]	Find do	ouble i	ntegral	l over g	general	l areas	and tr	iple int	egral o	over gen	eral vol	umes		Apply	
CO5.	Apply	Gauss	Diverg	gence t	heorer	n for e	valuati	ing the	surfac	e integr	al.			Apply	
MAPH	PING	WITH	PRO	GRAM	IME (OUTC	OMES	S AND	PRO	GRAM	ME SP	ECIFIC	COUT	COMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М					L				М			
CO2	S	S	М					L				М			
CO3	S	S	М					L				М			
CO4	S	S	М					L				М			
CO5	S	S	М					L				М			
S- Stro	ong; M	-Mediu	um; L-	Low						•	-			-	
			,								121				

M.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

MATRICES:

Characteristic equation– Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof).

DIFFERENTIAL CALCULUS&PARTIAL DERIVATIVES :

Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature. Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method,

ORDINARY DIFFERENTIAL EQUATIONS:

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS:

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration(in both Cartesian and polar coordinates)-Change of order of integration.

VECTOR CALCULUS:

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof),Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gauss divergence and Stoke's theorems (Statements only)

TEXT BOOKS:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi (2020).
- Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

REFERENCES:

1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).

2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai

(2016).

COURSE	DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics	bhuvaneswari@avit.ac.in
2.	Dr.G.Selvam	Associate Professor	Mathematics	selvam@vmkvec.edu.in

Dr. M. NITHYA, Prof & Head. t. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

341	21B10		МАТ	HEM	ATIC	S FOR	CON	IPUTI	ER	Categ	gory	L	Т	Р	Credit
• • •						ENG	INEE	RS		FC-	BS	2	1	0	3
PREA Impart applica Fourie applica applica	MBL know ation. ' r serie ations ation.	E /ledge The fo s, Fou to so	about ocus of urier T lve rea	the so the co bransfo al wor	ubject ourse v rm and ld pro	of a s vill be d Z Tr blems,	single the stu ransfor it als	variab udy of rm. Us so pro	le and certain sing th vides	multiv n structu e under the kno	ariable, ires cal standin wledge	integra led Part g of In of Laj	al transf ial Diffe tegral tr place Tr	formatio erential cansform ransform	n with its equations, nation and ns and its
PRER Engine	PREREQUISITE Engineering Mathematics COURSE OBJECTIVES														
COU	COURSE OBJECTIVES														
1.	. Familiarize themselves with the functions of a variety of variables.														
2.	. Know how to derive a Fourier series of a given periodic function by evaluating Fourier coefficients														
3.	 Fourier transforms has the wide application in the field of heat diffusion, wave propagation and in signal and systems analysis. 														
4.	To learn about Z- transforms and its applications														
5.	5. To familiarize themselves with the Laplace transform and how to use it														
COUR	RSE O	UTC	OMES												
On the	succe	ssful c	comple	tion of	the co	ourse, s	tudent	s will	be able	e to					
CO1.	Form	the par	tial dif	ferentia	al equa	ations	and fi	nd its s	olutior	ıs				Appl	У
CO2.	Find F	Fourie	r expar	ision o	f a giv	en fun	ction							Appl	У
CO3. 5	Solve I	Fourier	r integr	al prob	lems									Appl	У
CO4 .	Analy	zing d	iscrete	signals	by usi	ng Z-tr	ansfor	m						Appl	У
CO5.	Apply	Lapla	ce tran	sform	technic	que to	solve a	a differ	ential	equation	ns			Appl	У
MAPI	PING	WITE	I PRO	GRAN	AME	OUTC	OME	S ANI) PRO	GRAM	IME SI	PECIFI	C OUT	COME	S
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	L				М				М			
CO2	S	S	М	L				М				М			
CO3	S	S	M	L				M				M			
CO4	2	2	M	L				M				M			
CO5	3	5 7 7 7	M					М				М			
<u>5- 5tr</u>	S- Strong; M-Medium; L-Low														

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

PARTIAL DIFFERENTIAL EQUATIONS: Formation - Solutions of standard types f(p,q) = 0, Clairaut's form, f(z,p,q) = 0, f(p,x) = g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential

equations of second and higher order with constant coefficients

FOURIER SERIES: Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis

FOURIER TRANSFORMS: Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity

Z – TRANSFORMS: Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform

LAPLACE TRANSFORMS: Transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals –Transform of periodic functions-Inverse Laplace transform – Convolution theorem – Initial and Final value theorem-Solution of linear ODE of second order with constant coefficients and first order simultaneous equation with constant coefficients using Laplace transforms

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi (2017)
- 2. Kreyszig, E., "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2019).

REFERENCES:

- 1. Dr.A.Singaravelu, "Engineering Mathematics I & II", Meenakshi Agency, Chennai (2019)
- 2. Dr.A.Singaravelu, "Transforms and Partial differential Equations", Meenakshi Agency, Chennai (2019)
- 3. Veerarajan, T., "Engineering Mathematics I, II and III", Tata McGraw Hill Publishing Co., New Delhi (2012)
- 4. "Engineering Mathematics I & II ", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017)

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Mrs.V.T.Lakshmi	Associate Professor	Mathematics	lakshmivt@vmkvec.edu.in
2.	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics	bhuvaneswari@avit.ac.in

N. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

244	24 D 0 4			PHY	SICAI	L SCII	ENCE	S -		Categ	ory	L	Т	Р	Credit
341	21804		Part A	A: ENG	GINEE	ERING	F PHY	SICS		FC-	BS	2	0	0	2
PREA	MBLI	E											1	1	
Engine	ering	Physic	s is the	e study	of adv	vanced	physic	es conc	epts ar	nd their	applicat	tions in	various	technolo	gical and
engine	ering o	lomain	is. Und	lerstan	ding th	e conc	epts of	f laser,	types	of lasers	s, the p	ropagati	on of lig	ght throu	gh fibers,
applica	tions (of option	cal fibe	ers in c	ommu	nicatio	n, proc	duction	and a	pplicatio	ons of u	ltrasoni	cs will h	elp an ei	igineer to
anaryz	REREQUISITE : NIL														
PRER															
COUF	URSE OBJECTIVES														
1.	To recall the properties of laser and to explain principles of laser														
2.	To assess the applications of laser														
3.	To detail the principles of fiber optics														
4.	To st	udy the	e applie	cations	of fibe	er optic	s								
5.	Тоех	xplain v	various	techni	iques u	sed in	Non-d	estruct	ive tes	ting					
COUF	RSE O	UTCO	MES		-					-					
On th	ne succ	cessful	compl	etion o	of the c	ourse,	studen	ts will	be able	e to					
CO1	Under	rstand	the prin	nciples	laser,	fiber o	ptics a	nd ultra	asonics	s			Unders	tand	
CO2	Under	rstand	the cor	nstructi	on of l	aser, fi	ber op	tic and	ultrase	onic equ	ipments	5	Unders	tand	
CO3	.Demo	onstrate	the w	orking	of las	er, fibe	er optio	c and u	ıltrasor	nic base	d comp	onents	Apply		
<u> </u>	Intern	evices	notan	tial ar	nlicati	ions o	f lacar	fiber	ontic	s and r	ltracon	ice in	Apply		
0.04	variou	is field	s	illai af	phean	0115 0		, 11001	optica	s and t	1111.05011		дрргу		
CO5	.Differ	entiate	the w	vorking	g mode	es of	various	s types	s of la	aser, fib	er opti	c and	Analyz	e	
	ultras	onic de	evices.												
MAPI	PING V	WITH	PRO	GRAM	IME C	OUTCO	DMES	AND	PROG	GRAMN	1E SPE	CIFIC	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	М	-	-	-	-	-	-	-	-	М	М	-	М
CO2	S	-	L	-	-	-	-	-	-	-	-	М	М	-	-
CO3	S	-	-	М	-	-	М	-	-	-	-	М	М	-	-
CO4	S	М	-	M	M	S	M	-	-	-	-	M	S	-	М
CO5	S	M	М	-	-	-	-	-	-	-	-	M	M	-	-
S- Stro	S- Strong; M-Medium; L-Low														

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

Unit: I

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram.

Unit: II

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

Unit: III

ULTRASONICS: Ultrasonic production: Magnetostriction and piezo electric methods – Determination of velocity of ultrasonic waves (acoustic grating) – Applications of ultrasonics

TEXT BOOKS

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed

to be University), Salem.

2. Palanisamy P. K., Engineering Physics, Scientific Publishers, 2011.

3. Avadhanulu M. N., Kshirsagar P. G., Arun Murthy T. V. S., A Textbook of Engineering Physics, S. Chand Publishing, 2018.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2012.

4. Srivastava S. K., Laser Systems and Applications 3rd Edition, New Age International (P) Ltd Publishers, 2019.

5. Ajoy Ghatak, Thyagarajan K., Introduction To Fiber Optics, Cambridge India, 2013.

COURSE DESIGNERS							
S.No.	Name of the Faculty	Designation	Department	Mail ID			
1.	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in			
2.	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in			
		•	KI				

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

	044045		PHYSICAL SCIENCES PART-B - ENGINEERING CHEMISTRY						Categ	gory	L	Т	Р	C	redit	
	341215	304							Ба	DC	•	0			•	
(Commo					nmon	to all l	FC	-B2	2	0	0		2			
PRE	PREAMBLE															
The objective of this course is to better understand the basic concepts of chemistry and its applications in																
diverse engineering domains. It also imparts knowledge on the properties of water and its treatment																
methods, Electrochemistry, corrosion and batteries, properties of fuel and combustion. This course also																
provides an idea to select the material for various engineering applications and their characterization.																
PREREQUISITE																
NIL																
COU	COURSE OBJECTIVES															
1.	To Provide the knowledge on water treatment.															
2.	To explain about the importance of electrochemistry, mechanism of different corrosion and															
	principle and working of batteries.															
3.	To explain different types of fuel, properties and its important features.															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to understand																
CO1	CO1. Estimate the hardness of water Apply and Identify suitable water treatment Apply															
	methods.															
CO ₂	2. Describe terms involved in electrochemistry, the control methods of corrosion and Analyse															
	working of energy storage devices.															
CO3	O3. Understand the quality of fuels from its properties and the important features of Analyse															
	fuels															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOME																
CO		DOJ	DO3		DO5	DO4	DO7	DOP	DOO	DO10	РО	DOI	, PS	50	PSO	PSO
S	POI	PO2	PUS	PO4	P05	PU0	P0/	PUð	P09	POIU	11	PUL	2 1	L	2	3
CO 1	S	М	М	L	-	М	S	М	-	-	-	М	N	1	Μ	М
CO 2	S	S	L	L	-	S	S	S	-	-	-	S	N	1	L	Μ
CO 3	S	М	М	L	L	L	М	М	-	-	-	S			Μ	М
S-St	S- Strong; M-Medium; L-Low															

Syllabus

UNIT – I: WATER TECHNOLOGY

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA. Boiler troubles - Treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning). External treatment – Ion exchange process, zeolite process – Domestic water treatment - desalination of brackish water – Reverse Osmosis and Electrodialysis.

UNIT – II: ELECTROCHEMISTRY, CORROSION AND BATTERIES

Electrochemistry: Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - Galvanic cell- Electrochemical cell representation - EMF series and its significance. Corrosion – Definition causes and effects, Classification, Types of corrosion- dry corrosion, Wet corrosion, Factors influencing rate of corrosion, Corrosion control methods – Sacrificial anode method and impressed current cathodic method.

Batteries: Terminology- Daniel cell – Dry cell - Lead-acid accumulator-Nickel-Cadmium batteries, Lithium batteries: Li/SOCl2 cell - Li/I2 cell- Lithium ion Danteries. Fuel cells: Hydrogen-oxygen fuel cell, Solid oxide fuel cell (SOFC)

UNIT – III FUELS AND COMBUSTION

Fuels: Introduction – classification of fuels – coal – analysis of coal (proximate and ultimate). Carbonization – manufacture of metallurgical coke (Otto Hoffmann method) – petroleum – manufacture of synthetic petrol (Bergius process). Knocking – octane number – cetane number – natural gas – compressed natural gas (CNG). Liquefied petroleum gases (LPG) – power alcohol and biodiesel. Combustion of fuels: Introduction – calorific value – higher and lower calorific values- theoretical calculation of calorific value – ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis (ORSAT Method).

TEXTBOOK

- 1. Engineering Chemistry by Jain and Jain, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, 2017
- 2. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.

REFERENCES

1. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane, 3rd Edition, McGraw Hill, 1980

- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 3. Physical Chemistry, by P. W. Atkins, Julio de Paula, 8th Edition, Oxford University press, 2007
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

Course Designers:

S.No	Name of the Faculty	Mail ID
1.	Dr. A.R. Sasieekumar	sasieekhumar@vmkvec.edu.in
2.	Dr. R. Nagalakshmi	nagalakshmi.chemistry@avit.ac.in

N.Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.
34121B14	NUMERICAL METHODS AND	Category	L	Т	Р	Credit
	NUMBER THEORY	FC-BS	2	1	0	3

PREAMBLE

This course aims at developing the ability to formulate an engineering problem in a mathematical form appropriate for subsequent computational treatment and to choose an appropriate numerical approach. Number theory encodes properties of the integers, primes or other number-theoretic objects and it has various applications in the field of security, memory management, authentication and coding theory. Number theory is probably one of the most important areas of mathematics used in computer science, and the basis behind almost all of modern cryptography.

PREREQUISITE

NIL

COU	RSE O	BJEC	TIVE	S											
1.	To far	niliar	with n	ımeri	cal so	lution o	of equ	ations							
2.	To be	get ex	posed	to fin	ite dif	ference	es and	l interp	olation	1					
3.	To be	thorou	ugh wi	th the	nume	erical D	iffere	entiatio	n and	integratio	on				
4.	To giv and fu	ve an i Indame	integra ental tl	ited a	pproa m of a	ch to N rithmet	lumbe tic	er Theo	ory and	d to have	e the kno	owledge	e of div	vision al	gorithm
5.	5. To familiar with congruences and classical theorems														
COU	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1. Solve the system of linear algebraic equations and single non linear equations arising in the field of Computer Science Engineering															
CO2.	CO2. Apply various numerical methods to find intermediate numerical value & Apply Polynomial of numerical data.														
CO3. numer	Find t rical me	he diff ethods	ferentia	ation	of a p	olynon	nial a	nd eva	luate t	he defini	te integi	rals by 1	using	Apply	
CO4. diviso	Define r, prim	e and e, and	interp prime-	ret tl -facto	ne con rizatio	ncepts	of di	visibil	ity, co	ongruence	e, great	est con	nmon	Apply	
CO5.	Solve	a syste	em of l	inear	congr	uences	and o	derive	some c	lassical	theorem	S		Apply	
MAP	PING V	WITH	I PRO	GRA	MME	COUT	COM	ES A	ND PR	OGRA	MME SI	PECIF	IC OU	ГСОМІ	ES
COS	PO1	PO2	PO3	PO 4	PO 5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L				L				М			
CO2	S	М	М	L				L				М			
CO3	S	М	М	L				L				М			
CO4	S	М	L					L				M			
CO5	S _	M						Ĺ				M			
S- Str	ong; N	1-Med	lium; l	L-Lo	W						M				
										NT	7.,,				

SOLUTION OF LINEAR EQUATIONS:

Method of false position, Newton-Raphson method for single variable, Solutions of a linear system by Gauss Elimination, Gauss-Jordan, Jacobi and Gauss- Seidel methods. Inverse of a matrix by Gauss-Jordan method - Eigen value of a matrix by Power Method.

INTERPOLATION AND APPROXIMATION:

Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL INTEGRATION AND DIFFERENTIATION:

Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both1/3rd and 3/8th) rules. Numerical differentiation: Euler's method, Modified Euler's method, Taylor's series

DIVISIBILITY THEORY AND CANONICAL DECOMPOSTIONS:

Division algorithm - Base-b Representations - Number Patterns - Prime and Composite Numbers – GCD - Euclidean Algorithm - Fundamental Theorem of Arithmetic - LCM.

CONGRUENCES AND CLASSICAL THEOREMS:

Congruence's - Linear Congruence's, Chinese Remainder Theorem, Wilson's Theorem - Fermat's Little Theorem - Euler's Theorem - Multiplicative Functions - Eulers Phi functions – Tau and Sigma functions

TEXT BOOKS:

- 1. B.S. Grewal, "Numerical Methods in Engineering and Science", 6th Edition, Khanna Publishers, New Delhi (2014).
- 2. Thomas Koshy, "Elementary Number Theory with Applications", Elsevier publications (2007).
- 3. David.M.Burton."Elementary Number theory", Tata McGraw Hill (2012).

REFERENCES:

- 1. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2008).
- 2. Niven.I, Zuckerman.H.S and Montgomery.H.L, "An Introduction to Theory of Numbers", John Wiley and sons (2004).

COURSE DESIGNERS

S.N o	Name of the Faculty	Designation	Department	Mail ID
1	Dr. A.K.Bhuvaneswari	Assistant Professor Grade-II	Mathematics	bhuvaneswari@avit.ac.in
2	Dr.G.Selvam	Associate Professor	Mathematics	selvam@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

341	21B17		PRC)BABI	LITY	AND	QUE	UEIN	л J	Cat	egory	L	Т	Р	Credit
					TH	EORY	7			F	C-BS	2	1	0	3
PREA Probal metho differe waitin	MBL bilistic d intro ent test g lines	E and st oduces is and and it	tatistic studer design 's a pr	al anal its to c ing the imary	ysis is cogniti e exper tool fo	mostl ve lear riment r study	y used ning i s with ying th	l in vai n statis severa e prob	ried ap stics and facto lem of	plication nd deve ors. Que conges	ons in Ei lops ski eueing th tion.	ngineerin lls on ar neory is t	ng and S nalyzing the math	cience. the data nematica	Statistical by using l study of
PRER	EQUI	ISITE	- Nil												
COUI	RSE O	BJEC	TIVE	S											
1.	To g appli	et the ed to s	knowl tatistic	edge o al data	on con 1.	cepts (of rand	dom va	ariable	s and d	listributi	ons with	n respec	t to how	they are
2.	To a rando	cquire om var	skills iables.	in ha	ndling	situa	tions i	nvolvi	ng mo	ore thar	n one ra	andom v	variable	and fun	ctions of
3.	To be	e get e	xposec	l to the	conce	pts of	randoi	n proc	esses a	and disc	rete tim	e Marko	v chain.		
4.	To ad meas	cquire ureme	knowl nts ma	edge o de on	f Testi the sar	ing of nple.	Hypot	hesis u	iseful i	in makii	ng decis	ion and	test ther	n by mea	ans of the
5.	To st	udy qu	ieuing	model	s for a	nalyzi	ng the	real w	orld sy	stems.					
COU	RSE O	UTC	OMES	5											
On the	On the successful completion of the course, students will be able to														
CO1. solvin	Select g engi	an ap neering	propri g probl	ate pro	obabili	ty dist	tributio	on to a	determ	ine the	probab	ility fun	ction for	r Unde	rstand
CO2. genera variab	Derive ting fu les.	e the n inctior	nargina ns to e	al and stablisl	condit n the d	ional c listribu	listribu tion o	itions f linear	of biva r comł	ariate ra	ndom v s of ind	ariables, ependent	, and use t randon	e Appl	У
CO3. applic	Classit ations	fy and to ansy	apply wer qu	the con antitat	ncepts ive que	of Rai	ndom l about	Process the ou	s, Mar itcome	kov Pro s of pro	cess and babilist	l their ic systen	ns	Appl	У
CO4.	Apply	the co	oncept	s of lar	ge/sm	all san	ple te	sts into	o real l	ife prob	lems.			Appl	у
CO5.	Derive	e and	apply	main	formul	as for	some	prope	erties (such as	station	ary prob	abilities	, Appl	у
averag	ge wait	ing ar	nd syst	tem tir	ne, ex	pected	numb	per of	custor	ners in	the que	ue, etc.)	M/M/1	,	
MAP	$\mathcal{L} = \Pi \Pi$			GRAN	MME			$\frac{1}{S AN}$	D PR(GRAN	AME SI	PECIFI		COMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	M	L		L			L				M			
CO2	S	М	L		L			L				М			
CO3	S	Μ	L		L			L				М			
CO4	S	S	Μ	Μ	L			L				М			
CO5	S	S	М	М	L			L				М			
S- Str	ong; N	/I-Med	lium;	L-Low	7							٨			
										A	JH.r				

PROBABILITY AND RANDOM VARIABLES:

Probability concepts - Random variables - Discrete and continuous random variables - Expectation - Variance - Moment Generating function, Standard Distributions: Binomial, Poisson, Normal, Uniform and Exponential

TWO-DIMENSIONAL RANDOM VARIABLES:

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Regression Analysis, Transformation of random variables, Central limit theorem.

RANDOM PROCESSES:

Classification, Stationary process, Markov process, Poisson process, Birth and death process, Renewal process, Markov chain, Transition probabilities, Limiting distributions.

TESTING OF HYPOTHESIS:

Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) - Chi-square Tests for Goodness of fit - independence of attributes.

QUEUEING THEORY:

Markovian queueing models, Little's formula, M/M/1, M/M/C – finite and infinite capacity - M/G/1 Queues, Pollaczek - Khintchine formula (Statement only)

TEXT BOOKS:

- 1. S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", 11th extensively revised edition, S. Chand & Sons (2015).
- **2.** T. Veerarajan, "Probability, Statistics and Random processes" (Third Edition), Tata McGraw-Hill publishing Company Ltd., New Delhi (2017).
- **3.** F.S Hillier and G.J. Lieberman, "Introduction to Operations Research: Concept and Cases", McGraw-Hill International (2012).

REFERENCES:

- 1. I.R. Miller, J.E. Freund and R. Johnson, "Probability and Statistics for Engineers", 8th Edition, (2015)
- 2. Dr.A.Singaravelu, "Probability and Queuing Theory", Meenakshi Agency, Chennai (2012).
- 3. Premkumar Gupta, D.S. Hira, "Operations Research", S.Chand & company New Delhi (2014).

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. P. Sasikala	Professor	Mathematics	sasikala@vmkvec.edu.in
2.	Mr. D. Balaji	Asst. Professor	Mathematics	<u>balaji@avit.ac.in</u>

			S	MART NAN	MAT	ERIA	LS AN	N D V			Cate	gory	L	Т	Р	C
34	121B05				Tota	l Conta	act Hoi	urs: 45								
		Pre	equisit	e: Phy	sical So	ciences	-Eng	ineerin	g					_		_
		Phy	sics	J			6	,	0		FC	-BS	3	0	0	3
Prear	nble:															
This s	syllabu	enable	es the s	tudents	s to lea	rn the	applic	ations	of sma	art mate	erials a	nd use	es of v	variou	s sn	nart
engin	eering	devices	. The	syllabu	s also	discus	ses ab	out the	e nano	materia	als, the	ir uni	que pi	opert	es a	and
applic	cations	in vario	us field	ls.												
Cour	se Obj	ectives:														
1.	Gai	n the ki	nowledg	ge aboi	it the c	oncept	s of sm	nart sys	tems a	nd vari	ous sm	art ma	terials	•		
2.	Rea	lize abo	out the	smart s	ensor r	nateria	ls whic	ch are u	ised fo	r Indus	trial A	oplicat	ions.			
3.	Unc	lerstand	l about	the Ind	ustrial	applica	ation o	riented	Smart	materi	als'Ac	tuators				
4.	То	learn th	e prope	erties ar	nd class	sification	ons and	d impo	rtance	of Nano	omater	ials				
5.	Unc	erstand the characteristic features of materials at nanoscale and their potential applications														
COS	Co	rse Outcomes: On the successful completion of the course, students will														
CO1	Lea	rn the smart-properties of various functional materials Learn														
CO2	und	erstand	the app	plicatio	ns of d	ifferen	t smart	mater	ials as	sensors		I	Unders	stand		
CO3	und	erstand	the app	olicatio	ns of d	ifferen	t smart	materi	ials as	actuato	rs	ι	Unders	stand		
CO4	Gat	her kno	owledg	e on ui	nique p	oropert	ies of	nanom	aterial	S		1	Learn			
CO5	Use	of Nar	omater	ials for	· indust	rial ap	plicatio	ons				1	Acquir	e		
CO6	Gai	n know	ledge a	bout na	anomat	erials i	n healt	h care	industi	ry						
Map	ping wi	th Prog	gramm	e Outc	omes a	and Pro	ogram	me Sp	ecific (Outcon	nes					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO	P 3	SO
C01	S	-											_			
CO2	S	S	S	S	М											
CO3	S	М	S	S	-	-	-	-	-	-	-	S	-	-		-
CO4	S	S	S	S	М	-	-	-	-	-	-	S	-	-		-
CO5	S	S	S	S	-	-	-	-	-	-	-	S	-	-		-
CO6					М	-	-	-	-	-	-	S	-	-		-
S - St	strong, M- Medium, L - Low															

M. Hith

Syllabus

Overview of Smart Materials: Introduction to Smart materials –piezoelectric materials – piezoelectricity – magnetostriction materials – magnetostriction effect– shape memory alloys (SMA) – photoelastic materials – photoelasticity.

Smart material based sensors: Introduction to sensing technology - electric and magnetosrictive sensors - SMA based sensors - Infrared sensors - stress analysis by photoelastic sensors- Industrial Applications of smart sensors: Accelerometer and Biological DNA sensors.

Smart Materials For Actuators: Introduction to smart actuators - piezoelectric actuators - magnetostrictive actuators - SMA based actuators - polymeric and carbon nanotubes based low power actuators –Industrial Applications: robotic artificial muscles , materials for bone substitutes and tissue replacement implants - smart polymeric materials for skin engineering

Materials in Nanoscale: Historical development of nanomaterials - Unit and dimensions - Classifications of nanomaterials - quantum dots, nanowires, ultra-thin films, nanoparticles, multilayered materials. Length Scales involved and effect on properties: mechanical, electronic, optical, magnetic and thermal properties.

Selected Applications of Nanomaterials: Medical diagnostics – nanomedicine – targeted drug delivery – Biosensors; Information storage – nanocomputer – molecular switch – single electron transistors; design and fabrication of MEMS and NEMS devices.

TEXT BOOKS

1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.

- 2. Fundamental of Smart Materials, Editor: Mohsen Shahinpoor, RSC Publishers 2020
- 3. Charles P. Poole, Jr. and Frank J Ownes, "Introduction to Nanoscience and Nanotechnology", Wiley-Interscience Inc., Publication, 1st Edition, 2020.
- 4. Smart Material Systems And Mems Design And Development Methodologies by Vijay K Varadan, WILEY

INDIA 2014.

REFERENCE BOOKS

Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
 William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition,

Wiley Publisher, 2018.

3. Nanotechnology, Second eition, M. A. Shah and K. A. Shah, Wiley Publishers 2019.

4. Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009.

COUI	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. B. DHANALAKSHMI	Asso. Professor	Physics	dhanalakshmi.phy@avit.ac.in
2	Dr G. SURESH	Asso. Professor	Physics	suresh.physics@avit.ac.in
3	Dr. R. N. VISWANATH	Professor	Physics	rnyiswanath@avit.ac.in

Dr. M. NITHYA. Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

34	121B2′	1		DI	SCRE	TE M	ATHE	MAT	ICS	Cate	gory	L	Т	P	Credi t
										FC	-BS	2	1	0	3
PREA	MBL	E .													
Discret	te math	nemati	cs is ve	ery use	ful in c	constru	cting c	comput	er prog	grams an	d in ma	stering	many th	eoretical	topics of
compu	ter scie	ence. I	t works	s with c	discrete	e struct	ures, w	which a	re the a	abstract	mathem	natical st	tructures	used to	represent
discret	e objec	cts and	d relation	onships	s betw	een the	se obj	ects. It	t is use	ed to de	sign eff	ficient n	etworks,	optima	lly assign
freque	ncies t	o cell	ular ph	iones,	efficie	ntly sc	hedule	e large	projec	ets, plan	optim	al route	es, and s	solve ma	any other
problei	ms, bot	th app	lied and	l abstra	ict.										
PRER	EQUI	SITE	- Nil												
COUR	SE O	BJEC	TIVES												
1.	To ex	tend s	tudent'	s logic	al and	mather	natical	matur	ity and	ability to	o deal v	vith abst	raction		
2.	Stude	ents wi	ill be ab	le to F	ormula	te state	ements	from c	commo	n langua	ige to fo	ormal lo	gic, appl	y truth ta	ables and
	the ru	les of	propos	itional	and pr	edicate	calcul	us							
3.	To ur	ndersta	and the	basic c	oncept	s of co	mbinat	torics							
4.	To fa	miliar	ize the a	applica	tions c	of algeb	raic st	ructure	es						
5.	To ur	ndersta	ind the	concep	ts and	signifi	cance of	of lattic	ces and	Boolear	ı algebr	a which	are wid	ely used	in
	comp	uter so	cience a	ind eng	gineerin	ng									
COUR	RSE O	UTCC	DMES												
On the	succes	ssful c	ompleti	on of t	he cou	rse, stu	dents	will be	able to)					
CO1.]	Rephra	ise rea	al worl	ld stat	ements	s as lo	gical	propos	sitions	and de	monstra	ate whe	ther the	Appl	v
propos	11101 18	satist	iable, ta	autolog	gy or a	contrac	liction	.1	•		•	1	1 • .1	rr .	,
CO2.	Inter v	vhethe	r a log	ical ar	gumen	t is va	lid from	m the	given s	set of pi	remises	by app	lying the	Appl	у
meren	Ce ruie	es or p	redicate		ius.	6	•		•	1. 1					,
CO3.	Constr	uct the	e recurr	ence re	elation	for a g	given e	enginee	ering pi	coblem a	ind solv	ve the re	ecurrence	Appl	у
					1			unin atu			~~~~~		d		·
CO4. I	Be exp	osea to	o conce	pts and	1 prope	erties of	algebi	raic str	uctures	s such as	groups	s, rings a	ind	Appl	у
	Toba	famili	or with	the no	tions	forder	ad alog	abraic	structu	ras inclu	iding la	tticas ar	d		
Boolea	in algel	bras	ai witti	the no			eu aige		structur	ies, nich	iunig ia	attees at	IU	Appl	у
MAPF	ING V	NITH	PROG	RAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC (DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	Μ	L				М				М			
CO2	S	S	Μ	L				М				М			
CO3	S	S	М	L				М				М			
CO4	S	S	S	L				М				М			
CO5	S	S	М	М	L			М				М			
S- Stro	ong; M	-Med	ium; L	-Low	1	1		1	L	<u> </u>		1			
SYLL	ABUS		,												

PROPOSITIONAL CALCULUS

Propositions – Logical connectives – Compound propositions – Conditional and biconditional propositions – Truth tables – Tautologies and contradictions – Contrapositive – Logical equivalences and implications – DeMorgan's Laws - Normal forms – Principal conjunctive and disjunctive normal forms – Rules of inference – Arguments -Validity of arguments.

43 Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

PREDICATE CALCULUS

Predicates – Statement function – Variables – Free and bound variables – Quantifiers – Universe of discourse – Logical equivalences and implications for quantified statements – Theory of inference – The rules of universal specification and generalization – Validity of arguments.

COMBINATORICS

Review of Permutation and combination-Mathematical Induction-Pigeon hole principle-Principle of inclusion and exclusion-Generating function-Recurrence relations.

GROUPS

Semi groups-Monoids-groups-permutation group –Cosets-Lagrange's theorem-Group homomorphism-Kernal-Rings and Fields (definitions and Examples only).

LATTICES

Partial ordering- Posets-Hasse diagram-Lattices-Properties of Lattices-Sub Lattices- Distributed Lattices -Special Lattices-Boolean Algebra-Homomorphism

TEXT BOOKS:

- 1. Tremblay J.P, and Manohar R., "Discrete Mathematical Structures with Applications to Computer Science", McGraw Hill Book Company (1975), International Edition (1987).
- 2. Rosen, K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition (2011).

REFERENCES:

- 1. Dr.A.Singaravelu, "Discrete Mathematics", Meenakshi Publishers, Chennai (2019).
- 2. K.Sankar, "Discrete Mathematic", 3rd edition, Indian Publishers, Chennai.(2016)

COURS	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S.Punitha	Associate Professor	Mathematics	punithas@vmkvec.edu.in
2.	Dr. M.Thamizhsudar	Associate Professor	Mathematics	thamizhsudar@avit.ac.in
L				

With M

341	21B36		ST	ΓΑΤΙΣ	TICAI	L FOU	NDAT	TION		Ca	ategory	L	Т	Р	Credit
		((Statist	ical tał	ole peri	mitted t	for Exa	aminati	on)]	FC-BS	2	1	0	3
PREA	MBLE	E								-					
Statisti	cal me	thods a	are imp	ortant	tools w	which p	rovide	the en	gineers	with bo	oth desc	riptive a	nd analy	rtical me	thods for
dealing	g with	the van	riability	y in ob	served	data.	lt intro	duces	student	s to cog	gnitive l	earning	in statis	tics and	develops
		yzing t	ne uata	t by us	ing uni	erent t	ests an	u mem	ous.						
PKEK -	EQUI: NIL	SILE													
COUR	RSE O	BJEC	FIVES												
1.	To de	escribes	s the ch	naracte	ristic o	f the er	ntire gr	oup of	data a	nd choo	se the be	est centr	al tender	ncy and	
	varial	oility st	tatistic	for dif	ferent l	evels c	of meas	sureme	nt.						
2.	To U	ndersta	ind the	role of	Samp	ling an	d steps	in dev	eloping	g a samp	pling pla	.n			
3.	To ac	quire l	knowle	edge ab	out im	portan	t infere	ential a	spects	such as	point e	stimatio	n, test o	f hypotl	neses and
	assoc	iated c	oncept	s.											
4.	Study	ving mu	ltiple	partial	correla	tions a	nd fitti	ng mu	ltiple li	near reg	ression	to trivar	iate data	•	
5.	5. Understand the theory of random number generators and the methods used in random variate generation														
COUR	RSE O	UTCO	MES												
On the	succes	ssful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO1.	Analyz	ze stati	istical	data u	sing m	easure	s of co	entral (tendend	ey, disp	ersion a	ind loca	tion for	Appl	у
groupe	d and u	ungrou	ped da	ta case	s.										
<u>CO2.</u>	Identif	y and 1	recogni	ize the	approp	oriate sa	ample s	survey	design	in real	life relat	ed prob	lems.	Appl	У
CO3. sample	Estim	ate the	cnara	cteristi	c of th	e popu	llation	with c	legree	of confi	laence r	rom the	random		y
CO4.	Apply	the co	ncept	of line	ar corr	elation	and r	egressi	ons to	engine	ering pr	oblems.	Apply	Appl	V
least so	quare n	nethod	in fitti	ng line	ar and	non lin	ear reg	gression	n curve	s.	C I		11.7	11	,
CO5.	Genera	ate ran	dom nu	imbers	and ra	ndom	variates	s using	differe	ent techr	niques.			Appl	у
MAPF	PING V	VITH	PROG	GRAM	ME O	UTCO	MES .	AND F	PROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	Μ	L				L				М			
CO2	S	S	Μ	L				L				Μ			
CO3	S	S	Μ	L				L				Μ			
CO4	S	S	Μ	Μ				Μ				Μ			
CO5	S	S	Μ	Μ				Μ				М			
S- Stro	ong; M	[-Medi	um; L	-Low											

M. Hith

EMPIRICAL STATISTICS

Introduction to Statistics – Frequency distribution – Measures of Central tendency, dispersion, Skewness and Kurtosis.

SAMPLING THEORY

Fundamentals of sampling – Methods of Sampling – Random Sampling - Simple random Sampling – Restricted Random sampling - Non-Random Sampling – Judgment or Purposive Sampling – Quato sampling – Convenience Sampling – Mixed sampling

ESTIMATION THEORY

Sampling distributions – Estimation of parameters (consistent and unbiased) – Point and interval estimates for population proportions, mean and variance - Maximum likelihood estimate method - Method of moments

LINEAR STATISTICAL MODELS

Simple linear correlation and regression – Multiple and partial correlation and regression – Curve fitting by method of least squares – fitting of straight lines – polynomials – exponential curves.

RANDOM NUMBER GENERATION

Generation of random numbers, Techniques, tests for random numbers, Chi-square test, Runs test, Poker test, Kolmogrov Simrnov test, Random Variate generation – Inverse transform method, Exponential Random Variates, uniform random Variates, Poisson Random Variates, Binomial Random Variates, Normal Random Variates.

TEXT BOOKS:

- 1. S.P. Gupta, "Statistical Methods", Sultan Chand & Sons, New Delhi, 45th Revised Edition (2017).
- 2. Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).
- 3. Jerry Banks, John S. Carson, Barry L. Nelson, David M.Nicol, "Discrete Event System Simulation", Prentice Hall of India, Delhi (2002).

REFERENCES:

- 1. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi (2015).
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition (2007).
- 3. Geoffrey Gordon, "System Simulation", Prentice Hall of India, Delhi (2002).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Sasikala	Professor	Mathematics	sasikala@vmkvec.edu.in
2	Dr.L.Tamilselvi	Professor	Mathematics	ltamilselvi@avit.ac.in

M. Hit

341	21B81	P	P ART A	HYSIO A – RE	CAL S	CIEN ND VI	CES L RTUA	LAB: LLLA	B IN	Cat	tegory	L	Т	Р	Credi t
					PH	YSICS				F	C-BS	0	0	2	1
PREA	MBLI	E													
In this	labora	tory, e	xperin	nents a	re base	ed on t	he calc	culation	n of ph	iysical p	arameter	s like y	oung's r	nodulus,	rigidity
modul	us, vis	cosity	of wa	iter, w	avelen	gth of	spect	ral lin	es, the	ermal co	onductivi	ty and	band ga	p. Some	e of the
a thin y	ments i wire Ii	nvoive 1 addit	ion to t	the abc	iation	of the o I lab ex	nnens	sion oi ents si	udents	s like til gain ha	nds-on e	a micro	ce in virt	and thick ual labo	ratory
		SITE					permi	e nts, s		guill lia		nperiori			iutory.
FKER	EQUI	SIIE N	IL												
COU	RSE O	BJEC'	TIVES	5											
1	To in	part b	asic sk	ills in t	aking	reading	g with	precisi	on of p	ohysics e	experime	nts			
2	To in	culcate	e the ha	abit of	handliı	ng equi	pment	s appro	opriate	ly					
3	To ga	in the	knowle	edge of	f practi	cing ex	kperim	ents th	rough	virtual l	aboratory	у.			
4	To kr	low the	e impo	rtance	of unit	s									
5	To ob	otain re	sults w	vith acc	curacy										
COU	RSE O	UTCO	MES												
On t	he succ	essful	compl	etion o	f the c	ourse,	studen	ts will	be able	e to					
CO1	Recog	gnize tl	he imp	ortance	e of un	its wh	ile per	formin	g the e	experime	ents,		Understa	and	
	calcul	ating t	he phy	sical p	aramet	ers and	l obtai	ning re	sults						
CO2	Opera	te the	equipn	nents w	ith pre	ecision							Apply		
CO3	Practi	ce to h	andle t	he equ	ipmen	ts in a	system	atic m	anner				Apply		
CO4	Demo	nstrate	the ex	perim	ents th	rough	virtual	labora	tory				Apply		
CO5	Calcu	late the	e result	with a	accurac	сy							Analyze		
MAPI	PING	VITH	PROG	GRAM	IME C	UTC	OMES	AND	PROG	GRAMN	AE SPEC	CIFIC	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	Μ	Μ	S	-	-	-	Μ	-	-	М	М	-	М
CO3	S	-	- M	- M	-	-	-	-	-	-	-	-	- -	-	- M
CO4	5 5	<u>5</u> S	- MI	NI	5	-	-	-	-	-	-	5	-	-	-
S- Stro	ong; M	Mediu	ım; L-l	Low	_	_	-		I	I	-		_	I	-
SVLI	ARIS		,												
1.	Youn	g's mo	dulus c	of a bai	- Non	-unifo	m ben	ding							
2	Rigid	itv mo	dulus c	of a wii	e - To	rsional	Pendu	ılum							

- Viscosity of a liquid Poiseuille's method
- Velocity of ultrasonic waves in liquids Ultrasonic Interferometer
 Particle size determination using Laser
- 5. Particle size determination using Laser

- 6. Wavelength of spectral lines grating Spectrometer
- 7. Thickness of a wire Air wedge Method
- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A - Real And Virtual Lab In Physics Manual compiled by Department of Physics,

Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

COUR	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in										
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in										

Mitt.M

PHYSICAL SCIENCES									Categor	y L	Т	Р	С	redit		
34121	B81	F	PART	B - EN	IGINE	ERIN	G CHE	EMIST	RY L	AB				•		
				(C	ommo	n to Al	l Bran	ches)			FC-BS	0	0	2		1
Engine	ering	Chemi	stry L	ab exp	erimer	its exp	lains t	he bas	ics and	l essenti	als of En	gineeri	ing Cl	emis	stry.]	lt also
helps	the stu	dents 1	to und	erstand	the a	oplicati	ions of	Engir	neering	Chemis	stry. The	electro	des, C	Cell a	nd ba	atteries
idea al	gives c.	rdness	sic ap	pincano	on oriei dvantae	neu Kr	iowied	ge abo	ul elec	cal and	istry. wai handling	of equi	inolog	y stu	uy gi	led for
our fas	st grow	ing life	e style.	15 01500	u vantaž	303. 140	/w-a-u	ays the	practi		nanunng	or equi	pinem	.s arc		
PRER	EQUI	SITE:	NIL													
COUI	COURSE OBJECTIVES															
1.	1. To impart basic skills in Chemistry so that the student will understand the engineering concept.															
2.	To inculcate the knowledge of water and electrochemistry.															
3.	To lay foundation for practical applications of chemistry in engineering aspects.															
C.OU	OURSE OUTCOMES															
On the	the successful completion of the course, students will be able to															
CO1.	Unders	tand th	ne basio	c skills	for his	/her fu	ture st	udies.			U	ndersta	ind			
CO2 A	Analyze	the w	ater co	mpreh	ensive	y.					A	pply				
CO3	Apply t	he pra	ctical l	cnowle	edge in	engine	ering a	spects			A	pply				
MAP	PING V	VITH	PRO	GRAN	IME C	UTCO	OMES	AND	PROG	RAMM	IE SPEC	FIC C	OUTC	OMI	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	502	PSO3
CO1	S	М	М	-	L	М	М	S	-	-	-	М	-		-	-
CO2	S	М	М	-	L	М	М	L	-	-	-	М	-		-	-
CO3	S	S	М	-	L	М	М	Μ	-	-	-	М				
S- Stro	ong; M-	-Mediu	ım; L-1	Low												
1. Det	erminat	tion of	Hardn	less by	EDTA	metho	od									
2. Esti	mation	of Hy	drochl	oric ac	id by c	onduct	ometri	c meth	od							
3. Act	d Base	titratio	on by p	H met	hod			J								
4. ESt1	mation	of Fei	TOUS 10	on by F	otentio	metric	metho	00 mathai	1							
5. Del	mation		dium b	v Flam	kygell (na nhot	ometer		nethot	1							
7 Esti	mation	of C_0	nner fr	om Co	nner O	re Soli	ition									
8 Estir	nation	of Iror) by Sr	ectron	hotom	ter	iti011									
TEXT		61 1101 K:	10,00	eenop	11010111											
1. Eng	ineerin	g Che	mistry	Lab M	anual l	oy VM	U.									
COUI	RSE DI	ESIG	NERS													
S.No	Name	e of the	e Facul	ty				Mai	il ID							
1.	Dr.R.	Nagal	akshm	i				nag	alakshi	ni.chem	istry@avi	t.ac.in				
2	A. Gi	lbert S	Sunderi	aj				gilb	ertsund	lerraj@	mkvec.ed	lu.in				
	Children .															

34121E	319	ENVIRONMENTAL	Category	L	Т	Р	Credit							
		(Common to All Branches)	FC-BS	3	0	0	3							
Environm atmospher problems issues of in every a	nental ric scie and con environ spect.	science is an interdisciplinary field that integrates plances. Environmental studies deals with the human relation serving the environment for the future. Environmental e ment and its management for sustainable development by in	nysical, ch ns to the e ngineering mproving t	emica enviro focu he env	al, bi nmen ses o vironi	ologi t and n the nenta	ical, and l societal e various al quality							
PREREQUISITE: NIL														
COURSE OBJECTIVES														
1	To inculcate the knowledge of significance of environmental studies and conservation of the natural resources.													
2	To ac	c) acquire knowledge of ecosystem, biodiversity, it's threats and the need for conservation												
3	To ga	Γο gain knowledge about environmental pollution, it's sources, effects and control measures												
4	To familiarize the legal provisions and the national and international concern for the protection of environment													
5	To be humai	aware of the population on human health and environment, an health and environment.	role of tech	nolog	y in r	nonit	oring							
COURSE	E OUT	COMES												
On the su	ccessfu	completion of the course, students will be able to												
CO1. Und	lerstand	the importance of environment and alternate energy resource	ces Ur	ndersta	and									
CO2. Init and biodiv	tiate the versity o	awareness and recognize the social responsibility in ecosyst conservation	em Ap	ply										
CO3. To o the proble	develop ems	technologies to analyse the air, water and soil pollution and	solve Ap	oply										
CO4. To e for a susta	O4. To evaluate the social issues and apply suitable environmental regulations r a sustainable development Evaluate													
CO5. To i environme	To identify and analyse the urban problems, population on human health and Analyse ronment													

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	Μ	-	S	S	S	-	-	-	S	-	-	-
S- Strong; M-Medium; L-Low															

SYLLABUS

UNIT -I ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and over-exploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems –Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

UNIT –II ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

UNIT –III ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management,-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style.

UNIT-IV SOCIAL ISSUES AND ENVIRONMENT

hrs

Sustainable Development- Water conservation – rain water harvesting, watershed management -Resettlement and rehabilitation of people , case studies –Climate change - Global warming - Acid rain - Ozone depletion-Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act – Pollution Control Board-central and state pollution control boards.

6 hrs

6 hrs

6

6 hrs

UNIT-V HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion –Family welfare programme - Environment & human health - Human rights – Value education –AIDS/HIV, Role of information technology in environment and human health.

TEXT BOOK

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

S.No.	Name of the Faculty	Mail ID
1.	Dr. K. Sanghamitra	sanghamitra.chemistry@avit.ac.in
2.	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in

N.Hit

0.500	4504	FOU	JNDA	TION	S OF	COM	PUTI	NG AI	ND	Categ	ory	L	Т	Р	Cre	edit	
3502	1E01		PK	JGRA AND	PRA(NG (1 CTICA	HEO (LS)	KY		FC-I	ES	2	0	2		3	
PREA This c empha interne	MBL ourse a sizing j t basics	E ims to princip s.	provi les pro	de the gramm	funda ing lar	mental Iguages	conce s. Stud	pts of lying th	Comp e fund	uter ope lamental	erations s databa	like ise la	haro ngua	lware a ages, co	and soft ommand	ware, s and	
PRER	QUIS	ITE –	Nil														
COU	RSE O	BJEC	CTIVE	S													
1.	To pr	ovide b	oasic kr	nowled	ge of h	ardwar	e comp	onents	of con	nputers a	and class	sifica	tions				
2.	To introduce and demonstrate various Software application packages.																
3.	To study Principles of programming and applications of programming.																
4.	To learn Operating system and Database Management Systems language & commands used.																
5.	To learn basics of Internet and Web services.																
COUI	COURSE OUTCOMES																
On the	succes	sful co	mpletio	on of th	e cours	se, stud	lents w	ill be at	ole to								
CO1. U	Jnderst	and the	e Basic	knowle	edge oi	n comp	uter ha	rdware	and its	s functio	ns.	I	Und	erstand			
CO2. Get knowledge of Fundamentals of Application Softwares																	
CO3.U langua	Indersta ges.	and the	princ	iples o	of prog	rammi	ng and	d categ	ories	of prog	ramming	g 1	App	ly			
CO4. U System	Jnderst 1s langu	and the	e funda .nd thei	mental: r classi	s of op fication	erating ns.	system	ns and E	Databa	se Mana	gement	1	App	ly			
CO5.U	Indersta	unds the	e Interr	net Bas	ics.							1	App	ly			
MAP	PING	WITE	I PRO	GRA	MME	OUT	COMI	ES AN	D PR	OGRA	MME S	SPE	CIF	IC OU	тсом	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO3	
CO1	S	-	-	-	-	-	-	-	-	-	-	-	Ī	S	М	-	
CO2	S	Μ	Μ	-	М	-	-	-	-	-	-	Μ	M S M M				
CO3	S	S	S	-	М	-	-	-	-	-	-	-	- S - N				
CO4	S	S	S	-	S	-	-	-	-	-	-	-	- S M M				
CO5	S	Μ	Μ	-	М	-	-	-	-	-	-	S		S	М	М	

S- Strong; M-Medium; L-Low

SYLLABUS

Introduction to computers:

Computer – Characteristics of computers - Generations of computers - Types of Computers - Block diagram of a computer – Components of a computer system –Hardware and software definitions – HH.M Categories of software – Booting.

Application Softwares:

Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint). Lab Component-Ms Word, Ms Excel, Ms powerpoint.

Introduction to programming

Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation –Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

Fundamentals of Operating System and DBMS :

Operating Systems: Introduction, Functions of an operating System, types of Operating Systems Introduction to Database Management Systems- -File system vs DBMS, Database applications, Database users, Introduction to SQL, Classification of SQL:DDL, DML, DCL, TCL Lab Component- DDL, DML, DCL, TCL constraints

Internet Basics

Introduction, Features of Internet, Internet application, Services of Internet Basics of HTML – Applications of HTML – HTML Fonts – anchor tag and its attributes – Using images in HTML programs – list tag - Table tag.

Lab Component -HTML programs TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. J. Glenn Brookshear,"Computer Science: An Overview", Addision-Wesley, Twelfth Edition, 2014

REFERENCES:

1. "Concepts of programming language" Concepts of Programming Languages Eleventh Edition GLOBAL Edition Robert W. Sebesta, 2019.

Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison

Wesley, 2011

COUI	COURSE DESIGNERS													
S. No.	Name of the Faculty	Designation	Department	Mail ID										
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in										
2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in										

M. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

BASICS OF ELECTRICAL AND ELECTRONICS Catego										ory	L	Т	Р	Credit			
5402			A. I	BASIC		CTRIC	CAL E	NGINI	EERIN	G	FC-I	ES	2	0	0	2	
PREA It is a	MBL prelim	E inarv c	ourse	which	highlig	thts the	basic	concep	ots and	outline	of Elect	rical	eng	ineeri	ng. Th	e concepts	
discus	sed her	rein ar gradua	e proje tes.	ected to	o delive	er expla	anation	n on ba	sic elec	ctrical e	ngineer	ing fo	or b	eginne	ers of a	all	
PRER	REQUI	ISITE	– Nil														
COUI	RSE O	BJEC	TIVE	S													
1	1 To explain the basic laws used in Electrical circuits and various types of measuring instruments.																
2	2 To explain the different components and function of electrical dc and ac machines.																
3	3 To understand the fundamentals of safety procedures, Earthing and Power system.																
COU	OURSE OUTCOMES																
On the	On the successful completion of the course, students will be able to																
CO1: Explain theelectrical quantities and basic laws of electrical engineering. Remember																	
CO2: 2	Demor	nstrate	Ohm's	and F	araday	's Law	•						Ap	ply			
CO3: 1	Descri	be the	basic c	concept	s of m	easurin	ıg instr	ruments	8.				Un	ndersta	nd		
CO4:	Explai	in the o	operati	on of e	lectric	al mach	hinerie	s and it	ts appli	cations.			Un	ndersta	nd		
CO5:	Explai	n the e	lectrica	al safet	y and p	protect	ive dev	vices.					Un	ndersta	nd		
CO6:	Compa vention	are the	variou 1 non-c	s types	s electr	rical po	wer ge	eneratio	on syste	ems by	applicat	ion	An	nalyze			
MAP	PING	WITH	[PRO	GRAN	IME (OMES	AND	PROG	RAMN	AE SPE	CIF		OUTC	COME	ËS	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSO	2 PSO3	
CO1	S	М	-	-	М	L	-	-	-	L	М	L		S	М	L	
CO2	S	М	М	L	М	-	-	-	S	М	М	L		S	L	-	
CO3	S	М	М	М	М	-	-	-	-	L	М	L		S	М	L	
CO4	S	М	L	L	М	L	-	-	-	L	М	L	- S L -				
CO5	S	М	L	-	М	S	-	-	-	L	L	L	Ĺ				
CO6	S	М	-	-	М	L	S	L	-	L	L	L		Μ	L	М	
S- Stro	ong; M	-Medi	um; L-	Low											-		

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

ELECTRICAL CIRCUITS AND MEASUREMENTS

Electrical quantities - Charge, Electric potential, current, power and Energy, Passive components (RLC)-Fundamental laws of electric circuits-steady solution of DC circuits - Introduction to AC circuits- Sinusoidal steady state analysis-Power and Power factor – Single phase and Three phase balanced circuits -Classification of Instruments-Operating Principles of indicating instruments.

ELECTRICAL MACHINES

Faraday's Law, Construction, Principle of operation, Basic Equation and Applications of DC & AC Generators and Motors - Single Phase Transformer, Single phase and Three phase Induction Motor.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Types of Generating stations, Transmission types & Distribution system (levels of voltage and power ratings)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical &Electronics Engineering", Second Edition, PHI Learning, 2007.

S.No	Name of the Faculty	Designation	Department	Mail ID										
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in										
2	Dr. G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.e du.in										
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in										
4	Mr. S. Prakash	Assistant Professor (Gr- II)	EEE/AVIT	sprakash@avit.ac.in										

COURSE DESIGNERS

N. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

BASICS OF ELECTRICAL AND Categor L Т Р Credit 34621E01 **ELECTRONICS ENGINEERING** y **B. BASIC ELECTRONICS ENGINEERING** FC-ES 2 0 0 2 PREAMBLE The course aims to impart fundamental knowledge on electronics components, digital logics and communication engineering concepts. The course begins with classification of various active and passive components, diodes and transistors. It enables the student to design small digital logics like multiplexer, demultiplexer, encoder, decoder circuits, etc. It crafts the students to get expertise in modern communication systems. **PRERQUISITE** – Nil **COURSE OBJECTIVES** To learn and identify various active and passive components and their working principles. 2 To understand the number conversion systems and working Principles of logic gates. 3 To learn the digital logic principles and realize adders, multiplexer, etc., 4 To understand the application-oriented concepts in the Various communication systems. **COURSE OUTCOMES** On the successful completion of the course, students will be able to CO1. Interpret working principle and application of various active and passive Understand electronic components like resistors, capacitors, inductors, diodes and transistors. CO2. Construct the rectifier, Clipper, Clamper, regulator circuits and explore their Apply operations. CO3. Execute number system conversions and compute several digital logic Apply operations. CO4. Design adders, Multiplexer, De-Multiplexer, Encoder, Decoder circuits for Apply given data input. CO5. Expose the working principles of modern technologies in developing application-oriented gadgets like the UHD, OLED, HDR and various Understand communication systems. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES PO1 PO3 PO4 PO10 PO11 PO12 COS PO2 PO5 PO6 PO7 PO8 PO9 PSO1 PSO2 PSO3 CO1 S L Μ Μ -_ -CO2 S М L L М М М Μ _ ----CO3 S Μ М --L -S -----_ -CO4 S L Μ Μ Μ Μ L Μ _ _ CO5 S Μ L L L S L S- Strong; M-Medium; L-Low

Mitt.M

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors- Intrinsic Semiconductor, Extrinsic Semiconductor, Energy band diagram- Conductor, insulator, semiconductor, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers, Voltage Regulation-Simple wave shaping circuits- Clipper, Clamper. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Gray Code- Conversion from one to another – Logic Gates and its characteristics – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories.

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM ,PCM,DM– RADAR – Satellite Communication – Mobile Communication, Optical communication, Microwave communication. LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

COU	RSE DESIGNERS			
S.N 0.	Name of the Faculty	Designation	Departmen t	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr- II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr- II)	ECE	mohanapriya@avit.ac.in

N. Hitt

35021	E02	Р	YTHO (ON PR THE(XOGI DRY	RAMN AND	AING	(CATE	GORY	L	Т	Р	CR	EDIT
]	PRAC	TIC	ALS)			FC	-ES	2	0	2		3
PREAM The purp to write popular a	IBLE pose of code fe and po	this c or diff werful	eourse Ferent l open	is to in operati source	ntrodu ing sy	uce Py ystems gramm	thon, a along ing too	a rema with	rkably applica	powerf ation do	ùl dyna main. I	amic p Pythoi	orogran 1 has e	nming volved	language on more
PRERQ	UISIT	E :NI	L												
COURS	E OB.	JECT	IVES												
1.	Top	orovide	e basic	know	ledge	e on Py	thon p	orograi	nming	concep	ts.				
2.	To i	ntrodu	ice diff	ferent	metho	ods in	list, stı	ring, tı	iple, di	ictionary	and se	ets.			
3.	Тос	ompu	te diffe	erent p	rogra	ams us	ing py	thon co	ontrol	statemer	nts.				
4.	Tol	earn a	bout d	ifferen	t fund	ctions	in pytł	non.							
5.	To compute the exception handling functions and file concepts.														
COURS	SE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. Learn python statements, comments and indentation, tokens, input and Understand															
output methods using various example programs. CO2. Apply the different methods involved in List, String, Tuples and Dictionary. Apply															
CO3. D	esign s	solutio	ons for	comp	lex pr	ogram	is usin	g decis	sion m	aking ar	d loopi	ing	Appl	V	
stateme	nts.	e func	tion n	rogran	ne wit	h all tl	ne con	cents 1	iko lan	nhda an	d recur	sion	Appl	y. N	
CO4.A	omput	e the e	excepti	on har	ndling	g progi	ams, f	file cor	ncept p	rograms	a net and	51011.	Appl	y. V	
underst MAPPI	and the	e conc ITH F	epts . PROG	RAM	ME (DUTC	OME	S ANI) PR(GRAM	ME SI	PECI	FIC O	, UTCO	MES
			nou												
COS	PO1	PO2	PO3	PO4	Р О5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO3
CO1	S	М	Μ	Μ	М	-	-	-	-	-	-	-	М	М	Μ
CO2	S	М	Μ	Μ	М	-	-	-	-	-	-	-	S	М	Μ
CO3	М	S	S	S	Μ	-	-	-	-	-	-	-	М	М	Μ
CO4	S	S	S	S	М	-	-	-	-	-	-	-	S	S	Μ
CO5	S	М	Μ	Μ	М	-	-	-	-	-	-	-	S	М	Μ
S- Strong	g; M-N	Iediur	n; L-L	ow											
	Dr. M. NITHYA,														

Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Datatypes-Operators

DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

CONTROL STATEMENTS

Flow Control-Selection control Structure- iterative control structures.

FUNCTIONS

Introduction-Declaration of function-Types of function-Types of Arguments-parameters-recursion and lambda function

FILE HANDLING AND EXCEPTION HANDLING

FILES:Open,read ,write, append ,close,tell and seek method,.Exception Handling:errors and exceptions-Raising exceptions-user defined exception

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 2st Edition, O'Reilly Media, 2019.
- 2. Programming With Python- II 'Himalaya Publishing House Pvt Ltd, 2018.
- 3. "Dive Into Python3" by Mark Pilgrim, 2012

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in									
2	Dr.V.Amirthalingam	Assistant Professor	CSENT	amirthalingam@vmkvec.edu.in									

				I] MECH	BASIC IANIC	CS OF CAL EN	CIVIL NGINH	L AND EERIN	G	Category	L	Т	Р	Credit
344	E21E01		PART	-A BA (C	SICS	OF CI n to Al	VIL E ll Bran	NGIN nches)	EERIN	NG	FC-ES	2	0	0	2
PREA	AMBL Obi	E ective	of this	course	is to p	rovide	an insi	ght and	d incul	cate the	essentials	s of Ci	vil Engir	neering	
	disc	ipline	to the s	student	s of all	branch	nes of l	Engine	ering.						
PREF	REQU	ISITE	-NIL												
COU	RSEO	BJEC	TIVES												
1	To ur	ndersta	nd the	basic c	oncept	s of su	rveying	g and a	pply in	practic	al proble	ms			
2	 2 To study in detail different types of construction materials. 3 To import basis knowledge shout building components. 														
3	3 To impart basic knowledge about building components.														
COU	COURSE OUTCOMES														
Ont	the suc	cessful	l compl	letion of	of the c	ourse,	studen	ts will	be able	e to					
CO1./	An abil	ity to a	apply c	oncept	s of Su	rveying	g on pr	actical	applic	ations.				Appl y	
CO2.	Explai	n diffe	rent typ	pes of l	ouildin	gs, bui	lding c	compon	ents, b	uilding	materials	and		Reme	mber
CO3.	Expalir	the es	ssential	s of co	mpone	nts of	a build	ing and	1 applic	cation of	Fload on	it		Under	stand
MAP	PING	WITH		GRAN	IME C		OMES	AND	PROG	RAMN	IE SPEC	TIFIC (ουτο	MES	Stulla
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	PSO	PS	PSO3
000															
CO1	ILM-SL-MMLLL-LMMM														
CO2	S	Μ	L	-	Μ	S	-	-	_	_	-	_	М	-	-
CO3	S	М	L	S	Μ	S	-	-	М	-	-	-	-	S	-
S-Stro	ong:M-	Mediu	m: L-L	OW											

M. Hith

SURVEYING

Objects-types-classification-principles-measurementsofdistances-angles-levelling-determination of areasillustrative examples.

CIVIL ENGINEERING MATERIALS

Bricks -stones-sand -cement -concrete mix design and Quantity computation-steel sections.

BUILDING COMPONENTS AND STRUCTURES:

FOUNDATIONS: Types, Safe Bearing capacity of Soil–Requirement of good foundations. **SUPERSTRUCTURE:** Brick Masonry–Stone Masonry–Beams–Columns–Lintels–Roofing–Flooring– Plastering–Mechanics – Internal and External Forces–Load Transformation Mechanism in Structural Elements– Stress – Strain–Elasticity – Types of Bridges and Dams – Basics of Interior Design and Landscaping–Water Supply–Sources and Quality of Water— Rain water harvesting—Introduction to highway and railway.

TEXTBOOKS:

- 1. Basic Civil and Mechanical Engineering, VMU, (2017). CompanyLtd., NewDelhi, 2009.
- 2. Basic Civil and Mechanical Engineering, M.Prabakaran, S.P.Sangeetha, Vemuri Lakshminarayana, Maruthi Publishers, 2017.
- 3. Reinforced Concrete Structures B.C.Punmia, Vol.1&2,-Laxmi Publications, Delhi, 2004.

REFERENCES:

- 1. Ramamrutham S., "Basic Civil Engineering", Dhanpatrai Publishing Co. (P) Ltd., 2009.
- 2. Rangwala S.C and Dalal K.B, Building Construction, Charotar Publishing house, 2022.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Dept/College	MailI D
1	S.Supriya	Assist.Professor	Civil/VMKVEC	jansupriyanair@gmail.com
2	Mrs.Pa.Suriya	Asst.Professor	Civil/AVIT	suriya@avit.ac.in

M. Hith

2	44045	-01	BAS	SICS O	F MEC	CHANIC	AL	Catego	ry	L	Т	Р	Cre	dit	
3	44210	201		ENG	INEEI	RING		FC (E	S)	2	0	0	2		
Pream	ble														
This c	ourse	provide	s a prel	iminary	y knowl	edge of th	he app	olication	s of m	echanic	al eng	ineering	in our d	lay to day	v life.
Prere	quisi	te-NIL													
Cours	seOb	jective													
1		To dem	onstrate	e the pri	inciples	of casting	g and	metal jo	ining]	process	es in n	nanufacti	uring		
2		Understand the importance and uses of IC Engines, working principles of IC Engines.													
3		Compre	hend th	ne work	ing and	use of va	arious	power p	lants						
Cours	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	Illustrate the application of casting and metal joining processes in manufacturing Apply														
CO2.		Demons compon	strate the	e opera	tion of	automotiv	ve eng	gines and	l impo	ortant		Apply			
CO3.		Underst convent	anding ional ai	the con nd non-	structio	on and the tional pov	e work wer ge	king prine eneration	ciple c	of		Unders	tand		
Маррі	ng wit	h Progra	mme O	utcomes	and Pr	ogramme (Specifi	ic Outcon	nes						
	8	8-•					- r		_ **						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO 1	PSO2	PSO3
CO1	S	М	S	L	М	-	-	-	-	-	-	-	-	-	-
CO2	S	М	М	L	L	-	-	-	-	-	-	-	-	-	-
CO3	S	S M M L L													
S-Stroi	ng: M	-Medium	: L-Low	7		·									

M. Hith

BASIC MANUFACTURING PROCESSES

Casting process-Introduction, Principle, Advantages, casting defects Forging process-introduction, forging, rolling, drawing, extrusion Welding process- introduction, principle, types-Gas and arc welding

IC ENGINES

The Importance and uses of Engines-Definition, Classification-I C & E C Engines- two stroke engines - four stroke engines - various parts and functions of I C engines-working of two stroke petrol engine and diesel engine with line sketches - working of four stroke petrol and diesel engines with line sketches - Comparison between two stroke and four stroke engines -S I and C I engines.

POWER PLANT ENGINEERING

Classification of power plants- Working of power plant with line Sketches-Steam power plant-Hydro- electric power plant - Diesel power plant -Nuclear power plant- merits and demerits. Nonconventional energy power plants – solar- wind-tidal- geo thermal, with line sketches- merits & demerits of various non conventional power plants

Text l	t Books										
1	Power plant Engi	neering, by G	R Nagpal								
2	Internal combusti	on Engines by	y Ganesan								
3	Workshop techno	logy vol1, by	S K Hajra Choudhury								
Refer	rence Books										
1	Production technology, by P.C Sharma										
2	Thermal Engineer	ring by R.S.K	hurumi								
3	Power plant Engi	neering, by R.	K Bansal								
Cours	rse Designers										
Sl.No	No Faculty Name Designatio Department/Name of the College Emailid										
1	R.MAHESH AP(G-II) MECH/AVIT mahesh@avit.ac.in										

Will.M

34621	E81	E	BASIC	ELEC EN	FRICA NGINE	L ANI ERIN() ELE(G LAB	CTR	ONICS		Category	L	Т	Р	C	redit
			A. BAS	SIC EL	ECTR	ICAL	ENGIN	EEF	RING		FC-ES	0	0	2		1
PREA It is a l types o	MBLE aborate f earthi	ory couing met	rse whi hods.	ch fam	iliarize	s the ba	isic elec	etrica	ıl wirin	g, meası	irement o	f elec	trical	quan	tities an	d various
PRER	QUISI	TE – N	ΠL													
COUR	SE OF	BJECT	IVES													
1	To le	arn the	residen	tial wir	ing and	l variou	s types	of el	ectrical	wiring.						
2	To m	easure	the vari	ious ele	ctrical	quantiti	es.									
3	To kı	now the	necess	ity and	types of	of earth	ing and	mea	sureme	nt of ear	th resistar	nce.				
COUR	SE OU	JTCON	AES													
On the	succes	sful cor	npletio	n of the	course	, studer	nts will	be ał	ole to							
CO 1: 1	Implement the various types of electrical wiring. Apply															
CO 2: 1	Measure the fundamental parameters of AC circuits. Analyze															
CO 3: 1	Measure the earth resistance of various electrical machineries. Apply															
MAPP	ING V	VITH H	PROGE	RAMM	E OUI	COM	ES ANI	D PR	ROGRA	MME S	SPECIFI	C OU	TCO	MES	5	
COS	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1	S	М	L		S							L	Ν	M	L	
CO2	S	М	S	S					М			М	Ν	M	L	
CO3	L	S	L		S					L		L	N	Μ	L	
S- Stro	ng; M-	Mediur	n; L-Lo	W												
LIST (1. R 2. Fl 3. St 4. M 5. M 6. T REFE 1. L	Γ OF EXPERIMENTS Residential house wiring using switches, fuse, indicator, lamp and energy meter. Fluorescent lamp wiring. Stair case wiring. Measurement of electrical quantities – voltage, current, power & power factor in RLC circuit. Measurement of energy using single phase energy meter. Types of wiring, Joints and Measurement of resistance to earth of an electrical equipment. FERENCES															
COUR	JURSE DESIGNERS															
S.No	Nai	ne of the	e Faculty	,	Des	ignation			Depar of tl	tment/ Na he College	ame			Ma	ail ID	
1	Dr. R.	Devaraja	in	Pro	ofessor				EEE	VMKVE	С	devara	ajan@v	mkve	c.edu.in	
2	Dr. G.	Ramakri	shnaprab	ou As	sociate P	rofessor			EEE	VMKVE	С	ramak	rishnap	orabu@	@vmkvec.	edu.in
3	Ms. D.	Saranya		As	sistant P	ofessor (Gr-II)		EE	EE/AVIT		dsarar	nya@av	vit.ac.i	n	
4	Mr. S.	Prakash		As	sistant Pi	otessor (Gr-II)		EF	E/AVIT	M	spraka	ash@av	nt.ac.i	n	

AT

	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB Category L T P Credit 1E81 PAPT B PASIC ELECTRONICS Image: Constraint of the second															
34621	E81			PAR	T B - E EN	BASIC	ELEC'	TRONI G	ICS		FC-ES	0	0	2	-	1
PREA This co electro	MBLE ourse is nic con	s to j npone	provi ents a	de a p ind elec	ractical tronic e	knowl equipme	edge ir ents. It o	n Basic enables	Electro the stud	onics E dents to	ngineerin construct	g. It states the state of the s	arts st sin	with f	familiariz lectronic	ation of projects
PRER	QUISI	TE –	NIL													
COUR	RSE OF	BJEC	TIV	ES												
1	To fai	miliar	rize tl	he elect	ronic co	ompone	ents, ba	sic elec	tronic e	quipme	ents and so	oldering	tech	nique	s.	
2	To stu	ıdy th	e cha	aracteri	stics of	Diodes	, BJT a	nd FET	•							
3	To un	dersta	and t	he prino	ciples o	f variou	ıs digita	al logic	gates.							
4	To un	dersta	and t	he conc	ept of b	basic m	odulatio	on techr	niques							
COUR	RSE OU	JTCO	OME	S												
On the	succes	sful c	ompl	letion o	f the co	ourse, st	udents	will be	able to							
CO1. F	I. Familiarize with the fundamentals of soldering techniques. Understand															
CO2. C determ	D2. Construct experiments for PN and Zener diode characteristics also termine diode forward and reverse resistance Apply															
CO3. 0	Constru	ct clip	pper a	and cla	mper ci	rcuit an	d verify	y their v	oltage	levels	Apply					
CO4. C Zener d	Constru diode	ct and	l just	ify ope	ration s	imple v	oltage	regulato	or for gi	ven	Apply					
CO5. V NOT, I	/erify tl NAND,	he tru NOF	ith ta R, XC	bles an OR).	d charao	cteristic	es of log	gic gates	s (AND	, OR,	Apply					
MAPP	PING V	VITH	I PRO	OGRA	MME	OUTC	OMES	AND F	PROGE	RAMM	E SPECI	FIC OU	JTC	OME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	P	SO1	PSO2	PSO3
CO1	S	Μ	-	-	-	-	-	-	L	-	-	-		М	-	-
CO2	S	Μ	Μ	М	-	I	М	-	L	-	-	L		-	М	-
CO3	S	Μ	Μ	-	-	-	-	-	L	-	-	-		S	-	-
CO4	S	М	Μ	М	-	-	М	-	L	-	-	L		М	-	-
CO5	05 S M L L - L S - L															
S- Stro	ng; M-	Medi	um; l	L-Low									•			
Syllab	us										1					

LIST OF EXPERIMENTS

Witt.M

1. Practicing of Soldering and Desoldering.

Characteristics of PN junction Diode and find the forward and Reverse resistance
 Construct and Study simple clipper and clamper circuits

3. Construct and Study simple clipper and clamper circuits
4. Characteristics of Zener diode and determine the break down voltage and diode resistance

5. Construct and Study simple voltage regulator using zener diode

- 6. Verification of Logic Gates.
- 7. Find the characteristics of AND ,NOR,NOT gate
- 8. Construct and Study simple voltage regulator using zener diode.

COURSE DESIGNERS

S.No ·	Name of the Faculty	Designation	Department/ Name of the College	Mail ID					
1	Dr.T.She ela	Associate Professor	ECE / VMKVEC	sheela@vmkvec.edu.in					
2	Mr.S.Sel varaju	Associate Professor	ECE / VMKVEC	selvaraju@vmkvec.edu.in					
3	Mr.R.Kar thikeyan	Assistant Professor (Gr- II)	ECE / AVIT	rrmdkarthikeyan@avit.ac.in					
4	Ms.R.Mo hana Priya	Assistant Professor (Gr- II)	ECE / AVIT	mohanapriya@avit.ac.in					

M. Hith

24404			ENGINEERING SKILL PRACTICALS LABCategoryLTPCred												
34421	1684		PA	RT- A EN	BASI GINE	CS OF	CIVI G	L		FC-E	ES	0	0	2	1
PREA	MBI	LE			011(11		<u> </u>								
Engine	eering	g Skills I	Practice	e is a ha	nds- o	n traini	ng prac	ctice to N	Mechar	nical, Ci	vil and I	Mecha	tronics	Engi	neering
studen	ts. It	deals wi	ith fittin	ng, carp	entry,	sheet n	netal ar	nd relate	d exerc	ises.Als	o, it wi	ll indu	ce the l	nabit	of selecting
right to	ools,	planning	g the jot	o and it	s execu	ution									
PRER Nil	EQU	JISITE													
COUI	RSEC)BJEC	ΓIVES												
1 7	lo un	derstand	l the bas	sic con	cepts o	f build	ing con	nponent	s.						
2 7	Го im	part bas	ic know	ledge a	ibout F	Plumpin	ng and	Carpenti	ry worł	xs.					
COUI	RSEC	OUTCO	MES												
On t	he su	ccessful	comple	etion of	the co	ourse, s	tudents	will be	able to						
CO1.I	Prepa	re the di	fferent	types of	f fitting	g and p	lumbin	ig lines.					Apply		
CO2.I	Prepa	re the di	fferent	types of	f joints	susing	woode	n materi	al				Apply		
MAP	PING	WITH	PROG	RAMM	EOU.	гсом	ESAN	DPROG	GRAM	MESPI	ECIFIC	COUT	COMI	ES	
COS	POI	PO2	D2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS PS O2 O3												
CO1	S	L	L	L	L	L	L	L	L	L	L	L	-		<u>s</u> -
CO2	S	S	S	L	L	L	L	L	L	L	L	L	L		- M
S-Stro	ng; N	I-Mediu	ım; L-L	ow											
SYLL <u>Buildi</u> 1. <u>Plumt</u> 2.	ABU ings: Stu Ding a Stu hou	TS dy of pl and Car dy of pi dy of pi	umbing pentry peline je fittings.	and ca Works oints, it	rpentry <u>5:</u> s locat	y comp ion and	onents l functi	of reside	ential a ves, taj	nd indus	strial bu lings, u	uilding nions,	s, Safe reduce	ty asp rs, elb	ects. ows in
3. 4.	Pre Hai	paration of plumbing line sketches for water supply and sewage works. nds on Exercise on Demonstration of plumbing requirements of high-risebuildings.													
 Study of the joints in roofs, doors, windows and furniture. Hands-on-exercise: Woodwork, jointsbysawing,planningandcutting. 															
TEXTBOOK 1.BasiccivilengineeringLabManual by Department of Civil Engineering, VMRF.															
COUI	RSEL	DESIGN	IERS								٨				
S.N	No	Nam	eoftheF	aculty		Desig	nation	Nar	neofth	Golleg	(è		Ma L	ilI)	
								(_			. 1	_	· ·	1

 1
 M.Senthilkumar
 Asst.Professor
 Civil/ VMKVEC
 senthilkumar@vmkvec.edu.in

 1
 Dr.D.S.Vijayan
 Asst.Professor
 Civil/AVITof & Head.
 vijayan@avit.ac.in

 2
 Dr.D.S.Vijayan
 Asst.Professor
 Civil/AVITof & Head.
 vijayan@avit.ac.in

	Additional State ENGINEERING SKILL Category L T P Credit 34421E84 D D D D D D Credit											Credit					
344211	=84]	B. BAS	SICS (EN	ICAL)F ME IGINE	ECHA ECHA EERIN	B NICAI IG		FC	-ES	0	0	2		1		
Preamble														1			
Workshop	is a h	ands-o	n trair	ning p	ractice	to M	echani	cal E	nginee	ring st	tudents	s. It d	eals wi	th fitting	,		
carpentry,	foundry	y and	weldin	g relat	ed exe	ercises.	. Also,	it wi	ll indu	ce the	habit	of sele	ecting ri	ght tools	5,		
planning t	he job a	nd its e	executi	on.													
Prerequis	ite –NII																
Course O	bjective)			1:00		0.01										
1	To perf	torm th	ie prac	tice in	differe	ent type	$\frac{1}{1}$ es of fit	tting p	rocess	ses.							
2	To exe	cutive	Joints I	using v	voodei	n mater	rials.										
3	$\frac{10 \text{ app}}{\text{To dom}}$	ly in d	eptn ki	nottorn	ge in i	netal j	oining j	proces	sses.								
4	10 uen							62262		1 4	•11.1	11					
Course O	utcome	s: On	the suc	cessiu	ll com	pletion	n or the	e cour	se, sti	idents	WIII DO	e able	to				
COI.	Perto	orm the	e differ	ent typ	bes of f	itting	using N	AS pla	ite.	• 1				Apply			
CO2.	Pract	tice the	differ	ent typ	es of j	oints u	ising we	ooden	mater	Tal				Apply			
CO3.	Dem Utili	onstra	difforo	int type	$\frac{1}{2}$ of $\frac{1}{2}$	s of joi	nts in i	netal	by Arc	weid	ing			Apply			
0.4.	Otin			in type	s or gr	cen sa	nu mou	iiu						Аррту			
Mapping	with Pr	th Programme Outcomes and Programme Specific Outcomes															
CO	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3															
CO1	S	- L M L															
CO2	S	-	L	-	-	-	-	-	Μ	-	-	-	L	-	-		
CO3	S	-	-	-	-	-	-	-	-	-	-	-	L	-	-		
CO4	S	-	L	-	-	-	-	-	М	-	-	-	L	-	-		
S- Strong	; M-Me	dium;	L-Lov	W										1 1			
Syllabus	,	,															
LIST OF	EXPEF	RIME	NTS														
Tee – Fitti	ngVee -	-															
Fitting																	
Preparatio	n of a m	nould f	or a sir	igle pie	ece pat	tern											
Preparatio	n of a m	nould f	or a sp	lit piec	e patte	ern Ha	lt-										
Lap Joint	In Carpe	Carpa	ntrul a	n													
Ioint – We	elding	Carpe	iiti y La	P													
Butt Joint	– Weldi	ing															
Text Bool	śŚ	0															
1	BAS	SIC M	ECHA	NICA	L EN	GINE	ERING	G, LA	B MA	NUAL	4						
Reference	Books																
1	K.Ve	enugop	al, Bas	ic Mee	chanic	al Engi	ineering	g, Anı	ıradha	Public	cations	, Chen	nai				
2	NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida																
Course D	esigners	5	<u> </u>				5		(0							
S.No	Facu	lty Nai	ne	Design	nation		Depar the Co	rtment ollege	: / Nar	ne of	Emai	l id					
1	VKI	Krishna	n	Associ Profes	iate sor		Mech	/ VM	KVEC	in		shnan	@vmkv	ec.edu.in	<u>.</u>		
2	S. Du	raithila	gar	Associ Profes	iate sor		Mech	/ VM	KVE	to.	sdura	ithilag	ar@vm	kvec.edu	in		
	Professor Dr. M. NITHYA,																

Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

34421E81 ENGINEERING G DESI							HICS A	AND	Ca	tegory	L		Т	Р		Credit
	eamble															
Preamble																
Engineering	g Graph	ics is	s refer	red as	langu	age o	f engi	neers.	An e	ngineer	needs	to u	nder	stand	the	physical
geometry o	of any o	object	t throu	igh its	ortho	ograph	ic or	pictori	al pro	ojections.	The	knov	wled	ge o	n en	gineering
graphics is	essentia	l in p	roposi	ng nev	v prod	uct th	rough	drawir	igs and	d interpr	eting of	lata f	rom	exist	ing c	lrawings.
This course	deals w	ith or	thogra	phic a	nd pic	torial j	project	tions, s	ection	al views	and d	evelo	pme	nt of	surfa	aces.
Prerequisit	e - NIL															
Course Ob	jective															
1	To im	plem	ent the	ortho	graphi	c proje	ections	of poi	nts, st	raight lir	les, pla	ane s	urfac	es an	d sol	lids.
2	To co	nstru	ct the c	orthogi	aphic	projec	tions c	of secti	oned s	solids and	d true	shape	e of t	he se	ctior	ns.
3	To de	velop	latera	l surfa	ces of	the un	cut an	d cut s	olids.							
4	To dra	aw th	e picto	rial pr	ojectio	ns (iso	ometric	c and p	erspe	ctive) of	simple	e soli	ds.			
5	To dra	aw th	e ortho	graph	ic view	s fron	n the g	iven p	ictoria	l view.	<u> </u>					
Course Out	tcomes:	On t	the su	cessfi	ıl com	pletio	n of th	ie cou	rse. st	udents v	vill be	able	to			
	Execu	ite in	the f	orm o	f drav	ving o	of the	orthog	raphic	project	ions c	of po	ints.	An	nlv	
CO1.	straight lines, plane surfaces and solids.															
	Demo	nstra	te in	the fo	orm of	f drav	ving c	of the	ortho	graphic	proje	ction	s of	An	plv	
CO2.	sectio	ned s	olids a	nd tru	e shape	e of th	e sectio	ons.		8 F	F- J-			r	F-7	
CO3.	Devel	op lat	teral si	irfaces	of the	solid	section	n and c	cut sec	tion of s	olids.			An	plv	
CO4.	Draw the pictorial projections (isometric and perspective) of simple solids. Apply															
C05.	Draw	the o	rthoor	aphic y	views f	from th	ne give	en picto	orial v	iew	-p-0 00			An	nlv	
Manalara	24L D				10 00 1				ere o	10 W .				7 P	pŋ	
Mapping w	7ith Programme Outcomes and Programme Specific Outcomes															
СО	PO	PO P														
	1	2	3	4	5	6	7	8	9	0	11	12		1	02	
<u>CO1</u>	S	<u> </u>	L	S	L	-	-	-	-	-	-	-		_	-	-
CO2	S	S	L	S	L	-	-	-	-	-	-	-	I	_	-	-
CO3	S	S	L	S	L	-	-	-	-	-	-	-	I	_	-	-
CO4	S	Μ	L	S	S	-	-	-	-	-	-	-	I	_	-	-
CO5	S	S	L	S	L	-	-	-	-	-	-	-	I	_	-	-
S- Strong;	M-Med	ium;	L-Lov	W												
Syllabus																
PLANE CU	JRVES	AND	D DIM	ENSI	ONIN	G										
Basic Geom	netrical of	consti	ruction	is, Cur	ves us	ed in e	enginee	ering p	ractice	es: Conic	s - Co	onstru	ictio	n of e	ellips	e,
parabola and	d hyperl	bola t	by ecce	entricit	y meth	nod - 0	Constr	uction	of cyc	cloid - cc	onstruc	ction	of in	volut	es of	fsquare
and circle –	Drawin	ig of t	tangen	ts and	norma	l to th	e abov	e curv	es. Dii	mensioni	ng. Pr	oject	ion c	f poi	nts.	
PROJECT	ION O	F SO	LIDS	_												
Projection of	of simple	e soli	ds like	prism	s, pyra	mids,	cylind	ler and	cone	when the	axis 1	s inc	lined	to a	iy or	ne
reference pl	ane by c	chang	ge of po	osition	metho	od.		~~~~~		~						
SECTION	OF SO		S ANI	DEV	ELOI	PMEN	T OF	SURF	ACE	S						
Sectioning of	of above	e solic	ds in si	mple v	vertica	l posit	ion by	cuttin	g plan	es incline	ed to a	ny oi	ne re	teren	ce pl	ane and
perpendicul	ar to the	e othe	r - Ob	taining	g true s	shape	of sect	10n.	ת ויו		• •				1	
Developmen	nt of late	eral s	urface	s of sit	nple a	nd trui	ncated	solids	like P	risms, py	ramid	s, cy	linde	rs an	d coi	nes.
ORTHOG	RAPHI	C VI	EWS		SOM	ETRI	C VIE	WS –	First a	ingle pro	jectior	1 - la	yout	view	'S —	
Representat	10n of T	hree	Dimen	isional	object	s -mu	Itiple v	views f	rom p	ictorial v	news of	ot ob	jects.		•	
Principles o	t isomet	tric V	'1ew –	1somet	ric sca	le - P	rincipl	les of 1	someti	ric projec	ction/	- 1son	netrio	c scal	e –Is	ometric
projections of simple solids and truncated solids – Prisms, pyramids, cylinders, cones.																
INTRODUCTION TO AUTO CAD																
INTRODUCTION TO AUTO CAD																
Introduction	to Aut	o CA	D- Bas	sic intr	oducti	on and	1 opera	ational	instru	ctions of	variou	is co	mma	nds 1	n Au	toCAD.
Limit System	m- Tole	rance	e, Limi	ts, Dev	/lation	, Actu	ai Dev	Dept	Uppe	hpeviati	Office Lag	ower	Devi	ation	l,	
Allowance.		1	unter 1			1 1	. 1	¥.1	M.K.V.	Engg. Col	icge, 31	and talls	o <i>ri</i> 1	•		
Preparation	or man	ual pa	irts dra	iwing a	and ass	semble	ea sect	ional v	news t	rom orth	ograp	me p	art d	rawır	igs,	
								70								

Text Books												
1	Natarajan K V, "Engine	ering Graphics", T	ata McGraw-Hill Pul	blishing Company Ltd. New Delhi.								
2	K.Venugopal and V.P Limited.	rabhu Raja, "Eng	gineering Graphics",	New Age International Private								
3	K.R.Gopalakrishna"Eng	gineering Drawing'	' (Vol. I & II), Subha	s Publications, 2014.								
4	Bhatt-N.D"Machine D India- 2003	rawing"-Published	by R.C.Patel- Charts	star Book Stall- Anand-								
Reference H	Books											
1	N.D. Bhat and V.M. Panchal, Engineering Graphics, Charotar Publishers 2013											
2	E. Finkelstein, "AutoCAD 2007 Bible", Wiley Publishing Inc., 2007											
3	R.K. Dhawan, "A text book of Engineering Drawing", S. Chand Publishers, Delhi,2010.											
4	DhananjayA.Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata McGraw Hill Publishing Company Limited, 2008.											
5	G.S. Phull and H.S.Sand	dhu, "Engineering	Graphics", Wiley Pul	plications, 2014.								
Course Des	igners											
S.No	Faculty Name Designation Department / Faculty Name Designation Name of the College											
1	Dr. S. Venkatesan	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in								
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in								

Alternative NPTEL/SWAYAM Course:

S. No.	NPTEL Course Name	Instructor	Host Institute	Duriation
1.	Engineering Graphics and Design	Prof. Naresh Varma Datla, Prof. S. R. Kale	IIT Delhi	12 weeks
2.	Engineering Drawing	Robi, P.S.	IIT Guwahati	12 weeks
3.	Engineering Drawing and Computer Graphics	Prof. Rajaram Lakkaraju	IIT Kharagpur	12 weeks

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3502	1E03	PROGRAMMING FOR PROBLEM							Catego	ory L	Т	Р		Credit			
SOLVING							FC-E	S 3	0	0		3					
 PREAMBLE The course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques. PREREQUISITE-NIL 																	
COURSEOBJECTIVES																	
1.	1. To gain basic knowledge about simple algorithms for arithmetic and logical problems.																
2.	To learn how to write a program, syntax and logical errors.																
3.	3. To understand how to decompose a problem into functions and synthesize a complete program.																
COURSEOUTCOMES																	
On the successful completion of the course, students will be able to																	
CO1:	CO1: Formulate simple algorithms for arithmetic and logical problems.												Understand				
CO2:	CO2: Test and execute the programs and correct syntax and logical errors Apply																
CO3:	CO3: Implement conditional branching, iteration and recursion.											4	Apply				
CO4: Decompose a problem into functions and synthesize a complete program.										4	Analze						
CO5: Use arrays, pointers, strings and structures to formulate algorithms and programs										nd	Apply						
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES																	
COS	PO1	P O 2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	P	SO2	PSO3	
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М		М	М	
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М		М	М	
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М		М	М	
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М		М	S	
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М		М	S	
S-Strong; M-Medium; L-Low												·					

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.
UNIT – I: INTRODUCTION

Computer system: components of a computer system-computing environments-computer languages, creating and running programs, Algorithms, flowcharts- Introduction to C language: basic structure of programs, process of compiling and running program, -tokens, keywords, identifiers, constants, strings, special symbols, variables, data types-I/O statements

UNIT – II: OPERATORS, EXPRESSIONS AND CONTROL STRUCTURES

Operators and expressions: Operators- arithmetic- relational and logical- assignment operatorsincrement and decrement operators, bitwise and conditional operators-special operators- operator precedence and associativity- evaluation of expressions-type conversions in expressions- Control structures: Decision statements: if and switch statement- Loop control statements: while, for and do while loops- jump statements- break-continue-goto statements.

UNIT - III: ARRAYS AND FUNCTIONS

Arrays: One dimensional array-declaration and initialization of one dimensional arraystwo dimensional arrays- initialization and accessing- multidimensional arrays- Basic Algorithms: Searching-Basic Sorting Algorithms- Functions: User defined and built-in Functions- Parameter passing in functions-call by value-Passing arrays to functions-call by reference,-Recursion-Example programs, such as Finding Factorial, Fibonacci series

UNIT - IV: STRINGS AND POINTERS

Strings: Arrays of characters- variable length character strings-inputting character strings-character library functions-string handling functions- Pointers: Pointer basics- pointer arithmetic-pointers to pointers-generic pointers-array of

Pointers- functions returning pointers,-Dynamic memory allocation

UNIT – V: STRUCTURES AND FILE HANDLING

Structures and unions: Structure definition- initialization- accessing structures,-nested structures,-arrays of structures-structures and functions- unions- typedef- enumerations.-File handling :command line arguments- File modes- basic file operations read,-write and append

TEXTBOOKS

XTBOOKS 1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill, 2017

Dr. M. NITHYA. - Prof & Head. Dept. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

REFERENCES

- 1. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education, 2015.
- 2. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, Seventh Edition 2013.

Course I	Designers:			
S.No.	Name of the Faculty	Designation	Department	MailID
1.	Mrs.R.Shobana	Assistant Professor	CSE	shobana@avit.ac.in
2.	Mr.B.Sundaramurthy	Assistant Professor	CSE	sundaramurthy@vmkvec.edu.in

Mitt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

350	21002				DATA	STR	UCTU	RES		CATEG	ORY	L	T	P	CR	EDIT
	21002									CC		3	0	0		3
PRE This linear	AMBL course	E aims a ures	t unde	erstandi	ng the	basic	concept	s in pro	ogran	nming st	ructure	es, lir	near	structu	res and	non
PRE	RQUIS	SITE -	NIL													
COU	RSE ()BJE(CTIV	ES												
1.	To ren	nembe	r and	underst	and th	e basio	c concep	ots in li	near s	structure	s					
2.	To lea	rn abo	ut tree	e structu	ires.											
3.	To une	lerstar	nd abo	ut balar	nced tr	ees										
4.	To lea	rn abo	ut has	hing an	d sets.											
5.	To learn and understand about graphs and sorting															
COU	COURSE OUTCOMES															
On th	On the successful completion of the course, students will be able to															
CO1.	Reme	mber t	he bas	sic conc	epts ir	n linea	r structu	res			Un	derst	and			
CO2.	Learn	about	tree st	tructure	s and t	tree tra	aversals				Ap	ply				
CO3.	Under	stand a	about	balance	d trees	S					Ap	ply				
CO4.	Learn	about	hashii	ng and s	sets.						Ap	ply				
CO5.	Learn	and u	nderst	and abo	ut gra	phs an	d sorting				Ap	ply				
MAH	PPING	WITI	H PR(OGRAN	MME	OUT	COMES	S AND	PRO	OGRAN	IME S	PEC	IFI	C OUT	COME	S
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012	PSO1	PSO2	PSO3
CO1	S	М	М	-	-	-	-	-	-	-	-	М		S	S	S
CO2	S	М	М	М	М	-	-	-	-	-	-	М		S	S	S
CO3	S	М	L	М	М	-	-	-	-	-	-	М		S	S	М
CO4	S	М	М	М	М	-	-	-	-	-	-	L		S	S	М
CO5	S	М	L	М	М	-	-	-	-	-	-	М		S	S	М
S- St	rong; N	I-Med	ium; I	L-Low												

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

Introduction: Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Searching: Linear Search and Binary Search Techniques and their complexity analysis.

Linear Structures

Abstract Data Types (ADT) – List ADT – array-based implementation – linked list implementation – cursor-based linked lists – doubly-linked lists – applications of lists –Stack ADT – Queue ADT – circular queue implementation – Applications of stacks and queues.

Tree Structures

Tree ADT – tree traversals – Balanced Trees: AVL Trees – Splay Trees – B-Tree - heaps – binary heaps – applications of binary Heaps.

Hashing and Set

Hashing – Separate chaining – open addressing – rehashing – extendible hashing -Disjoint Set ADT – dynamic equivalence problem – smart union algorithms – path compression – applications of Set.

Graphs

Definitions – Topological sort – breadth-first traversal - shortest-path algorithms –minimum spanning tree – Prim's and Kruskal's algorithms – Depth-first traversal – bi-connectivity – Euler circuits – applications of graphs.Sorting algorithms: Insertion sort - Selection sort -Quick sort - Merge sort - Bubble sort - Shell sort – Radix sort.

TEXT BOOKS:

1. 1. Mark A. Weiss, "Data Structures and Algorithm Analysis in C (2nd Edition), Pearson Education, 2002

REFERENCES:

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Pearson Education, First EditionReprint. R. F. Gilberg, B. A. Forouzan, "Data Structures", Second Edition, Thomson India, Edition, 2005.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. R. Jaichandran	Associate Professor	CSE	jaichandran@avit.ac.in
2.	Dr.V.Amirthalingam	Associate Professor	CSE	amirthalingam@vmkvec.edu.

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3502	21C01		COMI			штб	CTUDE	7	Cat	tegory	L	Т	Р	Cr	edit
0002				ND OF	R ARC RGANI		ON		С	С	3	0	0	3	
PRE	AMBL	E:											•		
The c	course is	dedica	ated to	numbe	er syste	em, log	ic desig	n, and	l memo	ory and p	process	ing. Th	is is the	only c	ourse
that i	s concer	ned w	ith the	hardw	are of	a com	puter, it	s logi	c desig	n and of	rganiza	tion. It	aims at	makir	ng the
stude	nt famil	iar wi	th digi	ital log	gic and	funct	ional de	esign	of arit	hmetic a	and log	gic unit	t that is	s capal	ole of
perfo	rming fl	oating	point					U			•			1	
arith	netic op	eration	is.												
PRE	REQUI	SITE:	Nil												
COU	RSE O	BJEC '	TIVES	•											
1	To pro-	vide kı	nowled	ge on o	overvie	w of c	omputer	r Arch	itectur	e, functi	on and	addres	sing mo	des.	
2	Hardwa	are and	and software implementation of arithmetic unit.												
3	To pro	vide kı	le knowledge of memory technologies, interfacing techniques and subsystem devices												
4	Apply	bly the knowledge of methods to solve arithmetic problems.													
COU	RSE O	UTCO	MES												
On th	e succes	sful co	omplet	ion of t	he cou	rse, stu	idents w	vill be	able to)					
CO1	Provide	funda	mental	s of Ar	chitect	ure, Re	egisters,	mach	ine ins	tructions	5	Unders	tand		
and a	ddressin	g mod	es									Unders	tand		
CO2	. Compr	ehend	the var	rious A	rchitec	ture fo	or compu	uter ai	rithmet	ic and		Apply			
piper	A malava	epts.				~		Julaa							
hiera	Analyse rchy	the pe	eriorine	ince of	variou	s mem	ory mot	Jules	in men	lory		Analys	se		
CO4	Provide	the fea	atures of	of Perip	oheral o	levices	and Int	terface	es.			Unders	tand		
CO5	Outline	the ev	aluatic	on of m	ulticor	e archi	tectures	, struc	cture of	f disk dri	ves	Under	tand		
and F	RAID are	chitect	ures.									Unders	tallu		
MAF	PPING V	VITH	PROC	GRAM	ME O	UTCC	OMES A	ND I	PROG	RAMM	E SPE	CIFIC	OUTC	OMES	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	М	-	-	-	-	-	-	-	L	М	М	-
CO2	М	М	М	М	-	-	-	-	-	-	-	L	М	М	-
CO3	М	М	S	М	-	-	-	-	-	-	-	-	S		-
CO4	S	М	М		-	-	-	-	-	-	-	-	S	М	-
CO5	S	S - M L S -													
CO6	М	М	М	S	-	-	-	-	-	-	-	L	М	М	-

S- Strong; M-Medium; L-Low

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V-M.K.V. Engg. College, Salem.

1. Introduction to Computer Architecture

Overview of Computer Organization and Architecture- Interconnection Structures - Bus interconnection-Machine instructions and addressing modes- Registers and register files - Addressing modes-Instruction set.

2. Central Processing Unit

CISC & RISC- ALU- data path and control unit- Microprogramming control unit- Instruction pipelining.

3 Memory Organization

Characteristics of Memory- Memory Hierarchy- Memory system overview -Main Memory organization -Cache memory- Cache memory principles – Elements of Cache design- address mapping - Virtual memory systems mapping functions, replacement algorithms

4. Peripheral devices and their characteristics

I/O fundamentals: handshaking, buffering; I/O techniques: programmed I/O- interrupt-driven I/O- DMA- I/O device interfaces

5. Device Subsystems

External storage systems- organization and structure of disk drives and optical memory- RAID. Multi-Core Architectures: Flynn's Classification- Moore's Law- Hyper-Threading- Multi threading-Single core- multiprocessor- Multi-Core- Amdahl's law

TEXT BOOKS:

1. William Stallings, Computer Organization and Architecture 10th Ed, Pearson, 2019

2. M. M. Mano, Computer System Architecture, 3rd ed., Prentice Hall of India, 1993.

REFERENCES:

- 1. Hency Patterson, Quantative Approach Computer Architecture, Elsevier, 4th edition, 2006.
- 2. Shameem Akhter and Jason Roberts, Multi-Core Programming, 1st edition, Intel Press, 2012
- 3. John P. Hayes, Computer Architecture and Organization, McGraw Hill Education, 5 edition, 2017.

COURSE DESIGNERS

S. No.	Name of the faculty	Designation	Department	Mail Id
1	Mr. B.Sundaramurthy	Associate Professor	CSE	sundaramurthy @vmkvec.edu.in
2	Mrs. S.Leelavathy	Assistant. Professors (GII)	CSE	leelavathy@avit. ac.in

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V7M.K.V. Engg. College, Salem.

35021	IC11	OPERATING SYSTEM	Category	L	Т	Р	Credit							
55021		(THEORY AND PRACTICALS)	CC	3	0	2	4							
PREAMB The studes process co	BLE nt will be mmunicati	able to understand the concepts of operating on, threads, disk management and file systems	ng system, s.	sched	uling	alg	orithms, Inter							
PREREQ	UISITE:N	NL												
COURSE	OBJECT	IVES												
1.	To be aware of the evolution of operating systems, process scheduling, CPU utilization and scheduling algorithms													
2.	To learn what processes are, how processes communicate, how process synchronization is done and how to manage processes.													
3.	To have a	To have an understanding of the memory management techniques.												
4.	To learn and understand the disk management systems													
5.	To learn a	and understand the file management systems												
COURSE	OUTCO	MES												
On the suc	cessful co	mpletion of the course, students will be able to)											
CO1. Deve utilization,	elop algori , Throughp	thms for process scheduling for a given specification of the second time, Waiting Time, Response	ication of C e Time.	CPU	App	ly								
CO2. Unde scenario in	erstand the	process synchronization concepts for the give systems environment.	en		Und	ersta	und							
CO3. Deve increasing	evelop the techniques for optimally allocating memory to processes by ng memory utilization and for improving the access time. Apply													
CO4.Appl	04. Apply the I/O Subsystem concepts for a given scenario. Apply													
CO5. Desi	gn and im	plement file management system.			App	ly								

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	-	-	-	-	-	-	-	-	S	S	-
CO2	S	S		М	-	-	-	-	-	-	-	-	S	М	-
CO3	S	S		М	-	-	-	-	-	-	-	-	S	М	-
CO4	S	М	L	М	-	-	-	-	-	-	-	-	S	L	М
CO5	S	М	L	L	-	-	-	-	-		1.1	へ -	S	М	-
S- Strong;	M-Me	dium;	L-Lo	W					0	M) '				

(

Dr. M. NITHYA, - Prof & Head. Dept. of Computer Science & Engs V791.K.V. Engg. College, Salem.

INTRODUCTION

Introduction: Concept of Operating Systems, Types of Operating Systems, Concept of Virtual Machine, Different states of a Process, Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads, Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling, criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

INTER PROCESS COMMUNICATION

Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer/Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing,

Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc. Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery..

MEMORY MANAGEMENT

Logical and Physical address map, Memory allocation, Paging, Page allocation – Hardware support for paging, Protection and sharing, Disadvantages of paging. Basics of Virtual Memory - Hardware and control structures - Locality of reference, Page fault, Working Set, Dirty page/Dirty bit - Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

DISK MANAGEMENT

Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks.I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O.Secondary-Storage Structure: Disk structure, Disk scheduling algorithms...

FILE MANAGEMENT

Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

LIST OF PRACTICALS

- 1. Basics of UNIX commands.
- 2. Shell programming
- 3. Implementation of CPU scheduling. a) Round Robin b) SJF c) FCFS d) Priority
- 4. Implement all file allocation strategies
- 5. Implement Semaphores
- 6. Implement File Organization Techniques
- 7. Implement Bankers algorithm for Dead Lock Avoidance
- 8. Implement an Algorithm for Dead Lock Detection

Dr. M. NITHYA - Prof & Head. Toopt. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

- 9. Implement the all page replacement algorithms a) FIFO b) LRU c) LFU
- 10. Implement Shared memory and IPC

TEXT BOOKS:

1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", 10th Edition, Wiley India Pvt. Ltd, 2018.

Referances

- 1) Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.
- 2) Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing
- 3) Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 4) Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India
- 5) Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates.

COU	RSE DESIGNERS			
S.	Name of the Faculty	Designation	Departmen	Mail ID
INO.			t	
1.	Dr.R.Jiachandran	Professor	CSE	rjaichandran@avit.ac.in
2.	B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

35021	1C05						C OF		Cat	tegory	L	Т	Р	С	redit
		J	DESIG	AN AN Al	D ANA LGOR	ITHM	S OF S		C	С	3	0	0	3	
PREAM This su student i) ii) iii)	MBLE: bject in s will be Learn t Become Constru paradig	troduc e able he algo e famil uct effi ms and	es stud to: prithm liar wit cient a d data s	ents th analysi h the d lgorith structu	e conce is techn lifferen ms for res.	epts of niques. t algori solving	design ithm de g engin	and an esign te eering	nalysis echniqu proble	of algor ies ms by u	ithms. C sing app	On com propria	pletion of	f this cou nm design	rse
PRER	EQUIS	ITE: N	NIL												
	SE OB	JECT	IVES						<u> </u>	<u> </u>					
1.	To fan	niliariz	the s	tudent	with g	ood pro	ogramn	ning de	esign m	ethods,	particul	arly To	op- Down	design.	
2.	To develop algorithms for manipulating stacks, queues, linked lists, trees, graphs														
3.	To create the data structures for implementing the above algorithms														
4.	To construct the recursive algorithms as they apply to trees and graphs														
5.	To familiarize the student with the issues of Time complexity and examine various algorithms from this perspective														
COUR	SE OU	TCON	AES												
On the	success	ful coi	npletio	on of th	e cour	se, stud	lents w	ill be a	ble to						
CO1. A	nalyse	the con	rrectne	ss of al	lgorith	ns usin	ıg indu	ction a	nd looj	o invaria	nts.	Analyz	e		
CO2. A	analyse	the wo	orst-cas	e, best	-case a	nd aver	rage-ca	ise runi	ning tir	ne of		Analyz	e		
CO3. A analysis	nalyse s techni	the per ques li	rformatike pote	nce of a ential r	a seque nethod	ence of and ac	operat	ions us	ing am hod.	ortized		Analyz	e		
CO4. C greedy	Construc and dyr	t algor namic j	rithms v prograi	using d nming	lesign j for a g	paradig jiven pi	ms like roblem	e divide	e and c	onquer,		Analyz	e		
CO5. In algorith	nfer whe nm desig	en a de gn para	esign so adigms	enario.	requir	es the a	applica	tion of	the dif	ferent		Apply			
CO6. A choice	nalyse of data	how th structu	ne perfo res the	ormanc algori	e of ar thm us	algori es.	thm is	affecte	d based	d on the		Analyz	e		
MAPP	ING W	ITH F	PROG	RAMN	AE OU	TCON	MES A	ND PH	ROGR	AMME	SPEC	IFIC C	DUTCOM	IES	
COS	PO1	PO2 M	PO3 M	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	1/1	1V1	-	-	-	-	-	-	-	-		S	IVI	101
CO2	S	М	М	-	-	-	-	-	-	-	-	-	S	S	М
CO3	М	М	S	-	-	-	-	-	-	-	-	-	S	М	Μ
CO4	S	М		-	-	-	-	-	-		M	-	S	S	М
CO5	М	М	М	-	-	-	-	-	1	AD1	-	-	S	М	S

CO6	М	М	М	-	-	-	-	-	-	-	-	-	S	М	М
S- Stroi	ng: M-N	Mediur	n; L-Lo	OW											

SYLLABUS INTRODUCTION TO ALGORITHMS

The role of algorithms in computing, Growth of functions, Asymptotic notations, Designing and Analyzing algorithms-an Introduction using insertion sort. Review on the Math needed for algorithm design and analysis.

DIVIDE AND CONQUER

Solving recurrences – The Substitution method, Recurrence Tree method and Master's method, Multiplying large integers, Binary Search, Sorting [Merge Sort and Quick Sort], Selection in linear time [Expected and Worst-case], Strassen's algorithm for Matrix Multiplication, The maximum sub-array problem.

GREEDY ALGORITHMS

Characteristics of Greedy algorithms, The problem of making change, Greedy algorithms for Scheduling, Minimum Spanning Trees – Kruskal's Algorithm and Prim's Algorithm, Greedy Algorithms for finding the shortest paths in a Graph, The Knapsack problem Amortized Analysis: The accounting method, The potential method.

DYNAMIC PROGRAMMING

Calculating the binomial co-efficient, The problem of making change, The Knapsack problem, Chained matrix multiplication, Finding the shortest paths in a Graph, Reformulating Dynamic programming algorithms using recursion and memory functions.

GRAPH ALGORITHMS

Depth-first search & Breadth-First Search, Flow Networks, Topological sort, Strongly connected components Computational Complexity: Classes P and NP, Polynomial reductions, Classes NP-Complete and NP-Hard. Heuristics: Graph Coloring problem, Travelling Sales Person problem.

TEXT BOOKS:

1. Charles E. Leiserson, "Thomas H. Cormen, Ronald L. Rivest, Clifford Stein – Introduction to Algorithms", Third edition, PHI, 2010

REFERENCES:

- 1. Gilles Brassard and Paul Bratley, "Fundamentals of Algorithmic", PHI, 2000.
- 2. Sara Baase Computer algorithms: Introduction to Design and Analysis –, Addison Wesley publication, 1998.

COUR	SE DESIGNERS			
S. No.	Name of the faculty	Designation	Department	Email Id
1.	Dr. S. Rajaprakash	Assistant Professor Gr. II	CSE	srajaprakash@avit.ac.in
2.	Mr. M. Annamalai	Associate Professor	CSE	annamalaim@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35022	1C04]	DATA	BASE	MANA	AGEM	IENT		Ca	tegory	L	Т	Р		Credit
					SYS	TEM	S		С	С	3	0	0		3
PREAM	MBLE:										•			•	
This co	urse ain	ns at f	acilitat	ing the	stude	nt to u	ndersta	nd the	e variou	is conce	pts and	d function	onalitie	es of D	atabase
Manage	ement S	ystem	s, the	metho	d and	mode	l to sto	ore da	ita and	how to	o man	ipulate	them	through	n query
languag	ges, the	effecti	ve desi	igning	of rela	tional	databas	e and	how the	ne syster	n man	ages the	concu	irrent u	sage of
data in	multi us	er env	ironme	nt.											
PRERI	QUISI	IE: N	IL												
COUR	SE OBJ	ECTI	VES												
1	Descri	be a re	elationa	ıl datab	ase and	d objec	ct-orient	ted da	tabase.						
2	Create	, main	tain an	d mani	pulate	a relati	ional da	itabase	e using	SQL.					
3	Describe ER model and normalization for database design.														
4	Examine issues in data storage and query processing and can formulate appropriate solutions.														
5	Design and build database system for a given real world problem.														
COUR	OURSE OUTCOMES														
On the	the successful completion of the course, students will be able to														
CO1. II	lustrate t	he data	abase d	esign f	or appli	ications	s and da	tabase	admin	strators.		Unders	tand		
CO2. B	uild and	manip	pulate t	he rela	tional	databa	se using	g Struc	ctured (Query		Apply			
Langua	ge and r	elatior	nal lang	guages.								rippiy			
CO3. D various	evelop a constrai	a norm ints lik	alized te integ	databa rity an	se for a d value	a given e consti	applica	ation b	by incom	rporating	5	Apply			
CO4. A	pply con	ncurre	ncy coi	ntrol &	recove	ery me	chanisn	n for d	latabase	e problei	ns.	Apply			
CO5. C	onstruct	data s	structur	es like	indexe	es and I	hash tab	oles fo	r the fa	st retrie	val	Apply			
of data.												Аррту			
MA	APPING	WIT	H PRO	OGRA	MME	OUT	COMES	S ANI	D PRO	GRAM	ME SI	PECIFI	C OU	ГСОМ	ES
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	М	-	-	-	-	-	М	S	S	М	S
CO2	М	М	М	L	М	-	-	-	-	-	М	М	S	М	S
CO3	М	М	S	М	М	-	-	-	-	-	М	L	S	М	S
CO4	S	М	М	М	L	-	-	-	-	-	М	М	S	S	S
CO5	S	М	М	М	М	-	-	-	-	-	М	М	S	М	S
S- Stroi	ng; M-M	ledium	n; L-Lo	W											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS INTRODUCTION

Database-System Applications - Purpose of Database Systems - View of Data - Database Languages - Database Design - Database Engine - Database and Application Architecture - Database Users and Administrators -History of Database Systems

RELATIONAL APPROACH

The relational Model - Additional & Extended Relational - Types of Keys - Relational Algebra - Null Values - Domain Relational Calculus - Tuple Relational Calculus - Fundamental operations - Additional Operations-SQL fundamentals - Structure of SQL Queries - SQL Data Types and Schemas - Nested Sub queries - Complex Queries - Integrity Constraints - Triggers - Security - Advanced SQL Features - Embedded SQL- Dynamic SQL- Views - Introduction to Distributed Databases and Client/Server Databases..

RELATIONAL DATABASE DESIGN

Overview of the Design Process - Functional Dependencies - Non-loss Decomposition - Functional Dependencies - Normalization and its Types - Dependency Preservation - Boyce/Codd Normal Form-Decomposition Using Multi-valued Dependencies and Fourth Normal Form - Join Dependencies and Fifth Normal Form - Entity Sets and its Types.

TRANSACTION & CONCURRENCY CONTROL

Transaction Concepts - Transaction State - Transaction Recovery - ACID Properties - System Recovery - Media Recovery - Two Phase Commit - SQL Facilities for recovery -Advanced Recovery Techniques - Buffer Management - Remote Backup Systems - Concurrency Control - Need for Concurrency Locking Protocols -Two Phase Locking - Internet Locking - Deadlock Handling - Serializability - Recovery Isolation Levels - SQL Facilities for Concurrency.

STORAGE STRUCTURE

Introduction to Storage and File Structure - Overview of Physical Storage Media - Magnetic Disks - RAID -Tertiary storage - File Organization - Organization of Records in Files - Indexing and Hashing - Ordered Indices - B+ tree Index Files - B- tree Index Files - Bitmap Indices - Static Hashing - Dynamic Hashing - Query Processing - Catalogue Information for Cost Estimation - Selection Operation - Sorting - Join Operation -Query optimization - Database Data Analysis.

TEXT BOOKS:

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Seventh Edition, McGraw-Hill Education; 6 edition, 2019).

REFERENCES:

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Pearson India; 7th edition, 2017, 2017).
- 2. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- 3. Carlos Coronel, Steven Morris, "Database Systems Design, Implementation and Management, 13th Edition, Cengage Learning; 13th edition, 2018).

COURSI	L DESIGNERS			
S. No.	Name of the faculty	Designation	Department	Mail Id
1	Mr. S. SenthilKumar	Assistant Professor	CSE	senthilkumar@vmkvec.edu.
			MIM	in
2	Mr. S. Muthuselvan	Assistant Professor Gr.	CSE	muthuselvan@avit.ac.in
		II		

COUDSE DESIGNEDS

35021006	OBJECT ORIENTED PROGRAMMING	Category	L	Т	Р	Credit
00021000		CC	3	0	0	3

PREAMBLE

This syllabus is intended for the Computer science students and enables them to learn Object Oriented Programming and the design of computer solutions in a precise manner. The syllabus emphasizes on OOP concepts, Functions, Polymorphism, Inheritance and I/O. The intention is to provide sufficient depth in these topics to enable candidates to apply Object Oriented Programming approach to programming. The modules in the syllabus reflect solving general problems via programming solution. Thus, modules collectively focus on programming concepts, strategies and techniques; and the application of these toward the development of programming solutions.

PRER	PRERQUISITE														
Nil	Nil COURSE OR IECTIVES														
COUR	RSE OB	JECT	IVES												
1.	To lea	rn abou	it the sy	ntax an	d sema	ntics of	C++ p	rogram	ning la	nguag	e				
2.	 To learn about the concepts of object oriented programming. To determine how to rouse the order. Constructors and member functions. 														
3.	To det	ermine	how to	reuse t	he code	e, Const	ructors	and me	ember f	unctio	ns				
4.	To An	alyse h	low to r	educe the	he codi	ng by aj	pplying	overloa	ading co	oncept	S				
5.	To An	alyse h	low to r	euse the	e code, l	how to	verify a	and vali	date the	e codin	ng				
COUR	RSE OU	TCON	MES												
On the	On the successful completion of the course, students will be able to CO1 Develop fundamental programming concepts such as variables, conditional Apply														
CO1.	CO1. Develop fundamental programming concepts such as variables, conditional Apply statements looping constructs														
statem	statements, looping constructs														
CO2 A	CO2 Apply derived data types and methods (procedures), inline function, friend Apply														
functio	unction in applications														
CO3. I	CO3. Develop object-oriented programs for a given application using the concepts of Analyze														
compil	e-time a	and run	-time p	olymor	phism										
CO4.	Apply c	perator	r overlo	ading a	nd inhe	ritance	in solv	ing real	time pr	oblem	IS	Analyze	•		
CO5. 0	Construe	ct obje	ct-orier	ited app	plication	ns for	a giver	n scena	rio usi	ng file	s, Sting	Analyze	•		
handlin	ng and t	o hand	le excep	otions											
MAPP	PING W	ITH F	PROGE	RAMM	E OUT	COME	ES ANI) PRO	GRAM	ME S	PECIFIC	OUTCO	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	М	-	-	-	-	-	М	L	Μ	М	М
CO2	М	М	М	М	М	-	I	-	I	-	М	L	Μ	М	М
CO3	Μ	Μ	S	Μ	S	-	-	-	-	-	М	L	S	М	М
CO4	CO4 S M M M S M L S M S														
CO5	S	M	M	M	М	-	-	-	-	-	М	L	M	М	S
S-Stro	ong; M-l	Mediur	n; L-Lo	W											

M. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs 89.M.K.V. Engg. College, Salem.

SYLLABUS INTRODUCTION TO OOPS AND C++

Introduction to Object Oriented Programming and C++: Object oriented concepts and its characteristics -History of C++ - Applications of C++ - Structure of C++ - Tokens - Keywords - Identifiers - Basic data types - Input and output statements - C++ Operators and control statements.

DERIVED DATA TYPES AND FUNCTIONS

Derived data types: Arrays – Structures - Unions - Type casting - Symbolic constants - Scope resolution operator -Functions: Function Prototyping - Function components - Passing parameters – Call by value - Call by reference - Inline function - Default arguments - Overloaded function- Introduction to friend function.

CLASSES AND OBJECTS

Classes and Objects: Class specification - Member function definition - Access qualifiers - Instance creation - Static data members and member functions - Array of objects - Objects as arguments - Returning objects -Constructors - Parameterized Constructors - Overloaded Constructors - Constructors with default arguments - Copy constructors – Destructors.

OPERATOR OVERLOADING AND INHERITANCE

Operator Overloading - Operator function – Overloading unary and binary operator – Inheritance Introduction – Types of Inheritance - Constructors in derived class - Abstract classes - Runtime Polymorphism– Virtual functions - Pure virtual functions – Templates - Function templates- class templates.

STREAMS, FILES AND EXCEPTION HANDLING

Streams: Streams in C++ - Stream classes - Formatted and unformatted data – Manipulators - File streams - File pointer and manipulation - File open and close - Sequential and random access - Name Space. Exception Handling: Principle of exception handling - Exception handling mechanism - Multiple catch statements - Nested try statements.

TEXT BOOKS:

- 1. Robert Lafore, "Object-Oriented Programming in C++" Pearson Education, 4 Edition, 2009.
- 2. K R Venugopal, RajkumarBuyya "Mastering C++" Tata McGraw Hill, New Delhi, Second edition 2015.
- 3. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2013.
- 4. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 4rd edition2018.
- 5. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 6. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

COUR	RSE DESIGNERS			
S.No	Name of the faculty	Designation	Department	Mail Id
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr.S. Muthuselvan	Assistant Professor Gr. II	CSE	muthuselvan@avit.ac.in
			HH. V.	

Dr. M. NITHYA. Prof & Head. nt. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

												1			
3502	21C08		COMD	пері	DESICN	I A NID	AUTON	лата	тиелі		Categor	y L	Т	Р	Credit
			COMP	ILEK I	JESIGN	N AND A	AUTON	VIATA	IIIEOI	K I	CC	3	0	0	3
PREAN This sylt students manage automat	IBLE labus is to stud ement, i ta and r	intende y about interme egular	ed for th langua ediate expres	ne Engin ge proce code ge ssion.	neering essing s eneratio	student ystems, on, coo	s and e phases le opti	nables t of com mizatio	hem to piler, p on and	learn al arsing genera	bout comp technique tion and	iler design es, symbo introduc	n. Its hel ol table tion to	lps the finite	
PRER	EQUIS	ITE													
	NIL														
COUR	SE OB	JECTI	VES												
1.	To intro	oduce th	ne majo	r conce	pt areas	of lang	guage tr	anslatio	on and c	compile	r design.				
2.	To deve	elop an	awaren	ess of tl	ne funct	tion and	l compl	exity of	f compil	lers.					
3.	To learı	n the ro	le of a j	parser a	nd to st	udy the	differe	nt ways	s of reco	ognizing	g and parsi	ng of tok	ens.		
4.	To stud transfor	y the commation	oncepts s	of code	e genera	tion and	d conce	epts of C	Code Op	otimizat	ion and ab	out vario	us code	improvi	ng
5	To und	lerstan	d the c	oncept	s of au	tomata	a theor	У							
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0						
CO1: ไ	Underst	and th	ne maj	jor pha	ases of	f com	pilatio	n and	the us	se of a	a tool to	Understa	nd		
generat	e lexic	al anal	yzer												
CO2: U	Inderst	and an	d Appl	y conte	ext-free	e gram	mar ar	nd to d	esign p	arsers		Understa	nd		
CO3: D	Design a	and im	plemer	nt inter	rmedia	te code	e gener	ration				Apply			
CO4: A	pply fo	or vario	ous opt	imizat	ion tec	hnique	s and	code g	enerati	on		Apply			
CO5: T	o unde	rstand	the co	ncepts	of auto $\overline{\mathbf{E} \mathbf{O} \mathbf{U} \mathbf{T} \mathbf{O}}$	$\frac{1}{1}$	theory	DDOO		AF SDI		Understa	nd		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	M	S	-	-	-	-	-	-	-	-	L	L	-	-	-
CO2	S	М	-	L	-	-	-	-	-	-		L	-	-	-
CO3	М	М	L	L	-	-	-	М	-	-		-	-	-	-
CO4	М	S	L	-	-	L	-	-	-	L	H.M	М	-	-	-
CO5	М	М	-	-	М	-	-	-	М	T		М	-	-	-
S- Stro	ng; M-N	Medium	i; L-Lov	w	I			•		M M	AYHTIN	•	•	<u>.</u>	

Dr. M. NITHTA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

UNIT - I INTRODUCTION TO COMPILERS

Compilers – Analysis of the source program – Phases of a compiler – Cousins of the Compiler – Grouping of Phases – Compiler construction tools – Lexical Analysis – Role of Lexical Analyzer – Input Buffering – Specification of Tokens.

UNIT - II SYNTAX ANALYZER

Role of the parser -Types of Grammar - Ambiguity in Grammar – Parse Tree – Syntax Tree – Writing Grammars – Context-Free Grammars – Top Down parsing – Predictive Parsing – Bottom-up parsing – Shift Reduce Parsing – LR Parsers – SLR Parser .

UNIT - III INTERMEDIATE CODE GENERATOR

Intermediate Code Generation – Introduction, Implementation of Three Address Code, Types of Three Address Statements Code Generation -Intermediate languages – Declarations – Assignment Statements – Boolean Expressions.

UNIT - IV CODE OPTIMIZATION AND CODE GENERATION

Introduction– Principal Sources of Optimization – Peephole Optimization- Issues in the design of code generator- DAG representation of Basic Blocks.

UNIT –V AUTOMATA AND REGULAR EXPRESSIONS

9

Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata

(NFA) – Finite Automata with Epsilon transitions. Regular Expression – FA and Regular

Expressions – Applications of Regular Expression – Closure properties of regular languages

TEXT BOOKS

- 1. Alfred V.Aho, Ravi Sethi, Jeffrey D. Ullman, Compiler Principles, Techniques and Tools, Published 2013 by Pearson Education Limited.
- 2. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computations", second Edition, Pearson Education, 2007.

REFERENCES

- 1. Yunlin Su, Song Y. Yan, Principles of Compilers: A New approach to Compilers including the Algebraic Method, Springer edition, 2011.
- 2. Compiler Design in C Holub, Prentice Hall, 1992.

COUR	SE DESIGNERS		ND.	
S. No.	Name of theFaculty	Designation	Department	Mail ID
1.	Mrs. T.GEETHA	Assistant Professor	Prost Head.	geetha@vmkvec.edu.in
2.	Mr.S. Muthuselvan	Assistant Professor	V. Engg. College,	muthuselvan@avit.ac.in

350)21C0	9	(T	COM	IPUTI PV AI	ER NE	TWO PACT	ORKS	S)	Ca	ategory	L	Т	Р	C	Credit
			(1	IILU					3)		CC	3	0	2		4
PREA The p Identi at eac flow o	AMBL ourpose ify the ch layer of infor	E of thi compo r for g rmatio	s cour onents given a	se is to requir pplicat	o under ed to l tion. Io	rstand build d dentify anoth	the co lifferent the second the second	ncepts nt type olutior le in th	s of dat s of ne n for es ne netw	a com etwork ach fui vork.	municati s. Choos nctionalit	on and one the ready for each one of the ready the second	compu quired ach lay	iter r fund yer. 7	netw ction Frac	vorks. nality ce the
PREI NIL	REQU	ISITE	E													
COU	RSE ()BJE(CTIVI	ES												
1	To p	rovide	basic	knowl	edge i	n netw	orking	g conc	epts.							
2	To ir	trodu	ce and	demo	nstrate	vario	us brid	lges, sv	witche	s and H	Ethernets					
3	To ir	trodu	ce diff	erent n	nethod	lologie	es in ro	outing.								
4	To le	arn at	out tra	ansmis	sion p	rotoco	ls and	QOS.								
5	To p	rovide	know	ledge a	about o	differe	nt app	licatio	n prote	ocols.						
COU	RSE (OUTC	OME	S												
On suc	cessfu	l com	pletion	of the	cours	e, stud	lents w	vill be	able to)						
CO1.L Layers	earn th	e func	lament	als of	netwo	rks and	d diffe	rent ty	pes of	OSI		Under	stand			
CO2.L bridgin	earn th	e diffe	erent E	therne	t, wire	eless no	etwork	ks, swi	tching	and		Unde	erstand			
CO3.D routing techni	esign s iques.	solutio	ons for	compl	ex rou	ting m	nethod	s and c	liffere	nt mult	ticast	Appl	у			
CO4.L and stu	earn th dy the	e cono qualit	cepts o y of se	f diffe rvice f	rent pi for TC	otocol P prot	ls for t ocol.	ransm	ission	purpos	se	Anal	yse			
CO5.L	earn di	fferen	t types	s of app	plication	on pro	tocols	and it	s archi	tecture	e.	Anal	yse			
MAP	PING	WITI	H PRO)GRA	MME	OUT	СОМ	ES AN	ND PR	OGR	AMME	SPECI	FIC O	UT	COI	MES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	S	Μ	L	S	Μ	-	-	_	-	-	-	S	Μ	N	1	Μ
CO2	S	М	L	М	S	-	-	-	-	-	-	М	Μ	N	Λ	Μ
CO3	S	S	S	S	Μ	-	-	-	-	-	_	М	Μ	N	1	Μ
CO4	S	S	S	S	S	-	-	-	-	-	-	M	Μ	N	1	S
CO5	I S	M	M	M	M	-	- 1	- 1	- 1	-	-	M	M		Л	S

S- Strong; M-Medium; L-Low

tit.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

FUNDAMENTALS & LINK LAYER

Building a network – Requirements - Layering and protocols - Internet Architecture – Network software – Performance ; Link layer Services - Framing - Error Detection - Flow control.

DATA-LINK LAYER & MEDIA ACCESS

Introduction – Link-Layer Addressing – DLC Services – Data-Link Layer Protocols – HDLC – PPP – Media Access Control – Wired LANs: Ethernet – Wireless LANs – Introduction – IEEE 802.11, Bluetooth – Connecting Devices.

NETWORK LAYER

Network Layer Services – Packet switching – Performance – IPV4 Addresses – Forwarding of IP Packets – Network Layer Protocols: IP, ICMP v4 – Unicast Routing Algorithms – Protocols – Multicasting Basics – IPV6 Addressing – IPV6 Protocol.

TRANSPORT LAYER

Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission - TCP Congestion control - Congestion avoidance (DECbit, RED) - QoS - Application requirements.

APPLICATION LAYER

Traditional applications -Electronic Mail (SMTP, POP3, IMAP, MIME) – HTTP – Web Services – DNS – SNMP.

LIST OF EXPERIMENTS.

- 1. Implementation of Stop and Wait Protocol and Sliding Window Protocol.
- 2. Study of Socket Programming and Client Server model
- 3. Write a code simulating ARP /RARP protocols.
- 4. Write a code simulating PING and TRACEROUTE commands
- 5. Study of Network simulator (NS) and Simulation of Congestion Control Algorithms using NS.
- 6. Simple Tcp/Ip Client Server Communication
- 7. UDP Echo Client Server Communication
- 8. Half Duplex Chat Using TCP/IP
- 9. Full Duplex Chat Using TCP/IP
- 10. Simulation of Distance Vector/ Link State Routing algorithm.
- 11. Performance evaluation of Routing protocols using Simulation tool.
- 12. Simulation of error correction code (like CRC).

TEXT BOOKS:

- 1. Behrouz A. Foruzan, "Data communication and Networking", Seventh Edition, Tata McGraw-Hill, 2017.
- 2. Andrew S. Tannenbaum, David J. Wetherall "Computer Networks", Pearson Education, Eighth Edition, 2016.

REFERENCES:

- 1. William Stallings, "Data and Computer Communication", Eighth Edition, Pearson Education.
- 2. Knuth,D.E., "Computer Communication and Networks", Sixth Edition, McGrath-Hill, 2016.

COURSI	L DESIGNERS			
S. No.	Name of the faculty	Designation	Department	Mail Id
1	Mr. S. SenthilKumar	Assistant Professor	CSE	senthilkumars@vmkvec.edu.in
2	Mr. S. Muthuselvan	Assistant Professor Gr. II	CSENT	muthuselvan@avit.ac.in

Dr. M. NITHYA,

91 Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

		Category	L	Т	Р	Credit
35021C13	SOFTWARE ENGINEERING	CC	3	0	0	3

PREAMBLE:

course aims at introducing to the students about the product that is to be engineered and the process that es a framework for the engineering technology. The course facilitates the students to analyze risk in software and quality and to plan, design, develop and validate the software project.

EQUISITE:NIL

RSE OBJECTIVES

	aware of generic models to structure the software development process.
(rstand fundamental concepts of requirements engineering and requirements specification.
(rstand different notion of complexity at both the module and system level.
	aware of some widely known design methods.
(rstand the role and contents of testing activities in different life cycle phases.

COUDSE OUTCOMES

COURSE OUTCOMES	
On the successful completion of the course, students will be able to	
CO1. Understand the process model for a software project Development.	Understand
CO2. Prepare the SRS, Life Cycle Models for given problem.	Apply
CO3. Apply Design document, Project plan of a given software system,	Understand
Project Management and Requirement analysis, Principles to S/W project	
development.	
CO4. Analyze the cost estimate and problem complexity using various	Understand
estimation techniques.	
CO5. Generate test cases using the techniques involved in selecting: (a)	Apply
White Box testing (b) Block Box testing.	
CO6. Analyze the advantages of Design Process, configuration	Analyze

management and risk management activities

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO1	S						10,	100	F09	P010	POIT	PO12	PSOI	PSO2	PSO3
	~	М	L	L	-	-	-	-	-	L	-	L	S	L	L
CO2	S	М	М	-	-	М	М	L	-	L	-	-	S	L	L
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-
CO5	S	М	М	М	М	L	М	М	L	М	М	М	S	S	L

S- Strong; M-Medium; L-Low

H.H.

Dr. M. NITHYA. Prof & Head. 92 Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

SOFTWARE

Introduction – The Evolving Role of Software– Software Characteristics– Software Applications– Software Engineering: A Layered Technology–S/W Engineering paradigm -SDLC– Software Process.

LIFE CYCLE MODELS

Linear Sequential Model- Prototyping Model-RAD Model-Evolutionary Software Process Models-Component Based Development - Project Planning Objectives – Software Scope – Resources – Software Project Estimation – Empirical Estimation Models – Make/Buy Decision-Functional and Non Functional requirements –software requirement specification (SRS) – Requirement Engineering process-Feasibility studies.

ANALYSIS MODELING AND DESIGN CONCEPTS

Data Modeling – Data Flow Diagrams – Behavioral Modeling – The Mechanics of Structured Analysis – The Data Dictionary – Software Design and Software Engineering – The Design Process – Design Principles – Design Concepts – Effective Modular Design – Design Heuristics for effective Modularity – The Design Model – Design Documentation.

REQUIREMENT ENGINEERING TASKS

Requirements Management, Structured coding Techniques-Coding Styles-Standards and Guidelines-Software testing Fundamentals-Types of testing - Quality Concepts – Quality Movement - Software Quality Assurance – Software Reviews — Formal Approaches to SQA - Software Reliability – ISO 9000 Quality Standards – SQA Plan.

SOFTWARE CONFIGURATION MANAGEMENT

Introduction about software configuration management – the SCM process –identification of objects in the software configuration – version control – change control – configuration audit – status reporting – SCM standards –software Documentation-seven rules for sound documentation.

TEXT BOOKS:

- 1. Roger S. Pressman, "Software Engineering A practitioner's Approach", Seventh Edition, McGraw- Hill International Edition, 2010.
- 2. Ian sommerville," Software Engineering ", Seventh Edition, Pearson Education Asia, 2017.
- 3. Mary Shaw, David Garlan,"Software Architecture- a perspectives on an Emerging Discipline

REFERENCES:

1. WattsS.Humphrey,"A Discipline for Software Engineering", Pearson Education, 2007.

2. James F.Peters and WitoldPedrycz,"Software Engineering, An Engineering Approach", Riley-India, 2007

RSE DESIGNERS

of the Faculty Designation	Department	Email Id
Sundaramurthy Associate Professor	CSE	sundaramuthy@vmkvec.edu.in
Bharanidharan Assistant Professor	CSE	bharanidharan@vmkvec.edu.in

Nitt M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

350	21016				L		POCI		IINC		Category	L	Т	Р	Cred	lit
000	21010	,	CC 3 0 0 3													
PREAD This co skills. S activitie	PREAMBLE This course of study builds on the skills gained by students in Java Fundamentals and helps to advance Java programming skills. Students will design object-oriented applications with Java and will create Java programs using hands- on, engaging activities.													ng ng		
PRER NIL	EQUIS	ITE														
COUR	SEOBJ	ECTI	VES													
1	Under	rstand	fundam	entals o	of progr	ammin	g such	as varia	ables,con	ndition	al and itera	ative exe	cution	meth	ods,etc.	
2	Under Using	rstand class	fundam libraries	entals of the state of the stat	of objec	t-orien	ted pro	grammi	ing in Ja	iva, inc	luding def	ining cla	sses,in	voki	ng methoo	ds,
3	Be aw	vare of	the imp	ortant	topics a	nd prin	ciples o	of softw	vare dev	elopme	ent.					
4	Under	rstand	Event H	landling	g and S	wing C	ompon	ents.								
5 Understand Generic Programming.																
COURSEOUTCOMES																
On suc	cessful	comp	letion of	f the co	urse ,st	udents	will be	able to								
CO1.K	Inowled	lge of	the strue	cture ar	nd mode	el of the	e Java p	orogran	nming la	inguage	e	Knowle	edge			
CO2.U	Jse the .	Java p	rogramn	ning laı	nguage	for var	ious pro	ogramn	ning tech	hnologi	ies	Unders	tand			
CO3.D	Develop	softw	are in th	e Java	progran	nming	languag	ge				Apply				
CO4.E the Jav	valuate va progr	user i ammi	equirem	ents fo	r softwa n meet i	are fun user rec	ctionali quireme	ty requ ents	ired to c	lecide	whether	Analys	e			
CO5.C knowle	CO5.Choose an engineering approach to solving problems,Starting from the acquired knowledge of programming and knowledge of operating systems. Evaluation															
MAPP	INGW	ITHPI	ROGRA	MME	OUTCO	OMESA	NDPR	OGRA	MMES	PECIF	ICOUTCO	OMES				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	O2 PSO	13
CO1	S			S	S	Μ	S				S	S				
CO2	S		S		S			S	L	L		L				
CO3	S		Μ	L	S	М					L	L				
CO4	S		S	M	S		S				S	М				
CO5	S		S	Μ	S		Μ				S	М				
S-Stron	ng;M-M	edium	L-Low													

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

BASICS OF JAVA

Object oriented programming concepts – objects – classes – methods and messages – abstraction and encapsulation –inheritance–abstract classes–polymorphism.-ObjectsandclassesinJava–defining classes–methods-access specifiers–static members –constructors–finalize method.

ARRAYS, OPERATORS, STRINGS & OBJECTS

Arrays - Operators: Arithmetic Operators, The Bit wise Operators, Relational Operators, Boolean Logical Operators, The Assignment Operator, The ? Operator, Operator Precedence, Using Parentheses, Control Statements: Java's Selection Statements, Iteration Statements, Jump Statements–Strings-Packages–Java-Doc comments–Inheritance–class hierarchy–polymorphism–dynamic binding–final keyword–abstract classes-The Object class–Reflection–interfaces–object cloning–inner classes–proxies.

EVENTS & GRAPHICS PROGRAMMING

I/Streams- Filter and pipe streams- Byte Code interpretation- Basics of event handling - event handlers-adapter classes-actions-mouse events-AWTeventhierarchy-Graphics programming-Frame-Components- workingwith2Dshapes.

SWING & GENERIC PROGRAMMING, APPLETS

Introduction to Swing – Model-View-Controller design pattern – buttons – layout management – Swing Components –exception handling – exception hierarchy – throwing and catching exceptions - Motivation for generic programming –generic classes–generic methods–genericcodeandvirtualmachine–inheritanceandgenerics–reflectionandgenerics.

Applets and HTML- Security Issues, Applets and Applications, passing parameters to applets. Creating a Swing Applet.

THREADS & SOCKET PROGRAMMING

Multi-threaded programming-interrupting threads-thread states-thread properties-thread synchronization-Executors-synchronizes-Socket Programming-UDP Datagram-IntroductiontoJavaBeans.

TEXTBOOKS:

- 1. CayS.HorstmannandGaryCornell, "CoreJava:VolumeI–Fundamentals", Ninth Edition, Sun MicrosystemsPress, 2013.
- 2. ElliotteRustyHarold,"JavaNetworkProgramming",O"Reillypublishers,2000(UNITII).
- 3. EdRoman, "MasteringEnterpriseJavaBeans", JohnWiley&SonsInc., 1999(UNITIIIandUNITV).

REFERENCES:

- 1. K.ArnoldandJ.Gosling,"TheJAVAprogramminglanguage", Thirdedition, PearsonEducation, 2008.
- 2. TimothyBudd,"Understanding Object
 - orientedprogrammingwithJava", UpdatedEdition, PearsonEducation, 2000.
- 3. C.ThomasWu,"AnintroductiontoObject-orientedprogrammingwithJava",FourthEdition,TataMcGraw-HillPublishingcompanyLtd.,2006.

COURSEDESIGNERS

S.No.	NameoftheFaculty	Designation	Department	MailID
1	Mrs.V.Subapriya	Assistant Professor- II	CSE	subapriya.cse@avit.ac.in
2	Dr.K.Sasikala	AssociateProfessor	CSE	sasikalak@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K. V. Engg. College, Salem.

25021	1020	W	EB TE	CHN	OLOG	Y (TH	IEORY	7	Cat	egory	L	Т	Р		Cr	redit
3502	1020	AND PRACTICALS) CC 3 0 2 4 LE:														
PREAM	MBLE:											1 1		1		
This co	urse air	ns at ii	ntroduc	ing to	the stu	dents a	about to	o provi	de the	web con	ncepts a	and ena	able the	stu	dent to	create
simple	Web ba	used ap	oplicati	ons an	d to ci	eate a	n overv	view of	f 3-tier	archite	cture a	nd ena	ble the	stuc	dent to	create
enterpri	ise appl	ication	IS													
PRERI	EQUIS	ITE: N	NIL													
COUR	SE OB	JECT	IVES													
1	To cre	eate sir	nple W	'eb pag	ges and	provic	le clien	t side	validati	ion						
2	To cre	eate dy	namic	web pa	ages us	ing ser	ver sid	e scrip	ting							
3	To des	sign ar	nd creat	te user	interfa	ces usi	ing JSP	•								
4	To write the business logic for the middle tier															
⁵ To provide transaction and security support for enterprise applications																
COUR	SE OU	TCOM	AES													
On the	success	ful coi	npletio	n of th	e cours	se, stuc	dents w	ill be a	able to							
CO1. U	Indersta	nd the	basic o	concep	ts of ne	etwork	and we	eb pag	e			Unders	stand			
CO2.Le	earn the	conce	pts of s	scriptir	ng and	develo	ping th	e webj	page.			Apply				
CO3. A	pply th	e conc	ept of .	JSP .								Apply				
CO4. A	pply an	d deve	elop the	e applie	cation	using t	he conc	cept of	ASP			Apply,	Analy	ze		
CO5.De	evelop t	he we	b page	by usi	ng all t	he app	lication	l.				Apply				
MAPP	ING W	ITH F	PROG	RAMN	AE OU	JTCO	MES A	ND P	ROGR	AMME	E SPEC	CIFIC	OUTC	OM	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01	PSO2	PSO3
CO1	М	М	М	М	М	-	-	-	-	-	L	L	М		М	М
CO2	М	М	М	М	S	М	-	-	-	-	М	L	М		М	М
CO3	М	М	S	S	S	М	-	-	-	-	М	L	S		М	М
CO4	S	М	М	S	S	М	-	-	-	-	М	L	S		М	S
CO5	S	М	М	S	М	М	-	-	-	-	М	L	М		М	S
S- Stron	ng; M-N	/lediur	n; L-Lo	OW							-	•	•	•		·

UNIT I - INTRODUCTION TO NETWORKS AND WEB CONCEPTS

History of the Internet and World Wide Web - Internet standards -URLs - CGI - HTML 4 protocols - HTTP, SMTP,

POP3, MIME, and IMAP - Introduction to SGML - HTML - forms - frames - tables

UNIT II- DYNAMIC HTML & JAVASCRIPT

UNIT II- DYNAMIC HTML & JAVASCRIPT Dynamic HTML – introduction – cascading style sheets – JavaScript introduction – control structures – functions – arrays –

Dr. M. NITHYA, - Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

objects – simple web applications, object model and collections – event model – filters and transition – data binding – data control.

Exercise: Home page Development static pages (using Only HTML) of an online Book store.

UNIT III- DATABASE & XML

Database Connectivity – JDBC Drivers – SQL Statements - XML – Structure in Data – Default Namespaces – DTD – XSD– Parsing XML.

Exercise : Programs using XML – Schema – XSLT/XSL.

UNIT IV -ASP & Session Tracking

ASP - Working of ASP - Objects - File System Objects - ADO - Access a Database from ASP - Server side

Active-X Components – HTTP GET and POST requests – session tracking – cookies.

Exercise: Programs using DOM and SAX parsers.

UNIT V- SERVLETS AND JSP

Introduction - Servlet - Architecture - Lifecycle- Generic Servlet & HTTP Servlet - JSP - Overview - Objects -

scripting - Standard Actions - Directives.

Exercise : implement the web applications using (a) Servlets and (b) JSP

TEXT BOOKS:

1. Deitel & Deitel, Goldberg, "Internet and World Wide Web – How to Program", Fifth edition, Pearson Education Asia, 2017.

2. Uttam K.Roy, "Web Technologies", OXFORD University Press - 2010

REFERENCES:

- 1. Behrouz A. Forouzan,"TCP/IP Protocol Suite", Tata McGraw-Hill ,4th Edition,2010
- 2. Jeffrey C.Jackson, "Web Technologies-A Computer Science Perspective", Pearson Education, 2008.
- 3. Robert. W. Sebesta, "Programming the World Wide Web", Seventh Edition, Pearson Education, 2019.
- R. Krishnamoorthy & S. Prabhu, "Internet and Java Programming", New Age International Publishers, 2004.
- Thomno A. Powell, "The Complete Reference HTML and XHTML", fourth edition, Tata McGraw Hill, 2003.

COURS	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Email Id
1	Dr.R.Jaichandran	Assistant Professor	CSE	jaichandran@avit.ac.in
2	Dr.M.Nithya	Professor	CSE M.M	nithya@vmkvec.edu.in
			TT)	

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

25021007		Category	L	Т	Р	Credit
35021007	AKTIFICIAL INTELLIGENCE	CC	3	0	0	3

PREAMBLE

This syllabus is intended for the Engineering students and enable them to lean about Artificial Intelligence. This syllabus contains intelligent agent, Knowledge Representation and Machine learning, and application. Which is useful to how represent knowledge and in machine learning contain some important prediction method. Thus, this syllabus focuses on to know about AI and its concepts, application.

PREREQUISITE:NIL

COURSE OBJECTIVES

1.	To identify the kind of problems that can be solved using AI technique: to know the relation between AI and other areas of computer science.
r	To have be evaluated of comparing machine mathematic AI

- 2. To have knowledge of generic problem-solving methods in AI..
- 3. TO Design software agents to solve a problem.
- 4. Apply the knowledge of algorithms to solve arithmetic problems.
- 5. Assemble an efficient code for engineering problems.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1:. Io	CO1:. Identify the different agent and its types to solve the problems U													Understand				
CO2: kr	now abc	out the p	roblem	solving	g techni	que in A	Artificia	al Intell	igence.			Apply						
CO3: C	onstruct	t the nor	rmal fo	rm and	represe	nt the k	nowled	ge.				Apply						
CO4: to environr	know a nent.	ibout ex	tension	of con	dition p	robabil	ity and	how to	apply i	n the rea	al time	Apply						
CO5	to lear	n about	Inform	ation R	etrieval	and Sp	eech R	ecognit	ion			Understa	nd					
MAPP	ING W	ITH P	ROG	RAMN	IE OU	TCON	MES A	ND PI	ROGR	AMM	E SPECI	FIC OU	TCOM	IES				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	М	М	М		L					L	L	L	L					
CO2	М	М	L	L	L					М		L		L	S			
CO3	М	М	T	L		М				L				М				

L

М

 CO5
 M
 L

 S- Strong; M-Medium; L-Low

S

М

CO4

L

L

Nitt.M

L

М

Μ

М

L

М

S

М

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

UNIT - I INTRODUCTION

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents- simplex reflex agent, model based agent, utilized based agent, learning agent, agent environments.

UNIT - II PROBLEM SOLVING

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed Search Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

UNIT - III KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining-Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

UNIT - IV MACHINE LEARNING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

UNIT - V APPLICATION

AI Applications-Language Models-Information Retrieval-Information Extraction-Natural Language Processing-Machine Translation-Speech Recognition

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Fourth Edition, Pearson Education, 2020

2. Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2012..

REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Sixth Edition, Pearson Education, 2009.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 2011.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.S.Rajaprakash	Associate professor	CSE	rajaprakash@avit.ac.in.
2	Dr.M.Nithya	Professor	CSE	Nithya@vmkv.ac.in

Nitt.M

Dr. M. NITHYA, 99 Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

COMPUTER CC 3 0 0 3 PREAMBLE This course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques. PRERQUISITE PRERQUISITE Ni COURSE OBJECTIVES										
PREAMBLE This course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques. PRERQUISITE Nil COURSE OBJECTIVES 1. To understand the basic concepts of problem solving methodology. 2. To study and apply algorithm design. 3. To study and apply programming and developing skills. 4. To understood, analyze and evaluate the problem. 5. To apply, analyze, evaluate and solve the problem by using programming concepts. COURSE OUTCOMES On the successful completion of the course, students will be able to COI. Comprehend the role of computing and use of programming, concepts in developing enginering solutions. COI. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. CO3. Develop algorithms for text processing and pattern searching <td< td=""></td<>										
developing marketer string to use in their subsequence course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques. PRERQUISITE Nil COURSE OBJECTIVES										
debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of programming techniques. PRERQUISITE Nil COURSE OBJECTIVES 1. To understand the basic concepts of problem solving methodology. 2. To study and apply algorithm design. 3. To study and apply programming and developing skills. 4. To understood, analyze and evaluate the problem. 5. To apply, analyze, evaluate and solve the problem by using programming concepts. COIRSE OUTCOMES On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions. CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and Apply searching. CO3. Develop algorithms for text processing and pattern searching. CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve										
recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques. PRERQUISITE Nil COURSE OBJECTIVES 1. To understand the basic concepts of problem solving methodology. 2. To study and apply algorithm design. 3. To study and apply programming and developing skills. 4. To understood, analyze and evaluate the problem. 5. To apply, analyze, evaluate and solve the problem by using programming concepts. COURSE OUTCOMES On the successful completion of the course, students will be able to COL. Comprehend the role of computing and use of programming concepts in developing engineering solutions. CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and apply algorithms for text processing and pattern searching Apply CO3. Develop algorithms for text processing and pattern searching Analyze CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve Evaluate										
program design strategies and tools, common algorithms used in computer program and elementary programming techniques.PRERQUISITENilCOURSE OBJECTIVES1.To understand the basic concepts of problem solving methodology.2.To study and apply algorithm design.3.To study and apply programming and developing skills.4.To understood, analyze and evaluate the problem.5.To apply, analyze, evaluate and solve the problem by using programming concepts.COURSE OUTCOMESOn the successful completion of the course, students will be able toCO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching.CO3. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching.CO3. Develop algorithms for text processing and pattern searchingAnalyze a problem, identify the data in the problem, divide a problem into parts, solve										
programming techniques. PRERQUISITE Nil COURSE OBJECTIVES 1. To understand the basic concepts of problem solving methodology. 2. To study and apply algorithm design. 3. To study and apply programming and developing skills. 4. To understood, analyze and evaluate the problem. 5. To apply, analyze, evaluate and solve the problem by using programming concepts. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engine= ing solutions. CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. CO3. Develop algorithms for text processing and pattern searching Analyze a problem, identify the data in the problem, divide a problem into parts, solve										
PRERQUISITE Nil COURSE OBJECTIVES 1. To understand the basic concepts of problem solving methodology. 2. To study and apply algorithm design. 3. To study and apply programming and developing skills. 4. To understood, analyze and evaluate the problem. 5. To apply, analyze, evaluate and solve the problem by using programming concepts. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions. CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. CO3. Develop algorithms for text processing and pattern searching Analyze CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve										
COURSE OBJECTIVES 1. To understand the basic concepts of problem solving methodology. Image: Colspan="2">Course of problem solving methodology. 2. To study and apply algorithm design. Image: Colspan="2">Course of problem solving methodology. 3. To study and apply programming and developing skills. Image: Colspan="2">Courses of problem solving methodology. 4. To understood, analyze and evaluate the problem. Image: Course of programming concepts. Image: Course of programming concepts. COURSE OUTCOMES Image: Course of programming and use of programming concepts in developing engineering solutions. Image: Course of programming concepts in developing engineering solutions. CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. Apply CO3. Develop algorithms for text processing and pattern searching Analyze CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve Evaluate										
1. To understand the basic concepts of problem solving methodology. 2. To study and apply algorithm design. 3. To study and apply programming and developing skills. 4. To understood, analyze and evaluate the problem. 5. To apply, analyze, evaluate and solve the problem by using programming concepts. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions. CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. CO3. Develop algorithms for text processing and pattern searching Analyze CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve										
2. To study and apply algorithm design. 3. To study and apply programming and developing skills. 4. To understood, analyze and evaluate the problem. 5. To apply, analyze, evaluate and solve the problem by using programming concepts. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions. CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. CO3. Develop algorithms for text processing and pattern searching Analyze CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve										
3. To study and apply programming and developing skills. 4. To understood, analyze and evaluate the problem. 5. To apply, analyze, evaluate and solve the problem by using programming concepts. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions. Understand CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. Apply CO3. Develop algorithms for text processing and pattern searching Analyze CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve Evaluate										
4. To understood, analyze and evaluate the problem. 5. To apply, analyze, evaluate and solve the problem by using programming concepts. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions. CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. CO3. Develop algorithms for text processing and pattern searching Analyze a problem, identify the data in the problem, divide a problem into parts, solve										
5. To apply, analyze, evaluate and solve the problem by using programming concepts. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions. Understand CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. CO3. Develop algorithms for text processing and pattern searching Analyze CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve										
COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions. Understand CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. Apply CO3. Develop algorithms for text processing and pattern searching Analyze CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve Evaluate										
On the successful completion of the course, students will be able to CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions. Understand CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching. Apply CO3. Develop algorithms for text processing and pattern searching Analyze CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve Evaluate										
CO1. Comprehend the role of computing and use of programming concepts in developing engineering solutions.UnderstandCO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching.ApplyCO3. Develop algorithms for text processing and pattern searchingAnalyzeCO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solveEvaluate										
CO2. Develop algorithms to solve fundamental mathematical problems, merging, sorting and searching.ApplyCO3. Develop algorithms for text processing and pattern searchingAnalyzeCO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solveEvaluate										
searching.AnalyzeCO3. Develop algorithms for text processing and pattern searchingAnalyzeCO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solveEvaluate										
CO3. Develop algorithms for text processing and pattern searchingAnalyzeCO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solveEvaluate										
CO4. Analyze a problem, identify the data in the problem, divide a problem into parts, solve Evaluate										
individual parts using proper control structures and compose into an overall solution										
CO5. Design algorithmic solutions to problems drawn from engineering contexts and Apply										
implement using any structured programming language										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES										
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03										
CO1 M M M M - - - - - - M M M										
CO2 M M M M - - - - - - M M M										
CO3 M M S M - - - - - - M M M										
CO4 S M M M - - - - - M M S										
CO5 S M M - - - - - M M S										
S- Strong; M-Medium; L-Low										
S- Strong; M-Medium; L-Low										
S- Strong; M-Medium; L-Low SYLLABUS										
S- Strong; M-Medium; L-Low SYLLABUS Introduction to problem solving with computers - Computing Systems: Hardware and Software – Engineering Problem Solving Methodology: problem specification and										

Algorithm Design: Fundamental algorithms: Dr. M. NITHYA,

Swapping of two variables – counting – summation of set of numbers d factorial – Fibonacci sequence – base conversion Factoring Techniques: smallest givisor of an integet to greatest common divisor – generating prime number – generating prime factor

Merging, Sorting and Searching Techniques:

Two way merge – sorting by selection sort – sorting by exchange – sorting by insertion – linear search

- binary search Array techniques: Array order reversal – Statistical measurement - array counting - array Partitioning Text Processing and Pattern Searching: Key word search – text line editing –linear pattern search.

Programming Concepts:

Basics of programming -Constant, variable, keywords, data types - Operators, operator precedence, expressions - Control Structures: Selection structure- Repetition Structure.

Modular Programming and Functions:

User defined functions- Recursive functions Array Handling: 1-D, 2-D: declaration – initialization, Using arrays as function arguments- Strings Pointers: Basics of Pointers - Arrays and Pointers - Pointers and Functions - Structures and Union - File Handling.

TEXT BOOK:

1. R. G. Dromey, "How to solve it by Computer", Pearson Education India,2014 **REFERENCES:**

- 1. Maureen Sprankle, Jim Hubbard, "Problem Solving & Programming Concepts",
- **2.** Prentice Hall, 2012
- **3.** Jeri R. Hanly Elliot B. Koffman, "Problem Solving and Program Design in C", 7th Edition, Pearson, 2013
- 4. Delores M. Etter, "Engineering Problem Solving with C", Pearson, 4th Edition, 2013.
- 5. Donald E. Knuth, "Art of Computer Programming", Pearson Education, 2012.
- 6. Yashavant Kanetkar, "Let us C", 8th Edition, BPB Publications, 2007.

COU	COURSE DESIGNERS													
S. No	Name of the Faculty	Designation	Department	Mail ID										
1.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in										
2.	Mr.K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in										

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

250	24 0 95										Category	L	Т	Р	Credit
350	21685)	1	AKTIF	ICIAI	L INTI	ELLIG	ENC	LAB		CC	0	0	4	2
PREAN	IBLE						. 11					•			
To gain	progra		g know	ledge 1	n Artıf	icial Ir	itellige	nce							
PRERE NIL	QUIS	ITE													
COURS	SE OB	JECT	IVES												
1.	The ai where	m of A knowle	Artificia edge of	l Intel	ligence chniqu	is to j es lead	prepare ing to	e studei the adv	nts for vancem	career i ent of r	n compute research ar	er scien id techi	ce & en nology.	igineeri	ng
2.	Artific	ial Inte	lligenc	e is tl	ne term	s of co	mpute	r scien	ce.						
3.	AI is tl applica	ne learn ation of	ning in f AI tha	which at prov	machin ide syst	ne can tem the	learn b abilit	y its o y to au	wn wit tomatic	hout be cally lea	ing explic arn and im	itly pro prove f	gramm rom ex	ed. It is perience	an e.
4.	AI is tl	ne learr	ning in	which	machi	ne can	learn b	y its o	wn wit	hout be	ing explic	itly pro	gramm	ed.	
COURS	SE OU	TCON	MES												
On the	succes	sful co	mpleti	on of th	ne cour	se, stu	dents v	vill be	able to						
CO1. A	pply b	readth	first, d	epth fi	rst and	best fi	rst sea	rch tec	hnique	for pro	blems	Apply			
like 8-p	uzzle,	8-quee	ns,Trav	$\frac{1}{4}$	salespe	erson a	nd wat	er jug	probler	ns etc.	afor				
gaming	applic	ations.	nomg,	A' alg	oritinn		indonn	Zeu sea		Innque	5 101	Аррту			
CO3. A	Apply t	o deve	lop the	soluti	ons for	combi	natoria	l prob	lems us	sing into	elligent	Apply			
optimiz Swarm	ation a	algorith	nms like 1	e Simu	lated A	Annealı	ng, Ge	netic A	Algorith	nm, Par	ticle				
CO4. C	Constru	ict rule	based	system	ns for a	ny app	licatio	n using	logic	prograr	nming	Apply			
languag	ge.														
	NG W		PO2	KAMN	AE OU	POG	VIES A				E SPECIE			IES DSO2	DCO2
COs	POI	PO2	PUS	P04	PUS	PU0	PO/	PU8	P09	POIU	POII	POIZ	P501	P502	PSU3
CO1.	S	S	М	L											M
CO2.	S	S	М	М	L										М
CO3.	S	S	М	L											М
CO4.	S	S	М	L											М
S- Stron	ig; M-I	Mediur	n; L-L	OW	1			1	1	1			L	1	4

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

LIST OF EXPERIMENTS:

- 1. Implement Breadth First Search (for 8 puzzle problem or Water jug problem or any AI search problem)
- 2. Implement Depth First Search (for 8-queen problem or 8 puzzle problem or Water jug problem or any AI search problem)
- 3. Solve travelling salesperson problem using Best First Search
- 4. Implement Hill climbing algorithm
- 5. Apply any one randomized search technique (Simulated annealing, Genetic Algorithms, Particle swarm optimization) for solving problems like, TSP, Graph coloring, Vertex cover problem, shortest path problems, etc.
- 6. Write a program to generate the output for A* algorithm.
- 7. Write a program to show the Tic Tac Toe game for 0 and X
- 8. Solve the crossword puzzle problem as constraint satisfaction problem
- 9. Implement anyone Propositional calculus related problem
- 10. Develop any rule based system for an application of your choice.
- 11. Generate, view and access decision tree and rules.
- 12. Implement a k-means clustering algorithm for any given data set.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015

Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.S.Rajaprakash	Associate professor	CSE	<u>rajaprakash@avit.ac.in</u> .
2.	Dr.Nithya	Professor	CSE	Nithya@vmkv.ac.in

N. Hith

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021C83	DATABASE MANAGEMENT SYSTEMS LAB	Category	Т	Р	Credit	
		CC	0	0	4	2

PREAMBLE

This course aims at facilitating the student to apply the effective designing of relational database for real-world applications, perform many operations related to creating, manipulating and maintaining databases using DBMS tools and manipulate data using other languages through ODBC and JDBC.

PREREQ	U ISITE: N	Nil										
COURSE	OBJECT	IVES										
1.	To demo	onstrate the	e basic f	undame	ntals of	Structur	ed Query	y Langua	ge (SQL)).		
2.	To emple	oy the con	ceptual	and rela	tional m	odels to	design l	large data	base sys	tems.		
3.	To desig	n and buil	ld databa	ase syste	em for a	given re	al world	problems	3			
COURSE	OUTCON	MES										
On the suc	cessful co	mpletion	of the co	ourse, st	udents v	vill be al	ble to					
	On the	successfu	l comple	etion of	the cour	rse, stud	ents wil	l be able	to Build	l and		
CO1	manipulate relational databases using simple and complex queries in Structured Apply											
	Query Language.											
	Develop normalized and demoralized databases for a given application using											
CO2	various constraints like integrity and value constraints. Apply											
	Constru	ict and n	nake us	e of da	atabase	objects	such a	s indices	, seque	nces,		
CO3	synony	ms using S	Structure	ed Query	y Langua	age.					Analy	/\$1\$
CO4	Develop	p objects ı	using PL	/SQL ar	nd manip	pulate da	tabases	through t	hese obj	ects	Analy	ysis
	Constru	ict and ma	ike use o	of comp	osite dat	a types	using PI	L/SQL (C	05) Dev	velop		
CO5	a comp	lete datab	ase app	lication	in a hig	h level	language	e using Ja	ava Data	abase	Analy	ysis
	Connec	tivity.										
MAPPINO	G WITH I	PROGRA	MME	OUTCC)MES A	ND PR	OGRA	MME SP	PECIFIC	C OUT	COMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2
CO1	М	М	М	М							М	М
CO2	М	M	M	M							М	М
CO3	М	M	M	M							М	M
CO4	S	M	M	M							М	S
CO5	S	M	M	M				it	M.H	5	М	S
S- Strong;	M-Mediun	n; L-Low						N	<i>,</i> .			
LIST OF I	EXPERIM	IENTS						D. M. N	THYA			
1. To	write a qu	ery in Dat	ta Defini	ition Laı	nguage (DDL) co	ommand	ls in DBN	AS Head.	Fore		
2. То	write a qu	ery in Dat	ta Manip	oulation	Languag	ge (DMI	_) comm	and sign D	BMS, S	alem.		

- To write a query in Data Control Language (DCL) and Transfer Control Language (TCL) Commands in DBMS
- 4. To write a query in Inbuilt functions of SQL in DBMS
- 5. To write a query in Join operations and Set operations in DBMS
- 6. To write a query to illustrate the creation of Cursor
- 7. To write a query to illustrate the creation of Triggers
- 8. To write a query to illustrate the creation of Procedures and Functions
- 9. To write a query for Database design using Normalization functions
- 10. To design and implementation of a database application for Payroll Management System
- 11. To design and implementation of a database application for Report Generation
- 12. To design and implementation of a database application for Student Management System

References:

- Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Fourth Edition, Tata McGraw Hill, 2012.
- 2. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Fourth Edition, Addision weskey, 2002.
- 3. Raghu Ramakrishnan, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- 4. Peter Rob and Corlos Coronel, "Database Systems Design, Implementation and Management, Fifth Edition, Thompson Learning, Course Technology, 2003.

Course Designers:

S.No	Name of the faculty	Designation	Department	Email Id
1	Ms. A. Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in
2.	Dr.R.Jaichandran	Assistant Professor	CSE	jaichandran@avit.ac.in

Witt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

0.50			OBJE	СТ ОІ	RIENT	'ED PI	ROGR	AMM	ING	Cate	gory	L	Т	Р		Credit
350	21C84		ODJL]	LAB				C	C	0	0	4		2
PREA With a way of	MBLI dynami probler	E ic lear n solv	n-by-doi ing. Thi	ing focu s course	s, this l challer	aborato nges stu	ory cour idents to	se enco o exerci	urages se their	students creativit	to under y in bot	stand t h prog	he us ramn	se of ob	oject orie d analys	ented is.
PRER	QUIS	ITE:	NIL													
COU	RSE O	BJEC	CTIVES	5												
1.	To be capable of explaining procedure as well as object oriented programming concepts & their differences.															
2.	To be able to implement inline and friend function very well.															
3.	To be familiar with how to make programs using function overloading & operator overloading															
4.	4. To get the capability to implement the different types of inheritance & done problems related to them															
COU	COURSE OUTCOMES															
On the	succes	ssful c	complet	ion of t	he cou	irse, stu	udents	will be	able to)						
CO1. concep	CO1. Construct object-oriented programs for a given scenario using the concepts of abstraction, encapsulation, message-passing and modularity.															
CO2.	CO2. Develop object-oriented programs for a given application using the concepts Apply															
CO3.	Constru	uct o	bject-or	iented	progr	ams fo	r a g	iven a	applicat	tion by	,					
demon	stratin	g th	e inte	r-relati	onship	betw	/een	classes	using	g inherit	ance	A	pply			
and ag	gregati	ion.	ant ania	ntad an		<u></u>	4	hondla		liana		•	1			
CO4.	Constru	p obj uct ob	ect-orie	nted ap	plication	ons the	$\frac{1}{1}$	nandle	except	nersist	data	A]	ppiy			
using f	files an	d obje	ect-seria	alizatio	n.		JI u giv			, persise	uutu	A	pply			
MAPI	PING V	WITH	I PRO	GRAM	ME O	UTCO	OMES	AND I	PROG	RAMM	E SPE	CIFIC	COU	TCO	MES	
COG	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO	1	PSO	PSO	PSO
COS	1	2	3	4	5	6	7	8	9	0	1	2		1	2	3
CO1	М	М	М	М	S	-	-	-	-	-	-	-		М	М	М
CO2	М	М	М	М	М	-	-	-	-	-	-	-		М	М	М
CO3	М	М	S	М	S	-	-	-	-	-	-	-		М	М	М
CO4	S	М	М	М	М	-	-	-	-	-	-	-		М	М	S
CO5	S	М	М	М	М	-	-	-	-	·H	3	-		М	М	S
S- Stro	ong; M	-Medi	um; L-	Low					(MDI						
LIST	S- Strong; M-Medium; L-Low LIST OF EXPERIMENTS 1. Write a program to illustrate function overloading featury.M.K.V. Engg. College, Salem.															

2. Write a program to illustrate the overloading of various operators Ex. Binary operators, Unary operators, New and Delete operators.

3. Write a program to illustrate the use of following functions: a) Friend functions b) Inline functions c) Static Member functions d) Function with default arguments

4. Write a program to illustrate the use of destructor and the various types of constructors (no arguments,

constructor, constructor with arguments, copy constructor etc).

5. Write a program to illustrate the various forms of inheritance: Ex. Single, Multiple, multilevel, hierarchical inheritance etc.

6. Write a program having student as on abstract class and create many derived classes such as Engg. Science, Medical, etc. from student's class. Create their objects and process them.

7. Write a program to illustrate the use of virtual functions.

8. Write a program to illustrate the use of virtual base class.

9. Write a program to illustrate file handling operations: Ex. a) Copying a text files b) Displaying the contents of the file etc.

10. Write a program to illustrate how exceptions are handled (ex: division-by-zero, overflow and underflow in stack etc).

REFERENCES:

1. H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2010.

2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

3. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.

4. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill, 2008.

5. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. edition, 2008.

6. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3rd edition2008.

7. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.

8. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

COURSE DESIGNERS

S.No	Name of the faculty	Designation	Department	Email Id			
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in			
2.	Mr.K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in			

35021088	LAVA DDOCDAMMINC I AD	Category	L	Т	Р	Credit
35021000	JAVA PROGRAMMING LAB	CC	0	0	4	2

PREAMBLE

The goal of this course is to provide students with the ability to write programs in Java and apply concepts described in the Object-Oriented Programming course. The course is designed to accommodate students with diverse programming backgrounds, consequently Java is taught from first principles in a practical class setting were students can work at their own pace from a course handbook. Each practical class will culminate in an assessed exercise.

PREREQUISITE

NIII

INIL																
COU	RSE O	BJEC	FIVES	5												
	Gain	knowl	edge al	bout ba	isic Jav	a lang	uage sy	ntax a	nd sem	nantic	es to wr	ite J	ava prog	rams ar	nd use	
1.	concepts such as variables, conditional and iterative execution methods etc.															
	Understand the fundamentals of object-oriented programming in Java, including defining classes,															
2.	objects, invoking methods etc and exception handling mechanisms.															
3.	3. Understand the principles of inheritance, packages and interfaces.															
COU	COURSE OUTCOMES															
On su	ccessfu	l comp	oletion	of the o	course,	studer	nts will	be abl	e to							
CO1. U	Jnderst	and Jav	a prog	rams tl	nat solv	ve simp	ole bus	iness p	roblen	ns.	Under	star	nd, Apply	7		
CO2. U	Inderst	and the	valida	ate use	r input.	•					Analyz	ze				
CO3. (Constru	ct a Jav	va class	based	on a U	JML cl	ass dia	gram.			Apply	7				
C O4. P	erform	a test j	plan to	valida	te a Jav	va prog	gram.				Apply					
C O5. E	Oocume	nt a Ja	va prog	gram.							Apply					
MAP	PING	WITH	PROC	GRAM	ME O	UTCC	OMES	AND I	PROG	RAN	IME S	PEC	CIFIC O	UTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	l0 PO	11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	S	-	-	-	-	-			-	М	М	М
CO2	М	М	М	М	S	-	-	-	-	-	-		-	М	М	М
CO3	М	М	S	М	S	-	-	-	-	-	-		-	М	М	М

S- Strong; M-Medium; L-Low

М

Μ

М

М

М

М

S

М

_

_

_

S

S

CO4

CO5

NIT

_

-

_

М

Μ

_

_

М

Μ

S

S

Dr. M. NITHYA, - Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

_

_

_
LIST OF EXPERIMENTS.

- 1. Write a JAVA program to search the largest element from the given array.
- 2. Write a JAVA program to sort the strings in an alphabetical order.
- 3. Write a JAVA program to extract a portion of a character string and to print the extracted portion and the remaining portion of the string. Assume that m characters are extracted, starting with the nth character.
- 4. Write a JAVA program for illustrating overloading and overriding methods in JAVA.
- 5. Write a JAVA program which illustrates the implementation of multiple inheritance using interfaces in JAVA.
- 6. Write a JAVA program to create your package for basic mathematical operations such as add, subtract, multiply. Demonstrate the use of this package in another class.
- 7. Write a JAVA program that counts the number of digits in a given number. If an alphabet is entered instead of a number, the program should not terminate. Instead it should display appropriate error message. (Exception Handling).
- 8. Write a JAVA program to move the text "JAVA PROGRAMMING LAB" diagonally using Applet.
- 9. Write a JAVA program to create an Applet with a label "Do you know car driving?" and two buttons Yes, NO.

When the user clicks "Yes" button, the message "Congrats" must be displayed. When the user clicks "NO "button, "Regrets" must be displayed.

- 10. Write a JAVA program to animate the face image using Applet.
- 11. Write a JAVA program to create four Text fields for the name, street, city and pin code with suitable Labels. Also add a button called "My Details". When you click the button, your name, street, city, and pin code must appear in the Text fields.

References:

 TimothyBudd, "Understanding ObjectorientedprogrammingwithJava", UpdatedEdition, PearsonEducation, 2000.
Java Lab Manual by Asif Munir - November 2018

COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID							
1.	Dr. K. SASIKALA	Associate Professor	CSE	sasikalak@vmkvec.edu.in							
2.	R.Shobana	Assistant Professor(G II)	CSENT	muthuselvan@avit.ac.in							

2502109	20		ПА	TA 6'	гонс	TIDI	TCT A	D	Ca	tegory	L	Т	Р		Credit
3302100	52		DA	IAS	INUC	IUNI		D –	0	CC	0	0	4		2
PREAME	BLE														
This labor	rator	y enat	oles th	e stud	lents c	clearly	under	stand	the co	oncepts	of dat	a struct	ures. A	Also stu	idents can
implemen	t the	search	ning ar	d sort	ing alg	gorithn	ns.								
PRERQU NIL	PRERQUISITE NIL														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Develop algorithms for the concepts of data structures. Apply															
CO2. Able to Apply searching and sorting techniques Apply															
CO3. Construct implementations for Abstract Data Types (ADT) using															
appropriate Data Structures															
CO4. Assess the suitability of a data structure to solve a problem, based															
on the tim	ne and	l space	e comp	olexitie	es of d	ifferer	nt opera	ations	on the			Analyz	e		
data struct	ture														
CO5. Imp	oleme	ent algo	orithm	s whic	ch use	sorting	g, searc	ching a	and/or	selectio	on	Apply			
as sub-pro	ocedu	res.(C	05)									· • • • • • • • • • • • • • • • • • • •			
MAPPIN	G W	ITH I	PROG	RAM	ME O	OUTC	OMES	AND	PRO	GRAM	IME SI	PECIFI	C OU'	ГСОМ	ES
COS I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	М	M M M M M S												
S- Strong;	S- Strong; M-Medium; L-Low														

LIST OF EXPERIMENTS:

- 1. Exercises using Objects, Classes, Inheritance
- 2. Operator Overloading and Polymorphism
- 3. Array implementation of List Abstract Data Type (ADT)
- 4. Linked list implementation of List ADT
- **5.** Cursor implementation of List ADT
- 6. Array implementations of Stack ADT
- 7. Linked list implementations of Stack ADT
- 8. Queue ADT
- 9. Search Tree ADT Binary Search Tree
- 10. Heap Sort
- 11. Quick Sort

M. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

REFERENCES:

- **1.** Laboratory Reference Manual.
- 2. Balaguruswami. E, "Programming in C", TMH Publications, 1997
- **3.** Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.
- 4. Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.
- 5. Subbura.R, "Programming in C", Vikas publishing, 1st Edition, 2000.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Jaichandran	Associate Professor	Computer science and engineering	jaichandran@avit.ac.in
3	Dr. M. Nithya	Prof & Head	Computer science and engineering	nithya@vmkvec.edu.in

CHitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021C14 ADVANCED JAVA PROGRAMMING Category L									Т	Р	(Credit				
000	21011		Α	DVAN	CED .	JAVA	PROG	FRAM	MING		CC	3	0	0		3
PREAN	IBLE												-	-		
To unde	erstand	the co	ncepts	of obje	ect-orie	nted, n	etwork	king, m	ulti-tier	and e	nterprise	applicati	ion and	l dev	elop	skills
in using	these j	paradig	gms usi	ing Ad	vanced	Java.										
PRERE	QUIS	ITE														
Java Prog	grammi	ng														
COURS	SE OB	JECT	IVES													
1.	This m reusing	odule g comp	aims to onents	o introd	luce the	e stude	nts to s	ome co	oncepts o	of adv	anced pro	ogrammi	ing and	l pra	ctice	on
2.	It focuses on Graphical User Interface (GUI), multithreading, networking, and database manipulation.															
3.	A selected programming language is used such as Java.															
4.	By completing this module, the students should be able to write sophisticated Java applications.															
5.	Junderstand Generic Programming															
COURS	COURSE OUTCOMES															
On the s		£-1					1 4		1.1. 4.							
On the s	success	ful col	mpletic	on of th	e cours	se, stud	lents w	ill be a	ible to							
CO1. U	Jnderst	and so	me adv	vanced	progra	mming	g conce	pts. De	eal with	comp	lex data	Underst	tand			
objects a	as who	le enti	ties, rat	ther the	an by tv	viddlin	g with	their e	lements			. 1				
CO2. A	Analyze	e a pro	blem a	nd dete	ermine	what p	roblem	i eleme	ents to re	prese	int as	Analyze	•			
CO3 V	Vrite th	ne simi	olest no	ssible	nrogra	m that	solves	a giver	nrohler	n wh	ile	Apply				
explaini	ng to t	he read	der hov	v it solv	ves that	t proble	em	a givei	i problei	11 VV 11	lic	rippiy				
CO4. E	Effectiv	ely us	e paran	neteriza	ation a	nd inhe	ritance	e to pro	mote rei	use -	Develop	Apply				
program	ns with	netwo	rking a	ind mu	ltithrea	ding		1			-					
CO5.	Compo	ose mo	ore com	plex p	rogram	s from	simple	er parts	s - Write	prog	rams that	Apply				
impleme	ent GU	Is														
MAPPI	NG W	TTH I	PROG	RAMN	AE OU	TCON	MES A	ND PI	ROGRA	MM	E SPECI	FIC OU	JTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	S	S	М	М	М	-	-	-	-	-	-	-	S	1	M	М
CO2	5 5	S	M	M	M	-	-	-	-	-	-	-	5 6	1	M	M
CO3	2	<u></u> м	S M			-	-	-	-	-	-	-	S	,	- л	M
C04 C05	S	S	M	М	L	-	-	-	-	-	-	-	S	1	M	<u>S</u>
S- Stron	g; M-N	Mediur	n; L-Lo	DW OW				I	1 1		I		L			~

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

SYLLABUS

JAVA FUNDAMENTALS

Java I/O streaming – filter and pipe streams – Reflection — Threading – Java Native Interfaces- Swing -Collections Framework: Enumerations - Stack - Queue – Sets – Maps - Utility Classes.

NETWORK PROGRAMMING IN JAVA

Sockets – secure sockets – custom sockets – UDP datagrams – multicast sockets – URL classes – Reading Data from the server – writing data – configuring the connection – Reading the header – telnet application–Java Messaging services.

APPLICATIONS IN DISTRIBUTED ENVIRONMENT

Remote method Invocation – activation models – RMI custom sockets – Object Serialization – RMI –IIOP implementation – CORBA – IDL technology – Naming Services – CORBA programming Models -JAR file creation.

MULTI-TIER APPLICATION DEVELOPMENT

Server side programming – servlets - The Servlet API - Servlet Package-Handling HTTP Request and Response- – Java Server Pages -Scripting Elements - JSP Directives - JSP Action - JSP Implicit Objects - JSP Expression Language – JDBC.

ENTERPRISE APPLICATIONS & FRAME WORKS

Server Side Component Architecture – Introduction to J2EE – Session Beans – Entity Beans – Persistent Entity Beans – Transactions- Struts – Spring - Hibernate.

TEXT BOOK

- 1. Elliotte Rusty Harold, "Java Network Programming", O"Reilly publishers, 2000 (UNIT II).
- 2. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 1999. (UNIT III and UNIT V).

3. ortsmann& Cornell, "CORE JAVA 2 ADVANCED FEATURES, VOL II", Pearson Education, 2002. (UNIT I and UNIT IV).

REFERENCE BOOKS

- 2. Web reference: http://java.sun.com.
- 3. Patrick Naughton, "COMPLETE REFERENCE: JAVA2", Tata McGraw-Hill, 2003.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mrs.S. Leelavathy	Assistant Professor	CSE	leelavathy@avit.ac.in
2.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

350)21C86	5	ADVA	NCEI) JAVA	A PRO	GRAN	MMIN	G		Categor	y L	Т	Р	Credit
					L	AB					CC	0	0	4	2
PREA	MBLE	1.0		. 1			1 1		•						
To gain PRERI	advan EOUIS	Ced &	recent	trends	prograi ning le	mming ab	know	ledge 1	n java j	progra	am.				
			ava pr	ogram	ining it	.0									
COUR	SE OB	JECI	IVES												
1.	To ma	ke effe	ctive u	se of Ja	ava ger	neric ty	pes.								
2.	To wri	te mul	ti-threa	ded Ja	va appl	licatior	ns, serv	lets &	JSP						
3.	To con	nmuni	cate be	tween	process	ses usir	ng netw	vork so	ckets.						
4.	To dev like DI	elop a' TML	dvance . XML	ed HTM	IL page	es with	the he	elp of f	rames,	script	ing languag	ges, and	evolvii	ng techi	nology
5.	To des	ign dy	namic	web pa	iges usi	ing java	a script	t.							
COUR	SE OU	TCO	MES												
On the	success	sful co	mpletic	on of th	e cours	se, stuc	lents w	vill be a	able to						
CO1. [CO1. Design/Develop Program Apply														
CO2. I	Develop	o appro	priate	data m	odel an	d datał	base sc	heme		A	pply				
CO3 .Ic	lentify	major	subsyst	tems ar	nd inter	faces				Ev	valuate				
CO4.V	alidate	desigr	n schem	ne and	models					Ev	valuate				
CO5. R	esolve	defects	s and re	evise ai	nd adap	ot exist	ing coo	de		A	pply				
MAPP	ING W	ITH	PROG	RAMN	ME OU	JTCO	MES A	ND P	ROGR	AMN	AE SPECI	FIC OU	JTCON	IES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO12	PSO1	PSO2	PSO3
CO1.	М	М	М	М	S	-	-	-	-	-	-	-	М	М	S
CO2.	М	М	М	М	S	-	-	-	-	-	-	-	М	М	S
CO3.	М	М	S	М	М	-	-	-	-	-	-	-	М	М	М
CO4.	S	М	М	М	S	-	-	-	-	-	-	-	М	М	S
CO5.	S	М	М	М	S	-	-	-	-	-	-	-	М	М	S
S- Stroi	ng; M-I	Mediu	m; L-L	ow						•					
CT/T T A	DUC														
1.Write a 2. Write 3. Write 4. Write 5. Write 6. Write	a Java Pr a Java Pr a Java Pi a Java Pi a Java Pi a Java Pi a Java Pi	ogram t rogram rogram rogram rogram rogram	o impler to imple to imple to imple for Send to imple	ment mu ment the ment the ment the ling E-m ment Siu	ltithread e calcula e URL. e InetAda ail in Ja	ing(thre tor. dress. va. ent-Serve	e thread er Comr	s using a	single ru	M. N Prof	ITHYA, & Head. Science & Eng	×.			
7 Write	a Iava Pi	rooram	to imple	ment the	Jogin	Id Form	using I	DBC	MKV	Enge.	College, Salem				

7. Write a Java Program to implement the Login_Id Form using JDBC.8. Write a Java Program to implement the SQL commands using JDBC.

9. Write a Java Program to implement the JTrees.

10. Write a Java Program to implement the JTable.

11. Write a Java Program to create the table using JDBC.

12. Write a Java Program to implement Remote Method Invocation.

Text Books

1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", Wiley India Pvt Ltd, 2014.

2.Hortsmann& Cornell, "CORE JAVA 2 ADVANCED FEATURES, VOL II", Pearson Education, 2002.

Reference Books

1.Web reference: http://java.sun.com.

2.Patrick Naughton, "COMPLETE REFERENCE: JAVA2", Tata McGraw-Hill, 2003.

3.Laboratory Reference Manual.

S. No.	Name of the Faculty	Designation	Department	Mail ID								
1.	Mrs. S. Leelavathi	Assistant Professor G-II	CSE	leelavathi@avit.ac.in								
2.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.i n								

M.Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K. V. Engg. College, Salem.

35021089	PVTHON FOR DATA SCIENCE LAB	Category	L	Т	Р	Credi
30021009	I I I HON FOR DATA SCIENCE LAD	CC	0	0	4	2

PREAMBLE

The goal of this course is to provide students with the ability to write programs in python for data manipulate and cleaning techniques using the popular data science library. The course is designed to accommodate stude with diverse programming background and can work at their own pace from a course handbook on how to usefunctions such as group by, merge, and pivot tables effectively.

ł															
PRER NIL	REQUI	SITE													
COU	RSE O	BJEC	ΓIVES												
1.	To ga	ain bas	sic kno	wledge	e of Par	ndas, N	latplot	Lib and	d Num	nPy Pac	kages				
2.	To p	roduce	Pythor	n code	to stati	stically	analy:	ze a da	taset.						
3.	To l	Jnderst	and the	e princi	iples of	f inheri	tance a	and ove	erloadir	ng					
COUI	RSE O	UTCO	MES												
On suc	ccessfu	l comp	letion	of the c	course,	studer	ıts will	be able	e to						
CO1. (Jnderst	and an	d demo	onstrat	e the u	sage of	built-i	n objec	ets in P	ython.	Unc	lerstand			
CO2. U	Use Python data structures – lists, tuples, dictionaries Apply														
CO3. I	3. Read and write data from/to files in Python programs Apply														
CO4. U Visualiz	Jse Pytl zation p	hon pac projects	ckages s.	and ap	ply the	em to I	Data Ai	nalysis	and Da	ata	App	ly			
CO5. A world c	Apply d	ata scie	ence co	oncepts	and m	nethods	to sol	ve prob	olems in	n real-	App	ly			
MAPI	PING	WITH	PROG	GRAM	ME O	UTCO	OMES	AND I	PROG	RAMN	IE SPEC	CIFIC O	UTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS
CO1	S	М	S	М	S	-	-	-	-	-	-	-	М	S	Μ
CO2	S	S	М	М	S	-	-	-	-	-	-	-	М	М	Ν
CO3	М	М	S	S	S	-	-	-	-	-	-	-	М	М	Μ
CO4	S	М	М	М	S	-	-	-	-	-	-	-	М	М	s
CO5	S	М	М	М	М	-	-	-	-	-	-	-	М	М	S
S- Stro	ong; M	-Mediu	ım; L-I	Low						·H.	3				
SYLLA	BUS								C	D.					

Dr. M. NITHYA, - Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

LIST OF EXPERIMENTS:

- 1. Editing and executing Programs involving Flow Controls.
- 2. Editing and executing Programs involving Functions.
- 3. Program in String Manipulations
- 4. Creating and manipulating a Tuple
- 5. Creating and manipulating a List
- 6. Creating and manipulating a Dictionary
- 7. Object Creation and Usage
- 8. Program involving Inheritance
- 9. Program involving Overloading
- 10. Reading and Writing with Text Files and Binary Files
- 11. Combining and Merging Data Sets
- 12. Program involving Regular Expressions
- 13. Data Aggregation and GroupWise Operations

References:

- 1. Gowrishanker and Veena, "Introduction to Python Programming", CRC Press, 2019.
- 2. Python Crash Course, 2nd Edition, By Eric Matthes, May 2019
- 3. NumPy Essentials, By Leo Chin and Tanmay Dutta, April 2016
- 4. Joel Grus, "Data Science from scratch", O'Reilly, 2015.
- 5. Wes Mc Kinney, "Python for Data Analysis", O'Reilly Media, 2012.
- 6. Kenneth A. Lambert, (2011), "The Fundamentals of Python: First Programs", Cengage Learnin
- 7. Jake Vanderplas. Python Data Science Handbook: Essential Tools forWorking with Data 1st Edition.

COURSE D	ESIGNERS
-----------------	-----------------

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Bharanidharan	Assistant Professor	CSE / VMKVEC	bharanidharan@vmkvec.edu.in
2.	Senthamilsevi.G	Associate Professor	CSE / VMKVEC	senthamilselvi@vmkvec.edu.in

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021C12

PROBLEM SOLVING USING PYTHON	Category	L	Т	Р	Credit
PROGRAMMING (THEORY AND					
PRACTICALS)	CC	3	0	2	4

PREAMBLE:

This course is designed to introduce basic problem solving and program design skills that are used to create computer Programs using python programming skills. It gives engineering students an introduction to python programming and developing analytical skills to use in their subsequent course work and professional development. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques.

PREREQUISITE: NIL

FACA										
COUR	SE OBJECTIVES									
1.	To study algorithmic solutions to simple computational problems.									
2.	To study programs using simple Python statements and expressions.									
3.	To study an explain control flow and functions concept in Python for solving problem	ems								
4.	To study and use Python data structures - lists, tuples & dictionaries for representing	ng compound data								
5.	To study and explain files, exception, modules and packages in Python for solving	problems.								
COUR	SE OUTCOMES									
On the s	uccessful completion of the course, students will be able to									
CO1. U	Inderstand and develop algorithmic solutions to simple computational problem.	Understand								
CO2. F	Familiarize with the programming concepts in Python Programming	Understand								
Langua	ge									
CO3. (Inderstand and apply programming solutions related to Objects, Classesand	Understand, Apply								
Functio	ns									
CO4. (Construct algorithms using design paradigms like divide and conquer, greedy and	Apply								
dynamic	e programming for a given problem.									
CO5 . C	onstruct algorithms using Python for searching and sorting based problems	Apply								

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	L	-	-	-	-	-	L	М	М	М
CO2	S	М	L	-	М	L	-	-	-	-	-	L	S	М	М
CO3	S	М	L	-	М	L	-	-	-	-	-	L	М	М	М
CO4	S	М	L	-	М	L	-	-	-	-	-	L	S	S	М
CO5	М	М	L	-	М	L	-	-	-	-	-	L	М	М	М
S- Stro	ng; M-N	Mediur	n; L-L	ow											

N. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

SYLLABUS

INTRODUCTION TO PROBLEM SOLVING WITH COMPUTING SYSTEMS:

Hardware and Software – Engineering Problem Solving Methodology: problem specification and analysis, algorithm design, flowchart, implementation, program testing and verification. Lab 1: find minimum in a list, Lab 2: insert a card in a list of sortedcards, guess an integer number in a range, Lab 3: Towers of Hanoi.

PROGRAMMING CONCEPTS:

Basics of Python programming -Constant, variable, keywords, data types - Operators, operator precedence, expressions - Control Structures: Selection structure- Repetition Structure, File Handling, Exception Handling. Lab 4. word count, Lab 5 File handling. Lab 6. Exception handling .

OBJECTS, CLASSES AND FUNCTIONS:

Object and Classes : Classes in Python, Principles of Object Orientation, Creating Classes, Instance Methods, File Organization, Special Methods, Class Variables, Inheritance, Polymorphism, Type Identification, Custom Exception Classes, Functions: Introduction, Defining Your Own Functions, Parameters, Function Documentation, Keyword and Optional Parameters, Passing Collections to a Function, Variable Number of Arguments, Scope, Passing Functions to a Function, Mapping Functions in a Dictionary, Lambda, Standard Modules in Python. Lab 7. Lambda functions, Lab 8. Functions Lab 9. User defined functions

ALGORITHM DESIGN: FUNDAMENTAL ALGORITHMS:

Swapping of two variables – counting – summation of set of numbers – factorial – Fibonacci sequence – base conversior Factoring Techniques: smallest divisor of an integer – greatest common divisor – generating prime number – generating prime factor. Lab 10. Exchange the values of two variables, Lab 11. Circulate the values of n variables, Lab 12. Distance between two points.

MERGING, SORTING AND SEARCHING TECHNIQUES:

Two way merge – sorting by selection sort – sorting by exchange – sorting by insertion – linear search – binary search Array techniques: Array order reversal – Statistical measurement - array counting - array Partitioning Text Processing and Pattern Searching: Key word search – text line editing –linear pattern search. Lab 7: square root, gcd, Lab 13 exponentiation, sum an array of numbers, Lab 14: linear search, binary search, Lab 15: selection sort, insertion sor mergesort.

TEXT BOOKS:

- 1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist'', 2nd edition, Updated for
- Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/think- python/)

2. Guido van Rossum and Fred L. Drake Jr, "An Introduction to Python – Revised and updated for Python 3.2, NetworkTheory Ltd., 2011.

REFERENCES:

1. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley IndiaEdition, 2013.

2. John V Guttag, "Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press

2013

3. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012.

COUR				
S. No.	Name of the faculty	Designation	Department	Email
			M K	Id
1.	Mrs. R Shobana	Assistant Professor (GII)	CSEAVIT	shobana@avit.ac.in
2.	Dr. K. Sasikala	Associate Professor	Cese /	sasikalak@vmkvec.edu.in
			VMKVECVA	

250	021010	,		TH	EORY	OF			C	ategory	gory L T P Cred						
350		,	C	COMP	UTAT	ION				CC	3	0	0		3		
PREAD This c contex pattern PRER	MBLE course at of fo n recog EOUIS	helps ormal gnition	the lea languag system NIL	rners t ges and	o knov d their	w the recog	models nizer.	s of co This c	mputat an be a	ion, alorapplied	ng with in desig	their ning	vari comj	ants pilers	in the s and		
COUR	SE OI	BJEC	TIVES														
1.	To pr persp	rovide ective	introdu of form	iction t nal lan	to som guages	e of the	e centr	al idea	s of the	eoretical	compute	er scie	ence	fron	1 the		
2.	To in	trodu	the fi	undam	ental c	oncept	s of fo	rmal la	nguage	es, gram	mars and	d auto	mata	a the	ory		
3.	Class	ify ma	achines	by the	ir pow	er to re	ecogniz	ze lang	uages								
4.	Emp	loy fin	ite state	e mach	ines to	solve	proble	ms in o	comput	ting							
5.	To u	nderst	and det	ermini	stic and	d non-o	determ	inistic	machir	nes.							
6.	To u	nderst	and the	differe	ences b	etween	n decid	lability	and u	n-decida	bility						
COUR	SE OU	JTCO	MES														
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	idents	will be	able to)							
CO1: recogn	Unders	tand t langu	he conc ages	ept of	abstra	ct mac	hines a	and the	ir powe	er to	τ	Jnder	stand	1			
CO2:	Disting	guish t	etween	decid	ability	and ur	n-decid	lability			τ	Jnder	stanc	ł			
CO3:	Gain p	roficie	ncy wi	th matl	hemati	cal too	ls and	formal	metho	ods	τ	Jnder	stand	1			
CO4:	Emplog ting pr	y finite oblem	e state 1 s	nachin	es for	model	ing and	l solvii	ng			App	oly				
CO5:	Design	conte	xt free	gramn	nars for	r forma	al lang	uages				Cre	ate				
MAPP	ING V	VITH	PROG	RAM	ME O	UTCC	OMES	AND I	PROG	RAMM	E SPEC	CIFIC					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO11	PO12	PSO	1 PS	502	PSO3		
CO1	_	S	M	_	М	_	_	_			М	S	_	M			
CO2	-	S	M	-	M	-	_	-	-	-	M	S		M	-		
CO3	-	-	М	-	S	-	-	-	-	-	М	-		М	-		
CO4	S	М	М	-	Μ	-	-	-	-	М	М	-		M	S		
CO5	-	S	М	-	М	-	-	-	-	-	- M M						

M. Hith

Dr. M. NITHYA, 120 Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem. S- Strong; M-Medium; L-Low

SYLLABUS INTRODUCTION

Basic Mathematical Notation and techniques- Finite State systems – Basic Definitions – Finite Automaton – DFA & NDFA – Finite Automaton with \in -moves – Regular Languages- Regular Expression – Equivalence of NFA and DFA – Equivalence of NDFA''s with and without \in -moves – Equivalence of finite Automaton.

REGULAR EXPRESSIONS

Regular Expressions, Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Properties of Regular Languages Pumping Lemma for Regular Languages, Applications of the Pumping Lemma, Closure Properties of Regular Languages, Decision Properties of Regular Languages.

CONTEXT-FREE GRAMMARS:

Chomsky hierarchy of languages.Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages. Push Down Automata,: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automata.

TURING MACHINES

Definitions of Turing machines – Models – Computable languages and functions –Techniques for Turing machine construction – Multi head and Multi tape Turing Machines – The Halting problem – Partial Solvability – Problems about Turing machine

UN-DECIDABILITY:

A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines, Post's Correspondence Problem, Other Undecidable Problems, Intractable Problems: The Classes P and NP, An NP Complete Problem

TEXT BOOKS

- 1. Introduction to Automata Theory, Languages, and Computation, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education, 3rd Edition.
- 2. Introduction to the Theory of Computation, Michael Sipser, Cengage Learning, 3rd Edition.

REFERENCES

- 1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
- 3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press.
- 4. Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan, Rama R, Pearson Education.
- 5. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	R.shobana	Assistant Professor	CSE / AVIT	shobana@avit.ac.in
2.	T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu .in

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

2502	1.001							D	Cate	gory	L	Т	Р	Crea	lit
3502			JMPU.	TERPR	KUGRA	A IVI IVI I	NGLA	В	C	C	0	0	4	2	
PREA	MBLE											1 1			
This co laborat ms.Thi	ourse is orycour swillim	designe seistogi proveth	dtocom ivehand eproble	plemen sontraiı msolvii	tthecouningtotl ngcapal	urse Pro hestude bilityof	oblem S entsinun thestud	olving iderstai ents.	using (ndingar	Compute ndpractic	r.Thepu ingthep	rposeof rogramn	this ningconc	eptsanda	lgorith
PRER	QUISI	FE: NII	L												
COUR	SEOU'	ГСОМ	ES												
Onthes	uccessf	ulcomp	letionof	thecour	rse,stud	entswil	llbeable	eto							
CO1W on	rite,con	npile,de	bug,linl	candexe	ecuteCp	orogran	nfortheg	givensp	pecifica	tion/app	licati	Apply			
CO2.D nters.	esignan	dimple	mentalg	orithms	sinvolv	ingdeci	sionstru	uctures	,loops,a	arraysan	dpoi	Apply			
CO3.U	sediffer	entdata	structur	esforso	lvingth	egivenj	problen	nusingo	comput	er		Apply			
CO4.C	reate/up	datedat	tafiles.									Apply			
CO5.A osmalli	nalyzet modules	heimple sfortheg	ementati givenpro	oncom blem	plexity	ofalgor	ithmby	modula	arizingt	heproble	emint	Analyze	:		
MAPP	PINGW	ITHPR	OGRA	MME	OUTC	OMES	ANDP	ROGR	AMM	ESPEC	IFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	S	-	-	М	М	-	-	L	M	-	-
CO2	S	M	L	-	S	-	-	М	S	L	-	М	М	-	-
03	S	М	L	_	S	-	-	М	S	L	-	M	М	-	-
CO4	S	М	L	-	S	-	-	М	S	-	-	-	М	-	М
CO5	S	S	М	_	S	_	-	М	S	L	-	М	M	-	М
S-Stron	ng;M-M	ledium;	L-Low	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	tit.	M	<u> </u>	<u> </u>	<u> </u>	<u> </u>
									Dr. M	A. NITH	ZA,				

123 Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

LISTOFEXPERIMENTS

- 1. Basicprogramstounderstanddifferenttypesofdata,operatorsandexpressions.
- 2. Programsusingcontrolstructures
 - i) Factorialofanumber
 - ii) Fibonacciseries
 - iii) Generatingprimenumbers
 - iv) GeneratingArmstrongnumbers
 - v) Greatestcommondivisor
- 3. Programsusingarrays
 - i) Mergingofarrays
 - ii) Arrayorderreversal
 - iii) Selectionsort
 - iv) Bubblesort
 - v) Insertionsort
- 4. Programsusingstrings
 - i) Palindromechecking
 - ii) Stringsorting
 - iii) Linearpatternsearch
 - iv) Textlineediting
- 5. Programsusingfunctions
- 6. Programsusingpointers
- 7. Programsusingstructures
- 8. Programsusingfilestructure

COURSEDESIGNERS

S.No.	NameoftheFaculty	Designation	Department	MailID
1	Mr.B.Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in
2	Mr.K.Karthik	AssistantProfessor	CSE	karthik@avit.ac.in

N. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

35021P	03			BIG	DATA	AND A	NALY	TICS		Cat	egory	L	Т	P (Credit	
										EC	C-PS	3	0	0	3	
PREAN	IBLE															
This cou	irse cov	ers foun	dationa	l techni	ques an	d tools 1	required	l for big	data ai	nalytics.	This cou	rse spotlig	ghts the	concept	s,	
principle	es, and t	echniqu	es are a	pplicab	le in big	g data ar	nalytics	environ	iment ir	n industr	y and rea	I-world ex	sperience	e.		
NIL	QUIST	ГE														
COURS	SE OBJ	ECTIV	ES													
1.	To un	derstand	l how b	ig data a	analytic	s can le	verage	into a ke	ey comp	ponent						
2.	To un	derstanc	l the big	g data to	ols with	n their a	pplicati	ons								
3.	To un	derstand	l the big	g data re	ports fo	or the ex	isting to	ools								
4.	To un	derstand	l the big	g data aj	oplicatio	ons like	Mongo	DB, Ca	ssandra	and Hiv	ve.					
COURS	SE OUT	COME	S													
On the s	uccessfi	ul comp	letion o	f the co	urse, sti	idents v	vill be a	ble to								
CO1: U	Jndersta	nd the b	oasics of	f digital	data an	d introd	uction	to big da	ata			Understa	ind			
CO2: A	nalyze	the basi	c big da	ta chall	enges, i	mportar	nt and te	echnolo	gies.			Analyze				
CO3: S architec	olve big ture and	g data ar l techno	nalytics logies.	challen	ges with	the hel	p of Ha	idoop ai	nd Mon	goDB		Apply				
CO4: A	nalyze	big data	storage	e like M	ongoDI	B, Cassa	undra ar	nd Hive.				Analyze				
CO5: A	nalyze	Pig and	Hive in	terms o	of proce	ssing ar	nd to de	sign Jas	perRep	orts.		Analyze				
MAPPI	NG WI	TH PR	OGRA	MME (OUTCO	OMES A	AND PI	ROGR	MME	SPECI	FIC OU	ГСОМЕ	5			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	Μ	L	-	М	-	-	-	-	-	-	М	S	М	М	
CO2	S	Μ	L	-	М	-	-	-	-	-	-	М	S	Μ	M	
CO3	S	М	L	-	Μ	-	-	-	-	-	-	М	S	Μ	М	
CO4	S	Μ	L	-	М	-	-	-	-	-	-	М	S	Μ	М	
CO5	S	Μ	L	-	Μ	-	-	-	-	-	-	М	S	Μ	М	
S-Stron	g; M-M	edium;	L-Low													

SYLLABUS DIGITAL DATA AND INTRODUCTION TO BIG DATA

Types of Digital Data-Structured Data-Semi-Structured Data-Unstructured Data-Introduction to Big Data-What is Big Data-Characteristics of Big data-Why Big Data-Applications of Big data-Traditional Business Intelligence (BI)versus Big Data-Typical Hadoop Environment-Co existence of Big Data and Data Warehouse.

BIG DATA ANALYTICS

Big Data Analytic-Classification of Analytics with examples-Greatest Challenges that Prevent Businesses from Capitalizing on Big Data-Technologies for Meet the Challenges Posed by Big Data-Data Science-Data Scientist-Analytics Tools.

HADOOP

Introduction to Hadoop-Hadoop Components-Hadoop Conceptual Layer-High LeveNArchitecture of Hadoop-Business Value of

125 Prof & Head. Dept. of Computer Science & Engs V.M.K. V. Engg. College, Salem. Hadoop–GFS-Hadoop Distributed File System-Processing Data with Hadoop-Map Reduce Daemons-Map Reduce working-Map Reduce Example-Managing Resources and Application with Hadoop YARN- Hadoop Ecosystem.

MONGODB, CASSANDRA AND HIVE

MongoDB- RDBMS and MongoDB-Data Types in MongoDB -CRUD- Introduction to Apache Cassandra-Features of Cassandra-CQL Data Types- CQLSH- Key spaces- CRUD- Collections -Using a Counter- Time To Live(TTL)-Alter-Import and Export-Export to CSV-Importfrom CSV-Import from STDIN-Export to STDOUT -System Tables- Practice Examples-Introduction to Hive-Hive Architecture-Hive Data Types-Hive File Format-Hive Query Language- RCFILE Implementation-SERDE-UDF.

PIG AND JASPER REPORTS

Anatomy of Pig-Pigon Hadoop- Pig Philosophy-Use Case for Pig:ETL Processing-Pig Latin Overview- Data Types in Pig-Running Pig-Execution Modes of Pig-HDFS Commands-Relational Operators- Eval Function-Complex Data Type-Piggy Bank-UDF(User Defined Function)-ParameterSubstitution-DiagnosticOperator-WordCountExample-WhentousePig?-When NOT to use Pig?-PigatYahoo-PigversusHive-HiveVsPig-IntroductiontoJasperReports,JaspersoftStudio-ConnectingtoMongoDBNoSQLdatabase-ConnectingtoCassandraNoSQLDatabases

TEXT BOOKS

- 1. BigDataandAnalytics-SeemaAcharyaandSubhashiniC-WileyIndia
- 2. Bigdatafordummies-JudithHurwitz,AlanNugent,FernHalper,MarciaKaufman
- 3. Hadoop:TheDefinitiveGuidebyTomWhite
- 4. Hadoopinaction-ChuckLam
- 5. Hadoopfordummies-DirkDeroos,PaulC.Zikopoulos,RomanB.Melnyk,BruceBrown

REFERENCES

- 1. FrankJOhlhorst, "BigDataAnalytics: TurningBigDataintoBigMoney", WileyandSASBusinessSeries, 2012.
- 2. ColleenMccue, "DataMiningandPredictiveAnalysis:IntelligenceGatheringandCrimeAnalysis", Elsevier, 2007
- 3. MichaelBerthold,DavidJ.Hand,IntelligentDataAnalysis,Springer,2007.
- 4. AnandRajaramanandJeffreyDavidUllman,MiningofMassiveDatasets,CambridgeUniversityPress,2012.

BillFranks, "TamingtheBigDataTidalWave:FindingOpportunitiesinHugeDataStreamswithAdvancedAnalytics", WileyandSAS BusinessSeries, 2012

COURSE DESIG	SNERS			
S.No.	NameoftheFaculty	Designation	Department	MailID
1	S.Muthuselvan	AssistantProfessor	CSE	muthuselvan@avit.ac.in
2	Dr.S.Senthilkumar	AssociateProfessor	CSE	vmkvec.itsenthilkumar@gmail.com

N. Hith

Dr. M. NITHYA, 126 Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

250	121 D17	,								Cat	tegory	L	Т	Р	Credit
350)21717				ETH	ICAL	HAC	KING		E	C-PS	3	0	0	3
PREA To an	MBLE alyze t	E he bas	ic con	cepts o	f secu	rity an	d hack	ing pr	ocess					-	
PRER NIL	EQUI	SITE													
COUR	RSE OI	BJEC	FIVES	5											
1	To u	ndersta	and Te	chnica	l found	lation	of crae	cking a	and eth	nical had	king				
2	To id	lentify	Aspec	ts of s	ecurity	, impo	ortance	of da	ta gath	ering, f	oot prii	nting an	d syste	em hao	king
3	To u	ndersta	and eva	aluatio	n of co	ompute	er secu	rity							
4	To un analy	ndersta /tical a	and Pra nd pro	actical blem b	tasks v based a	will be	used t ch to e	to re-e thical	nforce hackin	and app	ply theo	ory to er	ncoura	ge an	
5	To di	iscuss	about	securit	y tools	and it	s appl	ication	IS						
COUR	RSE O	UTCO	MES												
On the	succes	sful co	omplet	ion of	the co	urse, s	tudent	s will	be able	e to					
CO1 :	Identif	y and	analys	e the st	tages a	n ethic	cal hac	ker re	quires	to take	in	Unders	tand		
corder	to comj Identif	promis	$\frac{1}{2}$ and the	get sys	stem.	carry (nut a n	enetra	tion ter	sting		Unders	tand		
CO2.	Critica	llv ana	$\frac{1}{2}$	ecurity	$\frac{1}{1}$ techn	iques 1	used to	o prote	ct syst	em and	user	Unders	tand		
data.	entieu	ing and		eeuny	teenn	Iques	abea it	prote	er sjor	enn ana	user	Apply			
CO4: the lev	Demoi vel of p	nstrate olicy a	systen and stra	natic u ategy i	ndersta n a coi	anding nputer	of the system	e conce m.	epts of	securit	y at	Apply			
CO5:	To app	oly info	ormatio	on secu	urity fe	atures	in rea	l time				Apply			
MAPF	PING V	VITH	PRO	GRAM	IME (DUTC	OME	S ANI) PRO	GRAM	IME S	PECIFI	IC OU	TCO	MES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO	2 PSO
C01	M	М	_	-	-	-	S	_	-	-	<u>і</u> М	М	М	S	<u>3</u>
CO2	M	M	S	М	-	-	-	-	-	-	L	M	S	-	-
CO3	М	М	М	М	-	М	-	L	-	-	L	-	S	M	S
CO4	М	S	Μ	-	-	М	-	-	-	М	-	М	-	Μ	-
CO5	Μ	М	-	-	S	Μ	-	L	-	-	Μ	М	-	-	Μ
S- Stro	ong; M-	Mediu	ım; L-1	Low											

CHITH.M

Dr. M. NITHYA, 127 Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS INTRODUCTION

Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

HACKING TECHNIQUES

Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems- Windows & Linux, Application Hacking, Footprinting, Scanning, and Enumeration. Implementing System Level Hacking- Hacking Windows & Linux.

WEB SECURITY

Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SQL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

WIRELESS NETWORK HACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler. **APPLICATIONS**

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

TEXT BOOKS

1. Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: Network Security Secrets & Solutions", Seventh edition, McGraw-Hill Publisher, 2012.

2. Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, 2007.

3. Dafydd Stuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws" Wiley Publications, 2007.

4. Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmillan publishers India Ltd, 2006.

REFERENCES

1. Hossein Bidgoli, "The Handbook of Information Security" John Wiley & Sons, Inc., 2005.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor(G-II)	CSE	rjaichandran@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

Dr. M. NITHYA, 128 Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

350)21P24				MOR	ILE C	'OMPI	TING	1	Cat	tegory	L	Т	Р	Credit
					MOD				•	E	C-PS	3	0	0	3
PREA	MBLE	•								•		•			
To lea	rn the	standar	ds and	issues	in Mol	oile Co	omputir	ıg.							
PRERI NIL	EQUIS	TTE													
COUR	SE OB	JECT	IVES												
1	To L	earn wi	ireless	commu	inicatio	on and	cellula	r netwo	orks ba	sics					
2	To le	arn var	ious pi	otocol	s that s	upport	mobil	ity at n	etwork	layer ar	nd trans	port laye	er.		
3	To le	arn pro	otocols	in Moł	oile Ne	twork	and Tr	ansport	Layer						
4.	To st	udy va	rious n	nobile a	npp dev	velopm	ent pla	tforms	and lea	arn deve	eloping	mobile a	applica	tions.	
COUR	SE OU	TCON	AES												
On the	On the successful completion of the course, students will be able to														
CO1:]	Explain	the ba	sics of	wirele	ss tran	smissi	on and	signal	process	sing		Underst	tand		
CO2:	Unders	tand th	e conc	ept of N	Mobile	cellul	ar netw	ork				Unders	tand		
CO3:	Unders	tand th	e conc	ept of v	vireles	s LAN	netwo	rk				Unders	tand		
CO4:	Analyz	ing pro	blems	in desi	gning	mobil	e applie	cations				Apply			
CO5: applica	Various ations.	s mobil	e app o	develop	ment j	olatfor	ms and	develo	ping n	nobile		Apply			
MAPP	ING W	/ITH F	PROG	RAMN	IE OU	TCO	MES A	ND PI	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	Μ	L	-	М	I	I	-	I	-	I	S	Μ	Μ	М
CO2	S	M	L	-	М	-	-	-	-	-	-	S	M	M	-
CO3	S	М	L	-	М	-	-	-	-	-	-	М	-	S	-
CO4	S	M	L	-	М	-	-	-	-	-	-	M	S	S	S
CO5	S	M	L	-	М	-	-	-	-	-	-	M	M	M	S
S- Stro	S- Strong; M-Medium; L-Low														

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS

INTRODUCTION

Introduction – wireless transmission – radio propagation – signals and propagation – antennas – multiplexing and modulation – spectrum - Multiple Access Techniques: FDMA, TDMA, CDMA, OFDMA – Duplexing Techniques: FDD, TDD – Cellular Networks – Tessellation, Frequency Reuse and Handoff – Generations of Cellular Networks – 2G Systems.

MOBILITY SUPPORT IN IP AND TCP

Mobile IP – Mobile Agent, Foreign Agent, Care of Address, Registration, Advertisement and Discovery, Tunneling, IP within IP – Mobility Support in IPV6 – Mobility Header, Mobility Options, Dynamic Home Agent Address Discovery, Cache Management, Bidirectional Tunneling – TCP Over Wireless Networks – Indirect TCP – Snoop TCP – Mobile TCP.

WIRELESS LAN

Wireless LAN – IEEE 802.11 standards – HIPERLAN – Blue tooth technology and protocols. Wireless Local Loop technologies.

APPLICATION DESIGN

Aspects of Mobility – Middleware and Gateways – Mobile Devices and Profiles – Generic UI Development – Multimodal and Multichannel UI – Mobile Memory Management – Design Patterns for Limited Memory – Work Flow for Application Development – Techniques for Composing Applications – Dynamic Linking – Plug-ins and Rule of Thumb for Using DLLs – Concurrency and Resource Management – Look and Feel, Intents and Services – Storing and Retrieving Data – Communication via the Web – Notification and Alarms.

APPLICATION DEVELOPMENT

Google Android Platform – Eclipse Simulator – Android Application Architecture – Event Based Programming – Apple Iphone Platform – UI Tool Kit Interfaces – Cross Platform Design and Tools – Event Handling and Graphics Services – Layer Animation – Location Based Services – Resilient Programming Practices – Packaging and Deployment – Security And Hacking.

TEXT BOOKS

- 1. Jochen Schiller, "Mobile Communications", Addison Wesley, 2000.
- 2. C.Siva Ram Murthy and B.S Manoj "Ad hoc Wireless Networks", Pearson Education, 2007.
- 3. Clint Smith, Daniel Collins, "Wireless Networks", Third Edition, McGraw Hill Publications, 2014.
- 4. Share Conder, Lauren Darcey, "Android Wireless Application Development", Volume I, Third Edition, Pearson, 2014.

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

REFERENCES

1. Mobile Computing Principles-Reza B'Far-Cambridge University Press-2005.

2. Uyless Black, "Mobile and Wireless Networks", Prentice Hall, 1996.

3. Willian C.Y.Lee, Mobile Communication Design Fundamentals, John Wiley, 1993.

4. Zigurd Mednieks, Laird Dornin, G, Blake Meike and Masumi Nakamura, "Programming Android", O'Reilly, 2011

5. Alasdair Allan, "iPhone Programming", O'Reilly, 2010.

6. Donny Wals, "Mastering iOS 12 Programming", Packt, 2018.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Senthilkumar	Assistant Professor	CSE, VMKVEC	senthilkumars@vmkvec.edu.in
2	Dr.M.Nithya	Professor	CSE	nithya@vmkvec.edu.in

N. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

350)21P01					TINITY	INTE		C		Categor	ry L T P Cre		dit		
						UNIX	INTE	KNAL	2		EC-PS	3	0	0	3	
PREA	MBLE															
This ta	lk is a	brief g	guide t	o UNI	X prog	gramm	ing lar	nguages	s, tools	s and c	concepts.	It is air	ned at	prog	ammin	ıg
novices	s or pro	ogramn	ners m	igrating	g from	a Wir	ndows	system	. The	aim is	to introd	uce you	to the	conc	epts, th	ne
possibi	lities ar	nd the t	ools us	sed in U	Jnix pr	ogram	ming.	-				•			-	
PRER	EQUIS	ITE			*											
NIL	-															
COUR	OURSE OBJECTIVES															
1	To understand the design of the UNIX operating system															
2	To become familiar with the various data structures used															
COUR	URSE OUTCOMES															
On the	success	sful con	npletio	on of th	e cours	se, stud	lents w	vill be a	ble to							
CO1:	To lear	n The b	basic U	nix op	erating	systen	ns and	its basi	c com	mands.		Unders	tand			
CO2:	To anal	yze the	e buffei	rs and l	kernel	represe	ntatior	1.				Analyz	e			
CO3:	To anal	yze the	e UNIX	K systei	n struc	ture, s	ystem o	calls.				Analyz	e			
CO4:	To und	erstand	UNIX	segme	entation	n, sche	duling,	paging	z .			Analyz	e			
MAPP	ING W	/ITH H	PROG	RAMN	AE OU	TCON	MES A	ND PI	ROGR	AMM	E SPECI	FIC OU	TCO I	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PS01	PSC	2 PS	03
										0						
CO1	S	М	L	L	М	_	-	_	_	_	_	М	S	Μ	M	1
CO2	S	М	L	L	М	_	-	_	_	_	_	М	S	Μ	M	1
CO3	S	М	L	-	L	-	-	-	-	-	_	М	S	Μ	M	1
CO4	S	М	L	L	М	-	-	-	-	-	_	М	S	Μ	M	1
S- Stro	CO4 S M L L M - - - - - M S M M S- Strong; M-Medium; L-Low - - - - - M S M M															

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS INTRODUCTION

General Review of the System-History-System structure-User Perspective-Operating System Services-Assumptions About Hardware. Introduction to the Kernel-Architecture System Concepts-Data Structures-System Administration

DISK BLOCKS

The Buffer Cache-Headers-Buffer Pool-Buffer Retrieval-Reading and Writing Disk Blocks - Advantages and Disadvantages. Internal Representation of Files-Inodes- Structure-Directories-Path Name to Inode- Super Block-Inode Assignment-Allocation of Disk Blocks -Other File Types

FILE SYSTEM

System Calls for the File System-Open-Read-Write-Lseek-Close-Create-Special files Creation -Change Directory and Change Root-Change Owner and Change Mode-Stat- Fstat-Pipes-Dup-Mount-Unmount-Link-Unlink-File System Abstraction-Maintenance.

PROCESS MANAGEMENT

The System Representation of Processes-States-Transitions-System Memory-Context of a Process-Saving the Context-Manipulation of a Process Address Space-Sleep Process Control-signals-Process Termination-Awaiting-Invoking other Programs-The Shell-System Boot and the INIT Process.

MEMORY MANAGEMENT

Memory Management Policies-Swapping-Demand Paging-a Hybrid System-I/O Subsystem-Driver Interfaces-Disk Drivers-Terminal Drivers.

TEXT BOOKS

1. Maurice J. Bach, "The Design of the Unix Operating System", Pearson Education 2002.

REFERENCES

1. UreshVahalia, "UNIX Internals: The New Frontiers", Prentice Hall, 2000.

- 2. John Lion, "Lion's Commentary on UNIX", 6th edition, Peer-to-Peer Communications, 2004.
- 3. Daniel P. Bovet & Marco Cesati, "Understanding the Linux Kernel", O'REILLY, Shroff Publishers &Distributors Pvt. Ltd, 2000.

4. M. Beck et al, "Linux Kernel Programming

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	V.Subapriya	Assitant Professor (G-II)	CSE	subapriyacse@avit.ac.in
2	Dr.V.Amirthalingam	Associate Professor	CSE	Amirthalingam@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, 133 Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

350)21P36		**/*			DOEN				a	Category	, L	Т	Р	(Credit				
			WI	KELE	55 AN	D SEN	SOR	NEIW	OKK.	`	EC-PS3003n to learn about wireless and sensor									
PREAD This s netwo to ana and se	MBLE yllabus rks. Th lyze pro	is inte is sylla otocols	nded fo bus he develo s and to	or the I lps the oped fo Identi	Engined studen or wirel	ering st its to st ess and critiqu	tudents udy an 1 senso le secu	and end d ident or netw rity iss	nable tl tify diff orks, to ues in v	hem to ferent i o Ident: wireles	learn abou ssues in w ify differest s and sens	ut wirele vireless ant issues or netw	ess and and sen s in wir orks.	sens sor i eless	sor netw s ad 1	orks, hoc				
PRER	EQUIS	ITE				1														
	SE OB	JECT	IVES																	
1	Unde	rstand	the arc	hitectu	re, star	ndards	and ap	plicatio	ons of v	wireles	s sensor n	etworks	(WSN))						
2	Analy	ze the	need a	nd stru	icture o	of MA	C proto	col foi	WSN											
3	Deve	lop WS	SN pro	tocols	and ana	alyze tł	neir pei	rforma	nce											
4	Ident	ify the	need a	nd sele	ction o	fopera	ating sy	stem f	for WS	N										
COUR	SE OU	TCON	MES																	
On the	success	sful con	mpletic	on of th	e cours	se, stuc	lents w	vill be a	able to											
CO1:	Describ	e the t	ype of	sensor	networ	rks, pro	otocols	and ap	oplicati	ons of	WSN	Unders	tand							
CO2:	Identify	variou	us hard	ware, s	softwar	e platf	orms fo	or sens	or netw	vorks		Knowle	edge							
CO3:	Analyz	e the d	esign is	ssues o	f MAC	and P	hysical	l layers	s of WS	SN		Analyz	e							
CO4:	Create	archite	cture a	nd Idei	ntify ne	ed and	select	ion of	protoco	ols for	WSN	Unders	tand &	App	ly					
MAPP	ING W	ITH I	PROG	RAMN	AE OU	JTCO	MES A	ND P	ROGR	AMM	E SPECI	FIC OU	JTCON	MES						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	COs	PO	1	PO2				
C01	L	L	S	S				М	М				CO1	I		L				
CO2	S	S	S	S				S	М				CO2	I		L				
CO3	L	М	S	S				М	М				CO3		5	L				
CO4		М	S	S				Μ	Μ				CO4	Ν	Ν	L				
S- Stro	ng; M-l	Mediur	n; L-L	OW																

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

SYLLABUS

INTRODUCTION OVERVIEW AND APPLICATIONS OF WIRELESS SENSOR NETWORK

Introduction, Basic overview of the Technology, Applications of Wireless Sensor Networks: Introduction, Background, Range of Applications, Examples of Category 2 WSN Applications, Examples of Category 1 WSN Applications, Another Taxonomy of WSN Technology.

BASIC WIRELESS SENSOR TECHNOLOGY AND SYSTEMS:

Introduction, Sensor Node Technology, Sensor Taxonomy, WN Operating Environment, WN Trends, Wireless Transmission Technology and Systems: Introduction, Radio Technology Primer, Available Wireless Technologies

SENSOR NETWORKS - INTRODUCTION & ARCHITECTURES

Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture – Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture – Sensor Network Scenarios, Transceiver Design Considerations, Optimization Goals and Figures of Merit.

TRANSPORT CONTROL AND MIDDLEWARE FOR WIRELESS SENSOR NETWORKS

Traditional Transport Control Protocols, Transport Protocol Design Issues, Examples of Existing Transport Control Protocols, Performance of Transport Control Protocols.

Middleware for Wireless Sensor Networks: Introduction, WSN Middleware Principles, Middleware Architecture, Existing Middleware.

SENSOR NETWORK SECURITY

Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Layer wise attacks in wireless sensor networks, possible solutions for jamming, tampering, black hole attack, flooding attack. Key Distribution and Management, Secure Routing – SPINS, reliability requirements in sensor networks..

TEXT BOOKS

1. Kazem Sohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Technology, Protocols and Applications:, Wiley, 2nd Edition (Indian), 2014.

REFERENCES

1. Ian F. Akyildiz, Mehmet Can Vuran "Wireless Sensor Networks", Wiley, 2010.

2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Nitishagarwal	Associate Professor	CSE	nitishaaggarwal@avit.ac.in
2	Dr.K.Sasikala	Associate Professor	CSE	sasikala@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

350)21P32	,					~ 		4	C	Category	L	Т	P	Credit
	211 02	-			SO	FT CO	OMPU	JTING	ŗ		EC-PS	3	0	0	3
PREAD This sy This sy Which method	MBLE Allabus Allabus is use: L Thus	is inte conta ful to	ended f in intel how re syllabu	For the lligent epreserts focus	Engine agent, nt know	eering Know wledge know	studer vledge e and f about	nts and Repre in mac AI and	enable sentati chine le	e them on and earning ncepts.	to lean l Machir g contair applicat	about Anne learni Isome i Isome i	rtificial ng, and mporta	Intellig l applic nt pred	gence. ation. liction
PRER NIL	EQUIS	SITE	<u> </u>												
COUR	SE OI	BJEC'	FIVES	5											
1	To gi solvi	ive an ng har	unders d real-	tanding world j	g on th proble:	e fund ns	ament	als of	non-tra	ditiona	al techno	logies ai	nd appr	oaches	to
2	Fund Use o	ament	als of a N, Fuzz	artificia zy sets	al neur to solv	al netv ve harc	vorks, l real-v	fuzzy vorld j	sets an probler	d fuzzy ns	y logic a	nd genet	ic algoi	rithms.	
3	To gi world	ive an 1 prob	overvi lems	ew of (Geneti	c algor	rithms	and m	achine	learnii	ng techni	ques to s	solving	hard re	eal-
4	To st	udy ał	oout Al	lgorith	n										
COUR	SE OU	UTCO	MES												
On the	succes	sful co	ompleti	ion of t	the cou	ırse, st	udents	will b	e able	to					
CO1:	Identif	y the c	lifferer	nt agen	t and i	ts type	s to so	lve the	proble	ems		Unders	tand		
CO2:	know a	about t	the pro	blem s	olving	techni	que in	Artifi	cial Int	elligen	ice	Apply			
CO3:	Constr	uct the	e norma	al form	and re	epresei	nt the l	knowle	edge			Apply			
CO4: real tir	Identif ne env	y the e	extensio ent.	on of c	onditio	on prol	oability	y and ł	now to	apply	in the	Analyz	e		
CO5: world	Apply proble	the Ir ms	ıformat	ion Re	trieval	and S	peech	Recog	nition	in the	real-	Analyz	e		
MAPP	ING V	VITH	PROC	GRAM	ME O	UTC	OMES	AND	PRO	GRAM	IME SP	ECIFIC	OUTO	COME	S
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	-	L	S	S	М
CO2	S	M	L	-	-	-	-	-	-	-	-	L	Μ	S	M
CO3	S	Μ	S	-	-	-	-	-	-	-	-	-	S	-	Μ
CO4	S	S	S	-	-	-	-	-	-	-	-	М	Μ	M	M
CO5	S	M	M	-	-	-	-	-	-	-	-	-	Μ	S	M
S- Stro	ng; M-	Mediu	ım; L-I	LOW											
SYLLA FUZZY	ABUS Y SET	THE	ORY								N N				

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents-Problem Solving Approach To AI Problems-Problem Formulation

Dr. M. NITHYA, 136 Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

OPTIMIZATION

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed Search Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

NEURAL NETWORKS

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining-Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

NEURO FUZZY MODELING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

APPLICATIONS OF COMPUTATIONAL INTELLIGENCE

Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel Efficiency Prediction – Soft Computing for Color Recipe Prediction.

TEXT BOOKS

1.J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2011

REFERENCES

1. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.

2. DavisE.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.

3. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003.

4. R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence - PC Tools", AP Professional, Boston, 2005

COUR	COURSE DESIGNERS													
S. No.	Name of the Faculty	Designation	Department	Mail ID										
1.	R.Shobana	Associate Professor	CSE	shobana@avit.ac.in										
2.	Dr.K.Sasikala	Associate Professor	CSE	sasikala@vmkvec.edu.in										

N.Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

350)21P05	;	Ci	# AND	.NET	APPL	ICAT	ION			Catego	ry L	Т	Р		Credit
					DEV	ELOP	MEN	Γ			EC-PS	3	0	0		3
PREA I To prov	MBLE vide an	introdu	uction	to the .	NET fr	amewo	ork and	l enable	e the st	udent t	o progra	m in Cŧ	<i>i.</i>			
PRER	EQUIS oriente	TTE:	RAMMI	NG												
COUR	SE OB	JECT	IVES													
1.	To stud	y basic a	nd adva	nced fea	tures of	the C# l	language	e								
2.	2. To create form based and web based applications															
3.	To stud	y the inte	ernals of	f the .NE	T frame	ework										
4.	To learr	about A	ADO.Ne	et												
5.	To learr	about d	lifferent	web ser	vices											
COUR	SE OU	TCON	MES													
On the	success	sful con	mpletio	on of th	e cour	se, stuc	lents w	ill be a	ble to							
CO1. 7	To lear	n the ba	asics o	f .net F	rame v	vork ar	nd C# 1	anguag	ge			Under	stand			
CO2. 7	To lear	n C# el	lement	s and C	OPS c	oncept	S					Apply				
CO3. 7	To lear	n interf	face an	d inher	itance	concep	ots in C	t# lang	uage			Analy	ze			
CO4. ' windov	To lear v applic	n funda ation	amenta	ls of w	indow	applica	ation p	rogram	iming a	and crea	ate a	Apply				
CO5. 7	To deve	elop we	eb appl	lication	s and 1	earn ac	lvance	d				Apply				
MAPP	ING W	ITH I	PROG	RAMN	AE OU	JTCO	MES A	ND P	ROGR	AMM	E SPEC	IFIC C	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1.	S	М	М	М	М	-	-	-	-	-	-	-	М		-	-
CO2.	S	М	М	L	L	-	-	-	-	-	-	-	М	Ν	M	М
CO3.	S	М	S		М	-	-	-	-	-	-	-	М	N	M	М
CO4.	S	М	L		М	-	-	-	-	-	-	-	М	I	M	-
CO5.	S	М	L	L	М	-	-	-	-	-	-	-	S	N	M	-
S- Stro	ng; M-l	Mediur	n; L-L	ow	1	I	1	I	1	I	<u> </u>		1			I

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

SYLLABUS

INTRODUCTION:

Overview Of .Net-Advantages Of .Net Over Other Languages-Assemblies-.Net Architecture-The Role of C# In The .Net Enterprise Architecture-The Common Language Runtime-C# Basics-Objects And Types-Inheritance –Arrays

OBJECT ORIENTED ASPECTS OF C#:

Operators and Casts: Operators - Type Safety - Operator Overloading - User-Defined Casts. Delegates and Events: Delegates – Events. Strings and Regular Expressions: System.String -Regular Expressions. Collections: Collection Interfaces and Types – Lists - Queues – Stacks -Linked Lists - Sorted Lists – Dictionaries – Hash Set - Bit Arrays – Performance-Indexers

I/O AND NETWORK PROGRAMMING:

Tracing and events - threading and synchronization - .Net security - localization - Manipulating XML - Managing the file system - basic network programming.

ADO.NET: #:

Data Access: ADO.NET Overview - Using Database Connections – Commands - Fast Data Access: The Data Reader - Managing Data and Relationships: The DataSet Class – XML Schemas: Generating Code with XSD – Working with ADO.NET. Windows Forms: Creating a Windows Form Application - Control Class - Standard Controls and Components – Forms. Data Binding: The Data Grid View Control - Data Grid View Class Hierarchy - Data Binding - Visual Studio .NET and Data Access.

ASP.NET AND WEB SERVICES:

ASP.NET Pages: ASP.NET Introduction - ASP.NET Web Forms - ADO.NET and Data Binding.ASP.NET Development: User and Custom Controls - Master Pages - Site Navigation – Security –Themes- Web Parts. ASP.NET AJAX: What Is Ajax - What Is ASP.NET AJAX - Using ASP.NET AJAX.

TEXT BOOK

1. Christian Nagel, Bill Evjen, Jay Glynn, Morgan Skinner, Karli Watson, Professional C# 2008, Wiley Publishing, Inc., 2008. ISBN: 978-8-126-51627-8.

REFERENCE BOOKS

- 1. Andrew Troelsen, "C# and the .NET Platform", A! Press, 2005.
- 2. Herbert Schildt, "The Complete Reference: C#", Tata McGraw-Hill, 2004.
- **3.** Kevin Hoffman, "Visual C# 2005", Pearson Education, 2006.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. M. Nithya	Prof & Head	Computer science and engineering	nithya@vmkvec.edu.in
2.	Mrs. R. Shobana	Assistant Professor (GII)	Computer Science And Engineering	shobana@avit.ac.in
			Witt.M	

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

350)21P06	6			CI		COM	DITTIN	JC		Categor	y L	Т	Р	Credit	
					CI	2000	COM	rum	U		EC-PS	3	0	0	3	
PREA	MBLE									·			L T P Crown 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
To stud	ly and ı	underst	and the	e conce	pts in c	cloud c	comput	ing and	l apply	them p	oractically	•				
PRER	EQUIS	SITE N	NIL													
COUR	RSE OBJECTIVES															
1.	To uno	derstan	d cloud	l comp	uting c	oncept	s.									
2.	To stu	dy vari	ous clo	oud serv	vices.											
3.	To app	ply clou	id com	puting	in colla	aborati	on witl	h other	servic	es.						
4.	То Ар	ply clo	oud cor	nputing	g servio	ces.										
5.	To app	ply clou	id com	puting	online.											
COUR	SE OU	JTCON	MES													
On the	succes	sful co	mpletic	on of th	e cours	se, stuc	lents w	ill be a	ble to							
			_										Under	stand		
CO1: A	ble to U	Jndersta	and basi	ics in Cl	loud Co	omputin	ıg						Chuch	stand		
CO2: A	ble to a	apply clo	oud con	nputing	concep	ts in rea	al time						Apj	ply		
		11 2		1 0	1								A	<u>_1_</u> ,		
CO3: A	ble to d	levelop	cloud c	omputii	ng proje	ects							Apj	piy		
CO4 : A	ble to a	pply clo	oud serv	vices									Apj	ply		
													Δp	alv		
COS	5: Able	to colla	borate	cloud s	ervices	with ot	her app	lication	is				Арј	JIY		
MAPP	ING V	VITH I	PROG	RAMN	IE OU	JTCO	MES A	ND PI	ROGR	AMM	E SPECI	FIC OU	TCOM	IES		
COs	PO1	PO2	PO3	PO 4	PO5	PO6	P07	PO8	POQ	PO1	PO11	PO12 PSO1 PSO2 PS				
CUS	101	102	105	104	105	100	107	100	10)	0	1011					
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М	
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М	
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М	
CO4	S	М	М	М	-	-	-	-	-	-	-	- M M				
CO5	S	М	M	М	-	-	-	-	-	-	-	-	М	М	S	

S- Strong; M-Medium; L-Low

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS

INTRODUCTION

Cloud Computing – History of Cloud Computing – Cloud Architecture – Cloud Storage – Why Cloud Computing Matters – Advantages of Cloud Computing – Disadvantages of Cloud Computing – Companies in the Cloud Today – Cloud Services.

DEVELOPING CLOUD SERVICES

Web-Based Application – Pros and Cons of Cloud Service Development – Types of Cloud Service Development – Software as a Service – Platform as a Service – Web Services – On-Demand Computing – Discovering Cloud Services Development Services and Tools – Amazon Ec2 – Google App Engine – IBM Clouds.

CLOUD COMPUTING FOR EVERYONE

Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists – Collaborating Contact Lists – Cloud Computing for the Community – Collaborating on Group Projects and Events – Cloud Computing for the Corporation.

USING CLOUD SERVICES

Collaborating on Calendars, Schedules and Task Management – Exploring Online Scheduling Applications – Exploring Online Planning and Task Management – Collaborating on Event Management – Collaborating on Contact Management – Collaborating on Project Management – Collaborating on Word Processing - Collaborating on Databases – Storing and Sharing Files.

COLLABORATING ONLINE

Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services –Evaluating Web Conference Tools – Collaborating via Social Networks and Groupware –Collaborating via Blogs and Wikis.

TEXT BOOKS

1. Rajkumar Buyya, James Broberg, Andzej M.Goscinski, "Cloud Computing –Principles and Paradigms", John Wiley & Sons, 2010.

2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.

REFERENCES

1. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring. Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.	T.Geetha	Assistant professor	CSE	geetha_kcs@yahoo.com
			NU	

											atagory	т	Т	D	Crodit	
350)21P02			A	GILE I	METH	[ODO]	LOGII	ES		FC-PS	3	1	1	3	
PREA	MBLE										2010	3	U	U	3	
Softwa	re Deve	elopme	nt is ar	n umbre	ella ter	m for a	ın arraı	ngemer	nt of sta	rategies	s and pra	ctices in	light o	f the qu	alities	
and sta	ndards	commu	inicate	d in the	e Agile	Manif	esto. A	Arrange	ements	advanc	e throug	h coord	inated e	effort be	etween	
self-son	ting ou	t, cross	s-utilita	rian gr	oups u	sing th	e suita	ble pra	ctices f	for thei	r specific	c circum	stance.			
PRER NII	EQUIS	ITE														
	SE OB	JECT	IVES													
cock		JULCI														
1 '	To und	erstand	the ba	ckgrou	nd and	drivin	g force	es for ta	aking a	n Agile	e approa	ch to sof	tware d	evelopi	nent	
2	To obtain practical knowledge of agile development frameworks and be able to distinguish between agile and traditional project management methodologies.															
3 '	To Exa	mine v	arious	metrics	s for ad	lopting	agile s	softwar	e engii	neering						
4	Describ	e how	an unit	t tests i	s exect	ited fro	om beg	inning	to end							
5	Identify	the ap	proach	nes, too	ls and	scenari	ios to i	ntrodu	ce Agil	e to yo	ur organ	ization e	effective	ely		
6	To desi	gn auto	omated	build	tools, v	version	contro	and c	ontinu	ous inte	egration					
COUR	SE OU	TCON	AES													
On the	success	ful cor	npletio	on of th	e cours	se, stud	lents w	ill be a	ble to							
CO1:	Identify	the fu	ndame	ntals o	fagile	and sci	rum fra	imewo	rk			Underst	and			
CO2	Apply	lecion	princin	les and	refact	oring t	o achie		lity			Apply				
CO2.					Teract	oring t		.ve Agi	inty.			Аррту				
CO3:	Reduce	the ris	ks in T	est dru	ven app	proach	in agil	e proje	cts			Analyz	e			
CO4: technic	Implem Jues	ent a r	eal soft	ware p	roject	that im	pleme	nts agil	e exect	ution		Apply				
CO5:	Deploy	a firm	basis f	or ado	pting ag	gile me	thodol	ogy, re	egardle	ss of th	ie	Analyz	2			
indust	y/profe	ssional	sector							A N // N //				AEC		
MAPP	ING W		RUG				VIES A		RUGR		E SPEC			VIES	Т	
COs	POI	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO1 0	POII	PO12	PSO1	PSO2	PSO3	
CO1	S	М	L	-	М	-	-	-	-	-	-	M S M M				
CO2	S	Μ	L	-	Μ	_	-	_	-	_	_	Μ	S	М	Μ	
CO3	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М	
CO4	S	М	L	-	М	-	-	-	-	-	-	Μ	S	М	Μ	
CO5	S	M	L	-	М	-	-	-	-	-	- M S M M					
S- Stro	ng; M-I	Mediun	n; L-Lo	OW												

M. Hith

Dr. M. NITHYA, Prof & Head. 142 Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

SYLLABUS FUNDAMENTALS OF AGILE

The Genesis of Agile- Introduction and background- Agile Manifesto and Principles- Overview of Scrum-Extreme Programming- Feature Driven development- Lean Software Development- Agile project management- Design and development practices in Agile projects- Test Driven Development- Continuous Integration- Refactoring- Pair Programming- Simple Design- User Stories- Agile Testing- Agile Tools.

AGILE SCRUM FRAMEWORK

Introduction to Scrum- Project phases- Agile Estimation- Planning game- Product backlog- Sprint backlog-Iteration planning- User story definition- Characteristics and content of user stories- Acceptance tests and Verifying stories- Project velocity- Burn down chart- Sprint planning and retrospective- Daily scrum- Scrum roles – Product Owner- Scrum Master- Scrum Team- Scrum case study- Tools for Agile project management. **AGILE TESTING**

The Agile lifecycle and its impact on testing- Test-Driven Development (TDD)- xUnit framework and tools for TDD- Testing user stories - acceptance tests and scenarios- Planning and managing testing cycle-Exploratory testing- Risk based testing- Regression tests- Test Automation- Tools to support the Agile tester. **AGILE SOFTWARE DESIGN AND DEVELOPMENT**

Agile design practices- Role of design Principles including Single Responsibility Principle- Open Closed Principle- Liskov Substitution Principle- Interface Segregation Principles- Dependency Inversion Principle in Agile Design- Need and significance of Refactoring- Refactoring Techniques- Continuous Integration-Automated build tools- Version control.

INDUSTRY TRENDS

Market scenario and adoption of Agile- Agile ALM- Roles in an Agile project- Agile applicability- Agile in Distributed teams- Business benefits- Challenges in Agile- Risks and Mitigation- Agile projects on Cloud-Balancing Agility with Discipline- Agile rapid development technologies

TEXT BOOKS

- 1. Ken Schawber, Mike Beedle, "Agile Software Development with Scrum", Pearson, 21 Mar 2008.
- 2. Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices", Prentice Hall, 25 Oct 2002.
- Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile Teams", Addison Wesley, 30 Dec 2008
- 4. www.it-ebooks.info/tag/agile
- 5. http://martinfowler.com/agile.html

REFERENCES

- 1. Alistair Cockburn, "Agile Software Development: The Cooperative Game", Addison Wesley, 19 Oct 2006.
- 2. Mike Cohn Publisher, "User Stories Applied: For Agile Software", Addison Wesley, 1 Mar 2004

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

COURSE DESIGNERS

Dr. M. NITHYA, 143 Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021P23		5	MACHINE I FARNING						С	ategory	L	Т	P	Credit	
			MACHINE LEARNING					EC-PS	3	0	0	3			
PREA To pro types of	MBLI ovide an of mach	E 1 in-dej ine lea	oth kno rning w	wledge vith suit	e about able ju	machin stificat	ne lear ion.	ning co	oncepts	and ide	entify apj	plications	suitabl	e for d	fferent
PREREQUISITE: Nil															
COURSE OBJECTIVES															
1	To study the outline the key concepts of machine learning														
2	To understand the supervised learning and classification techniques														
3	To apply the concept of unsupervised learning and Clustering for applications														
4	To learn theoretical and practical aspects of dimensionality reduction														
5	To learn theoretical and practical aspects of reinforcement learning														
COUI	RSE O	UTCO	MES												
On the	On the successful completion of the course, students will be able to														
CO1: U	CO1:Understand the key concepts of machine learning Understand														
CO2:U	CO2:Understand and apply supervised learning and classification techniques Understand														
CO3: .	CO3: Apply the concept of unsupervised learning and Clustering for applications Apply														
CO4: l	CO4:Unerstand theoretical and practical aspects o dimensionality reduction Understand														
CO5: 1	CO5: Understand theoretical and practical aspects of reinforcement learning Understand														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	_	_	_	_	L	_	_	_	-	_	L	L	_	-
CO2	S	S	S	L	-	L	-	L	L	-	L	L	S	M	L
CO3	S	S	М	L	-	L	-	L	L	-	L	L	S	M	L
CO4	S	L	М	L	-	L	-	-	-	-	-	L	-	-	-
CO5	S	L	S	-	-	L	-	L	-	-	-	L	-	L	-
S- Strong; M-Medium; L-Low															

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs 137.M.K.V. Engg. College, Salem.
INTRODUCTION

Machine Learning - Examples of machine learning applications- Types of machine learning –Model selection and generalization – Guidelines for Machine Learning Experiments

SUPERVISED LEARNING

Classification - Decision Trees – Univariate Tree – Multivariate Tree - Pruning – Perceptron – Multilayer Perceptron - Back Propagation – Cross Validation and Resampling Methods

UNSUPERVISED LEARNING

Clustering- Mixture densities -K-means - EM Algorithm – Supervised Learning After Clustering- Hierarchical Clustering

DIMENSIONALITY REDUCTION

The Curse of Dimensionality –Subset Collection - Principal Component Analysis - Factor Analysis – Linear Discriminant Analysis, Accuracy, Precision, recall, F measure.

REINFORCEMENT LEARNING

Single State Case – Elements of Reinforcement Learning - Model Based Learning – Temporal Difference Learning – Generalization in Reinforcement Learning - Policy Search

TEXT BOOKS

1. EthemAlpaydin, Introduction to Machine Learning MIT Press, 2014.

REFERENCES

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013
- 2. Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction. MIT Press

COURSE DESIGNER												
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in								
2	Mrs.A.Kasthuri	Assitant Professor	CSE	kasthuri@vmkvec.edu.in								

HH.M

Dr. M. NITHYA, 138 Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

250	01010										Category	L	Т	Р	Credit
350	JZ IF 13	,				DEEP	LEAI	RNINC	J		EC-PS	3	0	0	3
PREA This co technic	MBLI ourse pr ques. T	E rovides his cou	s an inti rse also	roductio provid	on to th les the	e basic learning	s of ma g practi	achine i ice and	learning acquire	g, neura es knov	al networ vledge on	ks, and D deep lear	eep lear	ning ols.	
PRER	PREREQUISITE: NIL														
COUI	RSE O	BJEC	TIVES	5											
1 To study the basics of machine learning, neural networks and deep learning															
2	2 To study the present the mathematical, statistical and computational challenges of building deep neural networks														
3	To study the dimensionality reduction techniques														
4	To know deep learning techniques to support real-time applications														
5	To examine the case studies of deep learning techniques														
COUI	RSE O	UTCO	MES												
On the	e succes	ssful co	omplet	ion of t	the cou	rse, stu	dents	will be	able to)					
CO1: U	Jnderst	and ba	sics of	machi	ne lear	ning, n	eural n	etwork	and c	leep le	arning	Unders	tand		
CO2:I	mplem	ent var	ious de	eep lear	rning n	nodels						Apply			
CO3:F	Realign	high d	limensi	ional da	ata usir	ıg redu	ction to	echniqu	ues			Apply			
CO4:U	Underst ting tec	and an chnique	d applyes and	y scalin techno	ig up n logies	nachine	learni	ng tecł	nniques	and as	ssociated	Apply			
CO5: .	Analyz	e optin	nizatio	n and g	generali	zation	in deep	p learn	ing			Apply			
CO6:	Explore	e the de	eep lea	rning a	pplicat	ion						Create			
MAPI	PING V	WITH	PROC	GRAM	ME O	UTCO	MES .	AND I	PROG	RAMN	AE SPEC	CIFIC O	UTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO1	PSO2	PSO3
CO1	_	S	М	_	М	_	-	М	М	-	М	М	М	_	_
CO2	S	S	S	S	M	-	-	M	M	-	M	M	-	_	М
CO3	S	M	M	S	M	_	_	M	М	_	М	М	М	_	_
CO4	S	М	М	S	М	-	-	М	М	-	М	М	М	-	-
CO5	S	М	М	S	М	-	-	М	М	-	М	М	М	-	-
CO6	S	М	М	S	М	-	-	М	Μ	-	M	М	-	М	М
S- Stro	ong; M	-Mediu	ım; L-l	Low						tit	1.11				

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs 139.M.K. V. Engg. College, Salem.

Introduction to machine learning- Linear models (SVMs and Perceptions, logistic regression)- Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximate.

DEEP NETWORKS

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning.

DIMENSIONALITY REDUCTION

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization.

OPTIMIZATION AND GENERALIZATION

Optimization in deep learning– Non-convex optimization for deep networks- Stochastic Optimization- Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience.

CASE STUDY AND APPLICATIONS

Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint DetectionBioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions.

REFERENCE BOOKS

1. CosmaRohillaShalizi, Advanced Data Analysis from an Elementary Point of View, 2015.

- 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.
- 3. Ian Goodfellow, YoshuaBengio, Aaron Courville, Deep Learning, MIT Press, 2016.

4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

COURSE DES	COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Departmen t	Mail ID								
1	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in								
2	A.Kasthuri	Assitant Professor	CSE	kasthuri@vmkvec.edu.in								

H.H.

Dr. M. NITHYA, 140 Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

350	35021P12 DATA VIPTUALIZATION Cate								tegory	L	Т	Р	Credit		
	-		I	JAIA	VIKI	UALI	LATIO	IN			EC-PS	3	0	0	3
PREAD This co access how to	PREAMBLE This course focuses on the challenges in setting up a data center. Resource monitoring using hypervisors and access control to virtual machines will be covered in depth in this course. Setting up of a virtual data center and how to manage them with software interfaces will be discussed in detail														
PRERI	EQUIS	SITE													
COUR	SE OF	BJECT	IVES												
1	1 To learn the concepts of Web design patterns and page design														
2	To understand and learn the scripting languages with design of web applications														
3	To learn the maintenance and evaluation of web design														
4	To learn about Resource monitoring and virtual machine data Protection														
COUR	SE OU	JTCON	AES												
On the	succes	sful coi	mpletio	on of th	e cours	se, stuc	lents w	ill be a	ble to						
CO1:	Explair	n the co	oncept o	of data	center	and Ev	volutio	n of Da	ata Cen	itre		Underst	tand		
CO2:	Apply ement	enterpr interfac	ise-leve ces. En	el virtu vironm	alizatio ents co	on mac	hines t vity.	hrough	softwa	are		Apply			
CO3:	Illustra	ate the	virtual	ization	deploy	yment,	modifi	ication,	, manag	gement;		Apply			
CO4:	Analyz of har	e the ut dware a	tility in and sof	Windo Tware	ows Vi esourc	sta and es in re	l later, eal time	display e.	vs infor	mation	about	Analyz	e		
CO5:	Develo	p the re	esource	e monit	oring a	nd virt	ual ma	chine o	lata Pr	otection	skills.	Analyz	e		
MAPP	ING V	VITH F	PROG	RAMN	1E OU	TCON	MES A	ND PI	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	2 PSO
<u>CO1</u>	S	M	L	-	M	-	-	-	-	-	-	M	S	M	-
CO2	S C		L	-	M	-	-	-	-	-	-	<u>M</u>	S S	M	M
C03	5 5	M		-	IVI	-	-	-	-	-	-	M	S S	- -	M
C04	S	L	L		M	_					-	M	S	M	-
	~	-						<u> </u>				±'±			1

M. Hith

Dr. M. NITHYA, Prof & Head. 141 Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

SYLLABUS DATA CENTER CHALLENGES

How server, desktop, network Virtualization and cloud computing reduce data centre footprint, environmental impact and power requirements by driving server consolidation; Evolution of Data Centres: The evolution of computing infrastructures and architectures from standalone servers to rack optimized blade servers and unified computing systems (UCS).

ENTERPRISE-LEVEL VIRTUALIZATION

Provision, monitoring and management of a virtual datacenter and multiple enterprise-level virtual servers and virtual machines through software management interfaces; Networking and Storage in Enterprise Virtualized Environments - Connectivity to storage area and IP networks from within virtualized environments using industry standard protocols

VIRTUAL MACHINES & ACCESS CONTROL

Virtual machine deployment, modification, management; monitoring and migration methodologies.

RESOURCE MONITORING

Physical and virtual machine memory, CPU management and abstraction techniques using a hypervisor **VIRTUAL MACHINE DATA PROTECTION**

Backup and recovery of virtual machines using data recovery techniques; Scalability - Scalability features within Enterprise virtualized environments using advanced management applications that enable clustering, distributed network switches for clustering, network and storage expansion; High Availability : Virtualization high availability and redundancy techniques.

TEXT BOOKS

1. Mickey Iqbal, "IT Virtualization Best Practices: A Lean, Green Virtualized Data Center Approach", MC Press [ISBN: 978-1583473542] 2012.

2. Mike Laverick, "VMware vSphere 4 Implementation" Tata McGraw-Hill Osborne Media; 1 edition [ISBN: 978-0071664523], 2012.

3. Jason W. McCarty, Scott Lowe, Matthew K. Johnson, "VMware vSphere 4 Administration Instant **REFERENCES**

1. Brian Perry, Chris Huss, Jeantet Fields, "VCP VMware Certified Professional on vSphere 4 Study Guide" Sybex; edition [ISBN: 978-0470569610], 2013.

2. Jason Kappel, Anthony Velte, Toby Velte, "Microsoft Virtualization with Hyper-V: Manage Your Datacenter with Hyper-V, Virtual PC, Virtual Server, and Application Virtualization" McGraw-Hill Osborne [ISBN: 978-007161

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, 142 Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

												-			
350	021P10)		т						(Category	L	Т	Р	Credit
				I	JAIA	IVI I NI I	NG				EC-PS	3	0	0	3
PREA	MBLE												1 1		
Data w	arehou	sing an	d data	mining	g is one	e of the	e most	advanc	ed fiel	ds of c	omputer	science v	which i	nvolv	es use of
Mather	natics,	Statisti	ics, Inf	ormati	on Tec	hnolog	gy and	inform	nation	Science	es in disc	overing	new in	form	ation and
knowle	dge fro	om larg	e data	bases I	t is a r	new en	nerging	; interd	liscipli	nary ar	ea of rese	earch and	d devel	opme	ent which
has cre	ated int	erest a	mong s	scientis	ts of v	arious	discipli	ines.							
PRER	EQUIS	SITE													
Data	base M	anagen	nent Sy	ystem											
COUR	SE OB	BJECT	IVES												
1.	Disting develo	guish a ping a	data w data w	arehou arehou	ise froi se for l	n an op arge co	peration	nal dat	abase s	ystem,	and appr	eciate the	e needs	for	
2.	 Describe the problems and processes involved in the development of a data warehouse 														
3.	3. To explain the process of data mining and its importance.														
COUR	SE OU	JTCON	MES												
On the	SUCCES	sful con	mnletic	on of th	e cour	se stur	lents w	vill be a	ble to						
	succes		inpictic			se, stut						1			
CO1:.	Unders	tand th	e basic	s of da	ta war	ehousii	ng and	mining	5			Underst	and		
CO2: <i>A</i>	Apply the	he data	prepro	ocessin	g, lang	uage, a	rchited	ctures,	concep	ot descr	iption.	Apply			
CO3: 1	Underst	and as	sociatio	on rules	s and it	s algor	rithms.					Underst	and		
CO4: (Classify	and cl	usterin	g rules	and th	e respe	ective a	algorith	nms			Apply			
CO5: U	Jnderst	and the	latest	trends	about t	he data	a wareł	nousing	g and n	nining		Underst	and		
MAPP	ING W	ITH I	PROG	RAMN	AE OU	JTCO	MES A	ND P	ROGR	RAMM	E SPECI	FIC OU	TCON	AES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO	PS	O PSO3
										0				2	
CO1	S	L		М	-	-	-	-	-	-	-	-	М	М	М
CO2	S	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	S	L		L	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	L	-	-	-	-	-	-	-	-	М	М	S
S- Stro	ng; M-l	Mediur	n; L-L	OW											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

INTRODUCTION AND DATA WAREHOUSING

Introduction, Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Implementation, Further Development, Data Warehousing to Data Mining.

DATA PREPROCESSING, LANGUAGE, ARCHITECTURES, CONCEPT DESCRIPTION

Why Preprocessing, Cleaning, Integration, Transformation, Reduction, Discretization, Concept Hierarchy Generation, Data Mining Primitives, Query Language, Graphical User Interfaces, Architectures, Concept Description, Data Generalization, Characterizations, Class Comparisons, Descriptive Statistical Measures.

ASSOCIATION RULES

Association Rule Mining, Single-Dimensional Boolean Association Rules from Transactional Databases, Multi-Level Association Rules from Transaction Databases.

CLASSIFICATION AND CLUSTERING

Classification and Prediction, Issues, Decision Tree Induction, Bayesian Classification, Association Rule Based, Other Classification Methods, Prediction, Classifier Accuracy, Cluster Analysis, Types of data, Categorization of methods, Partitioning methods, Outlier Analysis.

RECENT TRENDS

Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Databases, Multimedia Databases, Time Series and Sequence Data, Text Databases, World Wide Web, Applications and Trends in Data Mining.

TEXT BOOK

1. J. Han, M. Kamber, "Data Mining: Concepts and Techniques", Harcourt India / Morgan Kauffman, 2001.

REFERENCES

- 1. Margaret H.Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education 2004.
- 2. Sam Anahory, Dennis Murry, "Data Warehousing in the real world", Pearson Education 2003.
- 3. David Hand, Heikki Manila, Padhraic Symth, "Principles of Data Mining", PHI 2004.
- 4. W.H.Inmon, "Building the Data Warehouse", 3rd Edition, Wiley, 2003.
- 5. Alex Bezon, Stephen J.Smith, "Data Warehousing, Data Mining & OLAP", MeGraw-Hill Edition, 2001.
- 6. Paulraj Ponniah, "Data Warehousing Fundamentals", Wiley-Interscience Publication, 2003.

00010				
S. No.	Name of the	Designation	Department	Mail ID
	Faculty	-	-	· .~
1	Mr. S. Muthuselvan	Assistant Professor	CSE NT	muthuselvan@avit.ac.in
2.	Dr. K. Sasikala	Assistant Professor	CSE	sasikalak@vmkvec.edu.in
			144 Prof S	k Head.

COURSE DESIGNERS

144 Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem. 35021P08

COMPUTER GRAPHICS AND MULTIMEDIA

Category	L	Т	Р	Credit
EC-PS	3	0	0	3

Preamble

CO5

S

М

S- Strong; M-Medium; L-Low

М

L

Computer Graphics is referred as language of engineers. An engineer needs to understand the physical geometry of any object through its orthographic or pictorial projections. The knowledge on Computer graphics is essential in proposing new product through drawings and interpreting data from existing drawings. This course deals with orthographic and pictorial projections, sectional views and development of surfaces.

Preree	quisite 1	NIL													
Cours	e Objec	ctive													
Т	o implei	nent th	e ortho	graphic	projec	tions of	f points	, straig	ht lines	, plane s	urfaces a	nd solids	5.		
Т	To construct the orthographic projections of sectioned solids and true shape of the sections.														
Т	To develop lateral surfaces of the uncut and cut solids.														
Т	To draw the pictorial projections (isometric and perspective) of simple solids.														
Te	To sketch by free hand the orthographic views from the given pictorial view.														
Course Outcomes: On the successful completion of the course, students will be able to															
CO1	Execute in the form of drawing of the orthographic projections of points, straight Apply														
0011	lines, plane surfaces and solids.														
CO2.	and tr	ue shap	be of the	e sectio	ns.	ng or tr	e ortho	graphic	2 projec	cuons of	sectione	u sonus	Appi	У	
CO3.	Devel	lop late	ral surf	aces of	the sol	id secti	on and	cut sec	tion of	solids.			Appl	у	
CO4.	Draw	the pic	torial p	rojectio	ons (iso	metric	and per	rspectiv	ve) of s	imple sol	ids.		Appl	у	
CO5.	Imple	ement th	ne free	hand sk	etch of	the ort	hograp	hic vie	ws fror	n the giv	en		Appl	у	
МАР	pictor PING	Talview WITH	'. I PRC	GRA	MME	OUT	COM	ES AI	ND PF	ROGRA	MME	SPECI	FIC OI	UTCOM	ES
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Giu		001	0011						110 0		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S														
001		L		М	-	-	-	-	-	-	-	-	М	М	М
CO2	S	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	S L L - - - - - M M M														
CO4	s	М	М	М	-	-	-	-	-	-	-	-	М	М	s

Dr. M. NITHYA, - Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

S

М

М

Syllabus:

Unit 1: INTRODUCTION TO COMPUTER GRAPHICS : Brief Survey of Computer Graphics – Graphics Systems: Video Display Devices – Types – Raster-Scan Systems and Random-Scan Systems – Input Devices – Hard-Copy Devices – Graphics Software.

Unit-2: OUTPUT PRIMITIVES AND THEIR ATTRIBUTES Line-Drawing (DDA and Bresenham's) Algorithms – Circle-Generating (Midpoint) Algorithm – Ellipse-Generating (Midpoint) Algorithms- Area-Filling (Boundary-Fill and Flood-Fill) Algorithms - Line Attributes - Color and Grayscale Levels – Character Attributes – Inquiry Functions.

Unit 3: TWO-DIMENSIONAL TRANSFORMATIONS AND VIEWING: Basic Transformations - Matrix Representations and Homogeneous Coordinates – Composite Transformations - Other Transformations – Window-to- Viewport Coordinate Transformation – Clipping Algorithms: Cohen-Sutherland Line Clipping and Sutherland- Hodgeman Polygon Clipping – Basic Modeling Concepts - Interactive Input Methods: Logical Classification of Input Devices – Interactive Picture-Construction Techniques.

Unit-4: THREE-DIMENSIONAL CONCEPTS: Three-Dimensional Display Methods: Parallel and Perspective Projections – Depth Cueing - Visible Line and Surface Identification – Polygon Surfaces: Polygon Tables, Plane Equations and Polygon Meshes - Three-Dimensional Transformations: Basic, Other and Composite Transformations.

Unit-5 : **THREE-DIMENSIONAL VIEWING** : Viewing Pipeline and Coordinates – Transformation from World to Viewing Coordinates – Projection Transformations - Matrices - View Volumes - Hidden Surface and Hidden Line Elimination Methods: Back-Face Detection , Depth-Buffer and A-Buffer Methods – Wireframe Methods- Light Sources – RGB,CMY and HLS Color Models – Computer Animation: Design of its Sequences and Language

Text Books

- 1. Donald Hearn and Pauline Baker M, "Computer Graphics", Prentice Hall, New Delhi, 2007 (UNIT V).
- 2. Elements of Multimedia By <u>Sreeparna Banerjee</u>Published May 8, 2019 by Chapman and Hall/CRC 203 Pages 49 B/W Illustrations

Reference Books

1. Introduction to Computer Graphics and Multimedia by Anirban Mukhopadhyay

S No	Name of the Faculty	Designation	Dono
COUR	SE DESIGNERS		
2.	Introduction to Computer C	Faphics	

S. No.	Name of the Faculty	Designation	Department	Mail ID									
1	S.Leelavathy	Assitant Professor	CSE/ AVIT	leelavathy@avit.ac.in									
2	A.Kasthuri	Assitant Professor	CSE	kasthuri@vmkvec.edu.in									

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K. V. Engg. College, Salem.

35021	021P16 E-LEARNING TECHNIQUES								Ca	tegory	L	Т	P	Credit			
							C			EC	C-PS	3	0	0	3		
PREAN It is used	IBLE d to redu	ucethe	commu	nicatio	n gap be	etween	student	s and tu	itors, w	ithout tim	e and loc	cation co	nstrain	ts.			
PRERE	QUISI	TE–NI	L														
COURS	SEOBJ	ECTIV	'ES														
1.	To er	nable t	he stud	dents t	o unde	rstand	the co	ncept	of e-le	arning							
2.	To make the students to understand the technology mediated communication																
3.	To make the students to understand the role of information technology in virtual classroom and university.																
COURS	SEOUT	COMI	ES														
On the s	successf	ul com	pletion	of the c	course, s	students	s will b	e able t	0								
Underst	Understand the phases of activities in models of E-learning Understand																
Identif strategi	fy approies	opriate	e E-Le	arning	instru	ctional	l metho	ods an	d deliv	ery	А	nalysis					
Choose	e appro	priate	E-lear	ning A	uthori	ng too	ls				U	Inderstar	nd & Aj	oply			
Design	a simp	ole we	b page	with a	nimat	ed web	o advei	rtiseme	ent		D	esign					
Evalua	ate the	future	e of e-l	earnin	g techi	nology	7				E	valuate					
MAPPI	NGWI	THPR	OGRA	MME	OUTCO	OMESA	ANDPR	ROGRA	AMME	SPECIF	COUTC	COMES					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	2 PSO3		
CO1	S	S	М	М	L	S	S	М	S	L	S	-	-	-	-		
CO2	М	S	М	М	М	S	S	М	S	М	М	-	-	-	-		
CO3	S	S	S	S	М	S	S	S	S	М	S	-	-	-	-		
CO4	S	S	S	М	М	S	S	S	S	L	S	S					
CO5	S	S	М	М	L	S	М	М	S	L	М	M					
S-Strong	g;M-Me	dium;I	L-Low					1			<u>ı </u>		1	1	L		

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

CONCEPT OF E-LEARNING

Nature, Scope, History – Evolution of E-Learning –Components of ELearning – Virtual classroom: Teleconferencing, Audio and Video conferencing.

STRATEGIES OF E-LEARNING

Process of E-Learning: Knowledge Acquisition– Sharing of Knowledge – Utilization of Knowledge – E-Learning Instructional Grounds: Behaviorism, Cognitivism and Constructivism

MODELS OF E-LEARNING

Role of Web-Based Instruction in Learning – Models of WBI: Instructional Design Model (ISD) & Hyper Media Design Model (HMD) – Computer Languages for Designing WBI

MULTI/HYPER MEDIA FOR E-LEARNING CONCEPT

Characteristics and Applications – Teaching Techniques through Multi/Hyper Media – Multimedia & Learning – Multimedia for Co-operative and Collaborative Learning Strategies – Advantages &

Disadvantages of Multi/Hyper Media.

FUTURE OF E-LEARNING TECHNOLOGY

Challenges of Distance Education – Electronic Media in Distance Education – Open Educational Resources Open Learning – Internet in Distance Education – Virtual University System.

TEXTBOOKS

1. Integrating Technology into Teaching and Learning: Concepts and Applications, Michael D. Wiliams, Prentice

Hall,2000.

REFERENCES

1. The Integrated Technology Classroom, Joan Riedl, Allyn and Bacon, 1995.

2. E-Learning Concepts and Practice, Bryn Holmes and John Gardiner, Pine Forge Press, 2006.

Course	CourseDesigners:													
S.No.	NameoftheFaculty	Designation	Department	MailID										
1.	V.Subapriya	AssistantProfessor	CSE/AVIT	subapriyacse@avit.ac.in										
2.	A.Kasthuri	AssistantProfessor	CSE/VMKVEC	kasthuri@vmkvec.edu.in										

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

350)21P26			N	ETWO	ORK D	ESIG	N ANE)	Ca	ategory	L	Т	Р	Credit
000	211 20	MANAGEMENT EC-PS 3 0 0													
PREAN Ability and Po	MBLE y to accollicies f	cess, co for Net	ompile work N	and use Aanage	e MIBs ment.	s, to in	pleme	nt a Ne	etwork	Manage	ement S	ystem, a	nd to f	ormul	ate SLAs
PRERI NIL	EQUIS	ITE													
COUR	SE OB	JECT	IVES												
1	Appr	eciate	method	ls of an	alysis a	and pro	blem-	solving	techni	iques for	r netwo	rk manaş	gement		
2	Understand SNMP message formats														
3	Integrate SNMP, SMI, and Web-based management														
4	Understand the importance of SLAs and Policies in Network Management														
5	To understand the concept of MPLS														
COUR	SE OU	TCON	MES												
On the	success	sful co	mpletic	on of th	e cours	se, stud	lents w	vill be a	ble to						
CO1: Inetwor	Realize k mana	the mo	ethods nt	of anal	ysis an	d prob	lem-so	lving t	echniq	ues for		Apply			
CO2: 1	Describ	e the t	ools an	d appli	cations	s used t	for net	work n	nanage	ment		Apply			
CO3: 7 system commu	The abi s used inicatio	lity to in plan on netw	make a ning, c vorks a	a critica lesign, s well a	l evalu implen as the s	ation on nentation ervices	of the to on and s they s	heories securit support	, techn ty of m	iques ar odern	nd	Analyze	e		
CO4: (Configu	ire Pro	otocol,	method	ls and I	Policies	s to de	ploy th	e Netw	vork		Analyze			
Manag	ement . Examin	Archite	ecture ader iso		sociate	d with	netwo	rk man	ageme	nt includ	ling	Analyze			
Models	S				sociate	a with	net wo	rix mun	ugeme		****5	r mary 20			
Provisi	oning l	[ssues,	Mecha	nisms	and Ma	anagen	nent In	terface	s DOCD						
	ING W		RUG.		IE OU		VIES A				DO11	IFIC O		MES	
$\frac{COs}{CO1}$	POI c	PO2	PO3 M	PO4 M	P05	PU0	P0/	PUð	PO9	POIU	POII	M	rsoi s	PSU M	2 PS03 M
CO1 CO2	M	S	S	M	L	-	-	-	-	_	-	M	S	M	-
CO3	S	M	M	M	M	-	-	-	-	-	-	M	Š	M	М
CO4	М	Μ	М	М	L	-	-	-	-	-	-	М	М	-	
CO5	М	S	М	S	М	-	-	-	-	-	-	М	М	S	М
S- Stroi	ng; M-l	Mediur	n; L-L	OW											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

SYLLABUS OVERVIEW

Requirements for the Management of Networked Systems, Management Scenarios, Management Functions, Organizational Aspects of Management, Time Aspects of Management, Network Management Standards and Models.

IP Network Management

Introduction, Configuration Methods, Management Information Base, Simple Network Management Protocol, Extensible Markup Language, Common Object Request Broker Architecture, Configuration Protocols, Statistics collection, Policy Control, IP-Based Service Implementation, OSS, Provisioning Issues, Network Management Issues, OSS Architecture

SNMP & RMON

Organization and Information Models, Communication and Functional Models, Features of SNMPv1, SPMPv2 and SNMPv3, RMON SMI and MIB, Features of RMON1 and RMON2.

Network Management Architecture

Introduction, Defining Network Management, Network Management Mechanisms, Architectural Considerations.

MPLS Network Management

Introduction to MPLS, MPLS Applications, Key Aspects of MPLS Network Management, MIB Modules for MPLS, Overview of MPLS Management Interfaces, SNMP support for MPLS.

TEXT BOOKS

1. Farrel et al., "Network Management - know it all", Morgan Kauffman Publishers, Elsevier Press.

2. Subramanian Mani, "Network Management – Principles and Practice", Pearson Education India.

3. Burke Richard, "Network Management – Concepts and Practice", Pearson Education India. **REFERENCES**

1. An Engineering Approach to Computer Networks-S.Keshav,2ndEdition,Pearson Education.

2. Understanding communications and Networks, 3rd Edition, W.A.Shay, Cengage Learning

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	V.Subapriya	Assistant Professor	CSE	subapriyacse@avit.ac.in
2	A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, 150 Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021P34		Category	L	Т	Р	Credit
	SUF I WAKE IESTING	EC-PS	3	0	0	3

PREAMBLE

The rapid development of automated aids to development and testing increases the need of change from manual testing to automated testing. Effective software testing maintains software quality. Software quality assurance starts from the beginning of a project, right from the analysis phase and thus understanding the role of software testing is very much mandatory. The primary outcome of the course is to provide exposure on research trends in Software Test Automation and Quality Assurance by sharing the research expertise with peers and gain research competence from Industry and Academicians.

PREREQUISITE NIL

COURSE OBJECTIVES

1	The students will be able to differentiate between quality control, quality management and quality assurance
0	The students will be able to discuss the different components of SOA system

2 The students will be able to discuss the different components of SQA system

3 The students will be able to discuss different software quality factors models

4 The students will be able to understand the rational for the SE code of ethics and discuss them

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Various test processes and continuous quality improvementUnderstandCO2: Methods of test generation from requirementsApplyCO3: Test adequacy assessment using: control flow, data flow, and programA

mutations

CO4: Combinatorial test generation

CO5: Application of software testing techniques in commercial environments Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12		
										0				
CO1	S				L				L		Μ	L		
CO2		S					L							
CO3			S		L			L			М			
CO4		S		L						М				
CO5					S						М	S		
S- Stro	ng; M-	Mediu	m; L-L	.OW										

JiH.M

Apply

Analyze

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

PRINCIPLES OF TESTING

Need for Testing—Psychology of testing—Testing economics—white box testing, Black box testing, Grey box Testing—Retesting regression Testing—Verification and Validation Testing Strategies—Levels of Testing—Unit, Integration ,System Testing, Acceptance Testing.

TEST CASE DESIGN

Test case Design Strategies – Using Black Bod Approach to Test Case Design – Random Testing –

Requirements based testing – Boundary Value Analysis – Equivalence Class Partitioning – State-based testing – Cause-effect graphing – Compatibility testing – user documentation testing – domain testing – Using White Box Approach to Test design – Test Adequacy Criteria – static testing vs. structural testing – code functional testing – Coverage and Control Flow Graphs – Covering Code Logic – Paths – code complexity testing – Evaluating Test Adequacy Criteria

LEVELS OF TESTING

The need for Levers of Testing – Unit Test – Unit Test Planning – Designing the Unit Tests – The Test Harness – Running the Unit tests and Recording results – Integration tests – Designing Integration Tests – Integration Test Planning – Scenario testing – Defect bash elimination System Testing – Acceptance testing – Performance testing – Regression Testing – Internationalization testing – Ad-hoc testing – Alpha, Beta Tests – Testing OO systems – Usability and Accessibility testing – Configuration testing – Compatibility testing – Testing the documentation – Website testing.

TEST MANAGEMENT

People and organizational issues in testing – Organization structures for testing teams – testing services – Test Planning – Test Plan Components – Test Plan Attachments – Locating Test Items – test management – test process – Reporting Test Results – The role of three groups in Test Planning and Policy Development – Introducing the test specialist – Skills needed by a test specialist – Building a Testing Group.

AUTOMATED TESTING AND TEST TOOLS & BUG REPORTING

Automated Testing and Test Tools: -benefits-Test Tools-Software Test Automation-Bug Bashes and Beta Testing-Writing and Tracking Test Cases: Goals-Test Case Planning Overview-Bug's Life cycle-Bug-Tracking System-Software Quality Assurance.

9 - hours

TEXT BOOKS

1. Srinivasan Desikan and Gopalaswamy Ramesh, "Software Testing – Principles and Practices", Pearson education, 2006.

2. Aditya P.Mathur, "Foundations of Software Testing", Pearson Education, 2008.

3. William Perry, "Effective Methods for Software Testing", Second Edition, John Willey & Sons, 2000. **REFERENCES**

1. Boris Beizer, "Software Testing Techniques", Second Edition, Dreamtech, 2003

2. Elfriede Dustin, "Effective Software Testing", First Edition, Pearson Education, 2003.

3. RenuRajani, Pradeep Oak, "Software Testing – Effective Methods, Tools and Techniques", Tata McGraw Hill, 2004..

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Professor	CSE	jaichandran@avit.ac.in
2	V.Amirthalingam	Asso .Professor	CSE	Amirthalingam@vmkvec.edu.in

Dr. M. NITHYA,

152 Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021P22 IT INFRASTRUCTURE MANACEMENT Category L T P Cred											
EC-PS 3 0 0 3											
PREAMBLE The proposed course exposes the students to understand the features of different technologies involved in infrastructure and management.											
PREREQUISITE NIL											
COURSE OBJECTIVES											
To understand the basics of IT infrastructure											
To understand the current computing techniques in IT fields											
To explore the business models											
To understand the different security management and storage management in IT infrastructure											
5 To understand the service delivery concept in IT field											
COURSE OUTCOMES											
On the successful completion of the course, students will be able to											
on the successful completion of the course, students will be able to											
CO1: Understand the basics of IT infrastructure Understand											
CO2: Understand the current computing techniques in IT fields Understand											
CO3: Explore the business models Apply											
CO4: Apply the different security management and storage management in IT Apply											
CO5: Understand the service delivery concept in IT field Analyze											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES											
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS02											
CO1 S M M S M M S S											
CO2 S - S - M S M M M -											
CO3 S M S - M S M M S S											
CO4 S L S M M M L S M -											
COS S S M M - - - - M											

M. Hith

Dr. M. NITHYA, Prof & Head. 153 Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

IT system Management

Common tasks in IT system management, approaches for organization Management, Models in IT system design, IT management systems context diagram, patterns for IT system Management.

IT Infrastructure Management

Factors to consider in designing IT organizations and IT infrastructure, Determining customer's Requirements, Identifying System Components to manage, Exist Processes, Data, applications, Tools and their integration, Patterns for IT systems management, Introduction to the design process for information systems, Models, Information Technology Infrastructure Library (ITIL).

Establishing business value of information system

Information system costs and benefits, Capital budgeting for information system, Real Options pricing models, Limitation of financial models.

Service Delivery and Service Support Management

Service-level management, financial management and advantages of financial management -Service support process, Configuration Management-Incident management.

Storage Management and Security Management

Types of Storage management, Benefits of storage management, backups, Archive, Recovery, Disaster recovery-Introduction Security, Identity management, Single sign-on, Access Management.

TEXT BOOKS

1. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.

2. J. Parkin and D. Sharma, Infrastructure planning, Thomas Telford, London, 1999

REFERENCES

1. P. Chandra, Projects: Planning, analysis, selection, financing, implementation, and review, Tata McGraw-Hill, New Delhi, 2009.

2. J. D. Finnerty, Project financing - Asset-based financial engineering, John Wiley & Sons, New York, 1996.

3. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	V.Subapriya	Assistant Professor	CSE	subapriyacse@avit.ac.in
2	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmvkec.edu.in

N. Hit

Dr. M. NITHYA, 154 Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

3502	1P04			BLO	CK CI	HAIN	TECI	HNOL	OGY		Categ	gory	L	Т	Р	C	redit
	EC-PS 3 0 0 3 PREAMBLE														3		
PREA Block prospe interm block	MBLE chain erous nediarie chains	has th world esThisc and si	ne pot d wh coursew mart co	ential ere villgiveatontract	to cha people awaren	ange a can less of	lmost cor the ne	every nnect ew cha	indus with llenges	stry. It each s that e	can o othe exist in	reate r w mone	e a vitho etizir	more ut th ng bus	effi ie ines	cient need ses a	and for round
PRER	EQUIS	ITE-N	IL														
COUR	RSEOBJ	IECTI	VES														
1. It provides the function of Blockchains as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable																	
2.	It cov and d	vers the	e techi n mak	nologic	cal und stems.	lerpinn	ings o	f block	cchain	operat	ions as	distr	ibute	d data	stru	cture	s
3.	It pro	vides	a critic	cal eva	luatior	n of ex	isting	"smart	contra	ct" ca	pabiliti	es an	d pla	tforms	5.		
COUR	RSEOU'	ГСОМ	ES														
Onthes	successf	ulcomp	letiono	fthecou	rse,stuc	lentswi	llbeable	eto									
Under	stand t	he stru	icture	of a bl	ockcha	ain						Under	rstand	ļ			
Under implic	stand v	vhat c and w	onstitu hat it o	ites a " can and	'smart' d canno	' contr ot do, :	act, wl now ai	hat are nd in tl	its leg ne near	al future	,	Under	stand	l & Apj	oly		
Evalu potent	ate the tial and	setting its lir	g wher nitatio	e a blo ns	ockcha	in base	ed stru	cture r	nay be	applie	d, its	Evalı	iate				
Analy assess	ze the its fun	incent ctions	ive str , bene	ucture fits and	in a bl 1 vulne	ock ch erabilit	ain ba ies;	sed sy	stem ai	nd crit	ically	Anal	yze				
Analy autom	ze to w	hat ex	ttent si nance.	mart ai transpa	nd self- arency	-execu and th	ting co	ontract	s can b Thing	enefit s (IOT	').	Anal	yze				
MAPF	PINGW	ITHPF	ROGRA	AMME	OUTC	OMES	ANDP	ROGR	AMM	ESPEC	IFICOU	JTCO	OMES	5			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	P	012	PSO	PS	502	PSO 3
C01	М	М	М	М	-	-	-	-	-	-	_		-	М]	М	М
CO2	М	М	М	М	-	_	-	-	-	_	-		-	М	1	м	М
CO3	М	М	S	М	-	-	-	-	-	-	-		-	М	1	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-		-	М]	М	S
CO5	S	М	М	М	-	-	-	-	-	-	-		-	М]	М	S
S-Stroi	ng;M-M	edium;	L-Low			-			·			·		-			

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

An Overview of Bit coin -Alternative coins and networks-Bit coin versus Cryptocurrencies versus Block chain-Distributed Ledger Technology (DLT)- HyperLedger-Ethereum.

TRUST AND VUNERABILITY

Short history of the scaling out of human trust, high and Low trust societies, Types of Trust model: Peer-to-Peer, Leviathan, and Intermediary, Cryptocurrency and Markets.

BLOCKCHAIN AND ITS TYPES

How Blockchain (and Bitcoin) Work, Peer to Peer network, Bitcoin and block sizes, Mining and Cryptocurrencies, Types of Blockchain and Enterprise, Public and Private Blockchains.

CONSENSUS

Consensus Building, Problems with Blockchain, Bitcoin and Ethereum

BLOCKCHAIN APPLICATIONS

Use Cases: Open Bazaar and Safe market as decentralized information and reputation (super) marketplaces, reputation brokerages and smart dark net marketplaces (Daemon), Additional functions of decentralized markets

beyond mere products.

TEXTBOOKS

1.Block chain: Blueprint for a New Economy 1st Editionby Melanie Swan

REFERENCES

1. "MasteringBitcoin:Unlockingdigitalcryptocurrencies",byAndreasM.AntonopoulosJamesDoveyandAshFurrow, "BeginningObjectiveC", Apress, 2012.Andreas

2. "Ethereum: Blockchains, Digital Assets, Smart Contracts, Decentralized Autonomous Organizations", by Henning Diedrich

Course	eDesigners:			
S.No.	NameoftheFaculty	Designation	Department	MailID
1.	V.Subapriya	Assistant Professor	CSE/AVIT	subapriyacse@avit.ac.in
2.	Dr.M.Nithya	Professor	CSE/VMKVEC	nithya@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

35021	P19		GO	PRO	GRAN	IMIN	G		Cate	egory	L	Т	Р	C	redit
			00	110					EC	C-PS	3	0	0	3	
PREAM	MBLE:														
GO Programming Language for statistical data manipulation and analysis. It was inspired by and is most													s most		
compatible with the statistical language.															
PRERI	EQUIS	ITE:													
NIL															
COURSE OBJECTIVES															
1	To lea	rn GO	Progra	ammin	g Lang	uage									
2	To Stu	ıdy Ob	ject O	riented	Progra	amming	g								
3	To Stu	idy Fu	nctiona	al Prog	rammi	ng									
COUR	SE OU'	TCON	1ES	6.4			1 /	.11.1	11 /						
On the	success	ful cor	npletio	n of th	e cours	se, stuc	ients w	fill be a	able to						
COI: 1	o Unde	erstand	the ba	sics in	GO pr	ogram	ming la	anguag	e in tei	rms of	τ	Jnders	stand &	c Apply	
CO2: T	cis, con	troi sta	the up	ts, strii	$\frac{19}{2}$ Prog	rommi	ng fun	damon	tala		T	Indore	tand 8	Apply	
$\frac{\text{CO2. I}}{\text{CO3. I}}$	earn to	annly	$\frac{110}{GO}$ pr	ogram	ming f	or Com	munic	ating S	lais. Seguent	tial Proc		Inder	stand &	z Apply	
CO3.1	$\frac{1}{1}$	appry	ate and	d annly	the G	$\frac{0}{0}$ nrog	rammi	ng froi	m a sta	tistical		Jucia		Apply	
perspec	tive	ippice	are and	a appiy		o prog	1 annin	115 1101	in a sta	usucai	τ	Inders	stand &	c Apply	
CO5: T	o learn	GO pi	ogram	ming	Variabl	es					U	Jnders	stand &	Apply	
MAPP	ING W	ITH P	ROG	RAMN	AE OU	TCON	MES A	ND P	ROGR	AMME	E SPEC	IFIC	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO	$\begin{array}{c c} 1 & PSO \\ 2 & 2 \end{array}$	PSO3
CO1	S	S	М	М	L	S	S	М	S	L	S	S	-	-	-
CO2	М	S	Μ	М	М	S	S	Μ	S	М	М	Μ	[-	-	-
CO3	S	S	S	S	М	S	S	S	S	М	S	S	-	-	-
CO4	S	S	S	Μ	М	S	S	S	S	L	S	S	-	-	-
CO5	S	S	Μ	Μ	L	S	Μ	Μ	S	L	Μ	S	-	-	-
S- Stror	ng; M-N	/lediun	n; L-Lo	OW											

Introducing to Go Programming – Command-Line Arguments – Finding Duplicate Lines – Animated GIFs – Fetching a URL – Fetching URLs Concurrently – A Web Server – Loose Ends – Names – Declarations – Variables – Integers – Floating-Point Numbers - Complex Numbers – Booleans – Strings.

FUNCTIONS

Function Declarations - Arrays - Slices - Maps - Structs - JSON - Text and HTML Templates - Recursion - Multiple Return Values - Function Values - Anonymous Functions - Variadic Functions - Deferred Function Calls - Methods and Declarations - Encapsultion

INTERFACES, GOROUTINES & CHANNELS

Interfaces Types, Contracts, Satification – Interface Values – Assertions Types – Discriminating Errors with Type Assertions – Querying Behaviours with Interface Type Assertions – Types of Switches – Goroutines – Goroutines Channel – Looping in Parallel - Multiplexing.

CONCURRENCY WITH SHARED VARIABLES, PACKAGES, THE GO TOOL

Race Conditions – Mutual Exclusion – Read/Write Mutexes, Memory Synchronization – Lazy Initialization – The Race Detector – Grountines and Threads – Import Paths – The Package Declaration – Blank Reports – Packages and Naming – The Go Tools.

REFLECTION, LOW-LEVEL PROGRAMMING

Introduction – A recursive value printer – Setting Variables – Accessing Struct Field Tags – Displaying the Methods of a Type – A Word of Caution.

TEXT BOOKS:

- 1. The Go Programming Language, Alan A.A. Donovan, Brian W. Kernighan , Addison Welsey Professional Computing Series, 2015.
- 2. The Go Programming Language, David Chisnall, 2012.

REFERENCES:

- 1. Cocoa Programming Developer's, Pearson Education, 2009.
- 2. Introducing GO, Caleb Doxey, O'Reilly Media, 2016

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Email Id
1	Dr.R.Jaichandran	Professor	CSE/AVIT	rjaichandran@avit.ac.in
2	Dr.R.Bharanidharan	Assitant Professor	CSE/VMKVEC	bharanidharan@vmkvec.edu.in

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

35021	P28		R	PROG	RAM	MING	r		Catego	ory	L	Т	Р		Credit	
									EC-PS		3	0	0		3	
PREAM	MBLE:							·								
R is a s	cripting	langu	age for	r statis	tical da	ita mar	nipulati	ion and	l analy	sis. It w	as inspi	red by	and is	mo	st comp	atible
with the	e statisti	ical lar	nguage	•												
PRERI NIL	EQUIS	ITE:														
COUR	SE OB	JECT	IVES													
1	To lea	rn R P	rogran	nming												
2	To Stu	ıdy Ob	ject O	riented	Progra	ammin	g									
3	To Stu	To Study Functional Programming														
COUR	SE OU	TCON	AES													
On the	success	ful cor	npletio	on of th	e cours	se, stuc	dents w	ill be a	able to							
CO1: 7 control	To Unde stateme	erstand ents, st	the ba ring fu	sics in nctions	R prog	gramm	ing in t	terms o	of const	tructs,	1	Unders	stand &	& Aj	pply	
CO2: 1	To Unde	rstand	the us	e of R	for Big	g Data	analyti	cs			1	Unders	stand &	& Aj	pply	
CO3: I	learn to	apply	R prog	gramm	ing for	Text p	process	ing			1	Unders	stand &	& Aj	pply	
CO4: A	Able to a	appreci	iate and	d apply	the R	progra	ımminş	g from	a statis	tical	1	Unders	stand &	& Aj	pply	
$CO5 \cdot T$	o learn	Rig D	ata									Inder	stand &	β - Δ1	nnlv	
		TTH P		RAMN	IF OI	TCO	MES A		ROCR	AMME	SPEC				IFS	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	P011)1	PSO2	PSO3
C01	S	5	M	M	100	S	S	M	S	1010	S	-	-		-	-
CO2	M	S	M	M	M	S	S	M	S	M	M	-	-		-	-
CO3	S	S	S	S	М	S	S	S	S	M	S	-	-		-	-
CO4	S	S	S	М	М	S	S	S	S	L	S	-	-		-	-
CO5	S	S	М	М	L	S	М	М	S	L	М	-	-		-	-
S- Stroi	ng; M-N	/lediun	n; L-Lo	ow									1			

Introducing to R – R Data Structures – Help functions in R – Vectors – Scalars – Declarations – recycling – Common Vector operations – Using all and any – Vectorized operations – NA and NULL values – Filtering – Vectorised if-then else – Vector Equality – Vector Element names

MATRICES, ARRAYS AND LISTS

Creating matrices – Matrix operations – Applying Functions to Matrix Rows and Columns – Adding and deleting rows and columns – Vector/Matrix Distinction – Avoiding Dimension Reduction – Higher Dimensional arrays – lists – Creating lists – General list operations – Accessing list components and values – applying functions to lists – recursive lists

DATA FRAMES

Creating Data Frames – Matrix-like operations in frames – Merging Data Frames – Applying functions to Data frames – Factors and Tables – factors and levels – Common functions used with factors – Working with tables - Other factors and table related functions - Control statements – Arithmetic and Boolean operators and values – Default values for arguments - Returning Boolean values – functions are objects – Environment and Scope issues – Writing Upstairs - Recursion – Replacement functions – Tools for composing function code – Math and Simulations in R

OOP

S3 Classes – S4 Classes – Managing your objects – Input/Output – accessing keyboard and monitor – reading and writing files – accessing the internet – String Manipulation – Graphics – Creating Graphs – Customizing Graphs – Saving graphs to files – Creating three-dimensional plots

INTERFACING

Interfacing R to other languages – Parallel R – Basic Statistics – Linear Model – Generalized Linear models – Non-linear models – Time Series and Auto-correlation – Clustering

TEXT BOOKS:

- **1.** The Art of R Programming: A Tour of Statistical Software Design, Norman Matloff, No Starch Press, 2011
- 2. R for Everyone: Advanced Analytics and Graphics, Jared P. Lander, Addison-Wesley Data & Analytics Series, 2013.

REFERENCES:

- 1. Beginning R The Statistical Programming Language, Mark Gardener, Wiley, 2013.
- 2. Introductory R: A Beginner's Guide to Data Visualisation, Statistical Analysis and Programming in R, Robert Knell, Amazon Digital South Asia Services Inc, 2013

1.

COURSE DESIGNERS

COURD	E DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Email Id
1	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	A.Kasthuri	Assitant Professor	CSE	kasthuri@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

350)21P30		I	ысні	INTER	NET	A PPL]	ICATI	ON		Category	L	Т	P C	Credit
	211 00	, 	-								EC-PS	3	0	0	3
PREAN Uses of the func	MBLE f web sidament	ites and als of (d porta CGI, S	ls have CRIPT	becon ING L	ne com ANGU	mon fo AGES	or knov , Web	wledge Applic	sharing ations.	g and bus	iness. T	he cour	se foc	uses on
PRERI	EQUIS	ITE: N	NIL												
COUR	SE OB	JECT	IVES												
1.	To lea	rn CGI	[Conce	epts &	CGI Pi	ogram	ming								
2.	To Stu	idy DH	ITML,	XML,	AJAX										
3.	To Stu	ıdy On	-Line v	veb app	plicatio	on & Ii	nternet	Conce	pts						
COUR	SE OU	TCON	MES												
On the	success	sful coi	npletio	on of th	e cours	se, stud	lents w	ill be a	ble to						
CO1: U	underst	and the	basic c	oncept	of HTM	IL and	Scriptin	g Lang	uage			Understa	nd		
CO2: U	ndersta	nd the H	HTML,	Commo	on Gate	way Int	erface.					Apply			
СО3: А	pply the	e Java S	cript ar	nd AJA2	X							Apply			
CO4: ap	oply lear	rn the S	erver si	de prog	rammir	ng						Apply			
CO5: Aj	pply the	databa	se conn	ectivity								Apply			
MAPP	ING W	ITH F	PROG	RAMN	IE OU	TCON	MES A	ND PI	ROGR	AMM	E SPECI	FIC OU	TCON	1ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	_	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	_	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	_	_	-	-	-	М	М	S
CO5	S	М	М	М	-	-	-	-	-	-	-	_	М	М	S
S- Stror	ng; M-I	Mediur	n; L-Lo	OW					l	1			I	1	I

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

Internet Principles – Basic Web Concepts – Client/Server model – retrieving data from Internet – HTML and Scripting Languages – Standard Generalized Mark –up languages – Next Generation – Internet –Protocols and Applications

COMMON GATEWAY INTERFACE PROGRAMMING

HTML forms – CGI Concepts – HTML tags Emulation – Server – Browser Communication – E-mail generation – CGI client Side applets – CGI server applets – authorization and security. Introduction to PERL

SCRIPTING LANGUAGES

Java Script Programming-Dynamic HTML-Cascading style sheets-Object model and Event model- Filters and Transitions-Active X Controls-Multimedia-Client side script.- Traditional web application vs AJAX application – creating full scale AJAX application - Forms – Scripting Object

SERVER SIDE PROGRAMMING

Dynamic Web content – cascading style sheets – DHTML – XML – Server side includes – communication – Active and Java Server Pages - Ruby enabled applications

ONLINE

Simple applications – on-line databases – monitoring user events – plug-ins –database connectivity – Internet Information Systems – MICROSOFT IIS - EDI application in business – Internet Commerce – Customization of Internet Commerce

TEXT BOOK

- 1. Jason Hunter, William Crawford, "Java Servlet Programming", O' Reilly Publications, 1999.
- 2. Ravi Kalakota and Andrew B Whinston, "Frontiers of Electronic Commerce", Addison Wesley, 1996
- 3. Eric Ladd, Jim O' Donnel, "Using HTML 4, XML and Java", Prentice Hall of India QUE, 1999
- 4. Paul JDeitel and Harvey M Deitel, "AJAX, Rich Internet appliactions and web development", Prentice Hall, 2008.

REFERENCES

- 1. Jeffy Dwight, Michael Erwin and Robert Niles, "Using CGI", Prentice Hall of India QUE, 2010
- 2. Scot Johnson, Keith Ballinger, Davis Chapman, "Using Active server Pages", Prentice Hall of India, 1999
- 3. Ted coombs, Jason coombs, Brewer, "Active X source book", John wiley, 1999
- 4. Evangelos Petroutsos, "Mastering Visual Basic 6", BPB Publications, 1998

S. No.	. Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Assistant Professor G-II	CSE	<u>rjaichandran@avit.ac.in</u>
2.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvecedu.in

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021P27OBJECT ORIENTED ANALYSIS AND DESIGNCategoryLTPOEC-PS300							Credit								
00	021121				DES	SIGN					EC-PS	3	0	0	3
PREA This sy object by ider PRER NIL COUR 1. 2. 3. COUR	MBLE vilabus oriented ntifying EQUIS SE OB To imp oriente To inc To lay SE OU	is inten d system and im SITE SJECT part based conce ulcate to founda	ided fo ms and plemen IVES sic kno epts an the kno tion fo MES	r the E its apj nting a wledge id they wledgo wledgo r pract	nginee plicatio set of in ana can de e of van ical ap	ring str n in Pr objects lyzing sign th ious U plicatio	the solic ML (Upper of	and en ming. heir inte ftware ct orien Jnified	able th This sy eraction system ited sys Model oriente	nem to yllabus ns to m as so th stems e ling lar d conce	lean abou helps the heet the de at the stuc ffectively nguage)dia epts in pro	t basic o student sired ob lent will	concept s to de ojective unders	ts of des velop so s. stand the ects	signing oftware
On the	success	sful con	npletio	n of th	e cours	se, stuc	lents w	ill be a	ble to						
CO1: 1	Underst	and va	rious U	ML di	agrams	and d	esign p	oatterns	5				Unde	rstand	
C O2: pattern	Unders s	ttand c	ase stu	ıdy on	variou	ıs real	time s	system	s and	applyir	ng design		Ap	oply	
CO4:	Practic	e the fo	r the b	asic co	ncepts								Ap	ply	
CO4:	implen	nent the	desigr	n to co	le and	perfori	n testir	ıg					Ap	ply	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES												FIC OU	JTCON	MES	
MAPP		DOA	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO1	PSO2	PSO3
MAPP COs	PO1	PO2	105							•					
MAPP COs	PO1	РО2 м	м	L	М		_	-	-	0	_	М	S	М	_
COs COs CO1 CO2	PO1 S	РО2 М М	м М	L M	M M	-	-	-	- M	0 - -	-	M	S S	M	- M
$\frac{\text{COs}}{\frac{\text{CO1}}{\text{CO2}}}$	PO1 S S S S	M M M	M M S	L M S	M M M	-	-	-	- M -	0 - - -	-	M M L	S S S	M M M	- M M

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

INTRODUCTION TO OOAD

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams– Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and Deployment Diagrams.

DESIGN PATTERNS

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling – High Cohesion – Controller – Design Patterns – creational – factory method – structural – Bridge – Adapter – behavioral – Strategy – observer

CASE STUDY

Case study – the Next Gen POS system, Inception –Use case Modeling – Relating Use cases – include, extend and generalization – Elaboration – Domain Models – Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies – Aggregation and Composition

APPLYING DESIGN PATTERNS

System sequence diagrams – Relationship between sequence diagrams and use cases Logical architecture and UML package diagram – Logical architecture refinement – UML class diagrams – UML interaction diagrams – Applying GoF design patterns

CODING AND TESTING

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration Testing – GUI Testing – OO System Testing

TEXT BOOKS

1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", Third Edition, Pearson Education

2.Object Oriented Analysis And Design By Brahama Dathan & Sranath Ramnath

REFERENCES

- 1. Simon Bennett, Steve Mc Robb and Ray Farmer, —Object Oriented Systems Analysis and Design Using UMLI, Fourth Edition, Mc-Graw Hill Education
- 2. Erich Gamma, and Richard Helm, Ralph Johnson, John Vlissides, "Design patterns: Elements of Reusable Object-Oriented Softwarel, Addison-Wesley

Martin Fowler, —UML Distilled: A Brief Guide to the Standard Object Modeling Languagel, Third edition, Addison Wesley

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.Senthilkumar	Assistant Professor	CSE	ssenthilkumar@vmkvec.edu.in
2.	Mrs.S. Leelavathy	Assistant Professor	CSE	leelavathy@avit.ac.in

H. Kit

Dr. M. NITHYA, 164 Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

350)21P18			G			D1 7			Cat	egory	L	Т	Р	С	redit			
	211 10	, 		G4	AME	THEO.	RY			EC-I	PS	3 0 0 3							
PREAM	MBLE												11	I					
This sy	llabus	is inter	nded fo	r the E	nginee	ring stu	idents	and en	able th	em to ur	nderstar	nd the ba	sics of	Gan	ne T	heory			
PRERI	EQUIS	ITE: E	ENGIN	EERIN	IG MA	THEM	IATIC	S											
COUR	SE OB	JECT	IVES																
1	To in	troduce	e the st	udent t	o the n	otion o	f a gar	ne, its	solutio	ns conce	epts, and	d other b	oasic no	otion	s an	d			
2	To stu electr	udy too onic tr	ols of g ading r	ame the	eory, a	nd the	main a	pplicat	tions fo	or which	they ar	e approp	oriate, i	inclu	ding				
3	To formalize the notion of strategic thinking and rational choice by using the tools of game theory, and to provide insights into using game theory in modeling applications																		
4	To draw the connections between game theory, computer science, and economics, especially emphasizing the computational issues																		
5	To introduce contemporary topics in the intersection of game theory, computer science, and economics																		
COUR	SE OU	TCON	MES																
On the		ful 201	malatio	n of th		a stud	onto m	:11 ha a	hla ta										
			mpietic			e, stud					and								
other is	Explain ssues	the co	ncept (of Dasi	c notio	n or a g	game,	its solu	tions c	oncepts	, and	Underst	and						
CO2: 1	Develo	p a stra	ategic g	ame th	eory w	ith per	fect in	formati	ion			Apply							
CO3:	Analyz	te a for	mal no	tion of	strateg	ic thin	king a	nd ratio	onal ch	oice by	using	Analyze	e						
	r game	theory					C					A 1							
CO4: 1		ry the r	non-coo	$\frac{1}{1}$	ve gam	e theor	$\frac{1}{1}$	1.			1	Apply							
CO5: A	Analyze nics es	e the c	v empl	10ns be	tween	game t	heory, tional	compu	iter sci	ence, an	d	Analyze	e						
MAPP	ING W		PROG	RAMN	IE OU		IES A	ND PI	ROGR	AMME	SPEC	IFIC O	UTCO	ME	S				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3			
CO1	S	-	-	М	М	-	-	L	-	L	-	-	S	N	Л	М			
CO2	М	-	-	М	L	-	S	-	-	М	I	-	S		-	-			
CO3	S	Μ	Μ	М	L	-	-	_	-	L	S	L	-		S	-			
CO4	S	M	M	S	M	-	-	М	-	M	-	-	-		-	М			
CO5	S	M		М	М	-	-	-	-	М	-	L	M		S	-			
S- Stroi	Strong; M-Medium; L-Low																		

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K. V. Engg. College, Salem.

Making rational choices: basics of Games – strategy - preferences – payoffs – Mathematical basics - Game theory – Rational Choice - Basic solution concepts-noncooperative versus cooperative games - Basic computational issues - finding equilibria and learning in games- Typical application areas for game theory (e.g. Google's sponsored search, eBay auctions, electricity trading markets).

GAMES WITH PERFECT INFORMATION

Games with Perfect Information - Strategic games - prisoner's dilemma, matching pennies Nash equilibriatheory and illustrations - Cournot's and Bertrand's models of oligopoly- auctions mixed strategy equilibriumzero-sum games- Extensive Games with Perfect Information repeated games (prisoner's dilemma)- subgame perfect Nash equilibrium; computational issues.

GAMES WITH IMPERFECT INFORMATION

Games with Imperfect Information - Bayesian Games – Motivational Examples – General Definitions – Information aspects – Illustrations - Extensive Games with Imperfect -Information - Strategies- Nash Equilibrium – Beliefs and sequential equilibrium – Illustrations - Repeated Games – The Prisoner's Dilemma – Bargaining.

NON-COOPERATIVE GAME THEORY

Non-cooperative Game Theory - Self-interested agents- Games in normal form - Analyzing games: from optimality to equilibrium - Computing Solution Concepts of Normal-Form Games – Computing Nash equilibria of two-player, zero-sum games -Computing Nash equilibria of two-player, general-sum games - Identifying dominated strategies.

MECHANISM DESIGN

Aggregating Preferences-Social Choice – Formal Model- Voting - Existence of social functions - Ranking systems - Protocols for Strategic Agents: Mechanism Design - Mechanism design with unrestricted preferences- Efficient mechanisms - Vickrey and VCG mechanisms (shortest paths) - Combinatorial auctions - profit maximization Computational applications of mechanism design - applications in Computer Science - Google's sponsored search - eBay auctions.

TEXT BOOKS

1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I – Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.

REFERENCES

1. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.

2. David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center", Auerbach Publications, 2006.

3. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.

4. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress 2005.

5. Kenneth Hess, Amy Newman, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, 2010.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	V.Subapriya	Assistant Professor	CSE	subapriyacse@avit.ac.in
2	Ms A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

35	021P20	,	IN	FORM	ΙΑΤΙΟ	N RE'	FRIEV	AL		Ca	tegory	y L T P Cred				Credit
	0211 20	,]	ECH	NIQUI	ES				EC-PS	3	0	0		3
PREA This s Retrie	MBLE syllabus eval with	is inte h pertii	nded for nence t	or the E o mode	Enginee eling, q	ering st uery o	udents peratio	and er ns and	able th	nem to u ng.	ndersta	nd the ba	asics of	f Info	orma	ition
PRER	EQUIS	SITE: N	NIL													
COUR	RSE OB	JECT	IVES													
1	To lea	rn abou	t the bas	sic conce	epts, pra	actical is	ssues an	id impac	ct of the	web on	Informat	ion Retrie	eval			
2	To understand about the various IR models															
3	To get an understanding of machine learning techniques for text classification and clustering															
4	To understand the various applications of Information Retrieval giving emphasis to Multimedia IR															
5	To lay foundation for learning the concepts of digital libraries															
COUR	SE OU	TCON	MES													
On the	success	sful con	mpletic	on of th	e cours	se, stuc	lents w	ill be a	ble to							
CO1:]	Describ	e the o	bjectiv	es of in	format	tion ret	rieval	system	S			Underst	tand			
CO2:	Unders	stand a	bout th	e vario	us IR 1	nodels						Apply				
CO3 :	Unders	stand th	ne stati	c and d	ynamio	c indic	es and	query o	operatio	ons		Apply				
CO4: classifi	implem cation	ent clu	stering	algori	thms li	ke hier	archica	al clust	ering a	nd		Apply				
CO5:	Unders	tand se	arching	g ,ranki	ing and	l digita	l librar	ries				Apply				
MAPP	PING W	ITH I	PROG	RAMN	IE OU	TCON	MES A	ND P	ROGR	AMME	E SPEC	IFIC O	UTCO	MES	5	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS()2	PSO3
CO1	S	М	-	М	М	М	-	-	-	-	-	М	S	5	5	S
CO2	S	S	S	М	М	L	-	Μ	-	-	-	М	S	Ν	1	Μ
CO3	S	L	L	-	L	-	-	-	-	-	-	S	M	5	5	S
<u>CO4</u>	S	S ĩ	S	M	M	M	-	M	-	-	-	M	S		-	S
<u>CO5</u>		S		Μ	Μ	L	-	-	-	<u> </u>					M	
S- Stro	- Strong; M-Medium; L-Low															

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K. V. Engg. College, Salem.

Motivation – Basic Concepts – Practical Issues - Retrieval Process – Architecture - Boolean Retrieval – Retrieval Evaluation – Open Source IR Systems–History of Web Search – Web Characteristics–The impact of the web on IR —IR Versus Web Search–Components of a Search engine.

MODELING

Taxonomy and Characterization of IR Models – Boolean Model – Vector Model - Term Weighting – Scoring and Ranking –Language Models – Set Theoretic Models - Probabilistic Models – Algebraic Models – Structured Text Retrieval Models – Models for Browsing.

INDEXING

Static and Dynamic Inverted Indices – Index Construction and Index Compression. Searching - Sequential Searching and Pattern Matching. Query Operations -Query Languages – Query Processing - Relevance Feedback and Query Expansion - Automatic Local and Global Analysis – Measuring Effectiveness and Efficiency.

CLASSIFICATION AND CLUSTERING

Text Classification and Naïve Bayes – Vector Space Classification – Support vector machines and Machine learning on documents. Flat Clustering – Hierarchical Clustering –Matrix decompositions and latent semantic indexing – Fusion and Meta learning.

SEARCHING AND RANKING

Searching the Web –Structure of the Web –IR and web search – Static and Dynamic Ranking - Web Crawling and Indexing – Link Analysis - XML Retrieval Multimedia IR: Models and Languages – Indexing and Searching Parallel and Distributed IR – Digital Libraries.

TEXT BOOKS

1. Ricardo Baeza – Yates, BerthierRibeiro – Neto, Modern Information Retrieval: The concepts and Technology behind Search (ACM Press Books), Second Edition

2. Textbook Retrieval Systems In Information Management by GG Chowdhury

REFERENCES

1. Christopher D. Manning, PrabhakarRaghavan, HinrichSchutze, Introduction to Information Retrieval, Cambridge University Press, First South Asian Edition

2. Stefan Buttcher, Charles L. A. Clarke, Gordon V. Cormack, Information Retrieval Implementing and Evaluating Search Engines, The MIT Press, Cambridge.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
2	T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

350	021P33	3	SOF	ТХХ7 А Т	DE OU		V ЛЛА	NACI	TATENT	т _	Categor	y L	Т	Р	C	Credit
			50 F	IWAI	KE QU	ALII	I MA	INAGI	LIVIEIN	1	EC-PS	3	0	0		3
PREAD Softwa testing design tools.	MBLE re Test is a cr and coo	ing an itical e ling. T	d Qual element he real	lity As t of so challer	surance ftware nge to e	e is pr quality deliver	edomin y assur succes	nant fo ance a ssful so	or the s nd rep oftware	smartne resents produe	ess of the the ultinct relies of	e Softwa nate rev on sound	are sys iew of testing	tem. spec strat	Soft sifica egie	tware ation, s and
PRER	EQUIS	SITE: N	NIL													
COUR	SE OB	JECT	IVES													
1	The s assur	students ance	s will t	e able	to diffe	erentiat	e betw	een qu	ality co	ontrol,	quality m	anagem	ent and	qual	ity	
2	The s	tudents	s will b	e able	to disc	uss the	differe	ent con	nponen	ts of S	QA syste	m				
3	The students will be able to discuss different software quality factors models															
4	The students will be able to understand the rational for the SE code of ethics and discuss them															
COUR	SE OU	TCON	MES													
On the	success	sful coi	mpletic	on of th	e cours	se, stud	lents w	ill be a	ble to							
CO1:	Ability	to und	erstand	l the qu	ality n	nanage	ment ir	n softw	are			Unders	tand			
CO2:	Analyz	e the d	ifferen	types	of mod	lels for	qualit	y assur	ance			Analyz	e			
CO3:	Demon	strate s	softwar	e quali	ty infra	astructu	ires.					Apply				
CO4:	Measur	e vario	us bus	iness p	rocess	reengii	neering	ŗ.				Apply				
CO5:	Know l	now to	preven	t the de	efects.	_						Apply				
MAPP	ING W	ITH F	PROG	RAMN	IE OU	TCON	MES A	ND P	ROGR	AMM	E SPECI	FIC OU	JTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PS01	PSC)2	PSO3
<u>CO1</u>	S	М		М	м					0		S	_	6	!	S
CO1	S	S	S	M	M	-	-	M	-	-	-	<u> </u>	-	N	, 1	<u> </u>
CO3	S	M	S	M	M	-	-	-	-	-	-	S	-	N	1	S
CO4	S	М	S	-	L	-	-	L	-	-	_	S	-	N	1	S
CO5	S	М	S	-	М	-	-	L	-	-	-	S	-	N	1	S
S- Stro	COS S M S - M L S - M S S- Strong; M-Medium; L-Low															

CHITH.M

Dr. M. NITHYA, Prof & Head. Proft. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

INTRODUCTION TO SOFTWARE OUALITY & ARCHITECTURE

Need for Software quality – Quality challenges – Software quality assurance (SQA) – Definition and objectives – Software quality factors- McCall's quality model – SQA system and architecture – Software Project life cycle Components – Pre project quality components – Development and quality plans

SQA COMPONENTS AND PROJECT LIFE CYCLE

Software Development methodologies – Quality assurance activities in the development process- Verification & Validation – Reviews – Software Testing – Software Testing implementations – Quality of software maintenance – Pre-Maintenance of software quality components – Quality assurance tools – CASE tools for software quality – Software maintenance quality – Project Management

SOFTWARE QUALITY INFRASTRUCTURE

Procedures and work instructions - Templates - Checklists - 3S developmenting - Staff training and certification Corrective and preventive actions – Configuration management – Software change control – Configuration management audit -Documentation control – Storage and retrieval.

SOFTWARE QUALITY MANAGEMENT & METRICS

Project process control – Computerized tools – Software quality metrics – Objectives of quality measurement -Process metrics – Product metrics – Implementation – Limitations of software metrics – Cost of software quality – Classical quality cost model – Extended model – Application of Cost model.

STANDARDS, CERTIFICATIONS & ASSESSMENTS

Quality manangement standards – ISO 9001 and ISO 9000-3 – capability Maturity Models – CMM and CMMI assessment methodologies – Bootstrap methodology – SPICE Project – SQA project process standards – IEEE st 1012 & 1028 – Organization of Quality Assurance – Department management responsibilities – Project management responsibilities – SQA units and other actors in SQA systems.

TEXT BOOKS

1. DanielGalin, "Software Quality Assurance", Pearson Publication, 2009.

REFERENCES

1. Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, 1997.

2. Mordechai Ben-Menachem "Software Quality: Producing Practical Consistent Software", International Thompson Computer Press, 1997.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K. Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	B.Sundaramurthy	Associate Professor	CSE	Sundaramurthy@vmkvec.edu.in

N.Hith

Dr. M. NITHYA, - Prof & Head. 170 Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021P25										Category	v L	Т	Р	Credit	
)	NATURAL LANGUAGE PROCESSING					ř	EC-PS	3	0	0	3		
PREAMBLE To familiarize the concepts and techniques of Natural language Process of Human Languages such as English and other Indian Languages using computers															
PRER nil	EQUIS	ITE													
COURSE OBJECTIVES															
1.	1. Map the appropriate processing technique to a problem and implement the technique														
2.	2. Demonstrate required design skills for large collection sets														
3.	3. Analyze the theoretical formulation of the natural language processing techniques.														
4.	4. Comprehend the state-of-the-art advanced NLP research articles and present them to an audience.														
5. Propose extension of existing NLP techniques for solving a range of problems.															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1: 1	CO1: Identify the different linguistic components of natural language Understand														
CO2: I	CO2: Design a morphological analyser for a given natural language Analyze														
CO3: I	CO3: Decide on the appropriate parsing techniques necessary for a given language Apply														
CO4: 1	CO4: Understand the role of semantics of sentences and pragmatics Apply														
CO5: I	CO5: Design applications involving natural language Apply														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	D2 PSO3
CO1	S	S	М	М	М	-	-	-	-	-	-	-	S	Ν	I M
CO2	S	S	М	М	М	-	-	-	-	-	-	-	S	N	I M
CO3	S	S	S		L	-	-	-	-	-	-	-	S	-	М
CO4	S	М	М		L	-	-	-	-	-	-	-	S	Ν	I S
CO5	S	S	М	М	L	-	-	-	-	-	-	-	S	Ν	I S
S- Strong; M-Medium; L-Low															

M. Hith

Dr. M. NITHYA, Prof & Head. Prpt. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

INTRODUCTION

Introduction to Natural Language Processing, Origins and challenges of NLP -Language and Grammar, Information Retrieval. Language Modeling: Various Grammar-based Language Models -Statistical Language Model, Representation and understanding, Linguistic background.

MORPHOLOGY AND PART-OF-SPEECH PROCESSING

Morphology and Part-Of-Speech Processing Introduction –Regular Expressions and Automata-Non-Deterministic FSAs. Transducers – English Morphology - Finite-State Morphological Parsing - Porter Stemmer - Tokenization-Detection and Correction of Spelling Errors. N-grams – Perplexity - Smoothing Interpolation -Backoff. Part-of-Speech.

SYNTAX ANALYSIS

Syntax Analysis Finite-State and Context-Free Grammars -Dependency Grammars. Syntactic Parsing -Ambiguity -Dynamic Programming Parsing Methods –CKY-Earley and Chart Parsing-Partial Parsing-Evaluation. Statistical Parsing – Probabilistic Context-Free Grammars – Probabilistic CKY Parsing of PCFGs -Probabilistic Lexicalized CFGs – Collins Parser – Shallow parsers – Dependency parsing.

SEMANTIC ANALYSIS & PRAGMATICS

Semantic and Pragmatic Interpretation Representation of Meaning –Desirable Properties -Computational Semantics -Word Senses -Relations Between Senses -WordNet -Event Participants-Proposition Bank Frame Net --Metaphor. Computational Lexical Semantics --Word Sense Disambiguation-Supervised Word Sense Disambiguation -Dictionary and Thesaurus Methods – Word Similarity - Minimally Supervised WSD Hyponymy and Other Word Relations - Semantic Role Labeling -Unsupervised Sense Disambiguation. Computational Discourse - Discourse Segmentation - Unsupervised Discourse - Segmentation - Text Coherence -Reference Resolution – Phenomena – Features and algorithms - Pronominal Anaphora Resolution.

APPLICATIONS

Applications Information Extraction –Named Entity Recognition -Relation Detection and Classification -Temporal and Event Processing - Template-Filling - Biomedical Information Extraction. Question Answering and Summarization - Information Retrieval -Factoid Question Answering -Summarization -Single andMulti-Document Summarization - Focused Summarization -Evaluation. Dialog and Conversational Agents Properties of Human Conversations -Basic Dialogue Systems.

TEXT BOOK

1. Sowmya Vajjala, Bodhisattwa Majumder and Anuj Gupta," Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems", O" Reilly, 1st Edition, 2020.

2. Emily M. Bender and Alex Lascarides "Linguistic Fundamentals for Natural Language Processing II: 100 Essentials from Semantics and Pragmatics", Morgan and Claypool, 1st Edition, 2019.

3. Daniel Jurafsky and James H Martin, "Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", Pearson Publication, 1st Edition, 2014.

4. James Allen "Natural Language Understanding", Pearson Publication 8th Edition, 2012.

REFERENCES

1. NitinIndurkhya, Fred J. Damerau, "Handbook of Natural Language Brocessing", (Chapman & Hall/CRC Machine Learning & Pattern Recognition), 2nd Edition, 2010.

2. Alexander Clark, Chris Fox, Shalom Lappin, "The Handbook of Computational Linguistics and Natural Language Processing", Wiley-Blackwell, 2nd Edition, 2010. Dr. M. NITHYA, Prof & Head.

3. https://nptel.ac.in/courses/106/105/106105158/

4. <u>https://www.coursera.org/learn/language-processing</u>

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Mr. S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

M. Hith

Dr. M. NITHYA, Prof & Head. Prgt. of Computer Science & Engs V.M.K.V. Engg. College, Salem.
350	021P31			SCALA	PROG	RAMN	AING		Ca	tegory		L	r P		C	Credit
									E	C-PS		3 () 0			3
PREA	MBLE															
The pu	irpose of	f this co	ourse is	to introc	luce sca	la progi	amming	g a ren	narkabl	y powerfi	ul func	tional pr	ogram	ning	langu	age to
write c	ode for	data an	alysis a	nd mach	ine lear	ning, di	istribute	ed com	puting	and web	develop	pment.				
PRER	QUISIT	$\mathbf{E}: \mathbf{J} \mathbf{A}$	AVA pro	ogrammi	ng											
COUR	RSE OB	JECTI	VES													
1. T	'o provic	le basic	knowle	edge on	scala pr	ogramn	ning cor	cepts.								
2. T	To evaluate the different operations of functions															
3. T	. To Create lists and tuples, evaluate its operations															
4. T	o Create	e patter	ns and r	natch th	e same	with tra	its and o	case cl	asses							
5. T	o learn	about n	nonads a	and funct	ors											
COUR	RSE OU	TCOM	IES													
On the	success	ful con	npletion	of the c	ourse, s	tudents	will be	able to)							
CO1. (Compreh	end the	eusage	of of bas	sic cons	tructs o	f a func	tional	progran	nming		Underst	and			
languag	e															
CO2.	Apply th	e diffei	rent ope	erations i	nvolvec	l in fun	ctional o	data sti	ructures	5.		Apply				
CO3.	Evaluat	e the op	peration	s on list	s and tu	ples.						Apply.				
CO4 . <i>A</i>	Apply th	e traits	and cas	se classe	s operat	ions.						Apply.				
CO5.	Compre	hend a	bout m	onads ar	nd funct	ors						Underst	and			
MAPF	PING W	ITH P	ROGR	AMME	OUTC	OMES	AND F	PROG	RAMN	IE SPEC	CIFIC	OUTCO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 P	PSO2	PSO3
CO1	S	М	М	М	М	-	-	-	-	-	-	-	М		S	М
CO2	S	S	М	М	М	-	-	-	-	-	-	-	М		S	М
CO3	М	S	S	М	М	-	-	-	-	-	-	-	М		М	S
CO4	CO4 S S M - - - - - S S M												М			
CO5	S	S	S	М	М	-	-	-	-	-	-	-	S		S	М
S-Stro	ong; M-N	Medium	n; L-Lov	N	<u> </u>	I	LI		1	1	II		1	1		

M. Hith

Dr. M. NITHYA, Prof & Head. Proft. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

INTRODUCTION

Non- Functional programming -Functional programming-Benefits of Functional Programming in Scala-Referential Transparency- Modules- Objects-Namespaces -Basic Functions-Polymorphic functions-Tail calls

PATTERN MATCHING

Defining functional data structures-Pattern Matching-Variadic functions in Scala-Data sharing in functional data structures-Recursion over lists-Generalizing to higher order functions

LISTS AND TUPLES

Basic operations on lists- Strict and non-strict functions-Lazy Lists Example- Infinite Steams and co recursion- Tuples-Basic operations on tuples.

TRAITS

Traits – Purpose and Syntax- Interface types- Ordered trait- Traits for modifying interfaces- Stacking modifications- Traits and operations

MONADS AND FUNCTORS

Monad Laws-Generalizing monads-Applicative trait Monads vs Applicative functors- Functor Laws -Traversable functors-Uses of Traverse.

TEXT BOOKS:

1. Paul Chiusano and Rúnar Bjarnason, "Functional Programming in Scala", Manning Publishers, 2014.

2. Dean Wampler, Alex Payne, "Programming Scala", O'Reilly Media, 2009.

REFERENCES:

- 1. Oderskey M,SpoonL,VennersB,-ProgramminginScalal,Thirdedition.
- 2. Hortsmann, C., Scala for the Impatient, 2nd ed., Addison-Wesley, 2016.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Bharanidharan	Assistant Professor	CSE / VMKVEC	bharanidharan@vmkvec.edu.in
2.	Senthamilsevi.G	Associate Professor	CSE / VMKVEC	senthamilselvi@vmkvec.edu.in

Witt.M

Dr. M. NITHYA, Prof & Head. Proft. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

													<u> </u>		
											Category	L	Т	Р	Credit
350	021P35		THE	APPI	ICAL JCAT	APPR ION D	OACE DEVEL	A FOR	ENT		EC-PS	3	0	0	3
PREA	MBLE														
To und	erstand	the co	ncepts	of web	o desigi	n tools	and to	design	and de	evelop	web-page	s profes	sionally	у.	
PRER nil	EQUIS	ITE													
COUR	SE OB	JECT	IVES												
1.	Develo	ping th	e vario	ous wel	o pages	throug	gh imp	lement	ation sl	kills of	interactiv	e appro	aches		
2.	Demonstrate the required skills for Web design Languages and web-designing tools.														
3.	Understand the need, design approaches for software architecture to bridge the dynamic requirements and implementation.														
4.	Learn the design principles of interactive web pages , integration of data bases and servers for large scale system.														
5.	Build d	lesign l	knowle	dge on	servic	e orien	ted and	1 mode	l drive	n archit	ectures fo	or the en	terprise	e appli	cations.
COUR	SE OU	TCON	MES												
On the	success	sful co	mpletic	on of th	e cours	se, stuc	lents w	vill be a	ble to						
CO1: /	Able to	define	client	side sc	ripting	and m	ake use	e of Jav	vaScrip	t and A	JAX to	Unders	tand		
validate	e at clie	nt side	•		1 0				1						
CO2: U	Jndersta	and the	usage	of vari	ious da	ta base	s for w	veb app	lication	n devel	opment	Underst	and		
CO3: A	Able der	monstr	ate Ser	ver sid	e progr	ammir	ng and	adopt t	o build	l applic	ations	Apply			
with jay	va Serv	lets an	d JSP's	S.		1	1 1 4		6.04			A 1			
CO4: I	Decide	on the	approp	friate fi	amewo	ork and	i archit	ecture	of Stru	ts		Apply			
CO5: D	Design V	Web ap	plicati	ons inv	volving	Integr	ating a	nd vali	dating	the inp	ut of all	Apply			
	ING W	/ITH I	PROG	RAMN	AE OI	TCO	MES A	ND P	ROGR	AMM	E SPECI	FIC OI	ITCO	MES	
	DO1	D O2		DO4	DO5		DO7			DO10	DO11	DO12	BEO1		BEO2
COS	s	P02	POS	PO4	PUS	PU6	P07	PU8	P09	POIU	POII	P012	rsoi	PSO2	1503
	S	S M	S M	M	M	-	-	-	-	-	-	-	S	<u>ь</u> м	M
C02	S	M	S	191	L	_	-	-	-	-		-	M	-	S
CO4	S	M	M		L	-	-	-	-	-	-	-	М	М	S
CO5	S	S	М	М	L	-	-	-	-	-	-	-	S	М	S
S- Stro	ng; M-l	Mediur	n; L-L	ow											

M. Hith

Dr. M. NITHYA, Prof & Head. Prgt. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

INTRODUCTION:

Rich Internet Applications-Introduction to HTML-Responsive web design-Introduction to CSS- CSS types-Introduction to JavaScript-Control structure-Objects-Events-Basic AJAX-XML- and DOM, creating a full scaled web design.

DATABASE

Introduction Angular to JS-Expression-Module -Directive Data binding Controllers Scope-Filter -Introduction to Mongo- DB-Documents Collection-Database Creating, Updating, Deleting documents-Querying.

OVERVIEW OF JSP2

Overview of SERVLET-Creating dynamic web pages using JSP Standard- Introduction to MYSQL - Connection Management-Resultset, Statements-Prepared statement, Callable Statement.

STRUTS ARCHITECTURE

Struts classes- Understanding struts-Understanding Action Mappings- Struts flow with an example application-Struts Tiles Framework-Struts Validation Framework.

WEB SERVICES

Validating form input-Handling form submission-Creation of Batch Service-Securing web application-

Integrating Data- Creating asynchronous method-Using Web Socket to build an interactive web application **TEXT BOOKS:**

1. Deitel ,Deitel and Nieto, —Internet and World Wide Web – How to program ,4th Edition, Pearson Education Publishers,2009

2. EricFreeman, Elisabeth Robson, —HTML5Programming I, firstedition, O'ReillyPublishers, 2011.

3. RobinNixon,"LearningPHP,My SQL, JavaScript, CSS & HTML5 "ThirdEdition, O'REILLY, 2014.

REFERENCES:

- 1. OderskeyM,SpoonL,VennersB,—ProgramminginScalal,Thirdedition.
- 2. Hortsmann, C., Scala for the Impatient, 2nd ed., Addison-Wesley, 2016.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	M.Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in
2.	Mr. S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in

M. Hit

Dr. M. NITHYA, Prof & Head. Prof. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021P11		Category	L	Т	Р	Credit
	DATA SCIENCE IN PYTHON	EC-PS	3	0	0	3

PREAMBLE

This will introduce the learner to the basics of the python programming environment, including fundamental python programming techniques such as lambdas, reading and manipulating csv files, and the numpy library. The course will introduce data manipulation and cleaning techniques using the popular python pandas data science library and introduce the abstraction of the Series and DataFrame as the central data structures for data analysis, along with tutorials on how to use functions such as groupby, merge, and pivot tables effectively.

PREREQUISITE

• NIL

	COURSE OR IECTIVES														
COURSE OBJECTIVES															
1.	To prov	vide kno	wledge	of pyth	ion prog	grammi	ng para	digms re	equired	for Data	a Science.				
2.	Produc	e Pyth	on coc	le to st	atistica	lly ana	alyze a	datase	t.						
3.	3. To provide the knowledge of NumPy Packages														
4.	4. To provide the knowledge of Pandas, MatplotLib														
5.	 Critically evaluate data visualizations based on their design and use for communicating stories from data. 														
COUR	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1: Understand and demonstrate the usage of built-in objects in Python Understand															
CO2: A solve re	CO2: Analyze the significance of python program development environment and apply it to olve real world applications														
CO3: I	CO3: Implement numerical programming. Apply														
CO4: I	mpleme	ent data	handlin	ıg visua	lization	through	h NumF	у				Apply			
CO5: I	mpleme	ent Pand	las and	Matplot	Lib mo	dules.						Apply			
MAPP	ING W	TTH P	ROGR	AMME	C OUTO	COME	S AND	PROG	RAMN	1E SPE	CIFIC O	UTCOM	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	S										М		
CO2	М	М	S		М	М							М	М	М
CO3	S	М	М	М	М	L							М		
CO4	S	М	М	М	М								М	М	М
CO5	S	М	S	М	М	М					M		М		
S- Stro	ng; M-N	Medium	; L-Lov	N						tin					

Dr. M. NITHYA, 178 Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

UNIT I INTRODUCTION TO PYTHON

Structure of Python Program-Underlying mechanism of Module Execution-Branching and Looping-Problem Solving Using Branches and Loops-Functions - Lists and Mutability- Problem Solving Using Lists and Functions

UNIT II SEQUENCE DATATYPES AND OBJECT-ORIENTED PROGRAMMING

Sequences, Mapping and Sets- Dictionaries- -Classes: Classes and Instances-Inheritance- Exceptional Handling-

Introduction to Regular Expressions using "re" module.

UNIT III USING NUMPY

Basics of NumPy-Computation on NumPy-Aggregations-Computation on Arrays- Comparisons, Masks and Boolean Arrays-

Fancy Indexing-Sorting Arrays-Structured Data: NumPy's Structured Array.

UNIT IV DATA MANIPULATION WITH PANDAS –I

Introduction to Pandas Objects-Data indexing and Selection-Operating on Data in Pandas- Handling Missing Data-

Hierarchical Indexing - Combining Data Sets - Aggregation and Grouping-Pivot Tables-Vectorized String Operations -

Working with Time Series-High Performance Pandas- and query()

UNIT V VISUALIZATION AND MATPLOTLIB

Basic functions of matplotlib-Simple Line Plot, Scatter Plot-Density and Contour Plots- Histograms, Binnings and Density-

Customizing Plot Legends, Colour Bars-Three- Dimensional Plotting in Matplotlib

TEXT BOOK:

Jake VanderPlas ,Python Data Science Handbook - Essential Tools for Working with Data, O'Reily Media,Inc, 2016
 Zhang.Y ,An Introduction to Python and Computer Programming, Springer Publications,2016

REFERENCES:

- 1. Joel Grus ,Data Science from Scratch First Principles with Python, O'Reilly Media,2016.
- 2. T.R.Padmanabhan, Programming with Python, Springer Publications, 2016
- 3. "CS41 The Python Programming Language", *Stanfordpython.com*, 2019. [Online]. Available: https://stanfordpython.com/#overview. [Accessed: 20- Jun- 2019].
- 4. "Python for Data Science", *Cognitive Class*, 2019. [Online]. Available: https://cognitiveclass.ai/courses/python-for-data-science/. [Accessed: 20- Jun- 2019].

cot	RDE DEDIGITERD			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in
2	Dr.R.Jaichandran	Associate Professor(G-II)	CSETT.	rjaichandran@avit.ac.in

COURSE DESIGNERS

350)21P14			DI				G		C	ategory	L	Т	Р	Credit
				DI	GITAL	MAR	SETIN	G			EC-PS	3	0	0	3
PREAM	IBLE											-	-	_	-
This co	urse w	ill acqu	uaint tl	ne leari	ners to	create	a struc	ctured of	ligital	market	ing plan	and budg	get, Ide	ntify t	he
correct	measu	res to s	set obje	ectives	and ev	aluate	digita	l marke	eting, H	Review	and prio	ritize the	e strate	gic op	tions
for boo	sting c	ustome	er acqu	isition	, conve	ersion,	and re	tention	using	digital	marketin	ng.			
PRER	EQUIS	ITE													
•	NIL														
COUR	SE OB	JECTI	VES												
1.	To give	the bri	ef intro	duction	of digit	al mark	eting								
2.	To disc	uss the	Service	e engine	adverti	ising an	d displa	ay marke	eting in	internet	marketin	g			
3.	To over	view th	ne creati	ing of co	oncepts	and typ	es of S	ocial me	dia ma	rketing					
4.	To disc	uss the	details	of Searc	h Engir	ne Optir	nizatio	n and W	eb anal	ytics					
5.	To man	age the	advanc	ement s	ocial m	edia an	d main	taining	the onli	ne reput	ation				
COUR	SE OU	тсом	IES												
On the	success	ful con	pletion	of the	course,	student	s will b	e able to	C						
CO1: U	Understa	and the	concept	ts of dig	ital maı	rketing.						Understa	nd		
CO2: U	Understa	and the	skills re	equired	for digit	tal mark	teting					Underst	and		
CO3: <i>A</i>	Analyze	the Dig	gital Ma	rketing	Platfor	ms like	Facebo	ok, Twi	tter, Lir	nkedin, a	and etc.,	Analyze			
CO4: <i>A</i>	Apply S	earch E	Engine (Optimiz	ation (S	EO) an	d Web	analytic	S			Apply			
CO5: U	Understa	and and	develo	p the dig	gital ma	rketing	capstor	ne				Analyze			
MAPP	ING W	TTH P	ROGR	AMME	E OUT	COME	S AND	PROG	RAMN	AE SPE	CIFIC O	UTCOM	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	-	М	М							М		
CO2	М	М	S		М	М							М	М	М
CO3	S	М	М	М	М	М			М				М		
CO4	S	М	М	М	М	М			М				М	М	М
CO5	S	М	S	М	М	М		М	М				М		
S- Stro	ng; M-N	Medium	ı; L-Lov	W		l		I		<u> </u>			1	1	

M. Hith

Dr. M. NITHYA, — Prof & Head. Peot. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

UNIT I INTRODUCTION TO DIGITAL MARKETING

What is Digital Marketing - Why Digital Marketing - Digital Marketing Platforms - Organic and Paid Digital Marketing -Difference between Traditional Marketing and digital Marketing - types and channels of digital marketing - tools of digital marketing - Advantage and Disadvantage of Digital Marketing - Skills required in Digital Marketing - Digital Marketing Plan.

UNIT II INTERNET MARKETING

Internet Marketing opportunities and challenges - Digital marketing framework - **Search Engine Advertising:** - Pay for Search Advertisements - Ad Placement - Ad Ranks - Creating Ad Campaigns - Campaign Report Generation - **Display marketing:** - Types of Display Ads - Buying Models - Programmable Digital Marketing - Analytical Tools - YouTube marketing

UNIT III SOCIAL MEDIA MARKETING

Introduction to social media platforms, penetration & characteristics - Building a successful social media marketing strategy - Facebook Marketing: - Business through Facebook Marketing, Creating Advertising Campaigns, Adverts, Facebook Marketing Tools - Linkedin Marketing: - Introduction and Importance of Linkedin Marketing, Framing Linkedin Strategy, Lead Generation through Linkedin, Content Strategy, Analytics and Targeting - Twitter Marketing: - Introduction to Twitter Marketing, how twitter Marketing is different than other forms of digital marketing, framing content strategy, Twitter Advertising Campaigns - Instagram and Snapchat: - Digital Marketing Strategies through Instagram and Snapchat - Mobile Marketing: - Mobile Advertising, Forms of Mobile Marketing, Features, Mobile Campaign Development, Mobile Advertising Analytics.

UNIT IV SEO, WEB ANALYTICS

Introduction and need for SEO - How to use internet & search engines - search engine and its working pattern - On-page and off-page optimization - SEO Tactics - Planning A New Website - Market Your Optimized Website - Analytics and Measurement. - Introduction to Digital Analytics - Building Blocks - Fundamentals of Digital Analytics - Business Perspective - Data Analysis Fundamentals - Analysis Perspective: Providing Insights - Enabling Capabilities - Managing Analytics - Audience - Acquisition - Behavior - Conversions Onboarding - Retention and Expansion - Advocacy -Privacy and Ethics - Wrapping Up

UNIT V ADVANCED SOCIAL MEDIA

Understanding Paid Earned and Owned Social Media - Social Sharing - Blogging for Business - Finding and Communicating with Influencers - Online Reputation Management - Social Media Measurement - Social Media Analytics - Pinterest Marketing - Digital Marketing Capstone.

TEXT BOOK:

1. Ryan, D. (2014). Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation, Kogan Page Limited.

REFERENCES:

- 1. Jan Zimmerman, Deborah Ng Social Media Marketing All-in-One For Dummies 4th Edition John Wiley & Sons Inc.
- 2. The Beginner's Guide to Digital Marketing (2015). Digital Marketer. Pulizzi,J.(2014) Epic Content Marketing, Mcgraw Hill Education.
- Dave Chaffey & Fiona Ellis , Digital Marketing: Strategy, Implementation & Practice 6 th Edition, Pearson.
 Eric Enge , Art of SEO (3rd edition) O'Reilly.

COURSE DESIGNERS

NTH.M

Dr. M. NITHYA, Prof & Head. Sept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
2	A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

CHITH.M

Dr. M. NITHYA, Prof & Head. Pept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

35(021P09	9								(Category	y L T P Credi					
	5211 00	,		СҮВ	ER SE	CURI	TY PH	RINCL	PLES		EC-PS	3	0	0	3		
PREA	MBLE									I			11				
To und	erstand	the ne	ed for	Cyber S	Securit	y in rea	al time	and to	study	techniqu	les involv	ved in it.					
PRER	EQUIS	SITE :	NIL			-											
COUR	SE OB	JECT	IVES														
1.	To unc	lerstan	d the fu	indame	entals c	of Cybe	er Secu	rity and	d issue	8							
2.	2. To study various cyber crimes and legal remedies																
3.	3. To apply various privacy and security																
4.	4. To study E-Commerce and digital payments																
5. To study the basic security aspects related to Computer and Mobiles																	
COUR	SE OU	JTCON	MES	•	1			-									
On the	success	sful con	mpletio	n of th	e cours	se, stud	lents w	ill be a	ble to								
CO1: u	Indersta	and the	conce	pt of C	Cyber s	security	y and i	issues a	and ch	allenges	associa		Underst	and			
with it.				1	2	•	,			U							
CO2: u	ndersta	and the	cyber o	crimes,	their r	ature,	legal re	emedie	s and a	s to how	v report		Appl	у			
the crin	nes thro	ough av	vailable	platfo	rms an	d proc	edures				1						
CO3: <i>A</i>	Apply y	various	priva	v and	securi	itv cor	cerns	on on	line Sc	cial me	dia and						
underst	and the	e repor	ting pr	ocedur	e of in	appror	oriate c	content	. under	lving le	gal		Appl	У			
aspects	and be	st prac	tices fo	or the u	se of S	ocial n	nedia p	latforn	ns.	5 8	0						
													Appl	y			
CO4 : A	pply th	e basic	conce	pts rela	ited to	E-Con	nmerce	and di	gital pa	ayments	•			-			
													Appl	v			
CO5: .	Apply t	he basi	ic secu	rity asp	ects re	lated to	o Com	puter a	nd Mo	biles.			1 pp	9			
	INC W		DDOCI			TCO	AEC A				SDECU		TCON	IFC			
	ING W		RUG				NIES A				DO11						
COs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI0	POII	PO12	PSOI	P50	$J_2 P_2 O_1^{\prime}$		
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	Ν	I M		
CO2 M M M M M M M M												I M					
CO3	М	М	S	М	М	-	-	-	-	-	-	-	М	Ν	I M		
CO4	S	М	М	М		-	-	-	-	-	-	-	М	Ν	I S		
СО5 S M M M S М М S																	
S- Stro	ng· M-l	Mediur	n·I-I	W				•	•		- I		•		1		

INTRODUCTION TO CYBER SECURITY

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace,

Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IDr Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India. Case studies.

SOCIAL MEDIA OVERVIEW AND SECURITY V.M.K.V. Engg. College, Salem.

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring,

Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

E - C O M M E R C E AND DIGITAL PAYMENTS

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

DIGITAL DEVICES S E C U R I T Y , TOOLS AND TECHNOLOGIES FOR CYBER SECURITY

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

REFERENCES

1. Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010.

2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7. Fundamentals of Network Security by E. Maiwald, McGraw Hill

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Assistant professor G-II	CSE	<u>rjaichandran@avit.ac.in</u>
2	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35	021P2	1]	INTER	NET O	F THI	NGS A	ND IT	S	Ca	tegory	L	Т	Р	Credit					
	02112				APPI	LICAT	IONS		EC-PS 3 0 0 3											
PREA To stud	MBLE dy and	E underst	tand the	e techno	ologies	involve	ed in Int	ternet o	f Thing	gs (IoT)	and ap	ply ther	n practi	ically.						
PRER	EQUI	SITE :	NIL																	
COUR	SE O	BJECT	IVES																	
1.	To un	derstan	d the b	asic coi	ncepts o	of IOT														
2.	To stu	udy the	method	lology	of IOT															
3.	To De	evelop	IOT ap	plicatio	ns using	g Raspł	berry PI													
4.	To De	evelop	IOT ap	olicatio	ns using	g Ardui	no and	Intel E	dison											
5.	To ap	oply clo	oud con	cepts in	n IOT															
COUR	SE O	UTCO	MES																	
On the	succes	ssful co	mpletic	on of the	e cours	e, stude	nts will	be abl	e to											
CO1: .	Able to	ounders	stand ba	asics in	IOT						τ	Jnderst	and							
CO2: .	Able to	unders	stand N	/lethodo	ology ir	IOT						Apply								
CO3: .	Able to	desig	n IOT a	pplicat	ions us	ing Ras	pberry				A	Analyze								
CO4 : <i>A</i>	Able to	design	IOT a	pplicati	ons usi	ng Auro	dino and	d Intel	Edison			Analyz	e							
CO5: .	Able to	o apply	Cloud	comput	ing in I	ОТ						Apply								
MAPP	PING V	VITH	PROG	RAMM	IE OU'	ГСОМ	ES AN	D PRO	OGRAN	MME S	PECIF	TIC OU	TCOM	IES						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO1	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-	-	Μ	Μ	Μ					
CO2	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-	-	Μ	M	Μ					
CO3	Μ	Μ	S	Μ	-	-	-	-	-	-	-	-	Μ	Μ	M					
CO4	S	Μ	Μ	Μ	-	-	-	-	-	-	-	-	M	Μ	S					
CO5	S	Μ	Μ	Μ	-	-	-	184_	-	-	-	-	Μ	Μ	S					
S- Stro	ong; M	[-Medi	um; L-	Low																

CHITH.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem. Introduction-Characteristics-Physical design - Protocols - Logical design - Enabling technologies - IoT Levels - Domain Specific IoTs - IoT vs M2M.

IOT METHODOLOGY

IoT systems management – IoT Design Methodology – Specifications Integration and Application Development.

IOT WITH RASPBERRY

Bascis of Raspberry PI, Physical device – Raspberry Pi Interfaces – Programming – APIs / Packages – Web services

IOT WITH AURDINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino- Interfaces - Arduino IDE – Programming - APIs and Hacks

APPLICATIONS

Real time applications of IoT- Connecting IoT to cloud – Cloud Storage for Iot – Data Analytics for IoT – Software & Management Tools for IoT.

TEXT BOOKS

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015.

2. Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.

REFERENCES

1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE	rjaichandran@avit.ac.in
2.	Dr.M. Nithya	Professor	CSE	nithya@vmkv@edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. D85t. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3412	21107		BUS	SINES	S INTI	ELLIC	SENCI	E AND	ITS		Catego	y L	Т	Р	Credit
					APPI	LICAT	IONS				EC-IE	3	0	0	3
PREA Busine analyze in Data	MBLI ss Inte e, and a minin	E Illigenc present Ig.	e (BI) t an or	refers ganizat	to the ion's ra	tools, t aw data	technol a in or	logies, der to c	applica create i	ations a nsightfu	nd pract	ices use tionable	d to co e busine	llect, int ess infor	egrate, mation
PRER	EQUI	SITE -	- NIL												
COUR	RSE O	BJEC	ΓIVES												
1	To In	troduc	e stude	nts to	various	busine	ess inte	lligenc	e conc	epts					
2	To lea	arn the	conce	pts of c	lata int	egratio	n used	to dev	elop in	telligen	t system	s for de	cision s	upport	
3	To in	troduce	e visua	lizatio	n tool f	or prep	pare the	e enterp	orise re	porting					
4	To le data/t	earn a ext/We	nalytic eb mini	al cor	nponer thods	nts an	d tecł	nnologi	es use	ed to	create o	lashboa	rds an	d score	cards,
4	To ga Intell	ain ne ^s igence	w insi (BI)	ghts ii	nto org	ganizat	ional	operati	ions in	imple	mentatio	on of s	ystems	for Bu	isiness
COUR	JRSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1. Learn about the concepts of OLTP and OLAP for BI infrastructure development Understand															
CO2. technic decisio	CO1. Learn about the concepts of OLTP and OLAP for BI infrastructure development Onderstand CO2. Gained an understanding of how business professionals can use analytics Analyze Cochained and solve relevant problems and how they use analytics to support decision making Analyze														
CO3. A	Apply (Cluster	ing, As	ssociati	ion and	l Classi	ificatio	n techr	niques	for Data	Integra	tion	Appl	y	
CO4	Assess	BI too	ols to so	olve pr	oblems	, issue	s, and t	trends	using p	redictiv	e analys	is	Appl	у	
CO5. I perforr	Develog mance	p syste indicat	ms to i ors for	measur busine	e, mon ss deci	itor an ision-n	d pred	ict the proces	enterpr s	ise varia	ables and	l	Appl	У	
MAPP	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC C	UTCC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO3	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO4	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO5	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
S- Stro	ng; M	Mediu	ım; L-I	LOW						1	2				
SYLL. INTRO	ABUS ODUC	TION	TO B	USINE	ESS IN	TELL	LIGE	186 NCE	C	M NITH	NA .				
Introdu	uction	to OL	TP AN	ND OI	LAP –	BI De	efinitio	n and	BI Co	neepts	tea Busin	ess Ap	plicatio	ns of E	SI - BI
<u> </u>								Dep Y.	M.K.V.	Engg. Coll	cge, Salem				

Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

BASICS OF DATA INTEGRATION

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

BASICS OF ENTERPRISE REPORTING

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture–Enterprise Reporting using SSRS reporting service

BI ROAD AHEAD

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India, 2011

REFERENCES

1. Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.

2. David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.

3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

COURSE DESIGNERS

INFOSYS

Witt.M

Dr. M. NITHYA, Prof & Head. Pept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

34121106 BUILDING ENTERPRISE APPLI								PLIC	ATIO	NS	Categ	ory L	Т	Р	C	redit
					-		-	_	_		EC-I	E 3	0	0		3
PREA Enterp of dev an ent	MBL orise A velopm erprise	E pplica ent En	tions a terpris	ire con e App	nplex s lication	system ns are	s. The	ey requ strume	ire de ents of	licate pl adminis	anning stration,	and exp manage	ertise f ment,	or th and p	e righ lanni	nt type ng for
PREF	REQUI	ISITE	– Nil													
COU	RSE O	BJEC	CTIVE	S												
1	To tea	ach the	studen	ts abou	t vario	us way	s to bu	ild ente	erprise	applicati	ons					
2	At th differ	e con ent ho	npletio ost plat	n of t forms	he cla	ss, the	ey sho	ould u	ndersta	and how	w to de	ploy sy	stems	to a	numł	per of
3	They their	devel systen	op gra 1	phical	user	interfa	ces, a	s well	as cha	aracter-(oriented	screens	. They	test	and	debug
COU	OURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to															
CO1. Mode	CO1. Familiarize with concept of Enterprise Analysis and Business Modeling. Understand															
CO2. and do	Unders ocumei	stand r nt the a	equire applica	ments tion a	valida chitec	tion, p ture.	lannin	g and	estima	tion. De	esign	Understa	and			
CO3. other	Unders applica	stand t	he imp ompon	ortanc ents	e of ap	oplicat	ion fra	amewo	ork and	design	ing	Apply				
CO4.	Const	ruct ar	nd deve	elop di	fferent	soluti	on lay	vers.				Apply				
CO5.	Perform	n Cod	e revie	ew, Co	de ana	lysis, l	ouild p	process	5.			Apply				
MAP	PING	WITH	I PRO	GRA	MME	OUT	COMI	ES AN	D PR	OGRA	MME S	PECIF	IC OU	тсс	OMES	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 P.	SO2	PSO3
CO1	S	М	М	М	М	-	-	_	М	-	М	-	S		М	М
CO2	CO2 S M M M M M S M M											М				
CO3	S	-	М	М	М	-	-	-	М	-	-	М	S		-	М
CO4	S	М	S	М	S	-	-	-	S	М	М	М	S		М	М
CO5	S	М	S	М	S	-	-	-	S	S	S	М	S		М	-
S- Str	ong; M	-Medi	ium; L	-Low	L	L	L	1	1			1	1	1		I

M. Hith

Dr. M. NITHYA, — Prof & Head. Pegt. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

Introduction

enterprise applications and their types, software engineering methodologies, life cycle of raising an enterprise application, introduction to skills required to build an enterprise application, key determinants of successful enterprise applications, and measuring the success of enterprise application

Incepting of enterprise applications

Enterprise analysis, business modeling, requirements elicitation, use case modeling, prototyping, non functional requirements, requirements validation, planning and estimation

Architecting and Designing enterprise applications

Concept of architecture, views and viewpoints, enterprise architecture, logical architecture, technical architecture- design, different technical layers, best practices, data architecture and design – relational, XML, and other structured data representations, Infrastructure architecture and design elements - Networking, Internetworking, and Communication Protocols, IT Hardware and Software, Middleware, Policies for Infrastructure Management, Deployment Strategy, Documentation of application architecture and design **Constructing of enterprise applications**

Construction readiness of enterprise applications - defining a construction plan, defining a package structure, setting up a configuration management plan, setting up a development environment, introduction to the concept of Software Construction Maps, construction of technical solutions layers, methodologies of code review, static code analysis, build and testing, dynamic code analysis – code profiling and code coverage **Testing and Rolling out enterprise applications**

Types and methods of testing an enterprise application, testing levels and approaches, testing environments, integration testing, performance testing, penetration testing, usability testing, globalization testing and interface testing, user acceptance testing, rolling out an enterprise application.

TEXT BOOKS

1. Raising Enterprise Applications – Published by John Wiley, authored by Anubhav Pradhan, Satheesha B. Nanjappa, Senthil K. Nallasamy, Veerakumar Esakimuthu

2. Building Java Enterprise Applications – Published by O'Reilly Media, authored by Brett McLaughlin

REFERENCE BOOK

1. Software Requirements: Styles & Techniques - published by Addison-Wesley Professional

- 2. Software Systems Requirements Engineering: In Practice published by McGraw-Hill/Osborne Media
- 3. Managing Software Requirements: A Use Case Approach, 2/e published by Pearson

4. Software Architecture: A Case Based Approach – published by Pearson

COURSE DESIGNERS

INFOSYS

Witt.M

Dr. M. NITHYA, Prof & Head. Pegt. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

34121115	INTEDNET AND WER TECHNOLOCY	Category	L	Т	Р	Credit
	INTERNET AND WED TECHNOLOGI	EC-IE	3	0	0	3

PREAMBLE

This course is intended to teach the basics involved in publishing content on the World Wide Web. This includes the 'language of the Web' – HTML, the fundamentals of how the Internet and the Web function, a basic understanding of graphic production with a specific stress on creating graphics for the Web, and a general grounding introduction to more advanced topics such as programming and scripting.

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To introduce basic concepts of internet
2	To learn about HTML & XML

3 To learn about internet security

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1 . Analyze a web page and identify its elements and attributes.AnalyzeCO2. Create web pages using XHTML and Cascading Style Sheets.ApplyCO3. Build dynamic web pages using JavaScript (Client side programming).Apply

CO4. Create XML documents and Schemas

CO5. Build interactive web applications using JSP

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	М	-	-	М	S	М	М
CO2	S	М	L	-	М	-	-	-	М	-	-	-	S	М	М
CO3	S	М	L	-	L	-	-	-	М	-	-	L	S	М	М
CO4	S	М	L	-	М	-	-	-	М	-	-	-	S	М	М
CO5	S	М	L	-	М	-	-	-	М	-	-	L	S	М	М

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO INTERNET

Introduction, Evolution of Internet, Internet Applications, Internet Protocol -TCP/IP, UDP, HTTP, Secure Http(Shttp)

Internet Addressing - Addressing Scheme - Ipv4 & IPv6, Network Byte Order, Domain Name Server and IP

Addresses, Mapping . Internet Service Providers, Types Of Connectivity Such As Dial-Up Leaded Vsat Etc. Web

Technologies: Three Tier Web Based Architecture; Jsp, Asp, J2ee, .Net Systems

Prof & Head.

Apply

Apply

Papt. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

HTML CSS AND SCRIPTING

HTML – Introduction, Sgml, Dtd(Document Type Definition, Basic Html Elements, Tags and usages, HTML Standards, Issues in HTML Dhtml: Introduction Cascading Style Sheets: Syntax, Class Selector, Id Selector Dom (Document Object Model) & Dso (Data Source Object) Approaches To Dynamic Pages: Cgi, Java Applets, Plug Ins, Active X, Java Script – Java Script Object Model, Variables-Constant – Expressions, Conditions- Relational Operators- Data Types – Flow Control – Functions & Objects-events and event handlers – Data type Conversion & Equality – Accessing HTML form elements

XML

What is XML – Basic Standards, Schema Standards, Linking & Presentation Standards, Standards that build on XML, Generating XML data, Writing a simple XML File, Creating a Document type definition, Documents & Data ,Defining Attributes & Entities in the DTD ,Defining Parameter Entities & conditional Sections, Resolving a naming conflict, Using Namespaces, Designing an XML data structure, Normalizing Data, Normalizing DTDS

INTERNET SECURITY & FIREWALLS

Security Threats From Mobile Codes, Types Of Viruses, Client Server Security Threats, Data & Message Security, Various electronic payment systems, Introduction to EDI, Challenges–Response System, Encrypted Documents And Emails, Firewalls: Hardened Firewall Hosts, Ip- Packet Screening, Proxy Application Gateways, Aaa (Authentication ,Authorization And Accounting).

WEBSITE PLANNING & HOSTING

Introduction, Web Page Lay-Outing, Where To Host Site, Maintenance Of Site, Registration Of Site On Search Engines And Indexes, Introduction To File Transfer Protocol, Public Domain Software, Types Of Ftp Servers (Including Anonymous), FtpClients Common Command. Telnet Protocol, Server Domain, Telnet Client, Terminal Emulation. Usenet And Internet Relay Chat.

TEXT BOOKS

1. Internet & Intranet Engineering, - Daniel Minoli, TMH.

2 .Alexis Leon and Mathews Leon – Internet for Every One, Tech World.

REFERENCES

1. Eric Ladd, Jim O'Donnel –"Using HTML 4, XML and JAVA"-Prentice Hall of India -1999.

2. "Beginning Java Script "- Paul Wilton - SPD Publications -2001

Course Designers:

INFOSYS

Nitt.M

Dr. M. NITHYA, Prof & Head. Popt. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

3502	1I01	LEARNING IT ESSENTIALS BY DOING	Category	L	Т	Р	Credit							
			EC-IE	3	0	0	3							
PREA	MBLI	Ξ												
The pr	roposed	d elective course exposes the non-CS/IT students to IT I	Essentials.	The o	core n	nodu	les of this							
Electiv	Elective includes programming, Database and web Technology amongst other related topics. This cour													
refers	to the basic tools and technologies for the right type of website development and enable student to													
create	create simple web applications													
PRER	PREREQUISITE – NIL													
COUF	RSE O	BJECTIVES												
1	To learn about the essentials of Information Technology													
2	To get an idea about the scripting languages.													
3	To get an idea about the internet protocols													

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1	Unders	tand tl	ne netv	uting	Understa	und												
CO2.	Unders	tand tl	he func	lament	als of	web ap	plicati	ions an	d its m	nodeling	5	Understa	ind					
CO3. applic	Unders ations	tand a	nd lear	n the s	criptin	ig lang	uages	with de	esign o	of web		Understa	und					
CO4. techno	CO4. Analyze the process of mobile communication and network technologies Analyze																	
CO5. multir	CO5. Build simple interactive applications, database applications and multimedia applications.													Analyze				
MAP	IAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SI													PECIFIC OUTCOMES				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	S	М	М	М	-	-	-	-	-	-	-	М	S	М	М			
CO2	S	М	М	М	-	-	-	-	-	-	-	М	S	-	М			
CO3	S	М	М	М	-	-	-	-	-	-	-	М	S	М	М			
CO4	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-			
CO5	М	М	М	Μ	S	-	-	-	-	-	-	М	-	М	М			
S- Str	ong; M	-Medi	um; L-	Low														

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

Fundamentals of Computer architecture

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUSaddressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

Operating system

Introduction – memory management schemes Process management Scheduling – threads. Problem solving with algorithms- Programming styles – Coding Standards and Best practices -Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

RDBMS

Data processing – the database technology – data models-ER modeling concept –notations – Extended ER features -Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

Objected oriented concepts

Object oriented programming -UML Class Diagrams– relationship – Inheritance – Abstract classes – polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool – Application of OOC using Alice tool.

Client server computing

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers

URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security. **REFERENCES**

1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991

- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI,1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

M **Course Designers: INFOSYS** Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

3412	1113	ESSENTIALS OF INFORMATION											L	Т	Р	Cı	redit
5712	1115				TEC	HNU	LOGY	Υ			EC-	IE	3	0	0		3
PREA This c install to unc model relation	AMBL course lation, lerstan l to sto onal da	E aims t and en d the ore da tabase	o prov mphase various ta and $\frac{1}{2}$ and h	ide the izing p s conce l how ow the	e funda princip epts ar to ma e syste	amenta les apj nd fund nipula m mar	al conc plicational ctional te the nages t	cepts o on pac lities o m thro the cor	of Com kages of Data ough concurrent	nputer o . This c Ibase M Juery la nt usage	peration ourse a anagem inguage of data	ns lik ims a nent S s, the a in m	e han at fac Syste e eff nulti	rdware cilitatir ems, th cective user en	and ng the e met designviro	soft stu thoc gnir nme	ware ident 1 and ig of ent
COU	RSE C)BJE(ES													
1	To pr	ovide	basic k	nowled	lge of h	ardwa	re and	softwa	re com	ponents	of comp	outers	•				
2	To st	udy Pr	oblem	solving	Techn	iques a	and pro	gram c	levelop	oment cy	cle.						
3	Desi	gn and	l test s	imple	progra	ms in	C lang	guage									
4	Docu	iment	artifac	ts usir	ig com	mon q	luality	standa	ards								
5	Design simple data store using RDBMS concepts and implement																
COU	RSE C	OUTC	OME	S													
On the	e succe	essful	compl	etion c	of the c	ourse,	stude	nts wi	ll be a	ble to							
CO1 termir	Under: nologie	stand t s.	the Ba	sic kno	owledg	ge on h	nardwa	are and	l softw	are		Und	ersta	ind			
CO2. core in	Apply nforma	the kr tion to	nowled echnol	lge of : ogies	mather	natics	, scien	ice and	l comp	puting in	n the	App	ly				
CO3. Solvir	Under 1g Tecl	stand] hnique	Progra es	m Dev	volven	ent C	ycle ai	nd app	ly vari	ious Pro	blem	App	ly				
CO4.	Develo	op the	functi	on pro	grams	with a	all the	conce	pts in o	с		Ana	lyze				
CO5. Langu	Build age ar	and and rela	manipı tional	ılate r langua	elatior	nal dat	tabase	using	s Struc	ctured (Query	Ana	lyze				
MAP	PING	WITI	H PRC)GRA	MME	OUT	COM	ES Al	ND PF	ROGRA	MME	SPE	CIF	IC OU	TCC)M	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012	PSO1	PS	02	PSO3
CO1	S	Μ	Μ	Μ	Μ	-	-	-	-	-	-		-	S	Ν	1	Μ
CO2	S	Μ	М	М	M	-	-	-	-	-	-		-	S	Ν	1	М
CO3	S	М	М	М	М	-	-	-	-	-	-		-	S	Ν	1	M
CO4	S	М	Μ	Μ	Μ	-	-	-	-	-	-		-	S	Ν	1	M
CO5	S	М	Μ	М	М	-	-	-	-	-	-		-	S	Ν	1	М
S- Str	ong; M	I-Med	ium; L	L-Low													

M. Hith

Dr. M. NITHYA, Prof & Head. Popt. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

Introduction

Basics of computer systems - Various hardware components - Data storage and various Memory units - Central Processing Unit - Execution cycle - Introduce to software and its classifications. Operating system concepts- Introduction - Memory management - Process management - Intercrosses Communication - Deadlocks - File management -Device management.

Problem Solving Techniques

Introduction to problem solving - Computational problem and it's classification - Logic and its types -Introduction to algorithms - Implementation of algorithms using flowchart - Flowcharts implementation through RAPTOR tool - Searching and sorting algorithms - Introduction and classification to Data Structures - Basic Data Structures - Advanced Data Structures

Programming Basics

Introduction to Programming Paradigms and Pseudo Code - Basic programming concepts - Program Life Cycle - Control Structures - Introduction and Demonstration of 1-D Array and 2-D Array - Searching and Sorting techniques - Demonstration Concept of memory references in arrays –Strings - Compiler Concepts - Code Optimization techniques. Structured Programming – Functions – Structures - File Handling - Introduction to Software Development Life Cycle - Industry Coding Standards and Best Practices - Testing and Debugging - Code Review

Project Preparation

Project Specification - Preparation of High level design and Detailed design document, Unit Test Plan and Integrated Test Plan - Coding and Unit Testing activities - Integration Testing.

RDBMS

Data processing – the database technology – data models-ER modeling concept –notations – Extended ER features-Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements - Joins - Sub queries – Views-Database design Issues.

TEXT BOOKS

1. Information Technology Planning, Blokdyk Gerardus, Pearson 3rd Edition.

REFERENCES

- 1. "Computer Organization and Architecture" William Stallings, Pearson 8th Edition
- 2. "Database System Concepts"- Abraham Silberschatz, Hendry F Korth Indian 6th Edition.
- 3. "Computing Fundamentals and C Programming" Paperback 1 Jul 2017 by E Balagurusamy (Author)
- 4. "How to solve it by computer " R G Dromey, Pearson Edition 2006.
- 5. "Software testing "Principle and Practices Desikan Srinivasan, Gopalaswamy Ramesh, Pearson Edition 2005.

Course Designers:

INFOSYS

Nitt.M

Dr. M. NITHYA, Prof & Head. Pggt. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

34121116	INTRODUCTION TO MAIN FRAMES	Category	L	Т	Р	Credit
		EC-IE	3	0	0	3

PREAMBLE

The mainframe hardware and z/OS operating system grew up together and are highly complementary for reliability, availability, serviceability, scalability, security, and performance. The operating system taught in this course is z/OS, a widely used mainframe operating system. z/OS is known for its ability to serve thousands of users concurrently and for processing very large workloads in a secure, reliable, and expedient manner..

PREREQUISITE -

NIL

COURSE OBJECTIVES

COUL		DJEC		5											
1	To ge	et an id	lea abc	out the	mainfr	ame h	ardwai	re							
2	To ge	et an id	lea abc	out z/O	S										
3	To le	arn ab	out JC	L											
COU	RSE O	UTCO	OMES												
On the	e succe	ssful c	omple	tion of	the co	urse, s	tudent	s will t	be able	to					
CO1 U Termin	1 Understand Concept of Computer Architecture ,Mainframes OS and minology Understand 2. Understand Concept of virtual storage and its use in z/OS Understand														
CO2.	2. Understand Concept of virtual storage and its use in z/OS Understand														
CO3 U proced	O3 Understand Job Control language- Various statements in JCL- JCL ocedures Understand and Apply														
CO4. Langu	04. Build and manipulate relational database using Structured Query Apply														
CO5. J	Analyz COBC	e vario)L lang	ous for guage	ms of o	data re	presen	tation	and str	ructure	s suppor	rted	Apply ar	d Anal	yze	
MAPI	PING	WITH	PRO	GRAN	IME (OUTC	OME	S AND	PRO	GRAM	ME S	PECIFIC	OUTC	COMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO2	PSO3
CO1	S	М	Μ	М	-	-	-	-	-	-	-	-	S	М	Μ
CO2	S	М	Μ	М	-	-	-	-	-	-	-	-	S	-	Μ
CO3	3 S L M M											-	S	М	-
CO4	S	М	М	М	-	-	-	-	-	-	-	-	S	М	Μ
CO5	S	М	М	М	-	-	-	-	-	-	-	-	S	М	-

S- Strong; M-Medium; L-Low

N. Hitt

Dr. M. NITHYA, Prof & Head. Poget. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

UNIT -I EVOLUTION OF MAINFRAME HARDWARE

Overview of Computer Architecture - Classification of Computers - micro, mini, mainframes and super computer - Mainframe computer - key features - benefits - Evolution of Mainframes - Different hardware systems. Mainframes OS and Terminology: Operating systems on mainframes, Batch processing vs. online processing - mainframe operating system. - evolution - concepts of Address space, Buffer management - Virtual storage - paging - swapping – Dataset management in mainframes.

UNIT-II Z/OS AND ITS FEATURES

Z-operating system (Z/OS) - Virtual storage - Paging process - storage Managers - Program execution modes - Address space - Multiple virtual system(MVS), MVS address space, Z/OS address space - Dataset sequential and partial dataset - Direct access storage device(DASD) -Access methods - Record formats -Introduction to virtual storage access methods(VSAM) - Catalog – VTOC.

UNIT-III INTRODUCTION TO JCL

Introduction to Job Control language - Job processing – structure of JCL statements - Various statements in JCL - JOB statement - DD statement - JCL procedures and IBM utility programs.

UNIT-IV COBOL PROGRAMMING

Introduction – History, evolution and Features, COBOL program Structure, steps in executing COBOL. Language Fundamentals – Divisions, sections, paragraphs, sections, sentences and statements, character set, literals, words, figurative constants, rules for forming user defined words, COBOL coding sheet.. Data division – Data names, level numbers, PIC and VALUE clause, REDEIFNES, RENAMES and USAGE clause. Procedure Division – Input / Output verbs, INITIALIZE verb, data movement verbs, arithmetic verbs, sequence control verbs.

UNIT-V OVERVIEW OF DB2

Introduction to DB2 – System Service component, Database Service component, Locking Service component, Distributed Data Facility Services component, Stored Procedure component, catalogs and optimizer. DB2 Objects and Data Types - DB2 Objects Hierarchy, Storage groups, Database, Table space, Table, Index, Clustered index, Synonyms and aliases, Views, Data Types. DB2 SQL programming – Types of SQL statements, DCL, DDL, DML, SPUFI utility. Embedded SQL programming – Host variable, DECLGEN utility, SQLCA, single/multiple row manipulation, cursors, and scrollable cursors.

TEXT BOOKS

- 1. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley, 1992.
- Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech, 2002.
- 3. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.

REFERENCES

- 1. MVS JCL, Doug Lowe, Mike Murach and Associates.
- Mitt.M
- 2. AS/400 Architecture and Application The Database Machine by Till T. Lawrence (SPD Publications)

Dept. of Computer Science & Engs N.M.K.V. Engg. College, Salem. 3. Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech, 2002. 4.z/OS V1R4.0 MVS JCL Reference found online at

http://www-.ibm.com/support/docview.wss?uid=pub1sa22759706

5.z/OS V1R1.0 MVS JCL Reference found online at

http://publibz.boulder.ibm.com/cgibin/bookmgr_OS390/BOOKS/iea2b600/CCONTENTS

6. COBOL - Language Reference, Ver 3, Release 2, IBM Redbook.

7. COBOL - Programming Guide, Ver 3, Release 2, IBM Redbook.

8. Complete CL The Definitive Control Language Programming Guide by Ted Holt and Ernie Malaga (SPD Publication).

9. Nancy Stern & Robert A Stern, "Structured Cobol Programming", John Wiley & Sons, New York, 1973.

10. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.

11. Newcomer and Lawrence, Programming with Structured COBOL, McGraw Hill Books, New York, 1973.

12. Craig S Mullins, DB2 Developer's Guide, Sams Publishing, 1992.

13. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley, 1992.

14. C J Date & Colin J White, A Guide to DB2, Addison Wesley.

Course Designers:

INFOSYS

Nitt.M

Dr. M. NITHYA, Prof & Head. Pggt. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

34121120 MOBILE APPLICA							TION DEVELOPMENT Category L T P Cr						edit				
											EC-	E	3	0	0		3
In this modern era almost every hands has a handheld devices. Each handheld device have the computing capability to meet the half the needs of user such as banking, browsing, education and emergency etc. It is a must for a computer engineer to have some basic knowledge about the handheld devices platform and its supporting software development. This course will give adequate knowledge in developing a mobile applications for different such as Android, iOS, Windows. PRE REQUISITE – NIL														uting t is a id its obile			
PRE 1	REQU	ISITE	– NIL														
COU	RSE O	BJEC	TIVE	S													
1.	Unde	rstand	system	n requi	remen	ts for r	nobile	applic	ations								
2.	Gene	rate su	itable	design	using	specifi	ic mob	ile dev	elopm	ent fran	nework	S					
3.	Gene	rate m	obile a	pplicat	tion de	sign											
4.	Imple	ement	the des	sign us	ing spe	ecific n	nobile	develo	pment	framew	orks						
5. Deploy the mobile applications in marketplace for distribution																	
COURSE OUTCOMES																	
On the	e succe	ssful c	omplet	tion of	the co	urse, s	tudent	s will t	be able	to							
CO1 . applic	Expose ations	e to tec	chnolog	gy and	busine	ess tren	nds imp	pacting	mobil	e		Unde	ersta	nd			
CO2.0	Underst	tand ei	nterpris	se scale	e requi	remen	ts of m	obile a	applica	tions		Unde	ersta	nd			
CO3.	Familia	arize ii	n the G	raphic	s used	for Ar	ndroid	applica	ation d	evelopn	nent	App	ly				
CO4. applic	Compo ations	etent	with t	he ch	aracter	izatior	n and	archit	ecture	of mo	obile	App	ly				
CO5. one ap	Compe plication	etent v on dev	vith de elopm	esignin ent fra	g and mewor	develo k.	ping 1	nobile	applic	ations u	using	Anal	lyze				
MAP	PING V	WITH	I PRO	GRAN	IME (DUTC	OMES	S AND	PRO	GRAM	ME SI	PECI	FIC	OUT	COM	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12	PSO1	PS	02	PSO3
CO1	S	М	М	М	М	-	-	М	-	-	-	Ν	M	S	N	1	М
CO2	S	Μ	М	М	М	-	-	М	-	-	-	- M S M			1	М	
CO3	S	M	L	М	L	-	-	М	-	-	-]	L	S	N	1	М
CO4	S	Μ	M	М	М	-	-	М	-	-	-	Ν	M	S	N	1	М
CO5	S	Μ	M	Μ	L	-	-	Μ	-	-	-]]	L	S	N	1	Μ

S- Strong; M-Medium; L-Low

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

SYLLABUS UNIT I INTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications –Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

UNIT II BASIC DESIGN

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

UNIT IV TECHNOLOGY I – ANDROID

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi–Integration with social media applications.

UNIT V TECHNOLOGY II -IOS

Introduction to Objective C -iOS features -UI implementation -Touch frameworks -Data persistence using

Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

REFERENCES

1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.

2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.

3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

Course Designers:

INFOSYS

M. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K. V. Engg. College, Salem.

3412	34121110 CYBER FORENSICS Category								L	Т	Р	Cre	dit		
	EC-IE C-IE									3	0	0	3		
PREAN	PREAMBLE: To learn computer forensics and • To become familiar with forensics tools and learn to analyze and														
validat	e forei	iputer	loren lata	isies a	na • 1	o beco	ome n	amma	i with	Iorensi		ors and	learn t	o analyze	and
		ITE.													
PREKI															
	SE OB	JECT	IVES	formation											
2					$\frac{100}{100}$. 1									
2	To learn to analyze and validate forensics data														
3	To learn to analyze and vandate forensics data To learn Identify the vulnerabilities in a given network infrastructure														
4	To learn Identity the vulnerabilities in a given network infrastructure														
3	To In	npleme	ent real	-world	hacki	ng tech	iniques	s to test	system	n securit	У				
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. U	CO1. Understand the basics of computer forensics Understand														
CO2. Apply a number of different computer forensic tools to a given scenario Apply															
CO3. A	CO3. Analyze and validate forensics data. Apply														
CO4:. 2	Identify	the vi	ılnerat	oilities	in a giv	ven net	work	infrastr	ucture			Apply			
CO5: I	mpleme	ent rea	l-world	l hacki	ng tecl	hnique	s to tes	st syste	n secur	ity		Apply			
MAPP	ING W	ITH F	PROG	RAMN	AE OU	U TCO	MES A	AND P	ROGR	AMMI	E SPE	CIFIC	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO3
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L
CO2	S	S	M	-	-	M	M	L	-	L	-	-	S	L	L
CO3	S	s	M	L	- T	M	M		- M	- M	L	- I	S		-
C05	S	S	M	M	M	L	M	M	L	M	M	M	S	S	L
CO6	S	S	L	-	-	L	М	L	-	-	-	L	S	L	-
S- Stron	ng; M-N	/Jediur	n; L-Lo	OW			l								
											M				
									1	ATT					
									C						

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

UNIT I INTRODUCTION TO COMPUTER FORENSICS

Introduction to Traditional Computer Crime, Traditional problems associated with Computer Crime. Introduction to Identity Theft & Identity Fraud. Types of CF techniques - Incident and incident response methodology - Forensic duplication and investigation. Preparation for IR: Creating response tool kit and IR team. - Forensics Technology and Systems - Understanding Computer Investigation – Data Acquisition.

UNIT II EVIDENCE COLLECTION AND FORENSICS TOOLS

Processing Crime and Incident Scenes – Working with Windows and DOS Systems. Current Computer Forensics Tools: Software/ Hardware Tools.

UNIT III ANALYSIS AND VALIDATION

Validating Forensics Data – Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics

UNIT-IV ETHICAL HACKING

Introduction to Ethical Hacking - Footprinting and Reconnaissance - Scanning Networks - Enumeration - System Hacking - Malware Threats - Sniffing

UNIT V ETHICAL HACKING IN WEB

Social Engineering - Denial of Service - Session Hijacking - Hacking Web servers - Hacking Web Applications – SQL Injection - Hacking Wireless Networks - Hacking Mobile Platforms.

TEXT BOOKS:

1. Bill Nelson, Amelia Phillips, Frank Enfinger, Christopher Steuart, —Computer Forensics and Investigations^I, Cengage Learning, India Edition, 2016.

2. CEH official Certfied Ethical Hacking Review Guide, Wiley India Edition, 2015.

REFERENCES

1. John R.Vacca, -Computer Forensics, Cengage Learning, 2005

2. MarjieT.Britz, —Computer Forensics and Cyber Crimel: An Introductionl, 3rd Edition, Prentice Hall, 2013.

3. AnkitFadia — Ethical Hacking Second Edition, Macmillan India Ltd, 2006

4. Kenneth C.Brancik —Insider Computer Fraud Auerbach Publications Taylor & Francis Group–2008.

COURSE DESIGNERS

AVANZO

M.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3412:	1109		CRYPTOGRAPHY AND Category L NETWORK SECURITY										Р	Cre	dit
			NE		K SEU	UKI	Y		EC-	·IE	3	0	0	3	
PREAMBLE: To understand Cruntography Theories, Algorithms and Systems, and recessory Approaches and Techniques to															
To understand Cryptography Theories, Algorithms and Systems, and necessary Approaches and Techniques to build protoction mechanisms in order to secure computer networks.															
build pi	otectio	n mecr	ianism	is in or	der to s	secure	compu	iter net	works						
PRERI		ITE•													
NIL															
COUR	SE OB	JECT	IVES												
1 To understand Cryptography Theories, Algorithms and Systems.															
2	2 To understand necessary Approaches and Techniques to build protection mechanisms in order to secure														
	computer networks														
3	To Understand different cryptographic operations of symmetric cryptographic algorithms.														
4	To Un	Idersta	nd va	rious A	uthent	ication	schen	nes to s	imulate	e differe	nt app	lication	s		
5	To Understand various Security practices and System security standards.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
threats a	hreats and vulnerabilities Understand														
CO2. Apply the different cryptographic operations of symmetric cryptographic Apply															
CO3. Apply the different cryptographic operations of public key cryptography. Apply															
CO4: Apply the various Authentication schemes to simulate different															
applicat	applications. Apply														
CO5: U	Indersta	ind var	ious S	ecurity	practi	ces and	l Syste	m secu	rity sta	indards.		Apply			
MAPP	ING W	ITH F	PROG	RAMN	AE OU	JTCO	MES A	AND P	ROGR	RAMMI	E SPE	CIFIC	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO3
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-
CO5	S	S	М	М	М	L	М	М	L	М	М	М	S	S	L
CO6	S	S	L	-	-	L	М	L	-	-	-	L	S	L	-
S- Stror	ng; M-N	Aediur	n; L-L	ow	1	1									
SYLLA	BUS														
UNIT 1	I INTR	ODU	CTIO	N											
Security	y trends	s - Le	gal, E	thical	and Pr	ofessio	onal A	spects	of Sec	curity, N	Need f	or Secu	urity at	Multiple	levels,
Security	y Polici	ies - I	Model	of net	work	securit	y – S	ecurity	attack	as, servi	ces ar	nd mech	nanisms	– OSI s	ecurity
archited	architecture – Classical encryption techniques: substitution techniques, transposition techniques, steganography														
Foundations of modern cryptography: perfect security – information theory – product cryptosystem –															
cryptan	alysis.									NITH	VA				
									DI. 1	Prof & H	lead.				
								203	of Con	nputer Scie	nce & E	ngg m.			
								٧.	M.K.V. I	engg. com	-6", Sal				

UNITII - SYMMETRIC CRYPTOGRAPHY

MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures - Modular arithmetic-Euclid's algorithm- Congruence and matrices - Groups, Rings, Fields- Finite fields- SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis -Block cipher design principles – Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption Standard - RC4 – Key distribution.

UNITIII - PUBLIC KEY CRYPTOGRAPHY

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing – Factorization – Euler's totient function, Fermat's and Euler's Theorem - Chinese Remainder Theorem – Exponentiation and logarithm - ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange - ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

UNIT IV - MESSAGE AUTHENTICATION AND INTEGRITY

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC – SHA –Digital signature and authentication protocols – DSS- Entity Authentication: Biometrics, Passwords, Challenge Response protocols- Authentication applications - Kerberos, X.509

UNIT V SECURITY PRACTICE AND SYSTEM SECURITY

Electronic Mail security – PGP, S/MIME – IP security – Web Security - SYSTEM SECURITY: Intruders – Malicious software – viruses – Firewalls.

TEXT BOOKS:

1. William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006. **REFERENCES:**

1. C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security, Wiley India Pvt.Ltd

2. BehrouzA.Foruzan, Cryptography and Network Security, Tata McGraw Hill 2007.

3. Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: PRIVATE Communication in a PUBLIC World, Prentice Hall, ISBN 0-13-046019-2

COURSE DESIGNERS

AVANZO

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

34121108	CLOUD DATABASE MANAGEMENT AND	Category	L	Т	Р	Credit
	SECURITY	EC-IE	3	0	0	3

PREAMBLE

This syllabus is intended for the Engineering students and enables them to lean about Cloud Database Management and Security. This syllabus contains introduction about the cloud computing, sales force architectures, sales force UI and building blocks. Thus, this syllabus focuses on to know about Cloud Database Management and Security.

PREREQUISITE :NIL

COURSE OBJECTIVES

1.	To understand cloud computing security concepts														
2.	To stu	ıdy var	ious cl	oud set	rvices										
3.	To apply cloud computing in collaboration with other services														
4.	To understand the cloud Database management														
5.	To apply cloud computing online														
COURSE OUTCOMES															
On the s	On the successful completion of the course, students will be able to														
CO1: U	: Understand basic service concepts of cloud computing Understand														
CO2: U	Underst	and an	d apply	y sales	force a	rchited	ture					Underst	and		
CO3: <i>A</i>	Apply v	virtualiz	zation t	echniq	ues							Apply			
CO4: a	apply th	e attac	ks con	cepts ii	n Sales	force I	Buildin	g Bloc	ks			Apply			
CO5: U	Underst	and an	d apply	y legal	issues	in clou	d servi	ices				Apply			
MAPPI	ING W	TTH P	ROGI	RAMM	IE OU	TCON	AES A	ND PI	ROGR	AMMI	E SPECI	FIC OU	TCOM	IES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М		М		М	-	-	-	-	-	-		S	М	-
CO2		М	L		L	-	-	-	-	-	М	М	S		М
CO3			S	М		-	-	-	-	-	-			-	
CO4	S			М		-	-	-	-	-	-	М	S	М	М
CO5		М			М	-	-	-	-	-	-	М	S		-
S- Stror	ng; M-N	Mediun	n; L-Lo)W											

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

Course Curriculum Cloud Database Management and Security

Unit 1:

(9) Introduction to Cloud computing - CRM - Problems faced by the IT industry - Introduction to SaaS - PaaS -IaaS - What is Salesforce.

Practical: Introduction to JAVA programming.

Unit 2:

Salesforce Architecture - Conventional Database tables and objects - Standard and Custom objects - Objects and Fields – Datatypes – Aggregating and Validating Data - Relational Data Modelling

Practical: Learning and Building of Schemas

Unit 3: (9) What is UI – Introduction to salesforce UI - Customizing the salesforce UI – Salesforce terminology – Page layouts - App builder - Automating Business Process - Workflow rule - Process builder - Email Templates - Salesforce Application elements

Practical: Salesforce Building Blocks

Unit 4:

Data Security – Profiles and Roles – Audit and Troubleshooting: Audit logs – Debug logs – Email logs.

Practical: Creating users, Profiles, Roles and Groups.

Unit 5:

Database management - Reports and Dashboard management - Data loader - Uploading Relational Data -Standard and Custom Report types - Scheduling Report and

(9) Dashboards.

(9)

(9)

Practical (sample):

- Create an app for Event Management that takes care of Event Registrations, Confirmations, Cancellations, Speaker associations, and other event-related activities.
- Ticket booking system.

COURSE DESIGNERS

SALEM INFOTECH

N. Hit

Dr. M. NITHYA. - Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

		FI	NANC	E ANI	DACC	OUNT	ING		Catego	ry	L	Т	Р		Credit
341	21003		F	OR EN	GINE	ERS		(OE-IE	-	3	0	0	3	;
PREA rangir Accou throug organ	PREAMBLE: Engineers are in a position to do Decision Making during every activity in the industry. The activities ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance and Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpretation through data analysis and reporting in every transaction helps the organization to do decision making to run the organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources to do cost and Financial decisions with optimum resources for the betterment of the organization.														
PREF	REQUI	SITE:	Not R	equired		puntu	1110500					orgun			
COU	COURSE OBJECTIVES:														
 To understand the concepts and conventions to prepare Income Statement, and Balance Sheet. To apply the various methods to claim depreciation and 															
2. To apply the various methods to claim depreciation and 3. To practice fundamental investment decision through capital budgeting techniques															
3. To practice fundamental investment decision through capital budgeting techniques.															
4. 10 5. To	4. To analyse cost-volume profit analysis for decision making and analyse standard costing techniques.														
orderi	ng qua	ntities.	orking	capita	requi	emente	, 101 u a	y-10-00		nies an	la nanan	ing in v	citories wi		·
COU	RSE O	UTCO	MES:												
After	After successful completion of the course, students will be able to														
CO1:	Unders	tand th	e impo	ortance	of reco	rding,	book k	eeping	and rep	orting	of the	Ţ	Jnderstand		
busine	ess tran	saction	l.												
CO2:	Identif	y and a	Apply s	suitable	e metho	od for c	harging	g depre	ciation	on fixe	ed assets	. /	Apply		
CO3:	Analy	se the v	various	metho	ds of ca	apital b	udgetir	ng tech	niques	for inv	estment	1	Apply		
decisi	on.	.1	C		1	<u> </u>	1 .	· 1	1 /		<u> </u>	1	A 1		
costin	Justify g techn	the sco iques f	ope of c for deci	sion m	lume-pi aking.	rofit ar	alysis,	standa	rd costi	ng, and	d margin	al	Analyse		
CO5:	Estima	tion of	workir	ng capit	tal requ	iremer	nts of th	ne orga	nizatior	1.		I	Evaluate		
MAP	PING	WITH	PROC	GRAM	ME O	UTCO	MES A	AND P	ROGR	AMM	E SPEC	IFIC (OUTCOM	ES	
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO	2 PSO1	PSO2	PSO3
CO1	-	-	М	L	S	М	-	S	-	М	М	L	М	L	М
CO2	L	-	-	L	М	-	L	L	-	-	L	M	L	L	-
CO3	-	М	-	М	L	-	-	L	S	М	-	L	-	L	М
CO4	L	L	-	S	-	-	L	-	-	L	М	L	М	L	М
CO5	L	-	L	S	L	-	-	М	М	L	-	L	М	М	-
S- Strong; M-Medium; L-Low															
SYLLABUS: Introduction: Business Environment – Book Keeping and Accounting – Accounting Concepts and Conventions – Double entry system – Preparation of journal, ledger and Trial balance – Final Accounts. Deprecation: Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method. Diminishing Balance															
Metho	Method and Annuity Method.														
Capit	al Bud	geting	Decisi	ons: M	leaning	– Natı	ıre & Iı	mporta	nce of I	Comput nvestn	er Science	& Engy isions	– Types - F	inancial sta	tement
	Suprai Daugeting Decisions, meaning mature & importance where Englishing a types - I maneral statement														

analysis and interpretation - Types of Analysis - Objectives - Tools of Analysis - Ratio Analysis: Objectives, Uses and Limitations - Classification of Ratios: Liquidity, Profitability, Financial and Turnover Ratios - Funds Flow Analysis and Cash Flow Analysis: Sources and Uses of Funds, Preparation of Funds Flow statement, Uses and Limitations: Pay Back Period – Accounting Rate of Return – NPV – IRR - Profitability Index.

Marginal Costing: Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

Working Capital Management: – Types of Working Capital – Operating Cycle – Determinants of Working Capital – Receivables Management – Inventory Management – Need for holding inventories – Objectives – Inventory

Management Techniques: EOQ & Reorder point - ABC Analysis - Cash Management - Motives for holding cash.

Text Book

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

Reference Book

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- 1. Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in
2.	Dr. Rajeshkumar	Assistant Professor	Management Studies	<u>rajesh.mba@avit.ac.in</u>

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.
3412	1004		INNO	VATIO	N, PRO	DDUCT	1		Category	L	Т	Р	Credit
5112	1001		COM	MERC	IALIZ	ATION		c	DE-IE	3	0	0	3
PREA	MBLE		C '		1	1		. 1		1 /	1 /	1 *	
tech	merciali nologica	zation (al innov	of innovation to	market	and new	production producti production production production production production pr	ts in ta	st-paced	l, high-tech	markets an	d mate	ching	
PRER	EQUIS	ITE - N	Not Req	uired	opport								
COUR	SE OB	JECTI	VES										
1	To ma	ake stud	dents u	nderstar	nd mult	tiple-per	spectiv	e approa	ach in orga	nization to	captur	e kno	owledge
	and cr Ambig	reativity guous ('	y to dev VUCA)	velop s world.	uccessf	ul prod	ucts an	d servic	es for Vol	atile, Uncer	tain, (Comp	lex and
2	Inculo societ	ate a di	sruptive eral and	e though 1 marke	ht proce	ess to ge	nerate i which t	deas for	concurrent	and futurist	ic prol	olems	of
3	Impro	ved und	lerstand	ling of o	organiza	ational b	best prac	ctices to	transform	exciting tech	nolog	y into)
4	Critica	ally asse	ess and	evaluat	e innov	ation po	licies a	nd practi	ices in orga	nizations es	pecial	ly fro	m a
	cultur	al and le	eadersh	ip point	of view	N	• ,•	1			1	•	
	Expla:	In why I	innovat:	ion ises	sential	to organ	ization	al strateg	gy – especia	ally in a glob	al env	ronr	nent
On the		ful com	nletion	of the a	course	students	will be	able to					
CO1:	Underst	and the	role of	innovat	tion in s	paining a	and mai	ntaining	competitiv	ve advantage		Unc	derstand
CO2: I	ntegrate	the inn	ovation	basis a	and its r	ole in de	ecision	making	especially u	under uncert	ainty	App	oly
CO3: A	Analyze	busines	ss challe	enges in	volving	g innova	tion ma	nageme	nt			App	oly
CO4: H	Having p	problem	solving	g ability	v – solv	ing soci	al issue	s and bu	siness prob	lems		App	oly
CO5: 0	Comprel	nend the	e differe	ent sour	ces of i	nnovatio	on					App	oly
MAPP	PING W	ITH P	ROGR	AMME	E OUT	COMES	S AND	PROGR	RAMME S	PECIFIC C	OUTC	OME	ËS
COs	P 01	P 02	P 03	P 04	P 05	P 06	P 07	PO 8	PO9	PO10	PO	11	P012
CO1	М	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	М	-	-	-	-	-		-
CO3	S	S	S	М	М	М	-	-	-	-	-		-
CO4	S	S	S	М	Μ	М	-	-	-	-	-		-
CO5	S	S	S	М	M	Μ	-	-	-	-	_		-
S- Stro	ng; M-N	Medium	; L-Lov	V									
SYLL.	ABUS: uction 1	ta Inna	vation	Manao	ement	- Innova	ntion _ '	What it i	s? Why it I	Matters? - In	novati	ion as	s a Core
Busine	ss Proce	ess – sy	stem the	inking f	for inno	vation –	- Frame	work for	: System Th	ninking - sys	tem th	inkin	ig tools
				U					5				C
Creati	ng New	Produ	cts and	Servic	es - Pro	oduct and	d Servie	e Innov	ation – Exp	ploiting Ope	n Inno	vatio	n and
design	oration - thinking	-1 ne Co	oncept	or Desig	gn I nin	king and	l Its Ro	le within	LAND and	Innovation -	– fram	ewor	k ior
design	emmenny	>						Ċ					
Creati	ng New	Produ	icts and	l Servi	ces - P	roduct a	and Serv	vice Inho	Nation - I	Exploiting O	pen Ir	nnova	tion and
Collab	oration	-The C	oncept	of Des	ign Thi	nking a	nd Its I	Role wit	hin NPD a	nd Innovatio	on – fi	rame	work for
design	thinking ring Ing	y novatio	n Auto	ome -	New V	enture	Y.M. Benefi	LK.V. Eng	g. College, Sal	em. nd Learning	from	Innov	vation
Capiu	ing III	novano		onic -			וושווים	13 UI III	iovation, a		nom	unit,	

Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

The Product offer Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and

Organizational Change, 5th edition, Wiley.

Reference Books:

Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.
 Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

COUR	COURSE DESIGNERS:												
S.No	Name of the faculty	Designation	Department	E-Mail Id									
1	Dr.B.Rajnarayanan	Professor	Management Studies	rajnarayanan@vmkvec.edu.in									
2	Dr. Rajeshkumar	Associate Professor	Management Studies	rajesh.mba@avit.ac.in									

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

2/12	1007	G	OCIAI			NEUDO		Cat	tegory	L	Т	Р	Credit
5412.	1007	8	OCIAI	LENT	KEPRE	NEURSI	HIP	0	E-IE	3	0	0	3
PREA	MBLE										1		
Soci	al entre	preneur	ship inv	volves t	he crea	tivity, im	nagina	tion and	innovation	n often asso	ciated	with	
entre	preneur	ship.											
PRER	EQUIS	ITE - N	lot Requ	uired									
COUR	SE OB	JECTI	VES										
1	To pro	ovide s	tudents	with a	workin	ng knowl	ledge	of the c	oncepts, o	pportunities	and o	challe	nges of
	social	entrepr	eneursh	ip		U	U		1				e
2	2 To demonstrate the role of social entrepreneurship in creating innovative responses to critical social												
	needs (e.g., hunger, poverty, inner city education, global warming, etc)												
3	To engage in a collaborative learning process to develop a better understanding of the context and												
	domai	n of soc	cial entr	epreneu	Irship	<u> </u>	11	c	1	1 / 1	CI	, .	.1
4	To hel	p prepa	re you j	persona	lly and	professio	nally 1	for mean	ingful emp	ployment by	reflec	ting c	on the
5	Engag	$\frac{01}{2}$ social	a diverse	e groun	of soci	al entrenr	reneur	c					
	SE OU	TCOM	ES	c group	01 3001	arentiepi	leneur	3					
On the													
On the	success	iui com	pletion	of the c	course,	students v	will be	able to		2		1	
CO1: E	Explain t	the cond	cept soc	ial entr	epreneu	rship and	l distir	iguish its	s elements	from across	a	LIn	lanctond
traditio	nal for i	profits	uionai s	tructure	es from	traditiona	ai nonj	promis ic	social enti	erprises to		Un	lerstand
$CO2 \cdot A$	analyze	the one	rations	of a hu	nan ser	vice orga	nizatio	n using	social entr	enreneurial			
orienta	tion and	indust	ry asses	sment a	nd diag	nostic to	ols.	Jii usiiig	social cita	opronouriur		App	ply
CO3: A	Apply th	e Socia	l Busine	ess Moo	lel Can	vas and le	ean sta	rtup met	hods for p	lanning,		Δni	alv
develo	ping, tes	sting, la	unching	g and ev	aluating	g social cl	hange	ventures	8.			ΛPI	JIY
CO4: 0	Compare	e fundin	g optioi	ns for se	ocial ch	ange vent	tures.					App	ply
CO5: 1	The outc	omes of	f social	entrepr	eneursh	ip are foc	cused of	on addre	ssing persi	stent social		Ap	oly
problem	ns parti	cularly	to those	who at	e margi	inalized o	or poor						
MAPP	ING W		ROGRA	AMME		COMES A		PROGR	AMME S	PECIFIC U	DUTC	OME	S
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO	011	P012
CO1	M		-	-	-	M	S	S	_	М	_		-
CO_2	S	S	S	M	М	M	-	-	_	-	-		-
CO2 CO3	2	2	2	M	M	M	_						
CO3	2	2	2	M	M	M	_						
C04 C05	2	2 2	2 2	M	M	M		-				_	
S- Stro	ng: M-N	/Jedium	: L-Lov	V	141	141					I		

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS:

Social entrepreneurship – dimensions of social entrepreneurship – social change theories – equilibrium and complexity – theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture

sustainability model - feasibility study - planning - marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

 $\label{eq:constant} \textbf{Angel Investors \& Venture Capitalists} - difference - valuation of firm - negotiating the funding agreement$

- pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

Reference Books:

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

COURSE DESIGNERS

COURDE	DEDIGITERO			
S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr.B.Rajnarayanan	Assistant Professor	Management Studies	rajnarayanan@vmkec.edu.in

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

			ENG	INEEF	RING	STAR	TUPS	S AND	,	Cat	egory	L	Т	P	Credit	t
3412	1001			ENTE MA	ANAG	ENEU EME	RIAL NT			0	E-IE	3	0	0	3	
PREAM	MBLE:											1 1			1	
A start	up mea	ns co	mpany	y initia	ted by	y indiv	vidual	innova	ator (or entrep	reneurs	s to sea	rch for	a rep	eatable and	d
scalable	e busine	ess mo	odel. N	Aore sp	pecific	ally, a	startu	p is a i	newly	/ emerge	d busin	less ver	ture that	ıt aim	s to develop	р
a viable	e busine	ss mo	del to	meet a	a mark	tetplac	e need	s or w	ants i	n an opt	imum n	nanner.				
PRERI	EQUIS	ITE:	Not R	equire	d											
COUR	SE OB	JECI	TIVES	5:												
1. To u	ndersta	nd the	basic	s of Sta	artups	Manag	gemen	t and c	comp	onents.						
2. To an	nalyze t	he sta	rtups	fund m	anage	ment p	practice	es								
3. To p	ractice 1	he va	rious l	cinds o	of stocl	ks and	emplo	yment	t cons	sideration	ns in sta	artups.				
4. To ap	oply the	impo	ortance	of int	ellectu	al pro	perty r	ights a	and it	s proced	ures.					
5. To ex	xplore t	he ent	reprei	neurial	minds	set and	cultur	e.								
COUR	SE OU	TCO	MES:													
After s	uccessf	ul cor	npleti	on of	the co	urse, s	studen	ts will	be a	ble to						
CO1:	Explain	the c	oncep	t of eng	gineer	ing sta	rtups,	object	ives a	and funct	tions an	d its co	mponer	nts.	Understand	d
CO2: .	Analyze	e the s	startup	s fundi	ing iss	ues an	d remu	unerati	on pi	actices i	n startu	ps busi	ness.		Analyse	
CO3: .	Analyze	e the v	variou	s kinds	of sto	ocks ar	d emp	loyme	nt op	portuniti	es and	conside	ration i	n	Analyse	
startups	s busine	SS.														
CO4: (Compai	e and	contr	ast the	variou	is forn	ns of ir	ntellect	tual p	property	protecti	on and	practice	.	Analyse	
CO5:]	Explore	the e	ntrepr	eneuria	al min	dset ar	nd cult	ure tha	at has	been de	velopin	g in			Evaluates	
(compan	ies of	all siz	es and	indus	tries.										
MA	PPINC	F WI	CH PF	ROGR	AMM	E OU	TCON	MES A	ND	PROGR	AMM	E SPE	CIFIC (OUT	COMES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO10	PO11	PO12	PSO1	PSO	2 PSO3	
CO1	М	-	-	-	-	М	М	S	-	М	-	М	-	L	L	
CO2	S	S	М	M	Μ	L	-	-	-	-	-	М	L	L	-	
CO3	S	S	S	M	М	М	-	-	-	-	-	М	L	-	Μ	
CO4	S	S	S	Μ	Μ	М	-	-	-	-	-	М	-	M	L	
CO5	S	S	-	M	Μ	M	-	-	-	-	-	М	М	M	М	
S- Stro	ng; M-	Medi	um; I	L-Low												
SYLLA	ABUS:										M					
Elemen	nts of a	succ	essful	Start	up: S	Startup	Proce	ess – C	Creat	Manag	ement	Team a	ind Boa	rd of	Directors -	_
Evaluat	e mark	et and	d Tar	get Cu	stome	rs – E	Define	your]	prodi	ict or se	rvice –	prepar	ration o	f bus	iness plan	-
specific	proble	ms an	id cha	llenge	in star	tup.			D	Prof &	Head.					
								Dep	t. of C	Computer S V. Engo. Co	cience & ollege, Sa	Engy Ica.				
									· MA · Ab ·		and the state of					

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Equity Ownership – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures..

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID				
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in				
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in				

3412:	1006	NEV	V VEN	TURE	PLAN	NING AI	ND	Cat	egory	L	Т	Р	Credi t
			Μ	IANAG	EMEN	T		O	E-IE	3	0	0	3
PREA Cont vent	MBLE empora ure and	ry meth creatior	ods and	l best p isiness	oractices plan	s for the	entrep	preneur to	o plan, lau	nch, and ope	erate a	ı new	
PRER	EQUIS	ITE - N	lot Requ	uired									
COUR	SE OB	JECTI	VES										
1	1 An opportunity for self-analysis, and how this relates to success in an entrepreneurial environment.												
2	 2 Information and understanding necessary to launch and grow an entrepreneurial venture. 3 A realistic preview of owning and operating an entrepreneurial venture. 												
4	 A realistic preview of owning and operating an entrepreneurial venture. An entrepreneur must understand the diversity, emotional involvement, and workload necessary to succeed. 												
5	The op	portun	ity to de	evelop a	u busine	ess plan.							
COUR	RSE OU	тсом	IES										
On the	success	ful com	pletion	of the c	course,	students	will b	e able to					
CO1: E compo	Explain t nents.	the cond	cept of 1	new ver	nture pla	anning, o	bjecti	ves and f	unctions a	nd its		Uno	lerstand
CO2: A	Analyze	the bus	iness pl	an issue	es and r	emunerat	tion p	ractices in	n startups l	ousiness.		App	oly
CO3: E whethe	Explore er to "go	an entre for it"	epreneui or not.	ial idea	to the	point whe	ere yo	u can int	elligently a	ind decide		Арј	oly
CO4: C	Compare	e and co	ntrast tl	ne diffe	rent for	ms entrep	preneu	irial envi	ronment in	terms of the	eir	App	oly
	Terences	$\frac{1}{1}$ the busi	miaritie	es. an and b	nicineco	s model c	anvas	for your	idea			Δηι	
МАРР	PING W	TTH P						PROCR	AMME S	PECIFIC O	UTC		'S
	D D	D		D	P	D D						11	¹³ P012
COS	01	02	03	04	05	06	07	8	109	1010	10	11	1012
CO1	М	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	M	-	-	-	-	-		-
CO3	S	S	S	М	М	М	-	-	-	-	-		-
CO4	S	S	S	М	Μ	Μ	-	-	-	-	-		_
CO5	S	S	S	М	M	Μ	-	-	-	-	-		_
S-Stro	ng: M-N	Medium	; L-Lov	V									

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS:

STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising - How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

Text Book:

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

COURSE DESIGNERS

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in

N.Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

34121002	INTELLECTUAL PROPERTY RIGHTS	Category	L	Т	Р	Credit						
		OE-IE	3	0	0	3						
PREAMBLE: Th	ne course is designed to introduce	fundamental as	pects of In	tellectua	al property	Rights to students who are						
going to play a ma	ajor role in development and man	agement of inno	ovative pro	jects in	industries							
PREREQUISITI	E: NIL											
COURSE OBJE	CTIVES:											
1. To introdu	uce fundamental aspects of Intelle	ectual property I	Rights									
2. To dissem	ninate knowledge on patents and c	copyrights										
3. To dissem	ninate knowledge on trademarks,	Design and Geo	graphical I	Indicatio	on (GI),							
4. To dissem	ninate knowledge on Plant Variet,	Layout Design	Protection	and cre	ate aware	ness about						
current tre	ends in IPR											
5. To dissem	ninate knowledge on Legislation of	of IPRs and Alte	ernate Disp	ute Reso	olution							
COURSE OUTC	COMES:											
After successful	completion of the course, stude	nts will be able	to									
CO1: Understand	the important of intellectual prop	erty rights				Understand						
CO2: Apply for the	ne patents					Apply						
CO3: Understand	and apply for the copyrights					Understand						
CO4: Understand the important of trademarks Apply												
CO5: Appreciate the importance of IPR and its related issues Understand												
MAPPI	NG WITH PROGRAMME OU	TCOMES AN	D PROGR	AMMI	E SPECIE	TIC OUTCOMES						

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	L	-	-	-	-	L	S	L	-	L	-	L	L	М	-
CO2	L	S	S	М	М	L	-	-	-	-	-	L	М	L	-
CO3	L	S	L	М	М	L	-	-	-	-	-	L	М	L	-
CO4	L	S	S	S	Μ	L	-	-	-	-	-	L	L	L	-
CO5	L	S	S	М	-	L	-	-	-	-	-	L	М	L	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Unit 1 - Overview of Intellectual Property

Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India : Genesis and development – IPR in abroad - Major International Instruments Concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention, 1967, the Patent Co-operation Treatyo 1970; the TRIPS Agreement, 1994.

Unit 2 - Patents & Copyright

Patents - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application - Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

Copyright - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and licence of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights

Unit 3 – Trademarks, Design and Geographical Indication (GI)

Trademarks: Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

Design: Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

Geographical Indication (GI): Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

Unit 4 - Plant Varieties, Layout Design and Indian National Intellectual Property Policy

Plant Variety Protection: Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

Layout Design Protection: Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

Indian National Intellectual Property Policy: India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

UNIT - V: Legislation of IPRs and Alternate Dispute Resolution

Legislation of IPRs: The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – bitigation – Arbitration - Effective Mechanism for Business Issues.

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

Text Books:

1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

2. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

Reference Book:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1	P. S.Balaganapathy	Associate Professor	Management / AVIT	dydirectormanagementstudies@avit.ac.in
2	A. Mani	Associate Professor	Management / VMKVEC	mani@vmkvec.edu.in

Mitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3442	1001	3D) PRI	NTIN	IG Al	ND I'I	S	Cate	gory	L		Т	Р		Credit
			API	PLIC	ATIC	DNS		OE	E-EA	3		0	0		3
Pream The selection environ	nble course on of r nment.	is de nateri	signe al and	d to ii d equ	npart ipmeı	know nt and	ledge devel	and sk op a p	ills re roduc	lated to t using	o 3D pr this te	rinting echniq	techno ue in Iı	ologies, ndustry	4.0
Prere	quisite	e – N	IL												
Cours	se Obj	jectiv	e												
1 ′	Γo dis	cuss t	he ba	sic co	oncept	ts and	proce	dure fo	ollowe	d in 3I) print	ing me	thods		
2 '	To cor	struc	t a CA	AD m	odel f	for a r	equire	d produ	uct						
3 ′	To ide	ntify	the us	e of d	liffere	ent ma	terial	and sup	oport	structu	res				
4 ′	Го ехр	erime	ent wi	ith dif	feren	t 3d p	rinting	proces	SS						
5 ΄	To ide	ntify	the de	efects.											
Cours	se Out	come	es: O	n the	succe	essful	comp	letion	of th	e cour	se, stu	dents	will be	able t	0
CO1.	Dem	onstr	ate th	e vari	ous 3	D Pri	nting r	nethod	S			τ	Jnderst	and	
CO2.	Deve .STI	elop (L file.	CAD	Mode	ls ,Im	port a	and Ex	port C.	AD da	ata and	genera	ate A	Apply		
CO3.	Sele	ct a sj	pecifi	c mat	erial f	for the	e given	applic	ation.			I	Apply		
CO4.	Sele	ct a 3	D prii	nting	proce	ss for	an app	olicatio	on.			I	Apply		
CO5.	Able	e to id	entify	the I	Produ	ct defe	ects at	fter pos	st proo	cessing	- 9	I	Apply		
Марр	oing w	ith P	rogra	mme	Out	come	s and	Progr	amme	e Spec	ific O	utcom	es		
G 0	DO 1	РО	PO	PO	РО	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO	POI	2	3	4	5	6	7	8	9	0	1	2	1	2	3
C01	M	L S	- M	-	- M	-	-	-	-	-	-	-	M	-	-
CO2	<u>з</u>	<u>ь</u>	IVI I	- T		-	-	-	-	-	-	-	M	-	-
CO3	NI ĩ	M	L	L		-	-	-	-	-	-	2	M	-	-
CO4	S	M	-	-	M	-	-	-	-	1	tit	· <u>·</u> ·	M	-	-
CO5	Μ	S	M	M	-	-	-	-	-	Dr	A NITH	HYA,	L	-	L
S- Sti svi i	ong;]	M-M	ediun	n; L-	Low				Dent	of Com	Prof &	Head.	Engy		
3D PR	INTIN	IG &	CAL) FOI	R AD	DITI	VE M	ANUF	ACT	URIN	G (7 H	ilege, Sa rs.)	lem.		

Introduction, Process, Classification, Advantages, Additive V/s Conventional Manufacturing processes, Applications. CAD Data formats, Data translation, Data loss, STL format.

ADDITIVE MANUFACTURING TECHNIQUES (12Hrs.)

Stereo- Lithography, LOM, FDM, SLS, SLM, Binder Jet technology. Process, Process parameter, Process Selection for various applications. Additive Manufacturing Application Domains: Aerospace, Electronics, HealthCare, Defence, Automotive, Construction, Food Processing, Machine Tools

MATERIALS (8 Hrs.)

Polymers, Metals, Non-Metals, Ceramics. Various forms of raw material- Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties. Support Materials

ADDITIVE MANUFACTURING EQUIPMENT (10 Hrs.)

Process Equipment- Design and process parameters, Governing Bonding Mechanism Common faults and troubleshooting, Process Design

POST PROCESSING & PRODUCT QUALITY (8 Hrs.)

Post Processing Requirement and Techniques, Product Quality Inspection and testing, Defects and their causes

Text B	ooks							
1	Lan Gibson, Davi Prototyping to Dii	d W. Rosen and B rect Digital Manuf	rent Stucker, "Addit facturing", Springer,	ive Manufacturing Technologies:Rapid 2010.				
2	Khanna Editorial	l, "3D Printing and	l Design", Khanna P	ublishing House, Delhi.				
Refer	Reference Books							
1	CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017.							
2	Andreas Gebhard Tooling, Rapid N	t, "Understanding ⁄Ianufacturing", H	Additive Manufactu anser Publisher, 201	ring: Rapid Prototyping, Rapid 1.				
3	J.D. Majumdar an Material Science,	d I. Manna, "Lase 2013.	r-Assisted Fabrication	on of Materials", Springer Series in				
Cours	se Designers	-		-				
S.No	Faculty Name	Designation	Department/Na me of the	Email id				
1	L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.ac.in				

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

344210012		INDUSTRIAL ROBOTICS	Category	L	Т	Р	Credit			
344	210012	INDUSTRIAL RODOTICS	OE-EA	3	0	0	3			
Prea	amble									
The o	bjective of	f this course is to impart know	vledge about indu	stria	l robot	ts for their	control and			
desig	design.									
Prei NIL	Prerequisite : NIL									
Cou	Course Objective									
1	Be exposed to the fundamentals of robots									
2	To learn about Robot kinematics and dynamics									
3	To learn dif	ferent types of sensors used in rob	oots and its control							
4	To understa	nd the different types of actuation	systems used in rob	ots						
5	To understa	nd the robot control hardware and	their interfacing and	l prog	rammir	ng of robots				
Course Outcomes: On the successful completion of the course, students will be able to										
CO	1. Underst	and the basic configurations ar	nd kinematic syster	ns of	robots	U	nderstand			
СО	CO2. Solve problems of robot kinematics and dynamics Apply									

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

CO3.	Understand the different types of sensors used in robot systems and their applications, different types of control systems used in robots	Understand
CO4.	Understand and applications of the different types of actuators used in robot systems	Apply
CO5.	Understand the robot control hardware systems and their interfaces, different robot programming techniques for various applications.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	L	-	-	-	-	-	-	S	-	L
CO2	S	S	М	М	-	М	-	-	-	-	-	-	S	-	L
CO3	S	М	М	М	-	М	-	-	-	-	-	-	S	-	L
CO4	S	S	М	М	-	L	-	-	-	-	-	-	S	-	L
CO5	S	S	L	S	-	S	-	-	-	-	-	-	S	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO ROBOTICS

Types and components of a robot, Classification of robots, closed-loop and open loop control systems. Kinematics systems; Definition of mechanisms and manipulators, Social issues and safety.

ROBOT KINEMATICS AND DYNAMICS

Kinematic Modelling: Translation and Rotation Representation, Coordinate transformation, DH parameters, Jacobian, Singularity, and Statics - Dynamic Modelling: Equations of motion: Euler-Lagrange formulation.

SENSORS AND VISION SYSTEM and ROBOT CONTROL

Sensor: Contact and Proximity, Position, Velocity, Force, Tactile etc. - Introduction to Cameras, Camera calibration, Geometry of Image formation, Euclidean/ Similarity/Affine/Projective transformations - Vision applications in robotics.

Basics of Robot control: Transfer functions, Control laws: P, PD, PID. - Non-linear and advanced controls.

ROBOT ACTUATION SYSTEMS

Actuators: Electric, Hydraulic and Pneumatic; Transmission: Gears, Timing Belts and Bearings, Parameters for selection of actuators.

CONTROL HARDWARE AND INTERFACING

Embedded systems: Architecture and integration with sensors, actuators, components, Programming for Robot Applications.

Text Books

		Dr. W. Retting,
	Saha, S.K., "Introduction to R	lobotics, 2nd Edition, McGraw-Hill Higher Education,
1	New Delhi, 2014.	Dept. of Computer Science & Engs V M K V Enge, College, Salem.

A 11991 117 4

2	Mittal R.K. and Nagr	ath I.J., "Robotics	and Control", Tata Mc	Graw Hill.						
Refe	Reference Books									
1	1 Ghosal, A., "Robotics", Oxford, New Delhi, 2006.									
2	Niku Saeed B., "Introduction to Robotics: Analysis, Systems, Applications", PHI, New Delhi.									
3	3 Steve Heath, "Embedded System Design", 2nd Edition, Newnes, Burlington, 2003									
4	Merzouki R., Samanta Mechatronic System: 1	ray A.K., Phathak Modeling, Control	P.M. and Bouamama B and Diagnosis", Spring	. Ould, "Intelligent ger.						
Cou	rse Designers									
S.N	Io Faculty Name	Designation	Department/Name of the College	Email id						
1	Prof. J.Satheesbabu	Associate Professor	Mech/VMKVEC	satheesbabu@vmkvec.edu.in						

36921001	BIOMOLECULES -	Category	L	Т	Р	С		
	STRUCTURE AND FUNCTION	OE-EA	3	0	0	3		

PREAMBLE

Biomolecules like carbohydrates, proteins, fat are vital components of any living system. Basic knowledge about them helps in maintaining a healthy lifestyle, free of sickness and a general awareness about hygiene.

PREREQUISITE NIL

COURSE OBJECTIVES

1	To give an overview of importance of biomolecules					
2	To elaborate the structure of proteins and nucleic acids and its role in disease.					
3	To enumerate the role of carbohydrates and their cellular function in physiology and pathology					
4	To enumerate the role of lipids and their cellular function in physiology and pathology.					
5	To briefly cholesterol and its role in diseases					
COURSE OUTCOMES						
After t	he successful completion of the course, learner will be able to					
CO1. F	Relate the basics of biomolecules in and around him	Understand				
CO2. U	CO2. Understand the structure of biomolecules such as proteins and nucleic acids Understand					
CO3. I	CO3. Discover the role of carbohydrates in healthy and diseased conditions. Apply					
CO4. I	Relate disfunctioning of lipids with disease V.M.K.V. Engg. College, Salem.	Analyse				

CO5. Criticize the role of cholesterol in diseases. Evaluate MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO₂ PO1 PO₂ PO3 PO4 PSO3 C01 Μ L L L L _ _ _ _ S CO2 S М Μ L _ ----_ _ _ _ -CO3 L М Μ S L Μ CO4 М L L L L S L --S --Μ L Μ CO5 S L L М S S Μ

S- Strong; M-Medium; L-Low

SYLLABUS PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and non-essential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.

4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

COU	COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.P.David	Aggistant professor	Pharmaceutical	davidannarai@vmkvec.edu.in							
1	Annaraj	Assistant professor	Engineering								
2	Ms.S.Sowmiy	Aggistant Professor	Pharmaceutical	committee umkues@umrf.edu.in							
2	a	Assistant Floressor	Engineering	sownnya.vnikvec@vnir1.edu.in							

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

36921002		PHARMACOGENOMICS	Category	L	Т	Р	Credit				
	0/21002		OE-EA	3	0	0	3				
PRI	PREAMBLE										
Pha	Pharmacogenomics involves the study of the relationship between an individual's genetic makeup and										
his o	his or her response to a drug. Pharmacogenetics, a component of pharmacogenomics, is the study of the										
relationship between a single gene and its response to a drug.											
PRI	PREREQUISITE - NIL										
COURSE OBJECTIVES											
1	Discuss about the basic knowledge about pharmacogenomics and drug design using genomic										
	applications for drug action and toxicity.										
2	Perform how individualization of drug therapy can be achieved based on a person's genetic makeup while reducing unwanted drug effects.										
3	Outline the Pharmacogenomics studies on how genetic differences between individuals can affect										
	responses to various drugs.										
4	Formulate on medicine skills acquired by the student and his action in different pathologies										
5	Develop acq	uire knowledge about the influence of genet	tic alterations o	n the th	erapeu	tic ef	fect and				
	adverse react	tions of the drugs, from a perspective of ind	ividualized the	rapy.							
CO	URSE OUTC	OMES									
Afte	er the successf	ul completion of the course, learner will be	able to								
CO	l.Recognize th	ne effect of genetic differences between indi	ividuals in the	outcom	e of 1	Reme	mber				
drug	g therapy and i	n drug efficacy and toxicity.									
CO2	2. Describe th	ne role of single nucleotide polymorphism	n as a biomar	ker for	the 1	Unde	rstand				
prec	liction of risk,	therapeutic response and prognosis of malig	gnancies.								
CO	3. Utilize and	manage the new genomics based tools as	they become a	vailabl	e as	Unde	rstand				
well	as make best	treatment choices.									
CO	4. Examine the	e applications of genomics principles in dru	g action and to	xicolog	gy A	Analy	ze				
CO	5. Validation of	of case studies related to pharmacogenomics				Analy	/ze				
MA	PPING WIT	H PROGRAMME OUTCOMES AND PI	ROGRAMME	SPEC	IFIC (OUTO	COMES				

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L	
CO2	М	М	Μ	М	L	-	-	-	М	-	L	L	L	L	-
CO3	S	S	S	S	L	-	-	-	М	-	L	L	L	L	-
CO4	М	М	Μ	М	М	-	-	-	S	-	L	L	Μ	L	-
CO5	L	L	L	L	S	-	-	-	М	-	М	М	S	М	-
S_ Sti	ong M_	Mediu	m· I _]												

S- Strong; M-Medium; L-Low

SYLLABUS

PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy,Barriers.

HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket. Dept. of Computer Science & Engs

V.M.K.V. Engg. College, Sale

PHARMACOGENOMICS – CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs, chemotherapeutic agents for cancer treatment.

TEXT BOOKS

- 1. Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- 3. Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

	MUNICIPAL SOLID AND WASTE	Category	L	Т	Р	Credit
34221002	MANAGEMENT	OE-EA	3	0	0	3

Preamble

Structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include m and e objects such as buildings and machines and natural objects su ch as biological organisms, minerals and chemicals.

Prere	equisi	te: N	il												
Cours	e Obje	ctives													
1.	The o	n-site	e/off-s	ite pro	ocess	in gof	the s	ame a	nd the	e dispos	sal met	hods.			
2.	The s munic	tuden cipal s	t is ex solid v	xpecte waste.	d to k	now a	about	the va	rious	effects	and di	sposal	options	s for the	2
3.	The c	ollect	tion a	nd sup	ply of	f wate	er								
4.	The o	ffsite	proce	essing	invol	ved ir	n site								
Cours	e Outc	omes													
On th	e suco	cessfu	ıl com	pletic	on of t	he co	urse, s	studer	nts wil	ll be ab	le to				
Co1.	Apply	y abou	it the	types	of wa	ste &	Sour	ces				A	nalyze		
Co2.	Apply	y the o	on site	e Stora	age &	Proce	essing	5				A	pply		
Co3.	Apply	y abou	it the	collec	tion &	& tran	sfer tl	he wa	ste			A	pply		
Co4.	Apply	y the p	proces	ss of o	offsite	proce	essing					A	pply		
CO5.	Appl	y abo	ut the	solid	waste	e disp	osal					А	pply		
Map	ping v	with H	Progr	amme	e Out	come	s and	Prog	ramm	ne Spec	ific Ou	itcom	es		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	•	-	-	S
CO2	S	М	L	S	-	-	-	-	-	-	-	-	-	-	S
CO3	S	М	М	S	-	-	-	-	-	-	-	-	-	-	S
CO4	S	М	М	М	-	-	-	-	-	-	-	-	-	-	S
CO5	S	М	М	-	-	-	-	-	-	-	-	L	-	-	S
S-Str	ong; M	I-Medi	um; L-	Low											

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

Syllabus

SOURCESANDTYPESOFMUNICIPALSOLIDWASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization– public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

ON-SITESTORAGE&PROCESSING

On-site storage methods-material sused for containers-on-site segregation of solid was tes-

publichealth&economicaspectsofstorage-optionsunderIndianconditions-Critical Evaluation of Options.

COLLECTIONANDTRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

OFF-SITEPROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis –options under Indian conditions- cradle to grave management concept, Prevailing laws of hazardous waste management- Risk assessment.

DISPOSAL

Dumping of solid waste; sanitary land fills-site selection, design and operation of sanitary land fills-site selection, design and d

Leachatecollection&treatment.

TextBooks

1. GeorgeTchobanoglouset.al., "IntegratedSolidWasteManagement", McGraw-HillPublishers, 2002.

- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.
- 3. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest publication, (1992).

ReferenceBooks

- 1. R.E.LandrethandP.A.Rebers, "MunicipalSolidWastes-problemsandSolutions", LewisPublishers, 1997.
- 2. BhideA.D.andSundaresan,B.B., "SolidWasteManagementinDevelopingCountries", INSDOC, 1993.
- 3. Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002).
- 4. Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9.
- 5. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development,

Government of India, New Delhi, (2000).

S.No.	NameoftheFaculty	Designation	Department	MailID
1	Mrs.P.Subathra	AssistantProfessor	Civil/AVIT	subathra@avit.ac.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

	221001 DISASTED DISK MANACEMENT Category L T P Credit														
342210	O01		DISA	STER	RISK N	MANA	GEMEN	NT		OE-EA	,	3	0	0	3
Preambl	e														
This co agains metho	ourse t built ds of 1	deals stru mitig	s with ctures gating	the va , and l variou	urious Hazaro 1s haza	disast d Asse ards su	ers an essmer ich tha	d to ex nt proc at their	kpose t edure r impa	the stud in India ct on co	lents ab a. This ommun	out the course ities is	e measu also de reduceo	res, its als with d.	effect 1 the
Prerequi	isite														
			NIL												
CourseO	utcom	es													
1 ј	Го Und	lersta	ind bas	sic con	cepts i	n Disa	ster Ma	anagen	nent						
2 J	Го Und	lersta	nd De	finitior	is and '	Termir	ologie	s used	in Disa	aster Ma	anageme	ent			
3 Т	Fo Unc	lersta	und the	Challe	enges 1	oosed b	v Disa	asters			0				
4]	Fo und	ersta	nd Im	bacts of	f Disas	ters	J								
COUR	DURSEOUTCOMES														
On th	ne succ	essfu	ıl com	pletion	of the	course	e, stude	ents wi	ll be al	ble to					
CO1.U	nderst	and t	he var	ious ty	pes of	disaste	r viz F	Iydrolo	ogical,	Coastal	and Ma	rine			
Disaste Windaı	ers, Ati nd Wa	mosp ter D	heric I riven l	Disaster Disaste	rs, Geo rs.	ologica	l, Mass	s Move	ement a	and Land	l Disast	ers,	Understa	und	
CO2.Id disaster	lentify r and S	the p Sugge	ootenti est suit	al defic able re	ciencie media	s of ex l measu	isting ares.	buildir	igs for	Earth qu	ıake	١	Understa	und	
CO3.D measur	erive t res for	he gu Eartl	iidelin 1quake	es for t disast	he pre er.	caution	nary m	easure	s and re	ehabilita	tion		Apply		
CO4.D	erive t	he pi	otectio	on mea	sures a	against	floods	s, cyclo	one, and	d landsli	des.		Apply		
CO5.U	Inderst	and t	he effe	ects of	disaste	ers on t	ouilt str	ructure	s in Ind	dia		I	Understa	ind	
MAPPI	INGWI	THP	ROGR	AMME	OUTC	OMES	ANDPI	ROGRA	AMME	SPECIFI	COUTC	COMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	М	М	L	L	-	М	-	-	-	-	-	-	L	-	-
CO3	S	М	S	М	-	L	-	М	-	-	-	-	М	L	-
CO4	S	M	S	- T	L	-	-	-	-	-	-	-	M	L	-
CU5 S-Stron	L a·M M	L	- n·L Lo		-	-	-	-	-	-	-	-	L	-	-

SYLLABUS INTRODUCTION:

Conceptofdisaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

RISKASSESSMENTANDVULNERABILITYANALYSIS: ⁴

Responsetime, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment; Dimensions of vulnerability factors; Vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards; K. V. Engg. College, Salen.

DISASTER MANAGEMENT MECHANISM:

Conceptsofriskmanagementandcrisismanagement;Disastermanagementcycle;ResponseandRecovery;Development,Prevention,MitigationandPreparedness;Planningfor relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response andRecovery Phases of Disaster

DISASTER RESPONSE:

Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and StressManagement;RumourandPanicManagement;MinimumStandardsofRelief;ManagingRelief;Funding.

DISASTER MANAGEMENT IN INDIA:

Strategies for disaster management planning; Steps for formulating a disasterriskreductionplan;DisastermanagementActandPolicyinIndia;Organisationalstructurefordisastermanagement tinIndia;Preparation of state and district disaster management plans, , Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

TEXTBOOKS:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423 2.
- Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10:1259007367, ISBN-13: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES:

- 1. AbarquezI.&MurshedZ.CommunityBasedDisasterRiskManagement:FieldPractitioner'sHandbook,AD PC,Bangkok,2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S.C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

- 4. ManualonNaturalDisasterManagementinIndia,NCDM,NewDelhi,2001.
- 5. DisasterManagementinIndia, MinistryofHomeAffairs, GovernmentofIndia, NewDelhi, 2011.
- 6. NationalPolicyonDisasterManagement,NDMA,NewDelhi,2009.
- 7. DisasterManagementAct.(2005), MinistryofHomeAffairs, GovernmentofIndia, NewDelhi, 2005.

CourseDesigners											
S.No.	NameoftheFaculty	Designation	Department	MailID							
1	Ms.S.IsparaXavier	AssistantProfessor	Civil/AVIT	isparaxavier.civil@avit.ac.in							

Mitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

346210)01	01 GREEN POWER GENERATION SYSTEMS Category L T P Credi C Credi C Credi C Credi C Credi														
											OE-EA	3	0	0		3
PREA	MB	SLE														
The co	ourse	e prese	ents the	variou	is soui	rces of	renew	vable end	ergy incl	luding	wind, so	olar, a	ind bio	mass	as p	otential
source	S OI	energ	y and to harr	investi	gates t	the col	tribut	ion they	can ma	ke to	the ener	gy pr	offile o	t the	nati	on. The
and so	cial	nolicy	are into	egral c	ompon	ents of	f the co	ourse.	iicu. Dis	cussio		JIIOIII		IOIIII	iciit,	ponties
PRER	EQ	UISIT	E: NII	L	ompon			54150.								
COUR	RSE	OBJI	ECTIV	ES												
1	Uı	ndersta	and the	nexus	betwee	en ener	gy, en	vironme	nt, and s	ustaina	ble deve	elopm	ent			
2	Aj	oprecia	ate ener	gy eco	system	ns and	its imp	act on e	nvironm	ent						
3	Le	earn ba	sics of	variou	s types	of ren	ewabl	e and cle	ean energ	gy tech	nologies					
4	Serve as bridge to advanced courses in renewable energy															
COUR	OURSE OUTCOMES															
On the	suc	cessfu	l compl	letion of	of the c	course,	studer	nts will b	be able to)						
CO1: I	CO1: Explain renewable energy sources & systems. Understand															
CO2: <i>A</i>	CO2: Apply engineering techniques to build solar, wind, tidal, geothermal, biofuel, fuel															
cell, H	ydro	ogen, a	and ster	ling en	gine.									Δ	ppiy	
CO3: 4	Ana	lyze a	nd eval	uate th	e imp	licatior	n of re	newable	energy.	Conce	epts in s	olving	5	Δn	alvz	۵
numeri	ical	proble	ms pert	taining	to sola	ar radia	ation g	eometry	and win	d energ	gy syster	ns.		ЛІ	aryz	C
CO4: 1	Den	nonstra	ate self	-learn	ing ca	pabilit	y to c	lesign &	establis	sh rene	ewable e	energy	/	۸n	ماري	9
system	IS.													ЛІ	aryz	C
CO5:	crea	te exp	erimen	ts to a	assess	the pe	rforma	ance of	solar PV	V, sola	r therma	al and	1		1	
biodies	sel s	ystem	S											A	ррту	
MAPP	PIN	G WI	TH PRO	OGRA	MME	OUT	COM	ES AND	PROG	RAMN	ME SPE	CIFI	C OUI	CON	AES	
COS	P	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PS	02	PSO3
	0 1															
CO1	S	-	-	-	М	-	L	L	-	-	-	-	М		-	-
CO2	S	М	S	L	М	-	L	М	-	М	-	-	-		-	-
CO3	S	-	-	-	М	-	-	М	М	-	-	-	L		-	-
CO4	S	-	-	-	М	-	L	-	-	-	-	М	-		-	-
CO5	S	М	S	L	М	-	L	М	-	M	M	-	M		L	-
CO6	S	-	-	-	М	-	L	L	-	DI	-	-	-		-	-
S- Stro	ng;	M-Me	dium; l	L-Low					Dr. M	. NITH	YA,					

Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

SYLLABUS

ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

RENEWABLE SOURCES OF ENERGY

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

TEXTBOOKS:

- **3.** Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 4. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.

REFERENCE BOOKS:

- 3. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 4. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	BEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEEM. NI	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	V.M.K.V. Engg. Co	rattankumar@avit.ac.in

34621	002		INDU	J STRI	AL D	RIVES	S ANI) AUT	'OMA'	TION		Catego y	or L	T	Р	С
												OE-E	A 3	0	0	3
Preamble	e															
To introd	uce fou	Indatio	on on t	he prin	ciples	of driv	ves &	autom	ation a	nd the	ir elem	ents wit	h the im	pleme	ntati	on.
PREREC	QUISIT	E : N	IL													
COURSI	E OBJI	ECTI	VES													
1		To e	xplore	the va	rious .	AC,DC	C & Sp	becial l	Machir	ne Driv	ves for	industri	al Appli	cation		
	2	To s	tudy a	bout th	ne vario	ous Op	en loc	p and	closed	loop	control	scheme	s for dri	ves		
3		To k	now a	bout h	ardwa	re imp	lement	ation	of the c	control	lers us	ing PLC				
4		To s	tudy tl	ne cono	cepts o	of Disti	ibuted	l Conti	ol Sys	tem						
5		Του	o understand the implementation of SCADA and DCS													
COURSI	E OUT	СОМ	OMES													
On succe	essful co	al completion of the course, the students will be able to														
СО	1	To ι char	underst	tand w	orking d selea	princ	iples c riteria	of vario	ous typ	bes of	motors	s, differe	ences,	Und	ersta	and
СО	2	To a conc	apply the providence of the pr	he kno n vario	wledge us indu	e in se ustrial	lection applic	of mo ations	otors, h	neating	effect	s and br	aking	А	pply	1
СО	3	То е	xplain	contro	ol meth	nods of	f speci	al driv	es					Und	ersta	and
СО	4	To c Auto	carry o omatio	out pr n prob	ogram lems i	ming n indus	using stries.	PLC	and u	ise of	vario	us PLC	's to	Und	ersta	and
CO	5	To a same	discuss e in co	s super mplex	visory autom	contr ation a	ol and areas	l data	acquis	ition 1	nethod	l and us	e the	Und	ersta	and
CO	6	To u Inter Auto	inderst rfacing omatio	and a devic	nd use es to	e logio enhano	cal ele ce con	ements trol &	and comn	use of nunica	f Hum tion as	an Mac spects of	chine f	Und	ersta	and
Mapping	with Pr	ogran	nme ou	itcome	s and l	Progra	mme S	Specifi	c Outc	omes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	I	PSO3
CO1	S	S	L	-		S	S	-		L	-	-	-	-		L
CO2	М	-	М	-	S	L	М	-	M	HAT	.M	-	L	-		-
CO3	М	-	М	-	S	L	М	-	C	L	VA.	-	-	M		-
CO4	S	-	S	-	S	М	М	L	Dr. IV	Prof & I	lead L	ngg	-	-		L
CO5	S	М	S	S	S	М	S	Y.M	M.V. E	ngg. Coll	cge, Sale	M	-	L		М

INTRODUCTION

Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

INDUSTRIAL DRIVES

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logicRelays- Features of PLC- Advantages of PLC over relay logic -

Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS – Functional elements of DCS – Elements of local control unit -Interfaces-Types of information displays – Architecture of anyone commercial DCS – Advantages of DCS -Selection of DCS – List of various DCS and their manufactures.

SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

TEXTBOOK

- 4. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 5. FrankD.petruzellaprogrammable logic controlsthird edition TATA mc graw-hill edition 2010.
- 6. M.S.Berde, Electric Motor Drives Khanna publishers.2008

REFERENCES

- 7. Pradheepkumarsrivastava, Programmable logic controllers with applications', BPB publications.2004.
- 8. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 9. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 10. R.SrinivasanSpecial electrical Machines lakshmi publication.2012
- 11. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 12. Andrew Parr, Industrial drives, Butterworth Heineaman

COURSE D	ESIGNERS	it. M
Sl No	Name of the Faculty	Designation Department Mail ID
1	Dr.L.Chitra	Professor D . MEEE AVIT chitra@avit.ac.in
2	Dr.R.Devarajan	Professor. M.K. V. EFE/VMK.VEC. devarajan@vmkvec.edu.in

201/	FOOD AND NUTRITION Category L T P Credit														
3812	21001		ľ	000	TEC	HNOI	LOG	Y		0	E-EA	3	0	0	3
PREA The co sensor the imp engine	MBL ourse a y aspe portan ering	E tims to ects, T tice of and pa	o enat o fam food s ackag	ble the illiariz safety ing in	stude the food food	ents to studer qualit indust	unde nts abo zy, foo ry.	rstand out the od pla	the pl e proce nt¬ sa	nysicoc essing a nitatior	hemicand pre	al, nutr eservati laws a	itional, on tech nd regu	microl niques lations	biological and . To emphasize s, food
PRER	EQU	ISITH	E - NI	L											
COU	RSE C	BJE	CTIV	ES											
1 Understand the tradition food processing techniques and the basics concept of food biochemistry 2 2															
2 Demonstrate the product development technique, quality and contaminant check															
3 To	o artic	ulate	their t	echnie	cal kr	owled	lge fo	r indu	strial p	purpose	e				
4 D	4 Describe national food laws and standards														
5 La	5 Laws and qualities of standard for food products														
COUF	RSE C	DUTC	OME	2S											
After t	he suc	cessf	ul con	npleti	on of t	the co	urse, l	learne	r will l	be able	to				
CO1: R	Recall t	he pro	cessin	g tech	niques	practi	ced in	olden	days a	nd the b	oilogic	al proce	ess		Remember
CO2. Il contam	llustrat inant	the the r	nethoo	ls for a	animal	produ	ct dev	elopm	ent, qu	ality con	ntrol an	d also s	creen th	e	Understand
CO3.T	ransfer	the te	chniqu	ies in s	scaling	g up fo	r indu	strial n	leeds						Apply
CO4. 1	Interpr	et and	Troub	leshoc	ot instr	uments	s to m	aintain	accura	су					Apply
CO5. D	Develop	o stand	lards f	or foo	d addit	ives									Apply
MAPI	PING	WIT	H PR	OGR	AMM	ΈΟ	JTCC	MES	AND	PROC	GRAM	ME SI	PECIFI	COU	TCOMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	2 PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	M	S	M	L	-	-	-	-	-	-	-	M	L	-
CO4	М	S	S	M	L	-	-	-	-	-	-	- M	S	S	-
CU5			s lium:		IVI	-	-	-	-	-	-	IVI	L	3	-
s- suc	mg; w	i-ivied	num;	L-L0\	v										

SYLLABUS

INTRODUCTION TO FOOD BIOTECHNOLOGY

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

BIOTECHNOLOGY METHODS IN FOOD PROCESSINGM. NITHYA,

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

TEXT BOOKS:

- 1. Potter, Norman. M. Food Science, 5th Ed. Springer US
- 2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.
- 3. B. Srilakshmi., (2002) Food Science, New Age Publishers..

REFERENCES:

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

COURSE DESIGNERS

00010													
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in									
2	Mrs.C.Nirmala	Associate professor	Biotechnology	<u>nirmala@vmkvec.edu.in</u>									

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

38121002	INTRODUCTION TO BIOFUELS	Category	L	Т	Р	Credit
30121002	INTRODUCTION TO BIOFUELS	OE-EA	3	0	0	3

PREAMBLE

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feedstocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

PREREOUISITE – NIL

COURSE OBJECTIVES

Students will recognize the types and differences between existing energy resources, understand their 1 procurement and utilization, and their impacts on society and the environment

Students will be knowledgeable of the existing and potential future sources of renewable energy, and be 2 able to intelligently analyze reported aspects of the energy and renewable energy fields.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Understand the existing and emerging biomass to energy technologies														Remember	
CO2. Understand the concept of 1 st generation, 2 nd generation and advance biofuels													Understand		
CO3. Appraise the techno-economic analyses of biofuel conversion technologies													Understand		
CO4. To articulate the concept of a biorefinery system and be able to develop major unit operations of an integrated biorefinery										nit	Apply				
CO5. Illustrate the environmental implications											Apply				
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	2 PSO3
CO1	S	-	L	-	М	-	S	L	-	-	I	-	S	I	L
CO2	-	S	S	-	М	-	L	-	-	-	ŀ	-	-	S	L
CO3	S	М	-	М	-	М	-	L	L	-	-	-	S	-	L
CO4	-	S	М	-	М	L	L	-	-	-	-	-	-	S	M
CO5	-	-	-	-	-	-	-	S	М	-	-	-	-	-	L

S- Strong: M-Medium: L-Low

SYLLABUS

OVERVIEW OF BIOFUELS

Generation of biofuels - Development of biological conversion technologies - Integration of biofuels into biorefineries - Energy security and supply - Environmental sustainability of biofuels - Economic sustainability of biofuels.

CO5 - - - - - S M - - - - -

BIODIESEL

Biodiesel - Microorganisms and raw materials used for microbial Oil production - Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil. Dept. of Computer Sci

BIOETHANOL

V.M.K.V. Engg. College, Salem.

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

BIOMETHANE AND BIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

OTHER BIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

TEXT BOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:**

 Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech, 2011

COURSE DESIGNERS

COURSE DESIGNATION											
S.No	Name of the	Designation	Department	Mail ID							
	Faculty										
1	Dr.A.Balachandar	Assistant Professor – Gr-II	Biotechnology	Balachandar.biotech@avit.ac.in							
2	Dr.M.Sridevi	Professor & Head	Biotechnolgy	sridevi@vmkvec.edu.in							

Jitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

35321003			PRINCIPLES OF BIO MEDICAL INSTRUMENTATION						Catego	ry L	T	Р	Credit		
									OE-E	A 3	0	0	3		
PREA	PREAMBLE														
To enable the students to develop knowledge of principles, design and applications of the Biomedical Instruments.															
PREREQUISITE – NIL															
COURSE OBJECTIVES															
1	To know about bioelectric signals, electrodes and its types.														
2	To know the various Biopotential recording methods.														
3	To study about patient monitoring concept and various Physiological measurements methods.														
4	To study the principle of operation blood flow meter, blood cells counter.														
5	To study about bio chemical measurements and details the concept of biotelemetry and patient safety.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	CO1. Explain the different Bio signal or biopotential.Understand														
CO2.	CO2. Discuss the working principles of diagnostic and therapeutic equipments. Understand													L	
CO3.	Exam	ine the	variou	ıs instru	uments	like as	s ECG,	, EMG	, EEG,	X-ray n	nachine.		App	ly	
CO4.	CO4. Illustrate medical instruments based on principles and application used in hospital. Analyze														
CO5. Analyze and calibrate fundamental biomedical instrumentation used in hospital. Analyze															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М			-								L	М		
CO2	М								L			L	М		
CO3	S	S	М	S	М				М			М	М	М	S
CO4	S	М	М	М	L			L	S	L		S	М	S	S
CO5	S	S	М	М	L	М		L	S	L		S	М	S	S
S- Stro	S- Strong: M-Medium: L-Low														

SYLLABUS

BIOELECTRIC SIGNALS AND ELECTRODES

1.M T

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes, of Computer Science & Engs V.M.K.V. Engg. College, Salem.

BIO AMPLIFIER AND BIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

BLOOD FLOW METERS, BLOOD CELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, **"Biomedical Instrumentation and Measurements"**, Prentice-Hall India, 2nd Edition, 1997.

REFERENCES:

- 1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in							
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran.bme@avit.ac.in							
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in							
4	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in							

M. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engy Y.M.K.V. Engg. College, Salem.
3533	21002			RIO	SENSO	DBS V	νη τι	2 A NSI	DUCE	RS	Catego	ry L	T	Р	Credit
5552										OE-E	A 3	0	0	3	
PREA The co compo is high	PREAMBLE The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.														
PRER	REREQUISITE – Nil														
COUF	JURSE OBJECTIVES														
1	To use the basic concepts of transducers, electrodes and its classification.														
2	To discuss the various types of electrodes.														
3	To de	termin	e the r	ecordir	ng of bi	iologic	al com	ponent	s.						
4	To en	nploy t	he kno	wledge	e in ele	ctroche	emical	and op	tical b	iosensoı	·s.				
5	To ou	tline t	he vari	ous bic	ological	l comp	onents	using	biosens	sors.					
COUR	RSE O	UTCO	MES												
On the	On the successful completion of the course, students will be able to														
CO1.	Descr	ibe the	worki	ng prin	ciples	of tran	sducer	s.					Unc	lerstand	1
CO2.	Explai	in the	various	s types	of elec	trodes.							Unc	lerstand	1
CO3.	Utilize	e vario	us FEI	Г senso	rs for r	recordi	ng of b	oiologic	al com	ponents	5.		App	oly	
CO4.	Distin	guish	various	s biosei	nsors li	ke elec	troche	mical a	and opt	ical bio	sensors.		Ana	lyze	
CO5.	Analy	ze the	biolog	ical co	mpone	nts usii	ng bios	sensors	in vari	ious app	lications.	•	Ana	lyze	
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	IFIC (OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L		М		М			L			М		М	
CO2	М	L		М		М			L			М		М	
CO3	S	М	L	S		S	М	М	М			М	М	М	М
CO4	S	S S L S S M M S M M M S													
CO5	S S L S S M M S S M M S														
S- Stro	S- Strong; M-Medium; L-Low														
SYLL	SYLLABUS														

INTRODUCTION: General measurement system,	Transducers and its classification, Resistance transducers,
capacitive transducer, Inductive transducer.	C

TRANSDUCERS: Temperature transducers, piezoelectric transducers, Piezo**resistiveotransducers, phöto**electric transducers. V.M.K. V. Engg. College, Salean.

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, **"Principles of Applied Biomedical Instrumentation"**, 3rd Edition, John Wiley Publications, 2008.

COUR													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in									
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in									
3	Mr.V.Prabhakaran	Assistant Professor (Gr- II)	BME	Prabhakaran.bme@avit.ac.in									
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.i n									

COURSE DESIGNERS

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

34721002	INTRODUCTION TO INDUSTRY 4.0	Category	L	Т	Р	Credit
54/21002	ANDINDUSTRIAL INTERNET OF THINGS	OE-EA	3	0	0	3
						L

PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

PREREQUISITE: NIL

	-						
COU	URSE OBJECTIVES						
1	Industry 4.0 concerns the transformation of industrial processes through the integratic technologies such as sensors, communication, and computational processing.	on of modern					
2	Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud	l Computing,					
	Machine Learning, and Data Analytics are considered to be the different drivers nece transformation.	essary for the					
3	Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.						
4	IIoT links the automation system with enterprise, planning and product lifecycle.						
5	⁵ Real case studies						
COU	URSE OUTCOMES						
On t	he successful completion of the course, students will be able to						
C01	. Apply & Analyzing the transformation of industrial process by various techniques.	Analyze					
CO2	CO2. Evaluate the transformation technologies are considered to be the different drivers. Apply						
CO3	CO3. Existing industrial systems will adopt the applications of IIoT. Apply						
CO4 life c	CO4. Intensive contributions over automation system with enterprise, planning and product Analyze life cycle						

	CO5.	Analyz	ze of va	arious I	Real tir	ne case	e studie	es.						Analyze	
MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO 1	PO2	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO 2	PSO 3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
CO2	S	S	S	М	М	-	-	-	-	H.1	へ -	М	S	М	М
CO3	S	S	S	М	М	-	-	- (TA	<u> </u>	-	М	S	М	М
CO4	S	S	S	М	М	-	-	- 1	Dr. M. 1	VITHYA		М	S	М	М
CO5	S	S	S	S	М	-	- 7	Dept. of	Compute V Engo	r Science College	& Engs Salem.	М	S	М	М
S- Stro	S- Strong; M-Medium; L-Low														

247

INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGSIntroduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIoT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

IIOT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, Industrial IoT- Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

REFERENCE BOOKS:

1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016

2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

COURSE DESIGNERS

COCHDI													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. L.K.Hema	Prof.&Head/ECE	ECE	hodece@avit.ac.in									
2	Dr.T.Muthumanickam	Professor	ECE , M	hodece@vmkvec.edu.in									

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

	1000		DESIG	GN OF	ELEC	CTRON	NIC		Categor	y I	_	Т	Р	C	credit
3472	1002			EQU	IPME	NT			OE-EA	3	;	0	0		3
PRE	AMBL	E													
The o	objectiv	ve of t	this co	urse is	to se	nsitise	a regi	str	ant to vari	ous as	pects	of an	electro	nics pr	oduct.
Speci	fically	on non	-Electr	rical as	pects li	ke med	chanica	1 d	esign and c	letailin	g. Sta	rting fro	om a ne	ed tran	slated
into s	pecific	ations,	leadin	g to de	sign ar	nd prot	otyping	g ai	nd ending u	ip in a	manu	Ifactural	ble phy	sical	
protot	type.				U	•			U	•					
PREI	PREREQUISITE – NIL														
COU	DURSE OBJECTIVES														
1	To understand the various Concept of Industrial Design process.														
2	To a	pply th	e basic	Conce	pt of el	ectroni	c Prod	uct	designs m	ethodo	logy.				
3	To c	lassify	the Co	ncept o	f Ergoi	nomics	& aest	he	tics in prod	uct des	ign.				
4	To u	ndersta	and the	Knowl	edge re	egardin	g the d	esi	gn of produ	ict pacl	kaging	g and wo	orking e	environ	ment.
5	To u	ndersta	and the	Knowl	edge o	f differ	ent ind	ust	rial standar	d and	value	analysis			
COU	COURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1.	Visual	ize the	concep	ot for p	roduct	design	with re	esp	ect to ergoi	nomics	and	Remen	nber		
aesthe	etics.								_						
CO2.	Analyz	ze, desi	ign and	implei	ment co	ontrol p	anels o	of e	electronic e	quipme	ents.	Apply			
CO3.	Apply	creati	vity in	the de	esign o	of syste	m by	for	mulating a	rchitec	ture	Apply			
with p	proper	placem	ent of o	compoi	nents.										
CO4.	Apply	the c	oncept	of vis	sual co	mmun	ication	te	chniques i	n proc	luct	Apply			
desig	n.								_						
CO5.	Apply	the pro	ocess of	fvalue	analysi	is in ex	isting p	oro	duct.			Apply			
MAP	PING	WITH	PROC	GRAM	ME O	UTCO	MES A	AN	D PROGE	RAMM	IE SP	ECIFIC	COUT	COME	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	Р	PO9	PO1	PO1	PO1	PSO	PSO	PSO
								0 0		0	1	2	1	2	3
CO1	М	L	-	-	S	-	-	o L	М	L	-	-	S	-	-
CO2	М	L	-	М	S	-	-	L	М	L	-	-	S	-	-
CO3	М	L	-	М	S	-	-	L	М	L	-	L	S	-	М
CO4	S	М	L	-	S	-	-	L	М	L	-	L	S	М	М
CO5	S M L - S M L L - L S M M														
S- Str	ong; M	I-Medi	um; L-	Low	1	1	1	I	1	1	I		I	I	I

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

MODULE 1: INTRODUCTION

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

MODULE 2: PRODUCT PROTOTYPES

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

MODULE 3: PRODUCT DESIGN AND PLANNING

Electronic product design and development Methodology, Creativity techniques, brainstorming documentation. Product planning: Defining the task, scheduling the task and its execution. Costing and Pricing of Industrial design,

MODULE 4: ERGONOMICS

Ergonomics: Ergonomics of electronic equipments, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

MODULE 5: CASE STUDIES

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

TEXTBOOKS:

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

REFERENCE BOOKS:

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", &Hall. London. Flurschiem C H, "Industrial Design and Engineering Design Design", Council, London and Springer Verlag, 1983

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Departme nt	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

35021R01	PROJECT WORK	Category	L	Т	Р	Credit
		PI-P	0	0	16	8

PREAMBLE

This course enables the students to exercise some of the knowledge and/or skills developed during the programme to new situation or problem for which there are number of engineering solutions. This course include planning of the tasks which are to be completed within the time allocated, and in turn, helps to develop ability to plan, , use, monitor and control resources optimally and economically. By studying this course abilities like creativity, imitativeness and performance qualities are also developed in students. Leadership development and supervision skills are also integrated objectives of learning this course.

PRER	PREREQUISITE – Nil														
COU	COURSE OBJECTIVES														
1	To de	evelop	quality	softwa	are solu	ution.									
2	To in system	volve i ms ana	in all th lysis, s	ne stage ystems	es of th s design	e softv n, softv	vare de vare de	velopn evelopr	nent lif nent, te	e cycle	like requ ategies	irement and doc	ts engin umenta	eering, tion.	
3	To ur	ndersta	nd and	gain th	ne knov	wledge	of the	princip	ples of	software	e engine	ering pr	actices.		
4	To Get good exposure and command in one or more application areas and on the software.														
5	To participate and manage a large software engineering projects in future.														
COU	RSE O	UTCO	MES												
On t	On the successful completion of the course, students will be able to														
1.	1. Describe the Systems Development Life Cycle (SDLC). Apply														
2.	2. Design of Modules. Apply														
3.	3. Perform coding. Apply														
4.	4. Analyze and Apply various types of testing techniques and prepare documentation. Apply														
													I		
MAPI	PING V	WITH	PROC	GRAM	ME O	UTCC	MES	AND I	PROG	RAMM	E SPEC	CIFIC C	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	S	М	-	-	S	-	S	-	М	М	М
CO2	S	S	М	М	S	М	-	-	S	-	М	-	S	S	S
CO3	L	М	L	L	М	М	-	-	М	-	L	-	М	М	М
CO4	S	S	М	L	S	М	-	-	S	-	S	-	М	М	М
S- Stro	S- Strong; M-Medium; L-Low														
•	Not n	nore the	an one	studen	t is per	mitted	to wor	·k on a	project	t.	2				
•	• Each Student should be involved in each and every phase of Project Development. If it is found that student is not involved in any phase; for example coding phase, it may lead to the rejection/disqualifying of the project at any stage.														
•	Title	of the p	project	should	be kep	ot the s	ame th	rough	ut the	Engg. Col	icnce & Er llege, Sale	ngg m.			

Guidelines for preparing the Project Dissertation

This document lists the contents required for the academic project report done as part of the MCA Curriculum. Section names have been listed with description. The descriptions have been provided in italics. Important: This page and the text in italics present throughout this document are to give you guidance. Please do not include them in your project report.

Work allocation matrix:

Prepare work allocation matrix along with provision of follow-up remarks and notes.

Project execution:

Execute project preparation activities as per work allocation matrix.

Documentation and presentation:

Documentation of final project report which includes following in sequence.

- a. Title page-(Suggested as per Annexure-II.)
- b. Certificate As per Annexure-III.
- c. Index.
- d. Preface/Acknowledgement.
- e. Course outcomes.
- f. Project title.
- g. Assembly and detail production drawings.
- h. List of activities (suggested as per Annexure IV) and work allocation matrix.
- i. Plant layout with dimensions.
- j. List and specifications of machineries, equipments and tools.
- k. Bill of material with make or buy decision.
- 1. Specifications of bought out parts.
- m. Process sheets-As per format given in course Industrial engineering.
- n. Flow process charts.
- o. Specification and consumption of consumables.
- p. Details of inspection / testing carried out.
- q. Details of rework / rectifications carried out.
- r. Cost estimation.
- s. Monitoring and control report/sheet.
- t. Notes on troubleshooting.
- HH.M u. Notes on individual achievement of skills / experience problems / solutions.
- v. References.

Dr. M. NITHYA. - Prof & Head.

- w. Day to day logbook as per Annexure-V. Dept. of Computer Science & Engs
- x. Presentation including moments at work-video/photographs in action

Notes:

Prepare project report with MS Office with following guidelines. A4 (ON ONE SIDE). PAGE: MARGINN: TOP :15mm. BOTTOM :15mm. RIGHT :15mm. LEFT :30mm. FONT: ARIAL. 12-BOLD, CONTENT12, SIZE: SPACING 18 POINTS, **HEADER**: TITLE OF THE PROJECT, PAGE NUMBER ON TOP RIGHT. ACADEMIC YEAR, SHORT FOOTER: NAME OF THE INSTITUTE SUGGESTED LEARNING RESOURCES. 1. Use of Library. Reference books. 2. 3. Hand books. 4. Encyclopedia. Magazines. 5.

- 6. Periodicals.
- 7. Journals.
- 8. Visits of industry, organizations related as per the requirement.
- 9. Internet.

COURSE DESIGNERS

S.No ·	Name of the Faculty	Designation	Department	Mail ID		
1	Dr.M.Nithya	Professor	CSE	hodcse@vmkvec.edu.in		
2	Dr.S.Rajaprakash	Associate professor	CSE	rajaprakash@avit.ac.in.		

N.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3502	1M81				MINI	PRO	ЕСТ			(Categor	y L	Т	Р	Credit
5502	INIOI										PI-M	0	0	6	3
PREA	MBLE The pr	E rimary	empha	isis of	the pro	oject w	ork is	to und	erstand	and ga	in the k	nowledg	ge of th	e princ	iples of
softwa	ire .								0						
Engine	ering p	practic	es, so a	is to pa	rticipa	te and	manag	e a larg	ge softv	vare eng	ineering	g project	s in fut	ure.	
PRER	EQUI	SITE -	– Nil												
COU	RSE O	BJEC	TIVES												
1	To de	evelop	quality	softwa	are solu	ution.									
2	To in system	volve i ms ana	in all th lysis, s	ne stage systems	es of th s design	e softv n, softv	vare de vare de	evelopn evelopr	nent lif nent, te	e cycle esting str	like requ ategies	irement and doc	ts engin sumenta	eering, tion.	
3	To understand and gain the knowledge of the principles of software engineering practices.														
4	To Get good exposure and command in one or more application areas and on the software.														
5	To participate and manage a large software engineering projects in future.														
COUF	RSE O	UTCO	MES												
On t	he succ	essful	compl	etion o	f the co	ourse, s	student	s will b	be able	to					
5.	Descri	be the	Systen	ns Dev	elopme	ent Life	e Cycle	e (SDL	C).				App	ly	
6.	Design	n of Me	odules.										App	ly	
7.	Perfor	m codi	ng.										App	ly	
8.	Analyz	ze and	Apply	variou	s types	of test	ting tec	chnique	es and p	prepare o	locumer	ntation.	App	ly	
MAPI	PING V	WITH	PROC	GRAM	ME O	UTCC	OMES	AND I	PROG	RAMM	E SPEC	CIFIC (OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	S	М	-	-	S	-	S	-	М	М	М
CO2	S	S	М	М	S	М	-	-	S	-	М	-	S	S	S
CO3	L	М	L	L	М	М	-	-	М	-	L	-	М	М	М
CO4	S	S	М	L	S	М	-	-	S	-	S	-	М	М	М
S- Stro	ong; M	-Mediu	ım; L-l	Low			•	•		•	•		•	•	•

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

- Individual / not more than one student is permitted to work on a project.
- Each Student should be involved in each and every phase of Project Development. If it is found that student is not involved in any phase; for example coding phase, it may lead to the rejection/disqualifying of the project at any stage.
- Title of the project should be kept the same throughout the project.

Guidelines for preparing the Project Dissertation

This document lists the contents required for the academic project report done as part of the MCA Curriculum. Section names have been listed with description. The descriptions have been provided in italics. Important: This page and the text in italics present throughout this document are to give you guidance. Please do not include

them in your project report.

Work allocation matrix:

Prepare work allocation matrix along with provision of follow-up remarks and notes.

Project execution:

Execute project preparation activities as per work allocation matrix.

Documentation and presentation:

Documentation of final project report which includes following in sequence.

- a. Title page-(Suggested as per Annexure-II.)
- b. Certificate As per Annexure-III.
- c. Index.
- d. Preface/Acknowledgement.
- e. Course outcomes.
- f. Project title.
- g. Assembly and detail production drawings.
- h. List of activities (suggested as per Annexure IV) and work allocation matrix.
- i. Plant layout with dimensions.
- j. List and specifications of machineries, equipments and tools.
- k. Bill of material with make or buy decision.
- 1. Specifications of bought out parts.
- m. Process sheets-As per format given in course Industrial engineering.
- n. Flow process charts.
- o. Specification and consumption of consumables. Dr. M. NITHYA,
- p. Details of inspection / testing carried out. Dept. of Computer Science & Engs V.M.K.V. Enge. College, Salem.
- q. Details of rework / rectifications carried out.

- r. Cost estimation.
- s. Monitoring and control report/sheet.
- t. Notes on troubleshooting.
- u. Notes on individual achievement of skills / experience /problems / solutions.
- v. References.
- w. Day to day logbook as per Annexure-V.
- x. Presentation including moments at work-video/photographs in action

N	ntes
1.1	ucs.

	Prepare project report with MS Office with following guidelines.											
	PAGE:		A4 (ON ONE S	SIDE).								
	MARGINN	:	TOP :15mm.									
			BOTTOM :15r	nm.								
			RIGHT :15mm	l.								
			LEFT :30mm.									
	FONT:		ARIAL.									
	SIZE:		12-BOLD, COI	NTENT12,								
			SPACING 18 I	POINTS,								
	HEADER:		TITLE OF TH	E PROJECT,								
			PAGE NUMB	ER ON TOP								
			RIGHT.									
	FOOTER:		ACADEMIC Y	'EAR, SHORT								
			NAME OF TH	E INSTITUTE								
SUGG	SUGGESTED LEARNING RESOURCES.											
	1.	Use of Library.										
	2.	Reference books.										
	3.	Hand books.										
	4.	Encyclopedia.										
	5.	Magazines.										
	6.	Periodicals.										
	7.	Journals.										
	8.	Visits of industry, o	rganizations related a	as per the requirement.								
	9.	Internet.										
COUR	COURSE DESIGNERS											
S.No ·	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.M.Nithya	Professor	CSE	hodcse@vmkvec.edu.in								
2	Mr. K.Karthik	Associate	CSE Dr. M. NITH	karthik@avit.ac.in								
		Professor	Prof & H	ead.								

Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021T81	INTERNSHIP	Category	L	Т	Р	Credit
55021101		PI-IT	0	0	0	3

PREAMBLE

The Engineering Internship course is a Canvas-based course that offers students the opportunity to explore and develop their careers through professional practice. The structured plan of education impacts student work readiness through a number of professional development skill-building activities, including goal setting; analysis and reflection; feedback from employer; informational interviewing and debriefing their experience.

PREREQUISITE: NIL

COURSE OBJECTIVES

1. An understanding of how liberal arts coursework ties to professional careers of interest.

- 2. Gain insight into a possible career path of interest while learning about the industry in which the organization resides, organizational structure, and roles and responsibilities within that structure.
- 3. Develop professional connections and identify a strategy for maintaining those connections COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Add details about your experience including new skills developed and results obtained .	Understand
CO2. Analyze your internship experience, reflecting on lessons learned and how your liberal arts education prepared you for the internship.	Apply
CO3. Identification of additional skills that will need to be developed to	A

ensure career readiness. Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

001	00111														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	Р	PO11	PO12	PSO1	PSO2	PSO3
										0					
										1					
										0					
CO1	S	М	S	L	S	-	L	L	S	L	S	-	Μ	Μ	М
CO2	S	S	М	Μ	S	Μ	L	L	Μ	Μ	М	-	S	S	S
CO3	L	Μ	М	L	М	Μ	L	L	Μ	L	L	-	М	Μ	М
S- Stro	S- Strong; M-Medium; L-Low														
	-														

M. Hit

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K. V. Engg. College, Salem.

General Procedure <u>Final Reflection Report:</u>

I. <u>General Information Section</u>

Explain your role and how your work contributed to the company

II. <u>Technical Skills</u>

Document the technical experiences you had during your work experience and discuss technical problems that you assisted in solving

III. <u>Development of Professional Skills</u>

Describe team and leadership building opportunities on the job

IV. Assessments

- Discuss whether or not you met goals set out by your supervisor or that you set for yourself
- Evaluate your performance of assigned projects, noting both areas of strength and improvement

V. <u>Conclusion</u>

- Summarize by addressing the impact of the work experience on your education and career goals
- Provide two "lessons learned" to share with any student that is considering an internship

COUR	COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Name of the College	Mail ID								
1.	Dr.M.Nithya	Professor	CSE/VMKVEC	hodcse@vmkvec.edu.in								
2.	Dr.S.Rajaprakash	Associate professor	CSE/AVIT	rajaprakash@avit.ac.in.								

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

YOGA AND MEDITATION - 34121Z81

Course Objective: To gain knowledge about the Yogic Practices Course Outcomes:

Students should be able to

- Evaluate the importance of preparatory exercise.
- Demonstrate the suryanamaskar and various asanas.
- Utilize the meditation techniques.
- Compare mudras and bandhas
- Assess the difference between the asanas and physical exercises.

UNIT - I

History of Yoga - Definition and Meaning of the term Yoga - Comprehensive Natureand Scope of Yoga-Aims and Objectives of Yoga

Text books:

- 1. H R.Nagarathnam & Dr.H R Nagendra (2015) Promotion of positive health swami vivekanandha yoga prakashana, Banglore.
- 2. The Classic Guide to Yoga, Dr.G.S.Thangapandiyan, Sports Publication, New Delhi(2020).

UNIT – II

Stream of Yoga: Karma yoga- Raja yoga- Jnana Yoga - Bhakti yoga - Differencebetween practice of Asanas and Physical Exercise.

Text books:

- 1. Light on Yoga, B.K.S Iyengar Harpine Collins Publication, New Delhi, 2000.
- 2. Sound Health Through Yoga, K.Chandrasekaran, Prem Kalyan Publications, Sedapatti,
- 1999.

UNIT – III

Asanas Practice: - Suryanamaskar - Meditative Asanas: Sukhasana – Ardha Padmasana – Padmasana – Vajrasana – Standing Asanas: Tadasana – Trikonasana- Parivrtta Trikonasana – Vrikshasana – Sitting Asanas: Baddha konasana – Janusirasana – Paschimottanasana – Ustrasana – Vakrasana – Gomukhasana.

Text books:

- 1. H R.Nagarathnam & Dr.H R Nagendra (2015) Promotion of positive health swami vivekanandha yoga prakashana, Banglore.
- 2. The Classic Guide to Yoga, Dr.G.S.Thangapandiyan, Sports Publication, New Delhi(2020).

UNIT: IV

Asanas Practice: Prone Asanas: Makarasana – Bhujangasana – Sasangasana- Shalabhasana – Dhanurasana - Supine Asanas: Pavanamuktasana – Artha Halasana - Sethubandasana – Navasana – Savasana.

Text books:

- 1. H R.Nagarathnam & Dr.H R Nagendra (2015) Promotion of positive health swami vivekanandha yoga prakashana, Banglore.
- 2. The Classic Guide to Yoga, Dr.G.S.Thangapandiyan, Sports Publication, New Delhi(2020).

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

UNIT- V

 $Pranayama\ Practice:\ Sectional\ Breathing\ -\ Nadisuddhi\ -\ Bhramari\ -\ Bhastrika\ -Kapalabhati\ -\ Introduction\ to\ Bandhas\ -\ Mudras$

– Dharana (Trataka) – Dhyana.

Text books:

1. Swami Satyananda Saraswati, (2008): Asana Pranayama Mudra, Bandha (IV Revised Edition): Bihar School of Yoga, Munger, India.

Reference books:

- 1. Asanas, Swami Kuvalayananda, Kaivalayadhama, Lonavla, 1993.
- 2. Yoga for All, Maharishi Patanjali, Sahni Publications, 2003.
- 3. Yoga for Health, Institute of Naturopathy & Yogic Sciences, Bangalore, 2003.
- 4. Yoga for Health, K.Chandara Shekar, Khel Sahitya Kendra, Theni, 2003.
- 5. Yoga for the Morden Man, M.P.Pandit, Sterling Publishers Private Limited, NewDelhi, 1987.
- 6. Yoga for You, Indira Devi, Jaico Publishing House, Chennai, 2002.

Web Resources

- 1. https://kdham.com/
- 2. http://www.biharyoga.net/

N. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

34121Z82	GENDER EQUITY AND LAW		_	_	_	~
34121282	(COMMON TO ALL BRANCHES)	Category	L	Т	Р	Credit

I		I												1		
											AC	0	0	2	0)
Gende	er Equit	y is the	provisi	on of fa	airness	and jus	tice in t	he distr	ibution	of bene	efits and	respon	sibilit	les b	betwe	een
,Men,	Wom	en, Tra	ansgend	er, and	d Gend	ler nor	n-binary	indivi	duals.	Gender	equity	y is in	nporta	nt ł	becai	ıse,
histor	ically, s	societie	s aroun	d the v	world h	ave de	emed f	emales,	transge	ender p	eople,	and not	nbinar	y pe	ople	as
"weak	ter" or 1	less imp	portant	than ma	ales.Gei	nder eq	uity em	phasize	s respec	ting in	dividual	s withc	out dise	erim	inati	on,
regard	lless of	their g	ender. '	There a	ire lega	l provi	sions th	ataddre	ss issue	es like	inequali	ties tha	t limi	a p	perso	on's
ability	to acc	ess opp	portunit	ies to a	achieve	better	health,	educat	ion, and	d econo	omic op	portuni	ty bas	ed o	on th	neir
gende	r.															
PREF	REQUI	SITE: 1	NIL													
COU	RSE O	BIECT	IVES													
cool		DJLCI														
1	To so	o sensiti ciety.	ize the s	students	regard	ing the	issues c	of gende	er and th	egende	r inequa	alities p	revale	nt in	l	
2	To	o raise a	and deve	elop soc	cial con	sciousn	ess abo	ut gend	er equit	y amon	g thestu	dents.				
3	To in	o build a dividua	a dialog ls.	ueand b	oring a	fresh pe	erspectiv	ve on tr	ansgend	ler and	gender	non-cor	nformi	ng		
4	To create awareness among the students and to help them face gender stereotype issues.															
5	To help the studentsunderstand the various legal provisions that are available in our society.															
COU	RSE O	UTCO	MES													
On the	e succes	sful co	mpletio	n of the	course	studer	nts will	be able	to							
on un	e succes	55141 00	mpietio		course	, studer			10							
CO1.U	Underst	and the	importa	ance of	gender	equity					U	ndersta	nd			
CO2.I gende	nitiate r equity	the awa	reness a	and reco	ognize t	he socia	al respo	nsibilit	y with r	egards	io A	pply				
CO3.7 without	Fo deve ut any d	elop a s liscrimi	sense of nation.	f inclus	iveness	and to	lerance	toward	ls vario	us geno	lers A	pply				
CO4. for inc	To eval	uate the living.	e social	issues a	and app	ly suita	ble gen	der-rela	ted regu	ulations	E	valuate				
CO5.7 variou	Fo ident Is institu	tify and utions.	analyze	e the ex	isting g	ender i	nequalit	ty probl	ems fac	ed in	A	nalyse				
										M	I					
								C	MT							
								Dr	M. NIT	HYA,						
							D	ept. of Co	Prof &	Head. cicnce & l	Engy					
MAP	PING V	VITH I	PROGI	RAMM	E OUI	[COM]	ES ANI	V.M.K.V	Engg. Co	ME SP	em. ECIFI	C OUT	COM	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO		PS O2	PS O3
	1	L	I	1			1	1							<u> </u>	05

CO1	S	Μ	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	Μ	-	S	S	S	-	-	-	S	-	-	-
S-Stro	S- Strong; M-Medium; L-Low														

UNIT –I INTRODUCTION TO GENDER AND SEX 6 hrs Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – GenderStereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

UNIT -- II - GENDER BIAS 6 hrs

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

UNIT –III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS 6 hrs

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

Gender Sensitization -Need and Objective - Gender Sensitivity Training at Workplace – GenderSensitization in Judiciary - Gender Sensitization in School Curriculum.

UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The ImmoralTrafficPrevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 -Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

REFERENCES:

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, and Exploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6.

Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur, 2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COURSE	DESIGNERS	M K
S.No.	Name of the Faculty	Mail ID
1.	Gnana Sanga Mithra.S	sangamithra@avil.edu.in
2.	Aarthy.G	aarthy @awilledu/in Prof & Head.
	De	pt. of Computer Sectice & Drys

V.M.K.V. Engg. College, Salem.

6 hrs

6hrs

24121792	ESSENCE OF INDIAN	Category	L	Т	Р	С
34121283	TRADITIONAL KNOWLEDGE	AC	0	0	2	0

Course Objectives :

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

Course Outcomes:

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

UNIT-I:

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

UNIT-2:

Protection of traditional knowledge:The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

UNIT-3:

Legal framework and TK: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

UNIT-4:

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

UNIT-5:

Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

Text Books:

1. Traditional Knowledge System in India, by Amit Jha, 2009.

Reference Books:

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

241217294		Category	L	Т	Р	С
34121284	INDIAN CONSTITUTION	AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

- 2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.
- 3 To Analyse Panchayat Raj institutions as a tool of decentralization.
- 4 To Understand and analyse the three wings of the state in the contemporary scenario.
- 5 To Analyse Role of Adjudicatory Process.
- 5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

The Constitution - Introduction

The Historical background and making of the Indian Constitution – Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties –Directive Principles State Policy

Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

- 1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008
- 2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)
- 3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Total Hours: 30 hours

Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. <u>http://www.legislative.gov.in/constitution-of-india</u>
- 3. https://www.sci.gov.in/constitution

4. <u>https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/</u>

Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL	NPTEL Course Title	Course Instructor						
	ID								
1	12910600	CONSTITUTION OF INDIA AND ENVIRONMENTAL	PROF. M. K. RAMESH						
		GOVERNANCE: ADMINISTRATIVE AND	NATIONAL LAW SCHOOL OF						
		ADJUDICATORY PROCESS	INDIA UNIVERSITY						
	M								

COURSE	DESIGNER	ADI		
S.NO	NAME OF THE FACULTY	DESIGNATI ON	NAME OF THE INSTITUTION A.	MAIL ID
1	Dr.Sudheer	Principal	AV Schößloof Head Dept. of Computer Science & Eng V. M. K. V. Engg. College, Salem	Sudheersurya18@gmai

35021CC01 CLOUD COMPUTING ARCHITECTURE Categ											Categor	y L	Т	Р	Credit
0002			010	02 0	01.11				01010		SE	3	0	0	3
PREA To study	MBLE y and ur	derstar	nd the co	oncepts	in clou	d archit	tectures	and ap	ply the	n practi	cally.				
PRER	EQUIS	ITE	CLOU	D CO	MPUT	ING ((17CS)	CC16)							
COUR	RSE OB	JECTI	IVES												
1. To understand the components of cloud computing showing how business															
2.	To Eva	luate t	he dep	loymen	t of we	eb serv	ices fro	om clo	ud arch	itecture	e.				
3.	To con	sistenc	y of se	rvices	deploy	ed from	n a clo	ud arcł	nitectur	e					
4.	To und	erstand	the clo	ud com	puting s	services									
5.	To eco	nomic	constra	aints ar	nd busin	ness re	quirem	ents.							
COUR	SE OU	TCOM	ÆS												
On the	success	ful con	npletion	of the	course,	student	ts will b	e able t	to						
CO1: A	ble to U	Understa	and basi	cs com	ponent	s of cl	oud co	mputin	ıg			Understa	and		
CO2: A	Able to a	apply cl	loud ar	chitect	ure in r	eal time	2					Apply			
СО3: А	ble to d	evelop	cloud c	omputi	ng proje	ects						Apply			
CO4 : A	ble to J	Jnderst	and ap	ply clou	ıd servi	ces						understa	nd		
C05: A	ble to c	ollabor	ate cloi	ıd servi	ces with	h other	applica	itions				Apply			
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М									L	L	М		
CO2	M	M	ļ	L				ļ				L	ļ	Μ	
CO3	M	M	L	L		М							М		
CO4	М	S	L			L				L		М	М		
CO5	М	L				М					М	L		Μ	
S- Stro	ng; M-N	Medium	n; L-Lo	W											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

TINITT

UNIT - I INTRODUCTION Cloud Computing definition, private, public and hybrid cloud. Cloud types; IaaS, PaaS, SaaS. Benefits andchallenges of cloud computing, public vs private clouds, role of virtualization in enabling the cloud:

Business Agility.

UNIT - II CLOUD APPLICATIONS

MANAGEMENT OF CLOUD SERVICE

Technologies and the processes required when deploying web services; Deploying a web service frominside and outside a cloud architecture

	WANAOEWENT OF CLOUD SERVICE	101100K5								
III										
Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists –										
Collaborati	Collaborating									
Contact Li	sts - Cloud Computing for the Community - Collaboratin	g on Group Projects and Events -								
CloudCom	puting for the Corporation.									
UNIT -	APPLICATION DEVELOPMENT	9 HOURS								
IV										

Service creation environments to develop cloud based applications. Development environments for servicedevelopment; Amazon, Azure, Google App.

UNIT - V CLOUD IT MODEL

Cloud based service, applications and development platform deployment so as to improve the total cost ofownership (TCO)

TEXT BOOKS

1. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach" McGraw-Hill OsborneMedia; 1 edition[ISBN: 0071626948],2009.

2. Dimitris N. Chorafas, "Cloud Computing Strategies" CRC Press; 1 edition[ISBN: 1439834539],2010.

REFERENCES

1. GautamShroff, "Enterprise Cloud Computing Technology Architecture Applications", CambridgeUniversityPress; 1 edition,[ISBN: 978-0521137355],2010

COURSE	DESIGNERS
--------	-----------

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Assistant Professor G-II	CSE	rjaichandran@avit.ac.in
2	Dr.K. Sasikala	Associate professor	VMK	Sasikala@vkkv.edu.in

10 HOUDS

9 HOURS

7 HOURS

10 HOURS

250	Catego									Category	/ L	Т	Р	Credit	
350	21CC02	2	ļ	DISTR	IBUTE	D CON	MPUTI	NG			SE	3	0	0	3
PREAN The stu This con system, PRERI	The student will be able to understand the concepts of distributed computing and communicating in distributed systems. This course also includes the network internet protocol, remote method invocation, peer to peer systems & distributed file system, synchronize, transaction and distributed deadlocks PREREQUISITE Pagin of Networking														
Basis of COUR	Basis of Networking COURSE OBJECTIVES														
1	1 To layout foundations of distributed systems														
2	To int	roduce	the idea	a of net	work re	lated is	sues								
3	To un	derstan	d in det	ail the r	emote	method	and ob	jects an	d suppo	ort requi	ed for di	stributed	system	L	
4	To int	roduce	the idea	a of mic	ldlewar	e and co	omputii	ng of di	stribute	d systen	ıs				
5	To un	derstan	d the sy	nchron	ization	and clo	ud com	puting	in distri	buted sy	stems				
COUR	SE OUT	COMI	ES												
On the s	successf	ul comp	oletion	of the c	ourse, s	tudents	will be	able to)						
CO1: 1	Го under	stand tl	he basic	s of dis	tributed	d compu	uting					Understa	and		
CO2: 1	Го learn	the inte	ernet pr	otocol &	k netwo	ork						Understa	and and	Apply	
CO3: 1	Го learn	the rem	note me	thod inv	vocatio	n						Understa	and and	Apply	
CO4:]	Го learn	the pee	r to pee	er syster	ns and	distribu	ted file	system	l			Understa	and		
CO5: 1	Fo know	the syr	nchroni	zation,	ransact	tion and	l distrib	uted de	adlocks	8		Understa	and		
MAPPI	ING WI	TH PR	ROGRA	MME	OUTC	OMES	AND]	PROG	RAMM	IE SPE(CIFIC O	UTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	M		М		М	S	S	S	M	S	M	S	M	M
CO2	M	S		M		M	M	S	S	M	S	M	S	M	M
CO3	M	5 5		M		M	M	M	S M		S M	M	2 2	M	M
CO4	M	M	T	N/			M	IVI	M	L I	M	M	5 C	M	M
S- Stror	ng; M-M	edium;	L-Low	1 V1		11/1	141		141	L	141	141	0	141	171

M. Hith

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

270

SYLLABUS INTRODUCTION

Introduction – Examples of Distributed Systems–Trends in Distributed Systems – Focus on resource sharing – Challenges, DCS design goals: Transparencies, Fundamental issues, Case study: World Wide Web.

COMMUNICATION IN DISTRIBUTED SYSTEM

System Model – Inter process Communication - the API for internet protocols – External data representation and Multicast communication. Network virtualization: Overlay networks. Case study: MPI

REMOTE METHOD INVOCATION AND OBJECTS

Remote Invocation – Introduction - Request-reply protocols - Remote procedure call - Remote method invocation. Case study: Java RMI - Group communication - Publish-subscribe systems - Message queues - Shared memory approaches -Distributed objects - Case study: CORBA -from objects to components.

PEER TO PEER SERVICES AND FILE SYSTEM

Peer-to-peer Systems – Introduction - Napster and its legacy - Peer-to-peer – Middleware - Routing overlays. Overlay case studies: Pastry, Tapestry- Distributed File Systems : Data-Intensive Computing, Distributed Hash Tables, Consistency Models, Fault Tolerance, Many-Core Computing

SYNCHRONIZATION AND REPLICATION

Introduction - Clocks, events and process states - Synchronizing physical clocks - Logical time and logical clocks -Global states – Coordination and Agreement – Introduction - Distributed mutual exclusion – Elections – Transactions and Concurrency Control– Transactions -Nested transactions – Locks – Optimistic concurrency control - Timestamp ordering -Distributed deadlocks – Replication – Workflow Systems: Grid Computing, Cloud Computing, Virtualization, IaaS Clouds, File systems, Networked File systems, Parallel File systems.

TEXT BOOKS

1. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems Concepts and Design" Fifth edition – 2011-Addison Wesley.

REFERENCES

1. 1. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.

Liu M.L., "Distributed Computing, Principles and Applications", Pearson and education, 2004.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.Adimoolam	Professor	CSE	adimoolam@avit.ac.in
2	Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA. - Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

9 – hours

9 - hours

9 - hours

9 - hours

9 - hours

35021CC03	SECURITY IN CLOUD	Category	L	Т	Р	Credit
		SE	3	0	0	3

PREAMBLE

This course introduces the basic concepts of security in cloud services and crypto systems incloud services, which are widely used in the design of cloud computing security. The security issues in virtualization system, virtualization technology, virtualization attacks and legal issues are also considered with in this course.

PRER	PREREQUISITE CLOUD COMPUTINGCYBER SECURITY														
COURSE OBJECTIVES															
1	To understand cloud computing security concepts														
2	To study various cloud services														
3	To ap	ply clou	ıd com	puting i	n collat	oration	with o	ther ser	vices						
4	To un	derstan	d the cl	oud cor	nputing	service	es								
5	To ap	ply clou	id com	puting c	online										
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0						
CO1. Un deretend basis convicts of aloud computing															
COI . C	nuersta	inu basi			epts of c		Jiipuui	ig				Understa	anu		
CO2: U	Jndersta	ind and	apply s	security	issues i	n cloud	l compu	ıting				Analyze			
CO3: A	Apply vi	rtualiza	tion tec	chniques	8							Apply			
CO4: U	Jndersta	ind and	apply t	he attac	ks conc	epts in	virtuali	zation				Apply			
CO5: U	Jndersta	nd and	apply l	egal iss	ues in c	loud se	rvices					Apply			
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAM	ME SPE	CIFIC (OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
<u>CO1</u>	c	М	T		М			м				М	G	М	М
	5	M		-	M	-	-	M	-	-	-	M	2	M	IVI M
CO_2	<u></u> с	IVI M		-	IVI M	-	-	IVI M	-	-	-	M	3	M	IVI M
CO_{4}	2	M		-	M	-	-	M	-	_	-	M	5	M	M
C04	S	M	L	_	M	_	-	M	-		-	M	S	M	M
S- Stro	ng; M-N	Medium	n; L-Lo	W	171			171				171	0	111	
-	0,														

N. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

SYLLABUS INTRODUCTION

Security in Cloud Services (PaaS, IaaS and SaaS). Authentication in cloud services, open SSL, key management and crypto systems in cloud services: stream ciphers, block ciphers, modes of operation, hashing, digital signatures.

SECURITY ISSSUES

Security Issues in Virtualization System: ESX and ESXi Security, ESX file system security, storage considerations, backup and recovery. Vulnerabilities in virtual machine, hypervisor vulnerabilities, hypervisor escape vulnerabilities, configuration issues, malware (botnets etc).

VIRTUALIZATION TECHNOLOGY

IBM security virtual server protection, virtualization-based sandboxing; Storage Security- HIDPS, log management, Data Loss Prevention. Location of the Perimeter.

VIRTUALIZATION ATTACKS

Guest hopping, attacks on VM (attack on control of VM, code injection into virtualized file structure), VM migrationattack, hyperjacking.

LEGAL ISSUES

Responsibility, ownership of data, right to penetration test, local law where data is held, examination of modern Security Standards (eg PCIDSS), how standards deal with cloud services and virtualization, compliance for the cloudprovider vs. compliance for the customer

TEXT BOOKS

1. TimMather, Subra Kumaraswamy, Shahed Latif, "Cloud Security and Privacy: An Enterprise Perspective on Risksand Compliance" O'Reilly Media; 1 edition [ISBN: 0596802765],2009.

2. Ronald L. Krutz, Russell Dean Vines, "Cloud Security" [ISBN: 0470589876],2010.

REFERENCES

1. John Rittinghouse, James Ransome, "Cloud Computing" CRC Press; 1 edition [ISBN: 1439806802], 2009.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	Dr. S. Senthilkumar	Assistant Professor	CSE	senthilkumars@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021CC04				CDVD	FOCD			Cate	egory	L	Т	Р		Credit	it		
35()21CC04			ТЕС	HNIQ	UES		SE		3	0	0 0 3					
PREA	MBLE:	1						1									
To uno	derstand Cry	pto	ograph	y Theor	ries, Al	gorithm	is and S	Systems	. and ne	ecessar	y Appro	paches a	and Tec	hniques	s to		
build p	protection me	ecl	hanism	is in ord	ler to se	ecure co	omputer	r netwo	rks								
PRER NIL	REQUISITE	:															
COU	RSE OBJEC	T	IVES														
1	1 To understand Cryptography Theories, Algorithms and Systems.																
2	To understa	nc	1 neces	sary Ap	oproach	es and	Techni	ques to	build pi	rotectic	n mech	anisms	in orde	r to sec	ure		
	computer networks																
3	To Understand different cryptographic operations of symmetric cryptographic algorithms.																
4	To Understand various Authentication schemes to simulate different applications																
5	5 To Understand various Security practices and System security standards.																
COU	RSE OUTCO	ON	MES														
On the	e successful c	cor	mpletic	on of th	e course	e, stude	nts will	be able	e to								
CO1. Understand the fundamentals of networks security, security architecture, threats and vulnerabilities											Understand						
CO2. Apply the different cryptographic operations of symmetric											Apply						
CO3. Apply the different cryptographic operations of public key											Apply	Apply					
CO4:. Apply the various Authentication schemes to simulate different Apply																	
applic	applications.																
CO5:	Understand v	/ar	rious S	ecurity	practic	es and S	System	security	y standa	rds.	Apply	/					
MAP	PING WITH	łł	PROG	RAMN	IE OU	ГСОМ	ES AN	D PRC	OGRAN	IME S	PECIF	TC OU	TCOM	IES			
CO										PO1	PO1	PO1	PSO	PSO	PSO		
S	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3		
5										Ū	1	2	1	-	5		
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L		
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L		
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-		
CO4	S	S	М	L	L	L	Μ	М	М	М	L	L	S	S	-		
CO5	S	S	М	М	М	L	М	М	L	М	M	М	S	S	L		
CO6	S	S	L	-	-	L	М	L	-	-	-	L	S	L	-		
S-Stro	ong; M-Medi	iur	n; L-L	OW						itt	5						
SYLL. UNIT	ABUS 1 INTRODU	C	ΓΙΟΝ						C	5.							
Securit	ty trends - Leg	al,	, Ethica	l and Pr	ofession	al Aspe	cts of Se	ecurity, 1	NRE M	Securi	ty at Mu	ıltiple le	vels, Seo	curity Po	olicies		
- Mode	el of network	sec	curity –	Securit	y attack	s, servic	es and r	n oban is	wnsenQ	SI secin	ity arch	ifecture	– Classi	cal encr	yption		
technic	ques: substitut	ior	n techni	ques, tra	ansposit	ion tech	niques,	steganog	graphy	Founda	tions of	modern	cryptog	raphy: p	perfect		
securit	y – informatio	n	theory -	- produc	t crypto	system -	– crypta	nalysis.									

UNIT – II SYMMETRIC CRYPTOGRAPHY

MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures - Modular arithmetic-Euclid's algorithm- Congruence and matrices - Groups, Rings, Fields- Finite fields- SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis - Block cipher design principles – Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption Standard - RC4 – Key distribution.

UNIT – III PUBLIC KEY CRYPTOGRAPHY

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing – Factorization – Euler's totient function, Fermat's and Euler's Theorem - Chinese Remainder Theorem – Exponentiation and logarithm - ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange - ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

UNIT - IV MESSAGE AUTHENTICATION AND INTEGRITY

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC – SHA –Digital signature and authentication protocols – DSS- Entity Authentication: Biometrics, Passwords, Challenge Response

protocols- Authentication applications - Kerberos, X.509

UNIT – V SECURITY PRACTICE AND SYSTEM SECURITY

Electronic Mail security - PGP, S/MIME - IP security - Web Security - SYSTEM SECURITY: Intruders - Malicious

software-virus es-Firewalls.

TEXT BOOKS:

1. William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006. **REFERENCES:**

1. C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security, Wiley India Pvt.Ltd

2. Behrouz A. Foruzan, Cryptography and Network Security, Tata McGraw Hill 2007.

3. Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: PRIVATE Communication in a PUBLIC

World, Prentice Hall, ISBN 0-13-046019-2

COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. R. Jaichandran	Professor	CSE	rjaichandran@avit.ac.in							
2	Dr. S. Senthilkumar	Assistant Professor	CSE	senthilkumars@vmkvec.edu.in							

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K. V. Engg. College, Salem.

2502	35021CC08		LOUD) DEV	ELO	PMEI		ODEI		3	Catego	ry L	Т	P	Credit
3502	ICCO	8		DL							SE	0	0	4	2
PREA To intr To enr	PREAMBLE To introduce the major concept areas of cloud computing. To enrich the knowledge in various phases of infrastructure services, storage services														
PRER	PRERQUISITE : NIL														
COURSE OBJECTIVES															
1.	1. To understand, Infrastructure services														
2.	2. To understand, Cloud Security management														
3.	3. To understand, design and implement a parser														
4.	To implement Infrastructure services														
5.	5. To implement storage services techniques.														
COUR	COURSE OUTCOMES														
On the	succes	ssful co	ompletio	on of th	ne cour	rse, stu	dents	will be	able to	D					
CO1. 7	Го und	erstan	d about	cloud c	compu	ting us	agae.					Remember and Understand			
CO2.	To un	derstar	d cloud	l securi	ity							Understand			
CO3. 7	Го ітр	lemen	t the clo	ud mai	nagem	ent						Apply			
CO4. 7	Го und	erstan	d cloud	nfrast	ructur	e serv	ices					Understand, Apply			
CO5. 7	Го imp	lemer	ntation	of ider	ntity m	anage	ement					Apply	y		
MAPP	ING V	WITH	PROG	RAM	ME O	UTCO	MES	AND I	PROG	RAM	ME SPE	CIFIC	OUTO	COMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	М	S		L			S	L	М		М		М
CO2	М	L				М	S				S	Μ			
CO3	Μ			S			S					S	L	Μ	
CO4	Μ			S	S				S		S	S			
CO5	М	S	М	S	S								S	М	S
S- Stro	ng; M	-Mediu	ım; L-L	ow											

List of Experiment

M.H.M

1. Study and implementation of Infrastructure as a Service. Study of Cloud Computing & Architecture

- 2. Installation and Configuration of virtualization using KVMpr. M. NITHYA,
- Prof & Head. 3. Study and implementation of Infrastructure as a Service
- 4. Study and implementation of Storage as a Service Dept. of Computer Science & Engg
 5. Study and implementation of identity management
- 5. Study and implementation of identity management
- 6. Study Cloud Security management
- 7. Write a program for web feed.

8. Study and implementation of Single-Sing-On.

9. User Management in Cloud.

10. Case study on Amazon EC2/Microsoft Azure/Google Cloud Platform

Reference Books

.1.Rajkumar Buyya, James Broberg, Andzej M.Goscinski, "Cloud Computing –Principles and Paradigms", John Wiley & Sons, 2010.

2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.

3. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring. Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R. Jaichandaran	Assistant Professor G-II	CSE	rjaichandaran@avit.ac.in
2	Mr.B.Sundara murthy	Associate Professor	CSE	sundramuthu@vmkv.org.in

N.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

								Catagor		гт		Credit				
350	21CC()3	CLOUD APPLICATION DEVELOPMENT						NT _	SF	y L 3		1	3		
PREA This mo to build	MBLE dule int and dep	roduces bloy web	s studer o and c	nts to de loud-ba	evelopir sed app	ng web olicatior	and clc า.	oud app	lications.	By the	end of the	e module	e the stu	udent	will be able	
PRER	EQUIS	SITE	CLOU	D CO	MPUT	'ING ((17CS)	CC16)								
COUR	RSE OB	JECTI	VES													
1.	Use be	st pract	ices in t	the desi	gn and	develo	pment	of elega	ant and fl	exible (cloud softv	vare solu	tions			
2.	Create,	, implen	nent an	d deplo	y a clou	Id/LAM	P based	d applic	ation.							
3.	Analyz	e a real	world p	oroblem	and de	evelop a	loud/	LAMP b	based sof	ftwares	solution.					
4.	Contras	st softw	are dev	elopme	nt in the	e web,	cloud a	nd othe	rs							
COUR	RSE OU	TCOM	ÆS													
On the	success	sful con	pletion	of the	course,	student	ts will t	be able t	to							
CO1: U	Indersta	nd the c	levelop	ment fo	r cloud	compu	ting					Understa	ind			
CO2: I	Design t	he clou	d infras	trucute								Apply				
CO3: de	evelopn	nent the	web de	evelopn	ent and	l frame	works					Apply				
CO4 : A	ble to r	ecall th	e inform	nation i	n cloud	l.						Understand, apply				
MAPF	PING W	VITH P	ROGR	AMM	E OUT	COME	S AND	PROC	GRAMM	IE SPE	ECIFIC O	UTCOM	1ES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	D2 PSO3	
CO1	M	М									L	L	М			
CO2	M	L		L						L		L		Μ		
CO3	M	М	L	L		M							М	М	L	
CO4	М	S	L			L				L		М	М	S		
S- Stro	U4 M S L L L Strong; M-Medium; L-Low L <td></td> <td></td> <td></td> <td></td>															

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

UNIT -	- T	CLOUD BA	SED APPLICATIONS		(4 Hours)					
Introdu	- iction.	Contrast tra	litional software devel	opment and developm	ent for the cloud. Public v private					
cloud a	apps. Ui	derstanding	Cloud ecosystems – w	what is SaaS/PaaS, pop	ular APIs, mobile;					
UNIT -	- II	DESIGNING C	ODE FOR THE CLOUD		8 Hours					
Class a	and Met	hod design t	o make best use of the	Cloud infrastructure; V	Web Browsers and the Presentation					
Layer-	Unders	tanding We	b browsers attributes an	nd differences. Buildin	g blocks of the presentation layer:					
HTML	., HTMI	L5, CSS, Sil	verlight, and Flash.							
UNIT -	- III	WEB DEVELO	PMENT TECHNIQUES AND	FRAMEWORKS	8HOURS					
Buildir	Building Ajax controls, introduction to Javascript using JQuery, working with JSON, XML, REST.									
Applic	ation de	velopment	Frameworks e.g. Ruby	on Rails , .Net, Java A	PI's or JSF; Deployment					
Enviro	nments	– Platform A	As A Service (PAAS),	Amazon, vmForce, Go	ogle App Engine, Azure, Heroku,					
AppFo	orce		、 <i>,,</i>							
UNIT -	- IV	USE CASE	1: BUILDING AN APPLI	CATION	(4 Hours)					
					, , , , , , , , , , , , , , , , , , ,					
Physic	al and v	irtual machi	ne memory. CPU man	agement and abstractio	n techniques using a hypervisor.					
1 11 9 510										
			NEVEL ODING AND DEDLOVING 6 HOL							
UNIT - V DEVELOPING AND DEPLOYING 6 HOURS										
Building on the experience of the first project students will study the design, development, testing and										
deploy	ment of	an applicati	ion in the cloud using a	development framewo	ork and deployment platform					
TEXT	BOOKS	5								
1. Chri	s Hay, I	Brian Prince	, "Azure in Action" Ma	anning Publications [IS	SBN: 978-1935182481],2010.					
2. Her	nry Li, "	Introducing	Windows Azure" Apre	ess; 1 edition [ISBN: 9	78-1-4302-2469-3],2009.					
3. Eug	enio Pa	ce, Dominic	Betts, Scott Densmore	, Ryan Dunn, Masashi	Narumoto, MatiasWoloski,					
"Devel	loping A	pplications	for the Cloud on the M	Icrosoft Windows Azu	re Platform" Microsoft Press; 1					
edition	ISBN	978073565	60621.2010.							
4 Eng	ene Ciu	rana "Deve	loning with Google An	n Engine" Apress: 1 ec	lition [ISBN: 978-					
143021	183191 [/]	2009		p Englide Apress, i et						
5 Cha	rles Sev	verance "U	sing Google Ann Engir	e" O'Reilly Media: 1 e	dition [ISBN: 978-0596800697]					
2000		verance, Os	sing Google App Lingin	ie O Kenny Wiedła, i e	anion, [15D14. 778-0590000077],					
2009.										
COUF	RSE DE	SIGNERS								
S. No.	Na Na	ame of the	Designation	Department	Mail ID					
	Fa	culty								
1	Dr.rajap	rakash	Associate professor	CSE	rajaprakash@avit.ac.in					
2	Dr.K. Sa	isikala	Associate professor	VMKYN	Sasikala@vkkv.edu.in					
L	1		I	\mathcal{C}						

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

									<u>a</u> ,							
					SECU				Cate	gory	L	Т	Р	Cred	lit	
35021	CC07		COMPUTER FORENSICS						SI	E	3	3 0 0			3	
PREAN To lear	PREAMBLE: To learn computer forensics and • To become familiar with forensics tools and learn to analyze and validate forensics data															
PRERE	PREREQUISITE: NIL															
COURS	COURSE OBJECTIVES															
1	To learn computer forensics															
2	To become familiar with forensics tools															
3	To learn to analyze and validate forensics data															
4	To learn Identify the vulnerabilities in a given network infrastructure															
5	To Implement real-world hacking techniques to test system security															
COURSE OUTCOMES																
On the s	On the successful completion of the course, students will be able to															
CO1. Understand the basics of computer forensics Understand																
CO2. A	apply a 1	number	of diffe	erent co	mputer	forensi	ic tools	to a giv	ven scer	nario	1	Apply				
CO3. A	nalyze a	nd vali	date for	ensics	data.						1	Apply				
CO4:.	Identify	the vul	nerabil	ities in	a given	networ	rk infra	structur	e		1	Apply				
CO5: In	mpleme	nt real-	world h	acking	techniq	ues to t	test syst	tem sec	urity		1	Apply				
MAPPI	NG WI	TH PR	OGRA	MME	OUTC	COMES	S AND	PROG	RAMN	IE SPE	CIFIC C	OUTCO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3	
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L	
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L	
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-	
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-	
CO5	S	S	М	М	М	L	М	М	L	М	М	М	S	S	L	
CO6	S	S	L	-	-	L	М	L	-	-	-	L	S	L	-	
S- Stron	ig; M-M	edium;	L-Low	7								I		1		

UNIT I INTRODUCTION

Introduction to Traditional Computer Crime, Traditional problems associated with Computer Crime. Introduction to Identity Theft & Identity Fraud. Types of CF techniques - Incident and incident response methodology - Forensic duplication and investigation. Preparation for IR: Creating response tool kit and IR team. - Forensics Technology and Systems - Understanding Computer Investigation – Data Acquisition.

UNIT II EVIDENCE COLLECTION AND FORENSICS TOOLS

Processing Crime and Incident Scenes – Working with Windows and DOS Systems. Current Computer Forensics Tools: Software/ Hardware Tools.

UNIT III ANALYSIS AND VALIDATION

Validating Forensics Data – Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email

Investigations – Cell Phone and Mobile Devices Forensics

UNIT-IV NETWORK FORENSIC

An overview of Routers – Hacking Routers – Investigating Routers – Investigating Wireless Attacks –Basics of wireless – Wireless Penetration Testing – Direct Connections to Wireless Access Point – Wireless Connect to a Wireless Access Point

UNIT V EMAIL FORENSIC & STEGANOGRAPHY

E-Mail Terminology - Forensics Acquisition – Processing Local mail archives – Processing server level archives – classification of steganography – categories of steganography in Forensics – Application of steganography -Types of password cracking.

TEXT BOOKS:

1. Bill Nelson, Amelia Phillips, Frank Enfinger, Christopher Steuart, —Computer Forensics and Investigations^{II}, Cengage Learning, India Edition, 2016.

2. CEH official Certfied Ethical Hacking Review Guide, Wiley India Edition, 2015.

REFERENCES

1. John R.Vacca, —Computer Forensics, Cengage Learning, 2005

2. MarjieT.Britz, —Computer Forensics and Cyber Crimel: An Introductionl, 3rd Edition, Prentice Hall, 2013.

3. AnkitFadia — Ethical Hacking Second Edition, Macmillan India Ltd, 2006

4. Kenneth C.Brancik —Insider Computer Fraud Auerbach Publications Taylor & Francis Group-2008.

COURSE DESIGNERS

COURSE DESIGNERS									
Name of the Faculty	Designation	Department	Mail ID						
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in						

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.
35	021CC	:04	CI	OUD	STOR	AGE	INFRA	ASTRI	ICTUI	RES	Categor	y L	Т	Р	Credit
	00	-	01		0101						SE	3	0	0	3
PREA	MBLE		Introd	uces th	e basic	c conce	pts of	design	of clou	ıd stora	ige infrast	ructures			
PRER	EQUIS	ITE	CLOU	D COI	MPUT	ING									
COUR	RSE OB	JECTI	VES												
1.	To und	lerstan	d the o	pportu	nities a	nd cha	llenges	s in clo	ud con	puting					
	To Eva	aluate	inform	ation s	storage	mana	gemen	t desig	n in a	cloud	environm	nent and	d how	it rel	ates tothe
2.	busine	ss obje	ctives	of an o	rganiza	ation	C	C							
3.	To Investigate how a global storage solution can be optimized.														
4.	To Analyze how best to provide reliable access to information both locally and remotely using storage technologies														
	Technologies														
5.	To learn and apply the knowledge of design of cloud storage infrastructures														
COUR	RSE OU	TCOM	ÆS												
On the	success	ful con	npletion	of the	course,	student	s will b	e able t	0						
CO1: T	o unde	rstand	the opp	ortunit	ties and	l challe	enges i	n cloud	l comp	uting			Under	stand	
CO2. 1	o Eval	uata in	formati	ion stor	rage m	anagan	nont						Ana	lyse	
CO2. 1			Iormat			anagen							A		
CO3: A	ble to d	evelop	global	storage	e projec	ts							Ap	ріу	
CO4 : A	ble to U	Indersta	and and	apply c	loud se	rvices							Ana	lyse	
CO5: A	ble to p	rovide	and ava	ilable w	vith reli	able ac	cess to	informa	tion wi	th other			Ap	ply	
environ	ment ap	plicatio	ons			~ ~ ~ ~ ~	<i>a</i>					~~~~			
MAPP	'ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	FRAM	ME SPI	ECIFIC O	UTCON	1ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	D2 PSO3
C01	C	M									L	L	L	Μ	
	M	M		L								L	S		
003		М	L	L		М			L						М
CO4	М	S	L			L				HH	1	Μ	Μ	Μ	L
CO5	Μ	L				М			C	2	Μ	L			S
S- Stro	ng; M-N	Mediun	n; L-Lov	W					Dr. N	A NITH	YA.				
										DesC & L	land				

Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

UN	T - I	VIRT	UALIZE	D DATA CEN	TER A	ARCHITE	CTUI	RE	8 HOURS
Clo	ud infrastr	ructures	; public,	private, hybr	id. Ser	vice provi	der in	nterfaces; Saas, P	aas, Iaas. VDC
envi	ironments;	concep	ot, planni	ng and design	, busine	ess continu	ity ai	nd disaster recover	ry principles.
UNI	T - II	INFO	RMATIC	ON STORAGE	E SECU	JRITY & I	DESI	GN	10 HOURS
Stor	age strate	gy and	governai	nce; security a	nd reg	ulations. D	esign	ing secure solution	ons; the
con	siderations	and im	plementa	tions involved	l.				
UNI	T - III	STOR	AGE NE	ETWORK DES	SIGN				9 HOURS
Arc	hitecture o	of storag	ge, analys	sis and plannin	ig. Stor	age netwo	rk de	sign consideration	s; NAS and FC
SAN	Ns,hybrid s	storage	network	ing technologi	es.				
UNI	T - IV	OPTI	MIZATI	ON OF CLOU	D STC	ORAGE			9 HOURS
Glo	bal storage	e manag	gement lo	ocations, scala	bility,	operational	l effic	ciency. Global sto	rage distribution;
tera	bytes to pe	etabytes	and grea	ater.					
UNI	T - V	INFO	RMATIC	ON AVAILAB	ILITY	DESIGN			9 HOURS
Des	igning bac	kup/rec	covery so	olutions to gua	rantee	data availa	ability	y in a virtualized	environment.
Des	ign areplic	cation s	olution, l	ocal remote a	nd adva	anced. Inve	estiga	te Replication in I	NAS and SAN
envi	ironments.								
ТЕХ	KT BOOKS	S							
Gre	g Schulz,	"Cloud	and Vir	tual Data Stor	age N	etworking'	', Au	erbach Publicatio	ns [ISBN: 978-
143	9851739],	2011							
REI	FERENCE	S							
Mar	ty Poniato	wski, "	Foundati	ons of Green	T"Pre	ntice Hall;	1 edi	tion[ISBN: 978-0	137043750],
• • • •				1.5.6				-	
200	9.3.EMC,	"Inforn	hation St	orage and Mar	nageme	ent"Wiley;	2 edi	tion[ISBN: 978-	
047	0294215].	2012.							
4.V	olker Herr	ninghau	is, Albre	cht Scriba,"St	orage	Manageme	ent in	Data Centers"Sp	oringer;
edit	ioN[ISBN	:978-35	64085022	29].2009.					
5.K	laus Sch	midt,	"High	Availability	and	Disaster	Rec	overy"Springer;	edition[ISBN:
CO	URSE DE	SIGN	ERS						
S.	Nam	ne of	Desi	gnation	Depa	rtment		Mail I	D
No.	the	1 1 4x7							
1	Dr. R. Jaic	handran	Assistant	Professor G-II		CSE		rjaichandran@avit.	ac.in
2	Dr. M Nith	iva	P	rofessor		VMK	J1.	nithya@vmkv.edu.	in
_		. <i>j</i> u				\mathcal{O}			
						Dr. M. Pro	THTIN He	A, ad.	

Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

350	21 A I 01		GEN	ETIC	ALG	ORITH	IM AN	ND ITS		Cat	egory	L	Т	Р	Cred	lit
550	21/1101	L		Α	PPLIC	CATIC	DNS			(SE	3	0	0	3	
PREAN This c optimi	ABLE course v zation te	will co echniqu	over fui ues usin	ndamer g Gene	ntal contract	ncepts orithm	of Art (GA), F	ificial I PSO, DE	Neural etc	l Netwo	orks (AN	Ns), F	uzzy	logi	ic (FL)	and
PRERF NIL	EQUISI	TE														
COURS	SE OBJ	ECTI	VES													
1.	To int	roduce	the ide	as of fu	izzy set	s, fuzzy	y logic a	and use	of heu	ristics b	ased on h	uman e	xperi	ence		
2.	To be	come f	amiliar	with ne	eural ne	tworks	that ca	n learn f	rom a	vailable	examples	and ge	eneral	lize t	o form	
3.	To pro	ovide t	he math	ematica	al back	ground	for car	rying ou	t the o	ptimizat	ion assoc	iated w	ith ne	eural	networ	k
COURS	SE OUT	п <u>е</u> ГСОМ	IES													
On the s	successf	ul com	pletion	of the o	course,	student	s will b	e able to)							
CO1: I	dentify	and se	lect a su	itable S	Soft Co	mputin	g techn	ology to	solve	the prol	olem	Unders	stand			
CO2: I	 Design a	neura	1 networ	·k to so	lve anv	proble	m			1		Create				
CO3·1	Design f		ontrolle	r system	<u></u> ne	proore						Create				
CO3.1	Construc	uzzy c	ution an	d impl	ement a	Soft C	omputi	ng solut	ion			Create				
MAPPI	NG WI	TH P	ROGRA	AMME		COME	S AND	PROG	RAM	ME SPI	ECIFIC (OME	S		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PS O3
CO1	-	-	-	-	-	-	-	-	-	-	-	-	I	M	-	-
CO2	L	-	-	-	-	-	-	S	L	М	-	-	l	М	-	-
CO3	L	Μ	-	-	-	-	М	S	L	Μ	-	-		М	-	-
CO4	L	М	-	-	S	-	-	-	-	-	-	-		Н	-	-
S- Stror	1g; IVI-IVI	leaium	I; L-LOW	/												
SYLLA	BUS															
INTRO Neural 1 the brai ANN, c	DUCT Network in, the e haracter	ION T ts: Intr eye's 1 istics o	O BNN oduction Neural 1 of ANN,	n to Bio Networ ANN	ological k. Arti topolog	l Neura ficial N gies, lea	l Netwo Neural 1 Irning a	orks: Ne Network Igorithm	Conc	physiolog cepts: N	gy, Neuro eural attr	nal div ibutes,	ersity mod	, spe eling	ecifications learnir	on of 1g in

NETWORK PARADIGM Neural Network Paradigm: McCulloch-Pitts, Model, the perception Backpropagation networks. Associative Memory, Adaptive Resonance (ART) paradigm, Hopfield Model, Competitive learning Model, Kohonen SelfOrganizing Network

FUZZY SETS

Fuzzy Logic: Introduction to Fuzzy sets: Fuzzy set theory Vs Probability Theory, classical set theory, properties of Fuzzy sets, Operation on Fuzzy sets. Fuzzy relations, Operations of Fuzzy relation, the extension principle. Fuzzy Arithmetic

GENETIC ALGORITHMS

Genetic Algorithms: Fundamentals of genetic algorithms: Basic concepts, Working principle, Encoding, Fitness function, Reproduction, Roulette wheel selection, Boltzmann selection, Tournament selection, Rankselection, Steady state selection. Genetic Modeling: Cross over, Inversion & Deletion, Mutation Operator, Bit-wise Operators. Applications of GA

HYBRID SYSTEMS

Genetic Algorithm – Genetic Modelling - Hybrid systems: Integration of Neural Networks, Fuzzy logic and Genetic Algorithms – GA based backpropagation networks – Fuzzy backpropagation networks – Simplifies Fuzzy ARTMAP -Fuzzy Associative Memories – Fuzzy Logic controlled Genetic systems

TEXT BOOKS

- 1. Introduction to Artificial Neural Systems, Jacek M. Zurada, Jaico Publishing House, 1994.
- 2. Neural Network, Fuzzy Logic and Genetic Algorithm, S. Rajshekahran, G.A. Vijaylaxmi Pai, PHI Learning Pvt. Ltd, 2003.

REFERENCES

- 1. Fuzzy sets & fuzzy logic, George J Klir, B. Yuan, PHI, 1995..
- 2. Swarm Intelligence: From Natural to Artificial Systems, E. Bonabeau, M. Dorigo, and G. Theraulaz, Oxford University Press, 1999.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr. Nitisha	Associate Professor	CSE / AVIT	nitishaaggarwal@avit. ac.in
2.	T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu.in

Will.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K. V. Engg. College, Salem.

2500	1 4 102		FUZ	ZY LO	OGIC A	AND I	ГS		Categ	ory	L		Т	Р	Credit
3502	21A103			APPL	[CATI	ONS			SE		3		0	0	3
PREAN This c optimiz	ABLE ourse w zation te	vill cov	ver fund ies usin	dament g Gene	al conc tic Alg	cepts of orithm	f Artifi (GA), I	cial Ne PSO. D	eural N E etc	etwork	s (ANNs), F	uzzy lo	ogic	(FL) and
PRERE NIL	EQUISI	TE		0	<u> </u>		<u> </u>								
COURS	SE OBJ	ECTI	VES												
1.	To int	roduce	the ide	as of fu	zzy set	s, fuzzy	y logic	and use	of heu	ristics l	based on I	hum	an expe	erienc	e
2.	To become familiar with neural networks that can learn from available examples and generalize to form appropriate rules for inference systems														
3.	To provide the mathematical background for carrying out the optimization associated with neural network learning											al			
COURS	OURSE OUTCOMES														
On the s	successf	ul com	pletion	of the o	course,	student	ts will t	e able	to						
CO1: I	dentify	and sel	lect a su	itable S	Soft Co	mputin	g techn	ology t	o solve	the pro	blem	Ur	ıderstar	nd	
CO2: I	Design a	neura	l netwo	rk to so	lve any	proble	m					Cr	eate		
CO3: I	Design f	uzzy c	ontrolle	r syster	ns							Cr	eate		
CO4: (Construc	et a sol	ution ar	nd impl	ement a	a Soft C	Computi	ing solu	ition			Cr	eate		
MAPPI	NG WI	TH P	ROGR	AMME	OUT	COME	S AND	PRO	GRAM	ME SP	ECIFIC	OU	TCOM	IES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	PS	01	PSO2
												0 12			
CO1	-	-	-	-	-	-	-	-	-	-	-	-		М	-
CO2	L	-	-	-	-	-	-	S	L	М	-	-		М	-
CO3	L	М	-	-	-	-	М	S	L	М	-	-		М	-
CO4	L	М	-	-	S	-	-	-	-	-	-	-		Н	-
S- Stron	ng; M-M	ledium	; L-Lov	V											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

INTRODUCTION TO BNN

Neural Networks: Introduction to Biological Neural Networks: Neuron physiology, Neuronal diversity, specification of the brain, the eye's Neural Network. Artificial Neural Network Concepts: Neural attributes, modeling learning in ANN, characteristics of ANN, ANN topologies, learning algorithm

NETWORK PARADIGM

Neural Network Paradigm: McCulloch-Pitts, Model, the perception, Backpropagation networks. Associative Memory, Adaptive Resonance (ART) paradigm, Hopfield Model, Competitive learning Model, Kohonen SelfOrganizing Network

FUZZY SETS

Fuzzy Logic: Introduction to Fuzzy sets: Fuzzy set theory Vs Probability Theory, classical set theory, properties of Fuzzy sets, Operation on Fuzzy sets. Fuzzy relations, Operations of Fuzzy relation, the extension principle. Fuzzy Arithmetic

APPROXIMATE REASONING

Approximate reasoning: Introduction, linguistic variables, Fuzzy proposition, Fuzzy if-then rules. Fuzzy Reasoning – Fuzzy Inference Systems – Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsukamoto Fuzzy Models –Input Space Partitioning and Fuzzy Modeling

GENETIC ALGORITHMS & HYBRID SYSTEMS

Genetic Algorithm – Genetic Modelling - Hybrid systems: Integration of Neural Networks, Fuzzy logic and Genetic Algorithms – GA based backpropagation networks – Fuzzy backpropagation networks – Simplifies Fuzzy ARTMAP - Fuzzy Associative Memories – Fuzzy Logic controlled Genetic systems

TEXT BOOKS

Introduction to Artificial Neural Systems, Jacek M. Zurada, Jaico Publishing House, 1994. Neural Network, Fuzzy Logic and Genetic Algorithm, S. Rajshekahran, G.A. Vijaylaxmi Pai, PHI Learning Pvt. Ltd, 2003.

REFERENCES

Fuzzy sets & fuzzy logic, George J Klir, B. Yuan, PHI, 1995.. Swarm Intelligence: From Natural to Artificial Systems, E. Bonabeau, M. Dorigo, and G. Theraulaz, Oxford University Press, 1999.

COURSE DESIGNE	RS			
S. No.	Name of the	Designation	Department / Name of	Mai
1.	Dr. Nitisha	Associate Professor	CSE / AVIT	nitishaaggarwal@avit
2.	T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu.i

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K. V. Engg. College, Salem.

2502	1 . 100							VODV	q		Category	y L	Т	Р	С	redit
3502	A102		ARTI	FICIA	L NEU	JKAL	NETV	VORK	8		SE	3	0	0		3
PREA This syl contains represen know ab	MBLE labus is intellig at knowl	intende gent age ledge an and its	ed for tl ent, Kno nd in m concep	ne Engi owledge achine l ts, appli	neering Repres earning cation.	student sentatio g contai	ts and e n and N n some	nables Iachine importa	them to learnin ant pred	lean ab leg, and a liction r	out Artific application nethod. Th	tial Intelli Mathematical This is This sthis s	igence. useful t yllabus	This s to how focus	sylla v ses c	abus on to
PRERE	QUISI	TE NTELI	IGEN	٦r												
COURS	SE OBJ	ECTI	VES													
1.	To give an understanding on the fundamentals of non-traditional technologies real- world problems									logies and	approach	nes to s	olving	g har	d	
2.	Fundamentals of artificial neural networks, fuzzy sets and fuzzy logic and g Fuzzy sets to solve hard real-world problems										nd genetic	algorithn	ns. Use	of Al	NN,	
3.	To giv	ve an o	verview	of Ger	etic alg	orithms	s and m	achine	learning	g techni	ques to sol	lving har	d real-v	vorld	prot	olems
4.	To stu	ıdy abo	outAlgo	rithm												
COURS	SE OUT	ГСОМ	ES													
On the s	uccessf	ul com	pletion	of the c	ourse, s	tudents	will be	e able to)							
CO1: Id	lentify t	he diffe	erent ag	ent and	its type	es to sol	ve the j	problem	18			Understand				
СО2: К	now ab	out the	probler	n solvir	ig techr	ique in	Artific	ial Intel	lligence			Analyze				
CO3: C	onstruc	t the no	rmal fo	rm and	represe	nt the k	nowled	lge				Apply				
CO4: I environi	dentify ment.	the exte	ension o	of condi	tion pro	obabilit	y and h	ow to a	pply in	the real	time	Analyze				
CO5: A	pply the	e Inforr	nation l	Retrieva	l and S	peech F	Recogni	tion in	the real-	-world	problems	Analyze				
MAPPI	NG WI	TH PF	ROGRA	MME	OUTC	OMES	AND	PROG	RAMM	IE SPE	CIFIC OU	UTCOM	ES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	02	PSO3
CO1	S	Μ	L			-	-	-	-	-	-	L	S	5	S	Μ
CO2	S	M	L			-	-	-	-	-	-	L	Μ	5	S	Μ
CO3	S	M	S			-	-	-	-	-	-	-	S	-		Μ
CO4	S	S	S			-	-	-	-	-	-	M	M	N	1	М
CO5	S	M	M			-	-	-	-	-	-	-	Μ	S	5	М
S- Stron	g; M-M	ledium;	; L-Low	7												

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

FUZZY SET THEORY

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents-Problem Solving Approach To AI Problems-Problem Formulation

OPTIMIZATION

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed earch Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

NEURAL NETWORKS

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

NEURO FUZZY MODELING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

APPLICATIONS OF COMPUTATIONAL INTELLIGENCE

Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel Efficiency Prediction – Soft Computing for Color Recipe Prediction.

TEXT BOOKS

1.J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2011

REFERENCES

Fimothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.
DavisE.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003.
R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence - PC Tools", AP Professional, Boston, 2005.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	Dr.S.Senthil kumar	Assistant Professor	CSE / VMKVEC	senthilkumars@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

2500	1 4 10 4			COM	DUTT	DVIC	ION			Ca	ategory	L	Т	Р	Cr	edit
3502	1A104			COM	PUIE	K V15	ION				SE	3	0	0	3	3
PREAN In this c algorith core vis surveilla	ABLE ourse st ms for 3 ion task ance, ob	udents BD reco s of sce ject rec	will lea nstructi ne unde ognitio	rn basic on and erstandi n and v	e princij recogni ng and ision ba	ples of i tion fro recogni used cor	image f om sing ition. A ntrol wi	ormatic le or mu pplicati ll be dis	on, imag ultiple in ons to 3 scussed.	ge proces mages (v 3D mode	sing alg video). T lling, vio	orithms a his cours leo analy	and diff se emph vsis, vic	erent nasize leo	es the	
PKEKF	QUISI	IE NI														
COURS	SE OBJ	ECTIV	/ES													
1	To lea	arn the f	fundam	ental in	nage pro	ocessing	g techni	ques re	quired f	for comp	uter visi	on				
2	To learn about Image formation process and perform shape analysis															
3	3 To learn about image features, analysis of Images and generate 3D models															
4 To apply techniques to build computer vision applications																
5	To lea	ırn aboı	ut video	proces	sing, m	otion c	omputa	tion and	l 3D vis	sion and	geometr	у				
COURS	SE OUT	ГСОМ	ES													
On the s	successf	ul com	pletion	of the c	ourse, s	tudents	will be	e able to)							
CO1: I	mpleme	ent fund	amenta	l image	proces	sing tec	hnique	s requir	ed for c	computer	vision	Underst	and			
CO2: U	Understa	and Ima	ge forn	nation p	rocess	and per	form sh	ape ana	lysis			Apply				
CO3: I	Extract f	eatures	form Iı	nages a	nd do a	nalysis	of Ima	ges and	genera	te 3D mo	odels	Analyze	•			
CO4: I	Develop	applica	tions u	sing co	nputer	vision t	echniqu	ies				Apply				
CO5: U	Understa	und vide	eo proce	essing, 1	motion	comput	ation a	nd 3D v	vision a	nd geom	etry	Analyze	•			
MAPPI	ING WI	TH PF	ROGRA	MME	OUTC	COMES	S AND	PROG	RAMM	IE SPEC	CIFIC O	UTCON	ЛES			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS(02	PS O3
C01	М	L	-	-	М	-	-	-	М	-	-	L	S		-	-
CO2	M	L	-	-	M	-	-	-	M	L	-	M	S		-	-
CO4	M		-	-	M	-	-	-	M		-	IVI S	-		vi M	- M
CO5	M	L	-	-	-	-	_	-	M	L	-	M	-	N	M	M
CO5 M L - - - - M L - M S- Strong; M-Medium; L-Low - - M L - M												• • • • • • • • • • • • • • • • • • •	1			

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

Introduction : Image Processing, Computer Vision and Computer Graphics, What is Computer Vision - Low-level, Midlevel, High-level, Overview of Diverse Computer Vision Applications: Document Image Analysis, Biometrics, Object Recognition, Tracking, Medical Image Analysis, Content-Based Image Retrieval, Video Data Processing, Multimedia, Virtual Reality and Augmented Reality

Image Formation Models : Monocular imaging system, Radiosity: The 'Physics' of Image Formation, Radiance, Irradiance, BRDF, color etc, Orthographic & Perspective Projection, Camera model and Camera calibration, Binocular imaging systems, Multiple views geometry, Structure determination, shape from shading, Photometric Stereo, Depth from Defocus, Construction of 3D model from images

Image Processing and Feature Extraction: Image preprocessing, Image representations (continuous and discrete), Edge detection, **Motion Estimation**: Regularization theory, Optical computation, Stereo Vision, Motion estimation, Structure from motion, **Shape Representation and Segmentation :** Contour based representation, Region based representation, Deformable curves and surfaces, Snakes and active contours, Level set representations, Fourier and wavelet descriptors, Medial representations, Multiresolution analysis

Object recognition : Hough transforms and other simple object recognition methods, Shape correspondence and shape matching, Principal component analysis, Shape priors for recognition, **Image Understanding** : Pattern recognition methods, HMM, GMM and EM

Applications: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application: Surveillance – foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion – combining views from multiple cameras – human gait analysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians

REFERENCE BOOKS

1. Computer Vision - A modern approach, by D. Forsyth and J. Ponce, Prentice Hall

Robot Vision, by B. K. P. Horn, McGraw-Hill.

2. Introductory Techniques for 3D Computer Vision, by E. Trucco and A. Verri, Publisher: Prentice Hall.

3. R. C. Gonzalez, R. E. Woods. Digital Image Processing. Addison Wesley Longman, Inc., 1992.

4. D. H. Ballard, C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, 1982.

5. Richard Szeliski, Computer Vision: Algorithms and Applications (CVAA). Springer, 2010

6. Image Processing, Analysis, and Machine Vision. Sonka, Hlavac, and Boyle. Thomson.

7. E. R. Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012

8. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012

9. Mark Nixon and Alberto S. Aquado, Feature Extraction & Image Processing for Computer Vision, Third Edition, Academic Press, 2012.

COURSE DESIGNERS

S. No.	Name of the	Designation	Department / Name of	Mail ID
	Faculty		the College	
1	Dr. Nitisha	Associate Professor	CSE / AVIPT	nitishaaggarwal@avit.ac.in
2.	Dr. K. Sasikala	Associate Professor	CSE/ VMKVEC	sasikalak@vmkvec.edu.in

Dr. M. NIHYA, Prof & Head.

Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

											Category	L	Т	Р	C	redit
350	21AI05	5	INFO	RMAT	'ION F	PROCI	ESSIN	G USI	NG N	LP	SE	3	0	0		3
PREA This co implici Knowle relation	MBLE ourse w t structu edge w nships b	vill cov are of n ill be etween	er the atural l extracte such er	techniq anguage ed from ntities,w	ues, mo e. The c n unstru vill be t	odels, a computa uctured aught.	and alge ational a text b	orithms and ling y ident	that er guisticas ifying	nable c spectsof reference	omputers Enatural la ces to na	to deal v anguage v med enti	withthe vill be ties as	amb dealt well	iguit with as	y and . How stated
PRER NIL	EQUIS	ITE														
COUR	SE OB	JECTI	VES													
1.	1. To introduce the fundamentals of Language processing from the algorithmic vie										nic viewp	oint.				
2.	2. To discuss various issues those make natural language processing a hard task.										ask.					
3.	To disc	uss son	ne appli	cations	of Nati	ural Lar	nguage	Process	ing (NL	.P).						
COUR	SE OU	TCOM	IES													
On the	success	ful con	npletior	n of the	course,	student	ts will b	e able t	0			I				
CO1: T Process	o under	stand t	hefunda	amental	concep	ots of N	atural L	anguag	e			Understa	and			
СО2: Т	o under	stand t	he algo	rithm de	esign fo	orNLP t	asks					Understa	and			
CO3:T process	o apply ing	usefuls	ystems	for lang	guage p	processi	ng and i	relatedt	asks inv	olving	text	Apply				
MAPP	'ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMN	ME SPI	ECIFIC (DUTCON	1ES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	SO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	М	S	S	5	М
CO2	S	M	Ĺ	-	-	-	-	-	-	-	-	М	M	S	5	M
CO3	S	М	S	-	-	-	-	-	-	-	-	-	S	-	-	М

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

INTRODUCTION

Introduction to Natural Language Understanding- Levels of language analysis- Syntax, Semantics, ragmatics.Linguistic Background- An Outline of English Syntax

LEXICONS

Lexicons, POS Tagging, Word Senses. Grammars and Parsing- Features, Agreement and Augmented Grammars.

SEMANTICS AND LOGICAL FORM

Linking Syntax and SemanticsAmbiguity Resolution- other Strategies for SemanticInterpretation- Scoping and the Interpretation of NounPhrases.

KNOWLEDGE REASONING AND REPRESENTATION

Local DiscourseContext and Reference- Using World Knowledge- DiscourseStructure- Defining a Conversational Agent.

APPLICATIONS

Machine Translation, Information Retrievaland Extraction, Text Categorization and Summarization

TEXT BOOKS

1. James Allen, Natural Language Understanding, The Benjamin/Cummings Publishing Company Inc., Redwood City, CA.

2. D. Jurafsky and J. H. Martin, Speech and Language Processing, Prentice Hall India.

REFERENCES

- 1. Charniak, Eugene, Introduction to Artificial intelligence, Addison-Wesley.
- 2. Ricardo Baeza-Yates and BerthierRibeiro-Neto, Modern Information Retrieval, AddisonWesley, 1999.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	V.Amirthalingam	Assistant Professor	CSE / VMKVEC	amirthalingam@vmkvec.edu.in
S- Stron	ng: M-Medium: L-Low		•	

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3502) 1 A TO7			וח	FFD S	TDUC	TIDE	'DIE/	DNIN		Category	L	Т	Р	Credit
5502	21A107					INUC	IUKE			UG	SE	3	0	0	3
PREA This co This co	PREAMBLE This course provides an introduction to the basics of machine learning, neural networks, and Deep learning techniques. This course also provides the learning practice and acquires knowledge on deep learning tools.														
PRER	EQUIS	ITE: N	IIL												
COUR	COURSE OBJECTIVES														
1.	To study the basics of machine learning, neural networks and deep learning														
2.	To study the present the mathematical, statistical and computational challenges of building neural networks														
3.	To study the dimensionality reduction techniques														
4.	To know deep learning techniques to support real-time applications														
5.	To examine the case studies of deep learning techniques														
COUR	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1: U	CO1: Understand basics of deep learning Understand														
CO2: I	mpleme	ent vario	ous dee	p learni	ng mod	els							App	oly	
CO3: F	Realign	high diı	mension	nal data	using r	eductio	n techni	iques					App	oly	
CO4: U comput	Jndersta	and and	apply s and tec	scaling hnolog	up macl ies	hine lea	rning te	chnique	es and a	ssociate	d		Apj	oly	
CO5 : <i>A</i>	Analyse	optimiz	zation a	nd gene	eralizati	on in de	eep lear	ning					Ар	oly	
CO6: E	Explore	the deep	p learni	ng appl	ication								Cre	ate	
MAPP	PING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROG	RAMN	IE SPE	CIFIC O	UTCON	IES		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	_	S	М	-	М	-	-	М	М	-	М	М	М	-	-
CO2	S	S	S	S	М	-	-	М	М	-	М	М	-	-	М
CO3	S	М	М	S	М	-	-	М	М	-	М	М	М	-	-
CO4	S	Μ	М	S	М	-	-	М	М	-	М	М	М	-	-
CO5	S	Μ	Μ	S	Μ	-	-	Μ	М	-	М	Μ	М	-	-
CO6	S	М	Μ	S	М	-	-	М	М	-	Μ	Μ	-	М	Μ
S- Stro	ong; M-N	Medium	n; L-Lo	W											

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

INTRODUCTION

Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)- Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximate

DEEP NETWORKS

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow NetworksConvolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning.

DIMENSIONALITY REDUCTION

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization.

OPTIMIZATION AND GENERALIZATION

Optimization in deep learning– Non-convex optimization for deep networks- Stochastic Optimization- Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models-Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience

CASE STUDY AND APPLICATIONS

magenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec
 Joint DetectionBioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions.

REFERENCE BOOKS

1. CosmaRohillaShalizi, Advanced Data Analysis from an Elementary Point of View, 2015.

2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.

3. Ian Goodfellow, YoshuaBengio, Aaron Courville, Deep Learning, MIT Press, 2016.

4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID	
1.	Mr. S. Muthuselvan	Assistant Professor	CSE / AVIT	muthuselvan@avit.ac.in	
2.	Dr. K. Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in	

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

250	35021AI08 REINFORCEMENT LEARNING												Т	Р	Credit
350	21A108			KEIN.	FURC	ENE		AKNI	NG		SE	3	0	0	3
PREA	MBLE												11		
Sequer	ntial dec	ision-n	naking i	s one c	of the m	najor top	pics in 1	machine	e learnii	ng. Fro	m experier	nce, the t	ask is t	o dec	ide the
sequen	ice of ac	ctions to	o perfo	rm in a	n uncer	tain en	vironm	ent in c	order to	achiev	e some go	als that 1	nay not	nece	essarily
seem b	peneficia	il in ne	ar futu	re but a	are opti	mal for	getting	better	long ter	rm rew	ard. Reinf	orcement	learnii	ıg (R	L) is a
paradig	with the basic concepts as well as with the state of the art research literature in deep reinforcement learning. After														
with the basic concepts as well as with the state-of-the-art research literature in deep reinforcement learning. After															
completion the students will be able to (a) structure a reinforcement learning problem, (b) understand and apply basic															
RL algorithms for simple sequential decision making problems in uncertain conditions. (c) evaluate the performance of															
	the solution (d) interpret state-of-the-art RL research and communicate their results.														
NIL	NIL														
COUR	OURSE OBJECTIVES														
1.	1. To introduce the fundamentals of Reinforcement Learning system that knows how to make automated decisions														
2. To understand how RL relates to and fits under the broader umbrella of machine learning, deep learning, supervised and unsupervised learning															
3. To understand how to formalize your task as a RL problem, and how to begin implementing a solution.															
COUR	RSE OU	TCOM	IES				1					U			
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0						
CO1:	Underst	ood F u	ndamen	tals of	Reinfor	cement	Learni	ng syste	em that l	knows l	now to	Understa	and		
make a	utomate	d decis	ions												
CO2: F	RL relate	es to an	d fits u	nder the	e broade	er umbr	ella of r	nachine	learnin	ıg, deep	learning,	Understa	and		
supervi	sed and	unsupe	rvised l	learning	5										
CO3: 1	Fo under	stand h	low to f	ormaliz	ze your	task as	a RL pr	oblem,	and how	w to beg	gin	Understa	and		
implem	nenting a	solutio	on.												
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02 PS 03
CO1	S	М	Μ	-	-	-	-	-	-	-	-	Μ	S	S	М
CO2	S	Μ	Μ	-	-	-	-	-	-	-	-	Μ	M	S	Μ
CO3	S	М	S	-	-	-	-	-	-	-	-	Μ	S	-	Μ

S- Strong; M-Medium; L-Low

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

INTRODUCTION

Course logistics and overview. Origin and history of Reinforcement Learning research. Its connections with other related fields and with different branches of machine learning. Probability Primer : Brush up of Probability concepts - Axioms of probability, concepts of random variables, PMF, PDFs, CDFs, Expectation. Concepts of joint and multiple random variables, joint, conditional and marginal distributions. Correlation and independence.

MARKOV DECISION PROCESS

Introduction to RL terminology, Markov property, Markov chains, Markov reward process (MRP). Introduction to and proof of Bellman equations for MRPs along with proof of existence of solution to Bellman equations in MRP. Introduction to Markov decision process (MDP), state and action value functions, Bellman expectation equations, optimality of value functions and policies, Bellman optimality equations.

PREDICTION AND CONTROL BY DYNAMIC PROGRAMMING

Overiew of dynamic programing for MDP, definition and formulation of planning in MDPs, principle of optimality, iterative policy evaluation, policy iteration, value iteration, Banach fixed point theorem, proof of contraction mapping property of Bellman expectation and optimality operators, proof of convergence of policy evaluation and value iteration algorithms, DP extensions.

MONTE CARLO METHODS FOR MODEL FREE PREDICTION AND CONTROL

Overiew of Monte Carlo methods for model free RL, First visit and every visit Monte Carlo, Monte Carlo control, On policy and off policy learning, Importance sampling. TD Methods: Incremental Monte Carlo Methods for Model Free Prediction, Overview TD(0), TD(1) and TD(λ), k-step estimators, unified view of DP, MC and TD evaluation methods, TD Control methods - SARSA, Q-Learning and their variants.

FUNCTION APPROXIMATION METHODS

Getting started with the function approximation methods, Revisiting risk minimization, gradient descent from Machine Learning, Gradient MC and Semi-gradient TD(0) algorithms, Eligibility trace for function approximation, Afterstates, Control with function approximation, Least squares, Experience replay in deep Q-Networks. Policy Gradients: Getting started with policy gradient methods, Log-derivative trick, Naive REINFORCE algorithm, bias and variance in Reinforcement Learning, Reducing variance in policy gradient estimates, baselines, advantage function, actor-critic methods

TEXT BOOKS

Reinforcement Learning: An Introduction", Richard S. Sutton and Andrew G. Barto, 2nd Edition Probability, Statistics, and Random Processes for Electrical Engineering", 3rd Edition, Alberto Leon-Garcia. Machine Learning: A Probabilistic Perspective", Kevin P. Murphy

REFERENCES

Richard S. Sutton, Andrew G. Barto, Reinforcement Learning: An Introduction, Second edition, MIT Press, 2018

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	<u>rajaprakash@avit.ac.in</u>
2.	Dr.M. Nithya	Professor	CSEAWNIKVEC	nithya@vmkv.edu.in

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

350	21 AI 09		ARTI	FICIAL	INTEI	LIGE	NCE A	ND AG	ENTS	Cat	egory	L	Т	P C	Credit
										SE		3	0	0	3
PREAN This cou concepts world ex	IBLE Irse cove s, princi	ers foun ples, an e.	idationa id techr	l techni iiques a	ques and re appli	d tools icable i	required n Arti	d for Ar ficial in	tificial telligen	intellige ce and	ence and a agents er	agents. Th	is cours at in inc	se spotlig lustry ar	ghts the nd real-
PRERE NIL	QUISI	ГЕ													
COURS	SE OBJ	ECTIV	ES												
1.	To learn about computer systems that exhibit intelligent behaviour, design intelligent agents.														
2.	To identify AI problems and solve the problems, design knowledge representation and expert systems, design neural networks for solving problems,														
3.	To understand different knowledge representation technique and reasoning.														
4.	To Un	derstan	d conce	pt of kn	owledge	e repres	sentation	n i.e. pr	opositic	onal logi	c, first or	der logic.			
5	To know the applications of AI														
COURS	SE OUT	COME	S												
On the s	uccessfi	ıl comp	letion o	f the co	urse, stu	idents v	vill be a	ble to							
CO1: U and their	Understa ir archite	and condecture.	cepts of	Artifici	al Intell	igence	and diff	ferent ty	pes of i	intellige	nt agents	Understa	ind		
CO2: I	Formula	te probl	ems as	state spa	ace sear	ch prob	lem & e	efficient	ly solve	e them		Analyze			
CO3:	Underst	and diff	erent k	nowledg	ge repres	sentatio	n techn	ique an	d reasor	ning		Apply			
CO4: logic.	Underst	and con	cept of	knowle	dge repi	resentat	ion i.e.	proposi	tional le	ogic, firs	st order	analyze			
CO5: A	nalyze	applicat	ion of A	AI conce	epts in r	eal time	e.					Analyze			
MAPPI	NG WI	TH PR	OGRA	MME (OUTCO	MES A	AND PI	ROGRA	AMME	SPECI	FIC OU	TCOMES	5		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	М	Μ
CO3	S	M	L	-	M	-	-	-	-	-	-	M	S	M	M
CO4	S	M	L	-	M	-	-	-	-	-	-	M	S	M	M
S- Stron	J5 S M L - M - - - - M S M M rong: M-Medium: L-Low - - - - - M S M M														

Introduction to AI, Intelligent Agents and Searching

Definition of AI, birth of AI, brief history, Turing test, Types of environment, Types of agents, PEAS(Performance measure, Environment, Actuators, Sensors), Introduction to searching, State Space, SAGP (State, Action, Goal test, Path cost), DFS, BFS (Completeness, Time complexity, Space complexity, Optimality), Heuristics, Local Search Algorithm, Hill Climbing. Applications of Artificial Intelligence in real word.

CSP, Game Playing and Logics

Dr. M. NITHYA,

Constrain Satisfaction Problems examples, Approaches to solve CSPs, Test and generate method, back tracking. Game Playing, Optimal decision in games, Min Max algorithm, Evaluation functions, Introduction to Propositional Logic and First Order Logic, Syntax, Substitution, Unification, Deduction, Soundness, Completeness, Consistency, Satisfiability, Expert Systems.

Uncertain Knowledge, Reasoning

Probabilistic Reasoning, Review of Probability Theory, Probabilistic Inference Rules, Bayes Theorem, examples of Bayes theorem, Introduction to Learning, Taxonomy of Learning Systems, Concept Learning, Find-S algorithm, Candidate Elimination Algorithm. Introduction to Neural Networks, Biological Neural Networks, Artificial Neural Networks, Perceptron, Perceptron Learning Rule, Delta Rule, Applications of Neural Networks.

Knowledge Representation

Definition and importance of Knowledge, Issues in Knowledge Representation, Knowledge Representation Systems, Properties of Knowledge Representation Systems Types of Knowledge Representation Systems: Semantic Nets, Frames, Conceptual Dependencies, Scripts, Rule Based Systems(Production System), Propositional Logic, Predicate Logic Propositional Logic(PL): Syntax, Semantics, Formal logic-connectives, truth tables, tautology, validity, well-formed-formula, Inference using Resolution, Backward Chaining and Forward Chaining. Predicate Logic: FOPL, Syntax, Semantics, Quantification, Inference with FOPL: By converting into PL (existential and universal instantiation), Unification and lifting, Inference using resolution. Bayesian Networks, Reasoning in Belief Networks Fuzzy Logic: Fuzzy Sets, Membership in Fuzzy Set, Fuzzy Rule base Systems

Applications of AI

Expert Systems, Components of Expert System: Knowledge base, inference engine, user interface, working memory, Development of Expert Systems Natural Language Processing: Natural Language Understanding and Natural Language Generation, Steps of Natural Language Processing: Lexical Analysis(Segmentation, Morphological Analysis), Syntactic Analysis, Semantic Analysis, Pragmatic Analysis, Machine Translation, Machine Vision Concepts: Machine vision and its applications, Components of Machine Vision System Robotics: Robot Hardware (Sensors and Effectors), Robotic Perceptions

TEXT BOOKS:

- 1. Stuart Russell and Peter Norvig Artificial Intelligence A Modern Approach, PEARSON Education.
- 2. Simon Haykin -Neural Networks PHI.

REFERENCES:

- 1. N. P. Padhy Artificial Intelligence and Intelligence Systems, OXFORD publication.
- 2. B. YagnaNarayana Artificial Neural Networks, PHI Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 3. NPTEL Lecture: Prof. SudeshnaSarkar, http://nptel.ac.in/courses/106105077/
- 4. NPTEL Lecture: Prof. P.Das Gupta, http://nptel.ac.in/courses/106105079/3.
- 5. NPTEL Lecture: Prof. Deepak Khemani, http://nptel.ac.in/courses/106106126/

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr. M. Adimoolam	professor	CSE / AVIT	<u>adimoolam.cse@avit.ac.i</u> <u>n</u>
2.	Dr.M. Nithya	Professor	CSE / VMKVEC	nithya@vmkvec.edu.in

Will.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

	Catego											y L	Т	P	Credit
3	5021 AI (06		STATI	STICA	L MA	CHINE	LEAF	RNING		SE	3	0	0	3
PREAT To pro of mac	PREAMBLE To provide an in-depth knowledge about machine learning concepts and identify applications suitable for different types of machine learning with suitable justification.														
PRER	EQUIS	ITE: N	IIL												
COURSE OBJECTIVES															
1.	To study the outline the key concepts of machine learning														
2.	To understand the supervised learning and classification techniques														
3.	To apply the concept of unsupervised learning and Clustering for applications														
4.	To describes the characteristic of the entire group of data and choose the best central tendency and variability statistic for different levels of measurement.														
5	To Und	lerstand	the rol	e of Sa	mpling	and step	os in de	velopin	g a san	pling p	lan				
COUR	COURSE OUTCOMES														
On the	success	ful con	npletior	of the	course,	student	s will b	e able t	0						
CO1: (Dutline t	he key	concep	ts of ma	achine l	earning						Unders	stand		
CO2:S	ummari	ze supe	rvised l	earning	and cla	assificat	tion tecl	hniques				Unders	stand		
CO3: A	Apply th	e conce	ept of u	nsuperv	rised lea	rning a	nd Clus	stering	for appl	ications	8	Apply			
CO4: A	Analyze	statistic d ungro	cal data uped da	using r ta case	neasure s	s of cer	ntral ten	dency,	dispers	ion and	location	Apply			
CO5: I	dentify	and rec	ognize	the app	ropriate	sample	e survey	design	in real	life rel	ated	Apply			
MAPP	ns PING W	ITH P	ROGR	AMMI	EOUT	COME	S AND	PROG	GRAM	ME SP	ECIFIC	OUTCO	MES		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	-	-	-	-	L	-	-	-	-	-	М	L	_	_
CO2	S	S	S	L	-	L	-	L	L	-	L	М	S	М	L
CO3	S	S	М	L	-	L	-	L	L	-	L	М	S	М	L
CO4	S	L	Μ	L	-	L	-	-	-	-	-	Μ	-	-	-
CO5	S	L	S	-	-	L	-	L	-	-	-	Μ	-	L	-
S- Strong; M-Medium; L-Low															

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

INTRODUCTION

Machine Learning - Examples of machine learning applications- Types of machine learning –Model selection and generalization – Guidelines for Machine Learning Experiments

SUPERVISED LEARNING

Classification - Decision Trees – Univariate Tree –Multivariate Tree - Pruning –Perceptron – Multilayer Perceptron - Back Propagation – Cross Validation and Resampling Methods

UNSUPERVISED LEARNING

Clustering- Mixture densities -K-means - EM Algorithm – Supervised Learning After Clustering- Hierarchical Clustering

SAMPLING THEORY

Fundamentals of sampling – Methods of Sampling – Random Sampling - Simple random Sampling – Restricted Random sampling - Non-Random Sampling – Judgment or Purposive Sampling – Quato sampling – Convenience Sampling – Mixed sampling

ESTIMATION THEORY

Sampling distributions – Estimation of parameters (consistent and unbiased) – Point and interval estimates for population proportions, mean and variance - Maximum likelihood estimate method - Method of moments

TEXT BOOKS

1. EthemAlpaydin, Introduction to Machine Learning MIT Press, 2014.

REFERENCES

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013
- 2. Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction. MIT Press

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Mr. S. Muthuselvan	Assistant Professor	CSE / AVIT	muthuselvan@avit.ac.in
2.	Dr. K. Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K. V. Engg. College, Salem.

35021CS01 Cate	egory I	т	р	Credit
DIGITAL FORENSICS Cate	egory L	L	Γ	Crean

											SE	3	0	0	3
PREAD	MBLE											-			
The co	urse co	vers th	ne prin	ciples	and pr	actice	of digi	ital for	ensics.	Studen	ts will st	tudy abo	out soc	ietal a	nd legal
impact	of co	mpute	r activ	vity: c	omput	er crir	ne, in	tellectu	ual pro	operty,	privacy	issues,	legal	code	s; risks,
vulnera	bilities	, and c	ounter	measur	res; me	thods a	and sta	ndards	for ex	traction,	preserv	ation, ar	nd depo	osition	of legal
evidenc	e in a c	court of	f law.												
PRER	EQUIS	ITE :	Cyber	Securit	y										
COUR	SE OB	JECT	IVES												
1.	1. To understand how to do the digital forensics investigation.														
2. To apply appropriate skills and knowledge in solving various computer forensics problems.															
3. To apply knowledge in solving forensic problems related with data.															
4.	4. To apply knowledge in solving forensic problems related with routers, networks and E-mails.														
5.	5. To learn email forensics and steganography														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1: u	CO1: understand basics in digital forensics														
CO2:	underst	and an	d apply	y digita	l foren	sics in	investi	igation				Underst	and an	d Appl	у
CO3: u	Indersta	and and	l apply	data fo	orensic	s						Underst	and an	d Appl	у
CO4 : u	Indersta	and and	l apply	netwo	rk fore	nsics						Underst	and an	d Appl	у
CO	5: und	erstand	and a	pply en	nail for	ensics	& Steg	ganogra	aphy			Underst	and and	d Appl	у
MAPP	ING W	ITH F	PROG	RAMN	AE OU	TCON	MES A	ND P	ROGR	AMME	SPECI	FIC OU	TCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	Μ	Μ	Μ	-	Μ	-	S	-	-	-	-	S	Μ	М
CO2	S	Μ	S	Μ	Μ	Μ	-	S	-	-	-	-	М	М	М
CO3	М	Μ	S	Μ	Μ	Μ	-	S	-	-	-	-	М	М	М
CO4	S	Μ	Μ	Μ		Μ	-	S	-	-	-	-	Μ	Μ	S
CO5	S	М	М	М	S	М	-	S	-	-	-	-	М	Μ	S
S- Strop	ng; M-N	Mediur	n; L-L	OW	I.										

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

301

UNIT I - INTRODUCTION

History of Forensics – Computer Forensic Flaws and Risks – Rules of Computer Forensic issues – Digital Forensic Principles – Digital Environments – Digital Forensic Methodology	cs – Legal ogies.
UNIT II - DEGITAL FORENSIC INVESTIGATION	9 Hours
Live forensics and investigation –Digital evidence – Seizure methodology- Factors limiti sale seizure of hardware- Demystifying computer /cyber crime – explosion of networking of wireless networks – Interpersonal communication.	ing the whole g – explosion
UNIT III - DATA FORENSIC	8 Hours
Recovering deleted files and deleted partitions – deleted file recovery tools – deleted part recovery tools – data acquisition and duplication – data acquisition tools – hardware tools and duplicating data.	titioned s – backing up
UNIT IV - NETWORK FORENSIC	10 Hours
An overview of Routers – Hacking Routers – Investigating Routers – Investigating Wirel Basics of wireless – Wireless Penetration Testing – Direct Connections to Wireless Access Wireless Connect to a Wireless Access Point.	less Attacks – ess Point –
UNIT V - EMAIL FORENSIC & STEGANOGRAPHY	10 Hours
E-Mail Terminology - Forensics Acquisition – Processing Local mail archives – Processi archives – classification of steganography – categories of steganography in Forensics – A steganography -Types of password cracking	ing server level Application of
TEXT BOOKS	
 John Sammons, "The Basics of Digital Forensics", Elsevier 2015 Linda Volonins, Reynalds Anzaldua, "Computer Forensics for dummies", Wiley Publ 2008. 	lishing Inc.,
3. Anthony Reyes, Jack Wiles, "Cybercrime and Digital Forenscis", Syngress Publishers	s, Elsevier

8 Hours

REFERENCES

2007.

1. Thomas J Holt, Adam M Bossler and Kathryn C, "Cybercrime and Digital Forensics: An Introduction" 1st Edition, Routledge Publisher, 2015.

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

Mitt.M Dr. M. NITHYA,

- Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

350	210502		CVI	SEB (~ RIM	FS A		VRF	RIAN		Category	v L	Т	P	Credit
550	210302		CII								SE	3	0	0	3
PREA	MBLI	E											11		
This co	ourse p	rovides	basic	knowl	edge a	bout c	yber c	rimes	and law	s. Stud	lents wil	l study a	about c	cyber	laws for
various	types of	of cybe	r crime	es.											
PRER	REQUI	SITE :	Nil												
COUL	RSE O	BJEC	FIVES												
1.	To pro	vide in	troduc	tion to	cyberc	rimes a	and typ	bes							
2.	To pro	vide in	troduc	tion to	cyber of	crimes	and di	gital ev	vidences	5					
3.	To stu	dy cybe	er laws		-			-							
4.	To stu	dy abou	ut copy	rights	in digi	tal me	dium								
5.	To stu	dy cybe	er laws	in e-co	ommer	ce									
COUI	RSE O	UTCO	MES												
On the	e succes	ssful co	ompleti	ion of t	he cou	rse, stu	Idents	will be	able to						
CO1: u	Indersta	and typ	es of c	yber cr	rimes							Underst	and		
CO2: 1 investig	underst gation	and var	rious t	ypes of	cyberc	crimes	and ap	ply dig	ital evic	dence in	1	Underst	and and	l App	ly
CO3: u	Indersta	and and	l apply	cyber	laws ag	gainst o	cyber c	rimes				Underst	and and	l App	ly
CO4 : u	ndersta	and co	py righ	ts in di	gital m	edium	-					Underst	and		
CO5: 1	underst	and an	d apply	y cyber	laws in	n e-cor	nmerce	e				Underst	and and	l App	ly
MAPI	PING V	WITH	PROC	FRAM	ME O	UTCO	MES	AND I	PROGR	RAMM	E SPEC	IFIC O	UTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	PSO3
CO1	Μ	Μ	Μ	Μ	-	S	-	S	-	-	-	-	S	M	М
CO2	Μ	Μ	S	Μ	Μ	S	-	S	-	-	-	-	M	M	М
CO3	Μ	Μ	S	Μ	Μ	S	-	S	-	-	-	-	M	Μ	М
CO4	S	Μ	Μ	Μ		S	-	S	-	-	-	-	M	M	S
CO5	S	М	Μ	М	S	S	-	S	-	_	-	-	Μ	Μ	S
S-Stro	ong; M	-Mediu	ım; L-I	LOW											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

UNIT I - INTRODUCTION

History of computer networking and the Internet. Network edge - Protocol layers and their service models - Networks attacks – types of cybercrimes, case studies in cyber crime

UNIT II - CYBER CRIME AND DEGITAL EVIDANCE

Computer system security- History-Standards, International security activity access controls-user access management –types of access control-Information security-threats-structure-policies- Tools - Information processing-Introduction to wireless network security.

UNIT III - CYBER LAW

Scope of Cyber Law, Introduction to Indian Cyber Law, General Laws and Procedures in India-Cyber Law and Internet- Understanding of internet-Cyber Jurisprudence-Analytical and Ethical Jurisprudence-Conflicts of Law-Case Study: International Conventions on Cyber Law.

UNIT IV - COPY RIGHTS IN DIGITAL MEDIUM

Organization security-asset classification and control-physical and environment security-personnel security-Human Rights- Cyber Stalking, Privacy Invasion by Government, E-Government and E-governance-Legal Issues in E-Governance Intellectual Property Issues and Cyberspace - The Indian Perspective.

UNIT V - CYBER LAWS FOR E-COMMERCE

e-Commerce in India-Overview of e-Commerce- Growth and Potential of Ecommerce in India-Bottlenecks of e-Commerce-Regulatory and Legal Environment of E-Commerce- e-Banking-Tele-Banking Service- Challenges of Development of e-Banking- Electronic Contracts- Digital Signatureslegal and technical issues.

TEXT BOOKS

REFERENCES

- 1. Kenneth J. Knapp, "Cyber Security and Global Information Assurance: Threat Analysis and Response Solutions", IGI Global, 2009.
- 2. Debby Russell and Sr. G.T Gangemi, "Computer Security Basics (Paperback)", 2nd Edition, O' Reilly Media, 2006.
- 3. Thomas R. Peltier, "Information Security policies and procedures: A Practitioner's Reference", 2nd Edition Prentice Hall, 2004.
- 4. Jonathan Rosenoer, "Cyber law: the Law of the Internet", Springer-verlag, 1997.
- 5. Thomas R Peltier, Justin Peltier and John blackley, "Information Security Fundamentals", 2nd Edition, Prentice Hall, 1996.

Witt.M

Dr. M. NITHYA,

Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

9 Hours

9 Hours

10 Hours

8 Hours

9 Hours

- 1. Law Relating to COMPUTERS, Internet and E-Commerce A Guide to CYBER LAWS & the IT Act, with Rules, Regulations, Notifications & Case Law By NandanKamath (Ed.), Foreword by N.R.MadhavaMenon.
- 2. Electronic Banking: The Ultimate Guide to Online Banking Hardcover by SCN Education B.V.
- 3. Law Relating to COMPUTERS, Internet and E-Commerce A Guide to CYBER LAWS & the IT Act, with Rules, Regulations, Notifications & Case Law By NandanKamath (Ed.), Foreword by N.R.MadhavaMenon.
- 4. Information Technology Law and practices by Vakulsharma,
- 5. Computers, Internet and New Technology Laws (A comprehensive reference work with a special focus on developments in India)" By: Karnika Seth,
- 6. Cyber Law & Crimes By: BarkhaBhasin, Rama Mohan Ukkalam,

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

Will.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

350	210503	3	INT	RUSI	ON DI	ETEC'	TION	AND		Ca	ategory	L	Т	Р	Credit
000	210000			PRE	VENT	TION	SYST	EM			SE	3	0	0	3
PREA This d differen	MBLE course nt type	E provic s of in	les kno trusior	owledg is and	ge on i tools u	intrusionsed fo	on det r detec	ection ction a	and pand pre	revention	on syste of intru	em. Stud sions.	dents	learn at	out the
PRER	EQUI	SITE:	Netwo	ork See	curity	and ma	anager	nent							
COUR	SE O	BJEC	FIVES	5											
1	To u	ndersta	and the	conce	pts of	intrus	ion de	tection	and p	reventio	on syste	m			
2	To st	udy in	trusior	n detec	tion sy	stem 1	models	S							
3	To st	udy at	out an	omaly	detect	tion									
4	To d	evelop	secure	e intrus	sion de	etection	n syste	em							
5	To st	udy re	cent tr	ends in	n intru	sion de	etectio	n and j	preven	tion sys	stems				
COUR	SE O	UTCO	MES												
On the	succes	sful co	omplet	ion of	the co	urse, s	tudent	s will	be able	e to					
CO1:	Under	stand i	ntrusic	on dete	ction a	and pre	eventio	on syst	ems			Unders	tand		
CO2:	Develo	op and	apply	intrusi	on det	ection	and p	reventi	ion sys	stems m	odels	Unders	tand a	nd app	y
CO3:	Detect	anoma	aly's									Unders	tand a	nd app	ly
CO4:	Apply	securi	ty con	cepts in	n intru	sion de	etectio	n and	preven	ntion sys	stem	Unders	tand a	nd app	y
CO5:	Apply	IDPS	tools									Apply			
MAPP	ING V	VITH	PRO	GRAM	IME (DUTC	OME	S ANI) PRO	GRAN	IME S	PECIFI	IC OU	TCON	1ES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO2	PSO
CO1	S	М					S			_	I M	М	M	S	3 M
CO2	M	M	S	M	-	-	-	-	-	-	L	M	S	-	-
CO3	М	М	М	М	-	М	-	L	-	-	L	-	S	М	S
CO4	М	S	М	-	-	М	-	-	-	Μ	-	М	-	Μ	-
CO5	Μ	Μ	-	-	S	Μ	-	L	-	-	М	М	-	-	М
S- Stro	ng; M-	Mediu	ım; L-	Low											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

UNIT I - INTRODUCTION

Intruder types, intrusion methods, processes and detection, message integrity and authentication, honeypots, firewalls.

UNIT II - INTRUSION DETECTION SYSTEM (IDS)

General IDS model, data mining based IDS, Denning model, data mining framework for constructing features and models for intrusion detection systems

UNIT III - ANOMALY DETECTION

Unsupervised anomaly detection, Host-based anomaly detection, taxonomy of security flaws in software, self-modeling system calls for intrusion detection with dynamic window size.

UNIT IV - SECURE INTRUSION DETECTION SYSTEM

Secure intrusion detection systems, network security, secure intrusion detection environment, secure policy manager, and secure IDS sensor, alarm management, intrusion detection system signatures, sensor configuration, signature and intrusion detection configuration, IP blocking configuration, intrusion detection system architecture.

UNIT V - RECENT TRENDS

Zero day attacks, artificial Intelligence in IDPS, tools for IDPS, Case studies

TEXT BOOKS

- 3. Al-Sakib Khan Patha, The State of the Art in Intrusion Prevention and Detection, CRC press, 2016.
- 4. Endorf, C., Schultz E. and Mellander J., "Intrusion Detection and Prevention," McGraw-Hill, 2003.

REFERENCES

- 2. Rash, M., Orebaugh, A. and Clark, G., "Intrusion Prevention and Active Response: Deploying Network and Host IPS", Syngress. 2005.
- 3. Cooper, M., Northcutt, S., Fearnow, M. and Frederick, K., "Intrusion Signatures and Analysis", Sams. 2001

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

Will.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem. 9 Hours

9 Hours

9 Hours

10 Hours

8 Hours

350	21CS04	L		Ы						Ca	tegory	L	Т	Р	Cr	edit
				Pł	ENET	RATIO	ON TI	ESTIN	G		SE	3	0	0		3
PREA	MBLE	C														
To co	urse p	rovide	s basic	e know	ledge	on the	e pene	tration	testing	g. Stud	ents wi	ll learn	about	the t	ools	used
for pen	etratio	n testii	ng	. 1 TT	1											
PKEK	EQUI	511E:	Ethic	al Hac	King											
COUR	SE OI	BJEC	FIVES	5												
1	To u	ndersta	and per	netratio	on test	ing and	d its ty	pes								
2	To st	udy m	etasple	oit tech	nique	s										
3	To u	ndersta	and an	d apply	/ mete	rpreter	techn	iques								
4	To u	ndersta	and an	d apply	/ crede	ential h	arvest	ing tec	chnique	es						
5	To a	pply to	ols foi	. penet	ration	testing	r									
COUR	SE O	UTCO	MES													
On the	succes	sful co	mplet	ion of	the co	urse, s	tudent	s will l	be able	e to						
C01.	Able t	o undo	retand	nonotr	ation t	achnic	11100					Unders	tand			
		Junue	Istanu	peneti			lucs					Unders	tanu			
CO2:	unders	tand a	nd dev	elop a	pplicat	tions fo	or met	asploit				Unders	tand a	nd ap	ply	
CO3:	unders	tand a	nd dev	elop a	pplicat	tions fo	or met	erprete	er			Unders	tand a	nd ap	ply	
CO4:	unders	tand a	nd dev	elop a	pplicat	tions fo	or crec	lential	harves	ting		Unders	tand a	nd ap	ply	
CO5:	setup	penetr	ation t	esting	enviro	nment	•					Apply				
MAPP	ING V	VITH	PRO	GRAN	IME (DUTC	OME	S ANI) PRO	GRAM	IME S	PECIFI	C OU	TCO	OME	S
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSC)2	PSO
											1					3
CO1	S	Μ	-	-	-	-	S	-	-	-	М	Μ	Μ	S		М
CO2	М	Μ	S	Μ	-	-	-	-	-	-	L	М	S	-		-
CO3	Μ	Μ	Μ	Μ	-	Μ	-	L	-	-	L	-	S	Μ	[S
CO4	M	S	Μ	-	-	Μ	-	-	-	Μ	-	М	-	M	[-
<u>CO5</u>	M	M	-	-	S	Μ	-	L	-	-	М	М	-	-		М
S- Stro	ng; M-	Mediu	ım; L-	Low												

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

UNIT I - INTRODUCTION

Basics of Penetration Testing, Types of Penetration Testing, Intelligence Gathering, Thread Modeling, Vulnerability Analysis, Vulnerability Scanners

UNIT II – METASPLOIT

Metasploit Overview, Meta Sploit Interfaces, Utilities,

UNIT III – METERPRETER

Scanning with NMAP, Attack MS SQL, Basic Meterpeter Commands, Dumping Username and Password, Meterpreter Scripting

UNIT IV - CREDENTIAL HARVESTING

Credential Harvesting overview, Configuration, Launching the attack, , Building Your Own Module

UNIT V - SIMULATED PENETRATION TESTING

Post Exploitation, Attacking Apache Tomcat, Attacking Obscure Services, Configuring your Own Target Machine

TEXT BOOKS

1. David Kennedy, Jim O'Gorman, Devon Kearns, and Mati Aharoni, "Metasploit the Penetration Tester's Guide", No Starch Press, 2011, ISBN is 9781593272883.

REFERENCES

1. Lee Allen, Tedi Heriyanto, Shakeel Ali, "Kali Linux – Assuring Security by Penetration Testing", Packt Publishing, 2014, ISBN is 978-1-84951-948-9

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

M.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

309

10 Hours

8 Hours

10 Hours

8 Hours

9 Hours

350	21CS05	N	MOBII	LECO	MMU	INICA	TION	N		Cate	egory	L	Т	Р	Credit
				SEC	CURI	ľY				SE		3	0	0	3
PREA	MBLE	2										1	1		
This c	course	provie	des bas	ic kno	wledg	e on se	ecurity	/ issue	s in m	obile co	ommuni	ications	. Stud	ents v	ill study
about n		COMP SITE.	uting a	nd seci	twork	s s	s in me	obile co	JIIIIIUI	nication	S.				
INDA	LQUI	JII 12.	Comp	uter ne	<i>t</i> work	3									
COUR	SE OI	BJEC	TIVES	5											
1	To u	nderst	and sec	curity i	ssues i	n mob	ile ph	one							
2	To st	udy se	ecurity	in moł	oile co	mmun	icatior	ns							
3	To u	nderst	and and	d apply	v prote	ction t	echnic	jues in	mobil	e comm	unicati	on			
4	To u	nderst	and and	d apply	v netwo	ork bas	sed sec	curity	service	S					
5	To st	udy p	rotectic	on tech	niques	in mo	bile tr	ansact	ions						
COUR	SE OU	UTCO	OMES												
On the	succes	sful c	omplet	ion of	the co	urse, st	tudent	s will l	be able	e to					
CO1:	Able to	o unde	erstand	mobile	e secur	rity						Unders	tand		
CO2:	To unc	lerstar	nd and	apply s	securit	y in m	obile o	commu	inicatio	ons		Unders	tand a	nd ap	ply
CO3: '	To unc unicati	lerstar on	nd and	apply p	protect	ion teo	chniqu	es in n	nobile			Unders	tand a	nd ap	oly
CO4: ⁷	To app	ly net	work b	ased s	ecurity	v servio	ces					apply			
CO5: '	To app	ly pro	otection	techn	iques f	for mo	bile tra	ansacti	ons			Apply			
MAPP	ING V	VITH	PROG	GRAM	IME (OUTC	OME	S ANI	PRO	GRAM	IME SI	PECIFI	COU	тсо	MES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO	2 PSO
											1				3
CO1	S	М	-	-	-	-	S	-	-	-	М	М	М	S	М
CO2	M	М	S	М	-	-	-	-	-	-	L	М	S	-	-
CO3	M	M	M	М	-	M	-	L	-	-	L	-	S	M	S
CO4	M	S M	M	-	- C	M	-	- T	-	M	- M	M	-	M	- N/
		IVI Modiu	- 1	-	۵	IVI	-	L	-	-	11/1	IVI	-	-	IVI

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

UNIT I - INTRODUCTION

Introduction to Mobile Security - Security of GSM Networks - Security of UMTS Networks LTE Security - Vulnerabilities in Cellular Services - WiFi and Bluetooth Security - SIM/UICC Security -Security of Mobile VoIP Communications.

UNIT II - MOBILE COMMUNICATION AND SECURITY

Threats, Hacking, and Viruses in Mobile Communications. Access Control and Authentication in Mobile Communications. Common Techniques for Mobile Communications Security. Smart Card Security: The SIM/USIM Case.

UNIT III - ATTACKS AND PROTECTION TECHNIQUES IN MOBILE COMMUNICATION

Security of GSM Networks. Security of 3G Networks. Wireless Local Area Network Security. Security of Ad Hoc Networks.

SECURITY OF NETWORK-BASED SERVICES IN **MOBILE COMMUNICATION**

Inter-System Roaming and Internetworking Security. Securing Mobile Services. Security of Mobile Sensor Networks. Security of Satellite Services.

PROTECTION TECHNIQUES FOR MOBILE APPLICATIONS

Security of Mobile Payments. Security of Mobile Voice Communications. Security of Multimedia Communications

TEXT BOOKS

- 1. Nourreddine Boudriga, Security of Mobile Communications, Aurerbach Publications, CRC Press. 2019.
- 2. Noureddine Boudriga, "Security of Mobile Communications", CRC Press, 2009.

REFERENCES

1. Himanshu Dwivedi, Chris Clark and David Thiel, "Mobile Application Security", McGraw-Hill, 1st Edition. 2010.

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

N.Hith.M

Dr. M. NITHYA, - Prof & Head. Dept. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

8 Hours

8 Hours

9 Hours

10 Hours

10 Hours

350	210506				DIG D						Category	L	Т	Р	С	redit
550	210500				BIG D	ATA S.	ECURI	ſΤΥ			SE	3	0	0		3
PREA In this install languag statistic debugg workin	MBLE course and co ge conc cal com ging, an g exam	you way onfigure cepts as puting d orga ple.	ill learn e softw s they a which i nizing a	how to are nec are imp includes and cor	o progra eessary lemente g progra nmentin	am in I for a ed in a umming ng R c	R and h statistic high-le in R, 1 ode. To	ow to to cal prog evel sta reading opics in	use R for grammir tistical data int statistic	or effec ng envi languag o R, ac cal dat	tive data ironment, ge. The c ccessing R a analysis	analysis. discuss ourse cov package and opt	You w generic vers pra s, writi imizatio	ill lea c pro actica ng R on wi	arn h ograr 1 iss func ill p	now to nming ues in ctions, rovide
PRER BIG D	EQUIS ATA Al	ITE NALY	TICS													
COUR	SE OB	JECT	IVES													
1	To und	erstand	the ma	themati	cal four	ndation	s of sec	urity pr	inciples							
2	To app	oreciate	the diff	ferent as	spects o	of encry	ption te	chnique	es							
3	To und	erstand	the role	e played	l by aut	hentica	tion in s	security	,							
4	To und	erstand	the sec	urity co	ncerns	of big-o	data.									
COUR	SE OU	TCON	/IES													
On the	success	ful con	npletior	of the	course,	studen	ts will b	e able t	0							
CO1: U	Jndersta	and the	mathen	natical f	oundati	ions of	security	v princij	oles			Underst	and			
CO2: A	Apprecia	ate the o	differen	t aspect	s of end	cryption	n techni	ques				Underst	and			
CO3: L	Indersta	and the	role pla	yed by	authent	ication	in secu	rity				Underst	and			
CO4: U	Jndersta	and the	security	concei	ns of b	ig-data						Underst	and			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMN	1E SPI	ECIFIC C	OUTCON	IES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	S	М	L	-	М	-	-	-	-	-	-	М	S	N	M	М
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	Ν	M	М
CO3	S	Μ	L	-	М	-	-	-	-	-	-	Μ	S	Ν	M	М
CO4	S	Μ	L	-	М	-	-	-	-	-	-	Μ	S	Ν	M	М
S- Stro	ng; M-N	Mediun	n; L-Lo	W												

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS SYMMETRIC TECHNIQUES

Probability and Information Theory - Algebraic foundations – Number theory - Substitution Ciphers – Transposition Ciphers – Classical Ciphers – DES – AES – Confidentiality Modes of Operation

ASYMMETRIC TECHNIQUES

Diffie-Hellman Key Exchange protocol – Discrete logarithm problem – RSA cryptosystems & cryptanalysis – ElGamal cryptosystem – Elliptic curve architecture and cryptography - Data Integrity techniques.

AUTHENTICATION

Authentication requirements – Authentication functions – Message authentication codes – Hash functions – Security of hash functions and MACS – MD5 Message Digest algorithm – Secure hash algorithm.

SECURITY ANALYTICS I

Introduction to Security Analytics – Techniques in Analytics – Analysis in everyday life – Challenges in Intrusion and Incident Identification – Analysis of Log file – Simulation and Security Process.

SECURITY ANALYTICS II

Access Analytics - Security Analysis with Text Mining - Security Intelligence - Security Breaches

REFERENCESBOOKS:

1. William Stallings, "Crpyptography and Network security: Principles and Practices",

Pearson/PHI, 5th Edition, 2010.

2. Behrouz A. Forouzan, "Cryptography and Network Security", Tata McGraw Hill Education, 2nd Edition, 2010.

3. Douglas R. Stinson , "Cryptography Theory and Practice ", Chapman & Hall/CRC, 3rd Edition, 2006.

4. Mark Talabis, Robert McPherson, I Miyamoto and Jason Martin, "Information Security Analytics: Finding Security Insights, Patterns, and Anomalies in Big Data", Syngress Media, U.S., 2014.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Departme nt	Mail ID
1	Mrs.V.Subapriya	Assistant Professor	CSE	Subapriya.cse@avit.ac.in
2	T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

Will.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021CS07		Category	L	Т	Р	Credit
	CLOUD COMPUTING SECURITY	SE	3	0	0	3

PREAMBLE

This course cloud computing security introduces the basic concepts of security in cloud services and crypto systems in cloud services, which are widely used in the design of cloud computing security. The security issues in virtualization system, virtualization technology, virtualization attacks and legal issues are also considered with in this course.

COURSE OBJECTIVES 1 To understand cloud computing security concepts 2 To study various cloud services 3 To apply cloud computing in collaboration with other services
1To understand cloud computing security concepts2To study various cloud services3To apply cloud computing in collaboration with other services
 2 To study various cloud services 3 To apply cloud computing in collaboration with other services
3 To apply cloud computing in collaboration with other services
4 To understand the cloud computing services
5 To apply cloud computing online
COURSE OUTCOMES
On the successful completion of the course, students will be able to
CO1 : Understand basic service concepts of cloud computing
Contensional basic service concepts of cloud computing
CO2: Understand and apply security issues in cloud computing Analyze
CO3: Apply virtualization techniques Apply
CO4: Understand and apply the attacks concepts in virtualization Apply
CO5: Understand and apply legal issues in cloud services Apply
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
CO4 S M L - M - - - - M S M M CO5 S M L - M - - M S M M

N.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

SYLLABUS INTRODUCTION

Security in Cloud Services (PaaS, IaaS and SaaS). Authentication in cloud services, open SSL, key management and crypto systems in cloud services: stream ciphers, block ciphers, modes of operation, hashing, digital signatures. **SECURITY ISSSUES**

Security Issues in Virtualization System: ESX and ESXi Security, ESX file system security, storage considerations, backup and recovery. Vulnerabilities in virtual machine, hypervisor vulnerabilities, hypervisor escape vulnerabilities, configuration issues, malware (botnets etc).

VIRTUALIZATION TECHNOLOGY

IBM security virtual server protection, virtualization-based sandboxing; Storage Security- HIDPS, log management, Data Loss Prevention. Location of the Perimeter.

VIRTUALIZATION ATTACKS

Guest hopping, attacks on VM (attack on control of VM, code injection into virtualized file structure), VM migration attack, hyperjacking.

LEGAL ISSUES

Responsibility, ownership of data, right to penetration test, local law where data is held, examination of modern Security Standards (eg PCIDSS), how standards deal with cloud services and virtualization, compliance for the cloud provider vs. compliance for the customer

TEXT BOOKS

3. TimMather, Subra Kumaraswamy, Shahed Latif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance" O'Reilly Media; 1 edition [ISBN: 0596802765],2009.

4. Ronald L. Krutz, Russell Dean Vines, "Cloud Security" [ISBN: 0470589876],2010.

REFERENCES

1. John Rittinghouse, James Ransome, "Cloud Computing" CRC Press; 1 edition [ISBN: 1439806802], 2009.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	Dr. S. Senthilkumar	Assistant Professor	CSETT	senthilkumars@vmkvec.edu.in

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

35021CS08									Ca	ategory	L	Т	Р	С	redit	
			DATA VISUALIZATION TECHNIQUES					S S	Е	3	0	0		3		
PREAMBLE Visualization is increasingly important in this era where the use of data is growing in many different fields. Data visualization techniques allow people to use their perception to better understand this data. The goal of this course is to introduce students to data visualization including both the principles and techniques. Students will learn the value of visualization, specific techniques in information visualization and scientific visualization, and how understand how to best leverage visualization methods. PREREQUISITE DATA WAREHOUSING AND DATA MINING COURSE OBJECTIVES																
1 T	To understand how accurately represent voluminous complex data set in web and from other data sources															
2 T	To understand the methodologies used to visualize large data sets															
3 T	To understand the process involved in data visualization and security aspects involved in															
data visualization																
On the successful completion of the course, students will be able to																
CO1: Und	CO1: Understand how accurately represent voluminous complex data set in web and Understand															
fromother data sources											Understand					
CO2: Understand the methodologies used to visualize large data sets										Understand						
CO3: Understand the process involved in data visualization and security aspects																
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COs P	01 P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC)2	PSO3
CO1	S	М	L	-	М	-	-	M	-	-	-	М	S	N	Л	М
CO2	S	M	L	-	M	-	-	M	-	_	_	M	S	N	1	M
CO3	S 1	M	L	-	Μ	-	-	M	-	_	-	М	Š	N	1	M
S- Strong; M-Medium; L-Low																

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.
SYLLABUS INTRODUCTION

Context of data visualization – Definition, Methodology, Visualization design objectives. Key Factors – Purpose, visualization function and tone, visualization design options – Data representation, Data Presentation, Seven stages of data visualization, widgets, data visualization tools.

VISUALIZING DATA METHODS

Mapping - Time series - Connections and correlations - Scatterplot maps - Trees, Hierarchies and Recursion - Networks and Graphs, Info graphics

VISUALIZING DATA PROCESS

Acquiring data, - Where to Find Data, Tools for Acquiring Data from the Internet, Locating Files forUse with Processing, Loading Text Data, Dealing with Files and Folders, Listing Files in a Folder, Asynchronous Image Downloads, Advanced Web Techniques, Using a Database, Dealing with aLarge Number of Files. Parsing data - Levels of Effort, Tools for Gathering Clues, Text Is Best, Text Markup Languages, Regular Expressions (regexps), Grammars and BNF Notation, Compressed Data, Vectors and Geometry, Binary Data Formats, Advanced Detective Work.

INTERACTIVE DATA VISUALIZATION

Drawing with data – Scales – Axes – Updates, Transition and Motion – Interactivity - Layouts –Geomapping – Exporting, Framework – T3, .js, tablo.

SECURITY DATA VISUALIZATION

Port scan visualization - Vulnerability assessment and exploitation - Firewall log visualization -Intrusion detection log visualization -Attacking and defending visualization systems - Creatingsecurity visualization system.

REFERENCES

1. Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2013.

2. Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.

3. Greg Conti, "Security Data Visualization: Graphical Techniques for Network Analysis", No Starch Press Inc, 2007

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	Dr. S. Senthilkumar	Assistant Professor	CSE	senthilkumars@vmkvec.edu.in

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

250240004	DESIGN AND DEVELOPMENT OF	Category	L	Т	Р	Credit
32021BC01	BLOCK CHAIN APPLICATIONS	CC	3	0	0	3

PREAMBLE

This course provides a broad overview of the essential concepts of blockchain technology – by initially exploring the Bitcoin protocol followed by the Ethereum protocol – to lay the foundation necessary for developing applications and programming.

PRÉREQUISITE NIL

COURS	SE OBJ	IECTI	VES												
1	To un	ndersta	nd the l	history,	types a	and app	plicatic	ons of E	Blockch	ain					
2	To ac	cquire k	nowled	lge abo	out cryp	otograp	hy and	l consei	nsus al	gorithms					
3	To D	eploy p	rojects	using	Web3j d	and des	sign blo	ockchai	in base	d applic	ations.				
4	To In	ıplemer	ıt an IC	CO on I	Ethereu	m									
5	To D	esign b	lockcha	in bas	ed appl	lication	with S	Swarm a	and IP	FS					
COURS	SE OU	ГСОМ	ES												
On the	success	ful con	pletion	n of the	course	, stude	nts will	l be abi	le to						
CO1: 0 Blockc	Content hain.	edly di	scuss a	nd deso	cribe th	e histo	ry, type	es and	applica	tions of		Unders	tand		
CO2: 0	Gains fa	amiliar	ity with	crypto	graphy	, and C	onsens	sus algo	orithms			Unders	tand		
CO3: 0	Create d	and dep	oloy pro	ojects u	sing W	eb3j.						Create			
CO4: 1	mplem	ent an l	CO on	Ethere	rum							Apply			
CO5: 1	Design	blockch	nain ba	sed app	olicatio	n with	Swarm	and II	PFS			create			
MAPPI	ING W	ITH PI	ROGRA	AMME	OUTC	COMES	S AND	PROG	RAMN	ME SPE	CIFIC	OUTCO	MES		
COs	P01	<i>PO2</i>	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	-	-	-	-	S	-	-	-	М	Μ	М	S	М
CO2	М	М	S	Μ	-	-	-	-	-	-	L	M	S	-	-
CO3	М	M	Μ	М	-	М	-	L	-	-	L	-	S	M	S
CO4	М	S	Μ	-	-	М	-	-	-	M	-	M	-	M	-
CO5	M	M	-	-	S	М	-	L	-	-	М	М	-	-	Μ
S- Stror	1g; M-N	Aedium	; <i>L-Lo</i>	W											

Will.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

Unit I - INTRODUCTION TO BLOCKCHAIN

Distributed DBMS – Limitations of Distributed DBMS, Introduction to Block chain – History, Definition, Distributed Ledger, Blockchain Categories – Public, Private, Consortium, Blockchain Network and Nodes, Peer-to-Peer Network, Mining Mechanism, Generic elements of Blockchain, Features of Blockchain, and Types of Blockchain.

Unit II - BLOCKCHAIN ARCHITECTURE

Operation of Bitcoin Blockchain, Blockchain Architecture – Block, Hash, Distributer P2P, Structure of Blockchain-Consensus mechanism: Proof of Work (PoW), Proof of Stake (PoS), Byzantine Fault Tolerance (BFT), Proof of Authority (PoA) and Proof of Elapsed Time (PoET).

Unit III – BLOCKCHAIN-BASED FUTURES SYSTEM

Project presentation- Futures smart contract: Blockchain oracles- Web3j: Setting up the Web3J- Installing web3j- Wallet creation, Java client: The wrapper generator- Initializing web3j- Setting up Ethereum accounts- Deploying the contract. **Unit IV** - **BLOCKCHAINS IN BUSINESS AND CREATING ICO**

Public versus private and permissioned versus permission less blockchains- Privacy and anonymity in Ethereum- Why are privacy and anonymity important? - The Ethereum Enterprise Alliance- Blockchainas-a-Service- Initial Coin Offering (ICO): Project setup for ICO implementation- Token contracts- Token sale contracts-Contract security and testing the code.

Unit V – DISTRIBUTED STORAGE IPFS AND SWARM

Ethereum Virtual Machine- Swarm and IPFS: Installing IPFS, Hosting our frontend: Serving your frontend using IFPS, Serving your frontend using Swarm, IPFS file uploader project: Project setup the web page.

TEXT BOOKS

1. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, decentralization, and smart contracts explained", 2nd Edition, Packt Publishing Ltd, March 2018.

2. Bellaj Badr, Richard Horrocks, Xun (Brian) Wu, "Blockchain By Example: A developer's guide to creating decentralized applications using Bitcoin, Ethereum, and Hyperledger", Packt Publishing Limited, 2018.

REFERENCES

1. Andreas M. Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly Media Inc, 2015.

2. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction", Princeton University Press, 2016.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. M. Adimoolam	Professor	CSE	adimoolam.cse@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

			CDVI	TOCI				Cate	egory	L	Т	Р		Credit	
35021	LBC02	I	NFORM	AATIC	N SE	CURIT	Y	S	E	3	0	0		3	
PRE A To un build	AMBLI derstan protecti	E: d Crypt ion mec	tograph chanism	y Theo s in orc	ries, Al ler to se	gorithm ecure co	ns and Somputer	Systems r netwo	s. and no rks	ecessar	y Appro	baches :	and Tec	chnique	s to
PREF	REQUI	SITE:													
COU	RSE O	BJEC 1	TIVES												
1	To un	derstan	d Crypt	ograph	v Theo	ries. Al	gorithn	ns and S	Systems						
2	To un	derstan	d neces	sary A	proach	nes and	Techni	ques to	build p	rotectio	on mech	nanisms	in orde	er to sec	cure
	comp	uter net	works		•			•	•						
3	To Ur	nderstar	nd diffe	rent cry	ptogra	phic ope	erations	s of syn	nmetric	cryptog	graphic	algorit	hms.		
4	To Ur	nderstar	nd vari	ous Au	thentic	ation sc	hemes	to simu	late dif	ferent a	pplicat	ions			
5	To Ur	nderstar	nd vario	us Secu	urity pr	actices	and Sys	stem se	curity s	tandard	s.				
COU	RSE O	UTCO	MES												
On the	e succe	ssful co	ompletio	on of th	e cours	e, stude	ents will	l be abl	e to		T				
CO1.	Under	stand th	e funda	imental	s of net	works s	security	, securi	ity		Under	rstand			
archit	ecture,	threats	and vul	nerabil	ities		6				- Chao	otuna			
CO2.	Apply	the diff	erent cr	yptogra	aphic of	peration	is of sy	mmetri	с		Apply	/			
CO3	Annly	the diff	erent cr	vntoors	anhic of	heration	s of nu	hlic key	V						
crypto	graphy			yptogre	ipine oj	Joration	is of pu	one kej	y		Apply	/			
CO4:.	Apply	the va	rious A	uthenti	cation s	schemes	s to sim	ulate di	ifferent		A				
applic	ations.										Арріу	/			
CO5:	Unders	tand va	rious S	ecurity	practic	es and S	System	security	y standa	ards.	Apply	/			
MAP	PING	WITH	PROG	RAMN	IE OU	тсом	ES AN	D PRO	OGRAN	MME S	SPECIE	FIC OU	TCON	IES	
CO										PO1	PO1	PO1	PSO	PSO	PSO
s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-
CO5	S	S	М	М	М	L	М	М	L	М	M	М	S	S	L
CO6	S	S	L	-	-	L	М	L	-	-	-	L	S	L	-
S- Str	ong; M	-Mediu	m; L-L	ow											
									A	jH.	2				
SVIT	ABUG								Dr. M.	NITHY	A,				
UNIT	1 INTE	RODUC	TION					Dept. o	f Compu	ter Scien	ce & Eng	1.15			

Security trends - Legal, Ethical and Professional Aspects of Security, Need for Security at Multiple levels, Security Policies

- Model of network security – Security attacks, services and mechanisms – OSI security architecture – Classical encryption techniques: substitution techniques, transposition techniques, steganography.- Foundations of modern cryptography: perfect security – information theory – product cryptosystem – cryptanalysis.

UNIT - II SYMMETRIC CRYPTOGRAPHY

MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures - Modular arithmetic-Euclid's algorithm- Congruence and matrices - Groups, Rings, Fields- Finite fields- SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis - Block cipher design principles – Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption Standard - RC4 – Key distribution.

UNIT - III PUBLIC KEY CRYPTOGRAPHY

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing – Factorization – Euler's totient function, Fermat's and Euler's Theorem - Chinese Remainder Theorem – Exponentiation and logarithm - ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange - ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

UNIT - IV MESSAGE AUTHENTICATION AND INTEGRITY

Authentication requirement - Authentication function - MAC - Hash function - Security of hash function and MAC - SHA

-Digital signature and authentication protocols – DSS- Entity Authentication: Biometrics, Passwords, Challenge Response

protocols- Authentication applications - Kerberos, X.509

UNIT - V SECURITY PRACTICE AND SYSTEM SECURITY

Electronic Mail security - PGP, S/MIME - IP security - Web Security - SYSTEM SECURITY: Intruders - Malicious

software – viruses – Firewalls. **TEXT BOOKS:**

1. William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006. **REFERENCES:**

1. C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security, Wiley India Pvt.Ltd

2. BehrouzA.Foruzan, Cryptography and Network Security, Tata McGraw Hill 2007.

3. Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: PRIVATE Communication in a PUBLIC

World, Prentice Hall, ISBN 0-13-046019-2

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. M. Adimoolam	Professor	CSE	adimoolam.cse@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.i n

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

r												1	1 1		
									_ ~	(Category	/ L	Т	Р	Credit
3	5021BC	08 C	RYPT	O CUF	RRENO	CY TE	CHNO	DLOGI	ES		SE	3	0	0	3
PREAM	MBLE												11		
To ana	alyze the	e basic	concep	ots of v	arious	Block (Chain a	and Cry	pto-Cu	Irrency 7	Fechnolo	ogies.			
PRERI NIL	EQUISI	ITE													
COUR	SE OB.	JECT	IVES												
1	To un	dersta	nd the 1	nechan	ism of	Block	chain a	nd Cry	pto cur	rency.					
2	To un	dersta	nd the f	function	nality o	f curre	nt impl	ementa	tion of	block c	hain tec	hnology			
3	To un	dersta	nd the r	equired	d crypto	ographi	ic back	ground	•						
4	To ex Block	plore t chain	he appl	ication	s of Bl	ock cha	ain to c	rypto c	urrenci	ies and u	Indersta	nding lir	nitatio	ns of cu	rrent
5	To ex	posure	e toward	ds recei	nt resea	irch.									
COUR	SE OU	TCON	1ES												
On the	61100066	ful cor	nnlatio	n of the	course	studo	nto wil	l bo ob	la to						
On the	success		ipietioi		course	, stude	ins wit								
CO1:	Underst	and an	d apply	the fur	ndamer	ntals of	Crypto	ography	y in Cry	ypto cur	rency.	Underst	and		
CO2:	Gain kn chain ar	owledg nd Cry	ge abou pto curi	it vario rency.	us oper	ations	associa	ited wit	h the li	ife cycle	of	Underst	and		
CO3:	Deal wi	th the	method	s for ve	erificati	ion and	valida	tion of	Bit coi	n transa	ctions.	Apply			
CO4:]	Demons	strate t	he gene	ral eco	system	of sev	eral Cr	ypto cu	rrencie	es.		Analyze	e		
CO5:]	Educate	the pr	inciples	s, pract	ices an	d polic	ies asso	ociated	Bit coi	n busine	ess.	Apply			
MAPP	ING W	ITH P	ROGE	RAMM	E OUI	ГСОМ	ES AN	D PRO	OGRA	MME S	PECIF	IC OUT	COM	ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	-	-	-	-	S	-	-	-	М	Μ	М	S	M
CO2	М	М	S	М	-	-	-	-	-	-	L	М	S	-	-
CO3	Μ	Μ	М	М	-	М	-	L	-	-	L	-	S	М	S
CO4	М	S	М	-	-	М	-	-	-	М	-	М	-	М	-
CO5	М	Μ	-	-	S	Μ	-	L	-	-	Μ	Μ	-	-	Μ
S- Stroi	ng; M- <mark>N</mark>	/lediun	n; L-Lo	W											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

Unit I - Introduction to Cryptography and Crypto currencies

Cryptographic Hash Functions, Hash Pointers and Data Structures, Digital Signatures, Public Keys as Identities, A Simple Crypto currency.

Unit II - Blockchain Achieves, Store and Use

Decentralization-Centralization vs. Decentralization-Distributed consensus, Consensus with- out identity using a blockchain, Incentives and proof of work. Simple Local Storage, Hot and Cold Storage, Splitting and Sharing Keys, Online Wallets and Exchanges, Payment Services, Transaction Fees, Currency Exchange Markets.

Unit III – Bitcoin mechanism and mining

Bitcoin transactions, Bitcoin Scripts, Applications of Bitcoin scripts, Bitcoin blocks, The Bit- coin network, Limitations and improvements. The task of Bitcoin miners, Mining Hardware, Energy consumption and ecology, Mining pools, Mining incentives and strategies

Unit IV - Community, Politics, and Regulation

Consensus in Bitcoin, Bitcoin Core Software, Stakeholders: Who's in Charge, Roots of Bitcoin, Governments Notice on Bitcoin, Anti Money Laundering Regulation, New York's Bit License Proposal. Bitcoin as a Platform: Bitcoin as an Append only Log, Bitcoins as Smart Property, Secure Multi Party Lotteries in Bitcoin, Bitcoin as Public Randomness, Source-Prediction Markets, and Real World Data Feeds.

Unit V – Altcoins, Cryptocurrency Ecosystem and recent trends

Altcoins: History and Motivation, A Few Altcoins in Detail, Relationship Between Bitcoin and Altcoins, Merge Mining-Atomic Crosschain Swaps-6 BitcoinBacked Altcoins, Side Chains, Ethereum and Smart Contracts. Recent Trends and applications.

TEXT BOOKS

1. Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. (2016). Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press.

REFERENCES

1. Antonopoulos, A. M. (2014). Mastering Bitcoin: unlocking digital cryptocurrencies. OReilly Media, Inc.".

2. Franco, P. (2014). Understanding Bitcoin: Cryptography, engineering and economics. John Wiley and Sons.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. M. Adimoolam	Professor	CSE	adimoolam.cse@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021BC03		BIT	COIN	MINI	NG			Ca	tegory	L	Т	Р	Credit
									SE	3	0	0	3
PREAMBLE This course was o define a currency, accurately assess th	lesigned v analyse the risks of	who wa ne four crypto	ant to 1 dations	earn ho s of di	ow to r gital si moderr	navigato gnature n invest	e investes and the stand t	tment in block ch ortfolio.	cryptoo ain tech	currencie mology	es. You in cryp	1'll lea ptocur	urn how to rency, and
PREREQUISITE NIL		F		<u> </u>			F						
COURSE OBJEC	TIVES												
1 To build a	ı bitcoin p	aymen	t syster	n and t	o perfo	orm auc	tions ir	n Etheren	um.				
2 To study	about cryp	otocurr	encies a	and the	ir func	tions.							
3 To unders	tand abou	t Bitco	in and	Ethereu	um and	the rol	e of Bl	ockchaiı	n in vari	ous dom	nains.		
4 To Recall	about Bit	coin ar	nd Ethe	reum									
5 To Apply	Blockcha	in in v	arious o	lomain	s.								
COURSE OUTCO	OMES												
On the successful c	ompletior	n of the	course	e, stude	nts wil	l be abl	e to						
CO1: Build a bitco	oin payme	ent syst	em.							Apply			
CO2: Building the	ir own Cr	yptocu	rrency	and pe	rform A	Auctior	ns in Et	hereum.		Apply			
CO3: Grasp what	is Cryptoc	currenc	y and h	now it f	unction	ns				Remem	lber		
CO4: Recall about	Bitcoin a	and Eth	ereum							Remem	lber		
CO5: Apply Block	chain in v	various	domai	ns.						Apply			
MAPPING WITH	PROGR	AMM	E OUI	ГСОМ	ES AN	ID PRO	OGRA	MME S	PECIF	IC OUT	COM	ES	
COs PO1 PC	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1 <u>S</u> <u>S</u>	S	-	S	-	S	-	-	-	Μ	S	Μ	S	M
CO2 S S	S	M	S		-		-	-	L	S	S	S	-
	<u> </u>	M	S C	M	-	<u> </u>	-	- M	L	<u>S</u>	5	<u>s</u>	5
CO5 S S	<u> </u>	-	s S	M	-	Ē	_	-	M	S	-	S	
S- Strong; M-Medi	um; L-Lo	W			•		•				•	~	

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

Unit I - BUILDING A BITCOIN PAYMENT SYSTEM

The emergence of blockchain and cryptocurrency-What is blockchain? - Interact with the blockchain- Types of blockchains: Classification of blockchains, Building A Bitcoin payment system: Getting started with Bitcoin, Building a payment gateway.

Unit II - CRYPTOCURRENCY AND AUCTIONS IN ETHEREUM

Building Your Own Cryptocurrency- Compiling Bitcoin from source- New cryptocurrency – Readercoin: Cloning Bitcoin, Readercoin rebranding- Peer-to-Peer Auctions in Ethereum: Introduction to Ethereum, Building an auction DApp: Auction description, Auction contract in Solidity- Contract code analysisEnumerations, Arrays, Mappings, Structures, Functions, Modifiers, Inheritance.

Unit III – CRYPTOCURRENCIES AND BITCOIN

Introduction to Cryptocurrencies, Tokens – Cryptosecurities, Players involved - Cryptocurrency Users, Miners, Cryptocurrency exchanges, Trading platforms, Wallet providers, Coin inventors, Coin offerors. Distributed Ledger Technology (DLT), Bitcoin (BTC) – Genesis Block, Buy Bitcoin, Transactions, Unspent Transaction Output (UTXO), Bitcoin Mining, Value of Bitcoin, Advantages and Disadvantages.

Unit IV - ETHEREUM CRYPTOCURRENCY

Ethereum (ETH) – Smart Contracts, UTXO, Types of Accounts - Externally controlled accounts and Contract account, Merkley Tree, Ether, Components of Ethereum Transaction, DApps, Hard & Soft Fork, Bitcoin Stack versus Ethereum Stack.

Unit V – USE CASES

Blockchain in Supply Chain - Blockchain in Manufacturing - Blockchain in Automobiles - Blockchain in Healthcare - Blockchain in Cyber security - Blockchain in Financial Industry.

TEXT BOOKS

1. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, decentralization, and smart contracts explained", 2nd Edition, Packt Publishing Ltd, March 2018.

REFERENCES

1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfede, "Bitcoin and Cryptocurrency Technologies", Princeton University Press, 2016.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. M. Adimoolam	Professor	CSE	adimoolam.cse@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

			CVD		DENG				Cate	gory	L	Т	Р	Cred	it
35021	BC10			ER FC INVES	JRENS TIGAT	TION	ND		SI	E	3	0	0	3	
PREAM To lear	IBLE: n compu	iter fore	ensics a	nd • To	becom	e famil	iar with	n forens	ics tool	s and lea	arn to an	alyze aı	nd valida	ate forensic	es data
PRERE	QUISI	FE: N	IL												
COURS	SE OBJ	ECTIV	/ES												
1	To leas	rn com	puter fo	orensics											
2	To bec	come fa	miliar	with for	ensics	tools									
3	To leas	rn to an	nalyze a	nd vali	date for	ensics	data								
4	To leas	rn Iden	tify the	vulnera	abilities	in a gi	ven net	work in	frastru	cture					
5	To In	npleme	nt real-	world h	acking	technic	jues to	test sys	tem sec	urity					
COURS	SE OUT	COM	ES												
On the s	successfi	ssful completion of the course, students will be able to													
CO1. U	Understa	nd the	basics of	of comp	outer for	rensics					ι	Underst	and		
CO2. A	a r	umber	of diffe	erent co	mputer	forensi	ic tools	to a giv	ven scer	nario	1	Apply			
CO3. A	nalyze a	nd vali	date for	ensics	data.						1	Apply			
CO4:.	Identify	the vul	nerabil	ities in	a given	networ	rk infra	structur	e		1	Apply			
CO5: In	mplemer	nt real-	world h	acking	techniq	ues to t	est syst	tem sec	urity		1	Apply			
MAPPI	NG WI	TH PR	ROGRA	MME	OUTC	COMES	5 AND	PROG	RAMN	AE SPE	CIFIC O	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO 3
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-
CO5	S	S	М	М	М	L	М	М	L	М	М	М	S	S	L
CO6	S	S	L	-	-	L	М	L	-	-	-	L	S	L	-
S- Stron	ig; M-M	edium;	L-Low	7											

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

UNIT I INTRODUCTION TO COMPUTER FORENSICS

Introduction to Traditional Computer Crime, Traditional problems associated with Computer Crime. Introduction to Identity Theft & Identity Fraud. Types of CF techniques - Incident and incident response methodology - Forensic duplication and investigation. Preparation for IR: Creating response tool kit and IR team. - Forensics Technology and Systems - Understanding Computer Investigation – Data Acquisition.

UNIT II EVIDENCE COLLECTION AND FORENSICS TOOLS

Processing Crime and Incident Scenes – Working with Windows and DOS Systems. Current Computer Forensics Tools: Software/ Hardware Tools.

UNIT III ANALYSIS AND VALIDATION

Validating Forensics Data – Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics

UNIT-IV ETHICAL HACKING

Introduction to Ethical Hacking - Footprinting and Reconnaissance - Scanning Networks - Enumeration - System Hacking - Malware Threats - Sniffing

UNIT V ETHICAL HACKING IN WEB

Social Engineering - Denial of Service - Session Hijacking - Hacking Web servers - Hacking Web Applications - SQL Injection - Hacking Wireless Networks - Hacking Mobile Platforms.

TEXT BOOKS:

1. Bill Nelson, Amelia Phillips, Frank Enfinger, Christopher Steuart, —Computer Forensics and Investigations^{II}, Cengage Learning, India Edition, 2016.

2. CEH official Certfied Ethical Hacking Review Guide, Wiley India Edition, 2015.

REFERENCES

1. John R.Vacca, —Computer Forensicsl, Cengage Learning, 2005

- 2. MarjieT.Britz, —Computer Forensics and Cyber Crimell: An Introductionl, 3rd Edition, Prentice Hall, 2013.
- 3. AnkitFadia Ethical Hacking Second Edition, Macmillan India Ltd, 2006

4. Kenneth C.Brancik — Insider Computer Fraud Auerbach Publications Taylor & Francis Group–2008.

COURSE DESIGNERS										
Name of the Faculty	Designation	Department	Mail ID							
r.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in							

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35	5021BC	07			G	RAPHI	ICS AN	ID GAI	MING	(Category	y L	Т	P O	Credit
PREAN	IBLE										SE	3	U	U	3
This syll	labus is	intende	ed for th	ne Engii	neering	student	s and e	nable th	em to u	ınderstar	nd the ba	sics of G	ame Th	eory	
PRERE	QUISI	TE: NI	L												
COURS	SE OBJ	ECTIV	/ES												
1	To int	roduce	the stuc	lent to t	he notic	on of a	game, i	ts soluti	ons cor	ncepts, a	nd other	basic not	ions an	d	
2	To stu tradin	dy tool g marke	s of gai	ne theo	ry, and	the mai	n applie	cations	for whi	ch they a	are appro	priate, in	cluding	electro	nic
3	To for insigh	malize	the not	ion of s ame the	trategic ory in n	thinkin nodelin	g and r g applie	ational cations	choice	by using	the tools	s of game	e theory	, and to	provide
4	To dra compu	aw the c utationa	connecti al issues	ions bet	ween g	ame the	ory, co	mputer	science	e, and eco	onomics	, especial	ly empl	nasizing	the
5	To int	roduce	contem	porary	topics in	n the in	tersection	on of ga	ame the	ory, com	puter sc	ience, and	d econo	mics	
COURS	SE OUT	COM	ES												
On the a	uaaaaf	1 00mm	lation	of the av		tudonta	will bo	abla to							
	volain tl	he conc	ent of 1	basic no	tion of	a game	its sol		oncent	s and of	her				
issues	xpiani u		cpt of			a game	, 113 301		oncept	s, and on		Understa	and		
CO2:D	evelop a	a strateg	gicgame	e theory	with pe	erfect ir	nformat	ion				Apply			
CO3: A	Analyze	a forma	al notio	n of stra	tegic th	inking	and rat	ional ch	oice by	using to	ols of	Analyze			
CO4.In	dentify	the nor	coope	rativaa	ma tha	ory for	n					Apply			
CO4.III	nalyza	the con	nection		an gam	e theory	n.	utor sci	anca a	nd econo	mice	Аррту			
especial	lly empl	hasizing	g the co	mputati	onal iss	ues	y, comp	uter ser	ence, a		miles,	Analyze			
MAPPI	NG WI	TH PR	OGRA	MME	OUTC	OMES	AND I	PROGI	RAMM	E SPEC	CIFIC O	UTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	М	М	-	-	L	-	L	-	-	S	М	М
CO2	M	-	-	M	L	-	S	-	-	М	-	-	S	-	-
CO3	S	M	M	M	L	-	-	-	-	L	S	L	-	S	-
	S	M	M	S	M	-	-	М	-	M	-	- T	-	-	M
CU5		M		М	М	-	-	-	-	М	-	L	М	8	-
s-stron	g; M-M	eaium;	L-LOW												

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS INTRODUCTION

Making rational choices: basics of Games – strategy - preferences – payoffs – Mathematical basics - Game theory – Rational Choice - Basic solution concepts-noncooperative versus cooperative games - Basic computational issues - finding equilibria and learning in games- Typical application areas for game theory (e.g. Google's sponsored search, eBay auctions, electricity trading markets).

GAMES WITH PERFECT INFORMATION

Games with Perfect Information - Strategic games - prisoner's dilemma, matching pennies Nash equilibria- theory and illustrations - Cournot's and Bertrand's models of oligopoly- auctions mixed strategy equilibrium- zero-sum games-Extensive Games with Perfect Information repeated games (prisoner's dilemma)- subgame perfect Nash equilibrium; computational issues.

GAMES WITH IMPERFECT INFORMATION

Games with Imperfect Information - Bayesian Games – Motivational Examples – General Definitions –Information aspects – Illustrations - Extensive Games with Imperfect -Information - Strategies- Nash Equilibrium – Beliefs and sequential equilibrium – Illustrations - Repeated Games – The Prisoner's Dilemma – Bargaining.

NON-COOPERATIVE GAME THEORY

Non-cooperative Game Theory - Self-interested agents- Games in normal form - Analyzing games: from optimality to equilibrium - Computing Solution Concepts of Normal-Form Games – Computing Nash equilibria f two-player, zerosum games -Computing Nash equilibria of twoplayer, general-sum games - Identifying dominated strategies.

MECHANISM DESIGN

Aggregating Preferences-Social Choice – Formal Model- Voting - Existence of social functions - Ranking systems -Protocols for Strategic Agents: Mechanism Design - Mechanism design with unrestricted preferences- Efficient mechanisms - Vickrey and VCG mechanisms (shortest paths) - Combinatorial auctions - profit maximization Computational applications of mechanism design - applications in Computer Science - Google's sponsored search - eBay auctions.

TEXT BOOKS

1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I – Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.

REFERENCES

1. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.

2. David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual DataCenter", Auerbach Publications, 2006.

3. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.

4. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress 2005.

5. Kenneth Hess, Amy Newman, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, 2010.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	V.Subapriya	Assistant Professor	CSE	subapriyacse@avit.ac.in
2	Ms A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

	250211								X 7		Categor	y L	Т	Р	Credit
	350211	3C09			AN	DROI	ID SEC	CURIT	Y		SE	3	0	0	3
PRI In the mee engi This Win	EAMB nis moo t the h neer to cours dows.	LE lern er alf the have e will	a almos needs some b give ad	st every of user asic kr dequate	y hands such nowledg know	s has a as banl ge abou ledge	handh king, b it the l in devo	eld dev rowsin handhe eloping	vices. E g, eduo ld devi g a mo	Each har cation a ces plat bile app	ndheld de nd emerg form and plications	vice hav ency etc its supp for diff	the c c. It is porting ferent s	omputin a must i software such as	g capability to for a computer e development. Android, iOS,
PRI	E REQ	UISIT	E – NI	L											
CO	URSE	OBJE	CTIVE	S											
1.	Under	stand s	system	require	ments f	for mol	oile app	olicatio	ns						
2.	Gener	ate sui	table de	esign us	sing spe	ecific n	nobile	develop	oment f	ramewo	orks				
3.	Gener	ate mo	bile app	plicatio	on desig	<u></u> n									
4.	Imple	ment tl	he desig	gn using	g specif	fic mob	oile dev	velopme	ent frai	neworks	5				
5.	Deplo	y the n	nobile a	applicat	tions in	marke	tplace	for dist	ributio	n					
CO	URSE	OUTC	COMES	5											
On t	he succ	essful	comple	etion of	the cou	urse, st	udents	will be	able to)					
CO	1. Expo	ose to te	echnolo	gy and	busine	ss trend	ds impa	acting 1	nobile	applicat	ions		Ur	derstand	l
CO	2.Unde	rstand	enterpri	ise scal	e requi	rement	s of mo	obile ap	plicati	ons			Ur	derstand	l
CO	3. Fami	liarize	in the C	Graphic	s used	for An	droid a	pplicat	ion dev	velopme	nt		Ap	ply	
CO	4. Com	petent	with the	e chara	cterizat	ion and	1 archit	ecture	of mot	oile appli	ications		Ap	ply	
CO:	5. Com	petent	with d	esignin	ig and	develoj	oing m	obile a	pplicat	tions usi	ng one a	pplicatio	n Ar	alyze	
MA	PPING	WIT	H PRO	GRAN	MME (OUTCO	OMES	AND	PROG	RAMM	E SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	M	М	М	-	-	М	-	-	-	М	S	М	М
CO2	S	М	M	М	М	-	-	М	-	-	-	М	S	М	М
CO3	S	М	L	М	L	-	-	М	-	-	-	L	S	М	М
CO4	S	М	M	Μ	М	-	-	М	-	-	-	М	S	М	М
CO5	S	М	M	М	L	-	-	М	-	-	-	L	S	М	М
S-S	trong;]	M-Med	lium; L	-Low	I	L	I	I	L	1			1	-I	

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

SYLLABUS UNIT LINTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications –Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

UNIT II BASIC DESIGN

Introduction -Basics of embedded systems design -Embedded OS -Design constraints for mobile applications, both

hardware and software related -Architecting mobile applications -User interfaces for mobile applications -touch events

and gestures -Achieving quality constraints -performance, usability, security, availability and modifiability.

UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

UNIT IV TECHNOLOGY I – ANDROID

Introduction - Establishing the development environment - Android architecture - Activities and views - Interacting

with UI -Persisting data using SQLite-Packaging and deployment -Interaction with server side applications -Using

Google Maps, GPS and Wifi –Integration with social media applications.

UNIT V TECHNOLOGY II –IOS

Introduction to Objective C -iOS features -UI implementation -Touch frameworks -Data persistence using Core Data

and SQLite -Location aware applications using Core Location and Map Kit -Integrating calendar and address book with

social media application -Using Wifi -iPhone marketplace.

TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

REFERENCES

1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.

2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.

3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	V.Subapriya	Assistant Professor	CSE	subapriyacse@avit.ac.in
2	Ms A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

M. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3502	1BC04	Р	UBLIC	KEY	INFRA	ASTUR	RTURI	E AND	1	Cat	egory	L T P Credit						
			Т	RUST	MAN	AGEM	IENT			SE		3	0	0	3			
PREA This cryptog	MBLE course graphy a	provi lgorith	des ba ms, has	usic kn sh func	owledg tions, d	ge on ligital s	securit ignatur	y and res and	manaş user at	gement uthentica	concept tions.	ts. Stud	ents v	vill 1	earn abo	out		
PRER	EQUIS	TE: C	Compute	er Netv	orks													
COUR	SE OB	JECTI	IVES															
1	To un	Idersta	nd the c	concept	s in net	work s	ecurity	and m	anagen	nent								
2	To stu	ıdy pul	blic key	crypto	o syster	ns												
3	To stu	udy abo	out hasl	h functi	ons													
4	To stu	udy MA	AC cod	es and	digital	signatu	ires											
5	To stu	ıdy use	er authe	enticatio	on													
COUR	SE OU	TCOM	IES															
On the	success	ful con	npletion	n of the	course	e, stude	nts wil	l be abl	le to									
CO1:	Underst	and ne	twork s	security	and m	anagen	nent co	oncepts				Remem	ber an	d Un	derstand			
CO2:	Underst	and an	d apply	public	key cr	yptogra	aphy					Underst	and an	d ap	ply			
CO3 :	Underst	and an	d apply	[,] hash f	unctior	is						Underst	and an	d app	ply			
CO4:	Underst	and an	d apply	MAC	codes a	& digit	al sign	atures				Underst	and an	d app	ply			
CO5 :	Apply u	ser aut	hentica	tion te	chnique	es						Apply						
MAPP	ING W	ITH P	ROGR	RAMM	E OUT	ГСОМ	ES AN	D PRO	OGRA	MME S	PECIF	IC OUI	COM	ES				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02 PSC)3		
CO1	S	М	-	-	-	-	S	-	-	-	М	М	Μ	Ş	3 N	Ī		
CO2	М	Μ	S	Μ	-	-	-	-	-	-	L	М	S					
CO3	М	M	M	M	-	М	-	L	-	-	L	-	S	r	<u>// S</u>			
004	M	S	M	-	-	М	-	-	-	M	-	M	-	r	<u>- I</u>			
CO5	M ng: M N	M Aedium		-	S	Μ	-	L	-	-	Μ	Μ	-		- M			
S- 200	ng, wi-N	nculull	1, L-L0	vv														

UNIT I - INTRODUCTION	11 Hours
Definitions & challenges of security, OSI security arch Cryptography & cryptanalysis. Classical encrypt	itecture, attacks & services. Firewalls, Types of Firewalls, ion techniques, substitution techniques, transposition
techniques. Block ciphers, DES, AES structure, multiple	encryption-triple DES
UNIT II - PUBLIC KEY CRYPTO SYSTEMS	11 Hours
Number theory fundamentals, principles of pubic key	crypto systems, RSA algorithm, Strength of RSA, Diffie-
Hellman key exchange, Elliptic curve cryptograp	hy. Symmetric Rey distribution using symmetric and
asymmetric encryptions, distribution of public keys, X.50	9 Certificates Prof & Head.
UNIT III - HASH FUNCTIONS	V.M.K.V. Engg. College, Salem. 8 Hours

MAC, security requirements, HMAC, CMAC, key wrapping, Digital signatures													
UNIT V - USER AUT	HENTICATION		8 Hours										
Remote user authentic management & verifica	Remote user authentication, symmetric and asymmetric encryptions for user authentications, Kerberos, identity nanagement & verification.												
TEXT BOOKS													
COURSE DESIGNER	S												
Name of the Faculty	Designation	Department	Mail ID										
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in										
 William Stallin Publishers, 201 Christof Paar & 	ngs, Cryptography & Network 4. 2 Jan Pelzl, Understanding cry	Security-Principles	and Practices, Sixth Edition, Pearson erg, Springer 2014.										
REFERENCES													
1. Bragg et al., No	etwork security –The complet	e reference, Tata Mc	Graw Hill, 2012.										

Cryptographic hash functions, applications, security requirements, hash function based on block chaining,

7 Hours

Secure Hash Algorithm (SHA).

UNIT IV - MAC CODES AND DIGITAL SIGNATURES

M. Hith

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

							NEGG	Cate	egory	L	Т	Р		Credit	
35021	1BC05	BLOG	INOVAT	IN TECH ION ANI	NOLOG.) APPLI	IES:BUSIT CATION	NESS IS	s	E	3	0	0		3	
PREA	AMBLI	E:								l					
To un	derstan	d Arch	itecture	e Desig	n , Algo	orithms a	and Sy	stems.	and nec	essary	Approa	ches an	d Tech	niques	to
build	protecti	ion mec	hanism	is in oro	ler to se	ecure co	mputer	r netwo	rks						
DDD															
PREI	REQUI	SITE:													
COU	RSE O	BIECT	TVES												
1	Toun	derstan	d the hi	istory t	vnes ar	d applic	ations	of Bloc	kchain						
2	Toun	derstan	d neces	sarv de	sign of	block cl	hain	of Dio	Renam						
3	To Ur	nderstar	nd diffe	rent co	mponer	nts.									
4	To Ur	nderstar	nd var	ious Au	thentic	ation scl	hemes	to simu	late dif	ferent a	pplicat	ions			
5	. To ii	mpleme	ent Bloc	kchain	for var	ious use	cases				11				
COU	RSE O	ÚTCO	MES												
On the	e succe	ssful co	mpletio	on of th	e cours	e, studei	nts will	be abl	e to						
C01.	Under	stand th	e funda	amental	s of net	works s	ecurity	, securi	ity		TT. 1.				
archit	ecture,	threats	and vul	nerabil	ities				-		Under	rstand			
CO2.	Apply	the diff	erent cr	yptogra	aphic op	perations	s of sy	mmetrio	с		Apply	7			
CO3. Apply the different cryptographic operations of public key															
crypto	ography	·		JP**8-	-pine of		o or pu	0110 110]	/		Apply	/			
CO4:.	Apply	the var	rious A	uthenti	cation s	schemes	to sim	ulate di	fferent		Apply	/			
	the dama		ni ana R				1				A				
MAD	DINC		nous S			$\frac{1}{10000000000000000000000000000000000$	FC AN	security		arus.	Apply		TCON	/FC	
MAP	PING	WIIH	PROG	KAMIN	IE OU	ICOM	ES AN	D PRC	JGKAN	VIVIE S	PECIE		ICON	IES	1
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
S	101	102	105	104	105	100	107	100	10)	0	1	2	1	2	3
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-
CO5	~ c	~ C	м	M	M	- I	м	м	T	м	M	M	~ C	~ C	T
	3	3	IVI	IVI	IVI			IVI	L	IVI	IVI	IVI	3	3	L
CO6	S	S	L	-	-	L	Μ	L	-	-	-	L	S	L	-
S- Str	ong; M	-Mediu	m; L-L	OW					10	~	M				
									N	DI					
									C						

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

UNIT I

History of Blockchain-Terminologies in Blockchain-Types of Blockchain-Applications of BlockchainHow blockchain works-Ingredients of Blockchain.

UNIT II

BLOCKCHAIN ARCHITECTURE Operation of Bitcoin Blockchain, Blockchain Architecture – Block, Hash, Distributer P2P, Structure of Blockchain- Consensus mechanism: Proof of Work (PoW), Proof of Stake (PoS), Byzantine Fault Tolerance (BFT), Proof of Authority (PoA) and Proof of Elapsed Time (PoET)

UNIT - III

Blockchain Business Models Introduction to Blockchain Business Models-Need for Blockchain business modelsTraditional business models-Types of Blockchain Business Models- Blockchain As A Service (BaaS)-Token Economy- Utility Token Business Model-Blockchain-Based Software ProductsP2P Blockchain Business Model-Blockchain Professional Services. Block chain for Banking and Financial transactions

UNIT - IV

Blockchain Technology Stack Data structures for Blockchain-Merkle trees-Shared data- Protocols—Fat protocols-PlatformsDAPPS-Smart Contracts.

UNIT – V

USECASE MODEL – BLOCKCHAIN DIGITAL IDENTITY Use case 3: Blockchain for Government: (i) Digital identity, land records and other kinds of record keeping between government entities, (ii) public distribution system social welfare systems Blockchain Cryptography, Privacy and Security on Blockchain

TEXT BOOKS:

- 1. Brojo Kishore Mishra, Sanjay Kumar Kuanar "Handbook of IoT and Blockchain: Methods, Solutions, and Recent Advancements (Internet of Everything (IoE)) ", CRC Press; 1st edition, November 2020.
- Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, decentralization, and smart contracts explained", 2nd Edition, Packt Publishing Ltd, March 2018.

	Name of the Faculty	Designation	Department	Mail ID
S. No.				
1	V.Subapriya	Assistant Professor	CSE	subapriyacse@avit.ac.in
2	Ms A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

								Cate	gory	L	Т	Р		Credit	
35021	LBC06	BLC	OCK CHA	AIN ARCI	HITECT	URE DES	IGN	s	E	3	0	0		3	
PREA	MBLI	E:								l	l	l			
To un	derstan	d Arch	itecture	e Desig	n , Algo	orithms	and Sy	stems. a	and nec	essary	Approa	ches an	d Tech	niques	0
build	protecti	on mec	hanism	is in ord	ler to se	ecure co	omputer	r netwo	rks						
DDDT		ame													
NII	ŒQUI	SIIE:													
COU	RSE O	BJECT	TVES												
1	Toun	derstan	d Archi	tecture	Design	1									
2	Toun	derstan	d neces	sarv de	sign of	block c	hain								
3	To Ur	derstar	nd diffe	rent con	nponer	its.									
4	To Ur	derstar	nd var	ious Au	thentic	ation sc	hemes	to simu	late dif	ferent a	pplicat	ions			
5	To Ur	derstar	nd vario	us Seci	arity pr	actices	and Sys	stem sec	curity s	tandard	s.				
COU	RSE O	UTCO	MES												
On the	e succes	ssful co	mpletio	on of th	e cours	e, stude	nts will	l be abl	e to						
CO1.	Unders	stand th	e funda	mental	s of net	works s	security	, securi	ity		Luda	la nata			
archit	ecture,	threats	and vul	nerabil	ities				-		Under	stand			
CO2. Apply the different cryptographic operations of symmetric Apply															
cryptographic algorithms.															
cryptc	Appiy i oranhy		erent ci	yptogra	ipme of	beration	is of pu	one key	/		Apply	7			
CO4:	Apply	the var	rious A	uthenti	cation s	chemes	to sim	ulate di	fferent						
applic	ations.										Apply	T			
CO5:	Unders	tand va	rious S	ecurity	practic	es and S	System	security	y standa	ards.	Apply	7			
MAP	PING V	WITH	PROG	RAMN	IE OU	тсом	ES AN	D PRC	OGRAN	MME S	PECIE	FIC OU	TCON	IES	
СО										PO1	PO1	PO1	PSO	PSO	PSO
S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3
	a	C	T	т						T	-				Т
01	S	2	L	L	-	-	-	-	-	L	-	L	2		L
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-
CO5	S	S	М	М	М	L	М	М	L	М	М	М	S	S	L
CO6	S	S	L	-	-	L	М	L	-	-	-	L	S	L	-
S- Str	ong; M	-Mediu	m; L-L	ow	1	I	1	1	1		. ^	I	1	1	
	<u> </u>								7	itt.	P1				
									C	/					

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem. Unit I

Introduction to Blockchain: Digital Money to Distributed Ledgers, Design Primitives: Protocols, Security, Consensus, Permissions, Privacy. Blockchain Architecture and Design: Basic crypto primitives: Hash, Signature,) Hashchain to Blockchain, Basic consensus mechanisms

Unit II

Requirements for the consensus protocols, Proof of Work (PoW), Scalabilityaspects of Blockchain consensus protocols Permissioned Blockchains:Design goals, Consensusprotocols for Permissioned Blockchain

Unit III

Hyperledger Fabric (A): Decomposing the consensus process, Hyperledger fabric components, Chaincode Design and Implementation Hyperledger Fabric (B): Beyond Chaincode: fabric SDK and Front End (b) Hyperledger composer tool Unit V

Use case 3: Blockchain for Government: (i) Digital identity, land records and other kinds of record keeping between government entities, (ii) public distribution system social welfare systems Blockchain Cryptography, Privacy and Security on Blockchain

UNIT - V SECURITY PRACTICE AND SYSTEM SECURITY

Electronic Mail security – PGP, S/MIME – IP security – Web Security - SYSTEM SECURITY: Intruders – Malicious software – viruses – Firewalls.

TEXT BOOKS:

Mstering Bitcoin: Unlocking Digital Cryptocurrencies, by Andreas Antonopoulos Blockchain by Melanie Swa, O'Reilly

Hyperledger Fabric - https://www.hyperledger.org/projects/fabric

Zero to Blockchain – An IBM Redbooks course, by Bob Dill, David Smits – https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html

Dr.R.Jaichandran Professor CSE rjaichandran@avit	<u>it.ac.in</u>

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35	02110T0	01	ю	T AR	CHITE	ECTUF	RE AN	D		Ca	ategory	L	Т	Р	Credit
				Р	ROTC	OCOLS	5				SE	3	0	0	3
PREA To an	MBLE alyze th	e basic	concep	ots of v	arious	archited	ctures of	of IOT	and pro	otocols r	elated to	o its arch	nitectur	e.	
PRER NIL	EQUIS	ITE	Î												
COUR	SE OB	JECTI	IVES												
1	To C	ompreh	end the	e essent	tials of	IoT an	d its ap	plicati	ons.						
2	To U	ndersta	nd the	concep	ts of Io	T Arch	nitectur	e Refei	ence m	nodel an	d IoT re	ference	archite	cture.	
3	To A	nalyze	various	IoT A	pplicat	ion lay	er Prot	ocols.							
4	To A	pply IP	based	protoco	ols and	Auther	nticatio	on Proto	ocols fo	or IoT.					
5	To D	esign Io	oT-base	ed syste	ems for	real-w	orld pr	oblems	5.						
COUR	SE OU	TCOM	1ES												
On the	success	ful con	npletion	n of the	course	e, stude	nts wil	l be ab	le to						
CO1:	Compre	hend th	he esser	ntials o	f IoT a	nd its a	pplicat	tions.				Unders	tand		
CO2: referer	Underst ice arch	and the	e conce	pts of I	oT Arc	chitectu	re Refe	erence	model a	and IoT		Unders	tand		
CO3:	Analyze	e variou	us IoT A	Applica	tion la	yer Pro	otocols.					Analyz	e		
CO4 :	Apply I	P based	d proto	cols and	d Autho	enticati	on Pro	tocols f	for IoT	•		Apply			
CO5:	Design	IoT-ba	sed sys	tems fo	or real-	world p	oroblen	ns.				Create			
MAPP	ING W	TTH P	ROGR	AMM	E OU	ГСОМ	ES AN	D PR	OGRA	MME S	SPECIF	IC OU	ГСОМ	ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	-	-	-	-	S	-	-	-	М	Μ	М	S	М
CO2	М	Μ	S	Μ	-	-	-	-	-	-	L	М	S	-	-
CO3	М	Μ	Μ	Μ	-	Μ	-	L	-	-	L	-	S	Μ	S
CO4	М	S	Μ	-	-	Μ	-	-	-	M	-	М	-	Μ	-
<u>CO5</u>	M	M	-	-	S	Μ	-	L	-	-	М	М	-	-	Μ
S- Stro	ng; M-N	/ledium	ı; L-Lo	W											

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

Unit I

Introduction to IOT, Applications of IOT, Use cases of IOT.

Unit II

The IoT Architectural Reference Model as Enabler, IoT in Practice: Examples: IoT in Logistics and Health, IoT Reference Model: Domain, information, functional and communication models.

Unit III

IoT Reference Architecture: Architecture, Functional, information, deployment and operation views; SOA based Architecture, API-based Architecture, OPENIOT Architecture for IoT/Cloud Convergence.

Unit IV

Application Protocols for IoT: UPnP, CoAP, MQTT, XMPP. SCADA, WebSocket; IP-based protocols: 6LoWPAN, RPL; Authentication Protocols; IEEE 802.15.4.

Unit V

Case study: Cloud-Based Smart-Facilities Management, Healthcare, Environment Monitoring System.

TEXT BOOKS

1. Bassi, Alessandro, et al, "Enabling things to talk", Springer-Verlag Berlin An, 2016.

2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017

3. Hersent, Olivier, David Boswarthick, and Omar Elloumi. The internet of things: Key applications and protocols. John Wiley & Sons, 2011.

REFERENCES

1. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Internet of Things: Principles and paradigms. Elsevier, 2016.

S. No.	o. Name of the Designation Faculty		Department	Mail ID
1	Dr. M. Adimoolam	Professor	CSE	adimoolam.cse@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

N.Hith.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021IOT02	MACHINE LEARNING -I	Category	L	Т	Р	Credit
		SE	3	0	0	3

PREAMBLE

This course helps the students to know how kernel methods can be used in various machine learning tasks, including classification, ranking and preference learning, as well as learning with multiple data sources and targets. The student knows how convex optimization methods can be used to efficiently train kernel-based models. The student knows how structured data such as sequences, hierarchies and graphs can be tackled through kernel methods.

PREREQUISITE

MACHINE LEARNING

COUR	COURSE OBJECTIVES						
1.	To familiarize on the concepts of kernel based machine learning						
2.	To study on the methods for dimensionality reduction						
3.	To gain knowledge on the unsupervised models for cluster analysis						
4.	To implement various models for Kernel- ridge regression and SVMs						
COUR	SE OUTCOMES						

On the successful completion of the course, students will be able to

CO1: Understand the fundamental concepts in kernel based machine learning	Understand
CO2: Understand the various methods for dimensionality reduction	Apply
CO3: Understand and apply how unsupervised models work for cluster analysis	Apply
CO4: Apply and analyze various Kernel-Ridge regression models	Analyse
CO5: Apply and analyze various Support Vector Machines and its variants	Analysee

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	М	-	М	М	-	-	-	S	-	Μ	-
CO2	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO3	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO4	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO5	S	М	-	-	М	-	М	М	-	-	-	S	-	Μ	-
S- Stron	S- Strong; M-Medium; L-Low														

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

FUNDAMENTALS OF KERNEL BASED MACHINE LEARNING:

Feature representation and dimension reduction – The learning subspace property (LSP) and "kernelization" aof learning models – Unsupervised learning for cluster discovery – Supervised learning for linear classifiers – Gnereralized inner products and kernel function – Performabce metrics Kernel-induced vector spaces: Mercer kernels and kernel-induced similiarity metrics – Training data independent intrinsic feature vectors – Training data-dependent empirical feature vectors – The kernel-trick for nonvectorial data analysis

DIMENSION_REDUCTION:FEATURE SELECTION AND PCA/KPCA:

Subspace projection and PCA - Numerical methods for computation of PCA – Kernel principal component analysis (KPCA) – Kernel principal component analysis(KPCA) Feature Selection: The filtering approach to feature selection – Application studies of the feature selection approach

UNSUPERVISED LEARNING MODELS FOR CLUSTER ANALYSIS:

Unsupervised learning for cluster discovery: The similarity metric and clustering strategy – K-means clustering Models – Expectation-maximization(EM) learning models – Self-organizing maps(SOM) learning models – Biclustering data analysis Kernel methods for cluster analysis: Kernel based K-means learning models – Kernel Kmeans for nonvectorical data analysis – K-means learning models in kernel-induced spectral space – Kernelized Kmeans learning models – Kerrnel- induced SOM learning models – Neighbor-joining hierarchical cluster analysis KERNEL RIDGE REGRESSORS AND VARIANTS: Kernel-based regression and regularization analysis: Linear least-squares-error analysis - Kernel-based regression analysis – Regularization via radial basis function (RBF) networks Linear Regression and discriminant analysis for supervised classification: Characterization of supervised learning models – Supervised learning models overdetermined formulation – A regularization method for robust learning: training versus prediction performances Kernelized learning models in empirircal space: linear kernels Kernel ridge regression for supervised classification: Kernel-based discriminant analysis(KDA) – Kernel ridge regression (KRR) for supervised classification

Perturbational discriminant analysis(PDA): Decision component and the regression ratio in special space -Application studies: KDA versus KRR – Trimming detrimental (anti-support) vectors in KRR learning models -Multi-class and multi-label supervised classification – Supervised subspace projection methods

SUPPORT VECTOR MACHINES AND VARIANTS:

Support vector machines: Linear support vector machines – SVM with fuzzy separation : roles of stack variables – Kerrnel-based support vector machines – Application case studies – Empirical space SVM for trimming of training vectors Support vector learning models for outlier detection – Support vector regression(SVR) – Hyperplane based one-class SVM learning models – Hypersphere-based one class SVM – Support vector clustering Ridge-SVM learning models – Roles of C and o on WECs of KRR and SVM – Ridge-SVM learning models - Impacts of design parameters on the WEC of ridge SVM – Prediction accuracy versus training time – Application case studies

TEXT BOOKS

1. Kernel Methods and Machine Learning, S.Y.Kung, Cambridge University Press, 2014.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.R.Jaichandran	Associate Professor	CSE / AVIT	rjaichandran@avit.ac.in
2.	Mrs.T.Narmadha	Assistant Professor	CSE / VMKVEC	narmadha@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3502110T03 ARTIFICIAL NEURAL NETWORKS SE 3 0 0 3 FREAMBLE This syllabus is intended for the Engineering students and enables them to lean about Artificial Intelligence. This syllabus focuses on to know wolvedge and in machine learning contain some important prediction method. Thus, this syllabus focuses on to know about AI and its concepts, application. The syllabus is concepts, application. The give an understanding on the fundamentals of non-traditional technologies and approaches to solving hard real-world problems To give an understanding on the fundamentals of non-traditional technologies and approaches to solving hard real-world problems 3. To give an understanding on the fundamentals of non-traditional technologies and approaches to solving hard real-world problems 3. To give an overview of Genetic algorithms and machine learning techniques to solving hard real-world problems 3. To study about Algorithm COURSE OUTCOMES On the successful completion of the course, students will be able to CO2: Know about the problem solving technique in Artificial Intelligence Analyze COURSE OUTCOMES COURSE COUTCOMES CO2: Know about the problem solving te												Category	L	Т	Р	C	redit						
PREAMBLE This syllabus is intended for the Engineering students and enables them to lean about Artificial Intelligence. This syllabus contains intelligent agent, Knowledge Representation and Machine learning, and application. This is useful to how represent knowledge and in machine learning contain some important prediction method. Thus, this syllabus focuses on to know about AI and its concepts, application. PREREQUISTIE To give an understanding on the fundamentals of non-traditional technologies and approaches to solving hard real-world problems Yundamentals of artificial neural networks, fuzzy sets and fuzzy logic and genetic algorithms. Use of ANN, Fuzzy sets to solve hard real-world problems 3. To give an overview of Genetic algorithms and machine learning techniques to solving hard real-world problems COURSE OUTCOMES On the successful completion of the course, students will be able to COURSE OUTCOMES On the successful completion of the course, students will be able to CO2: Know about the problem solving technique in Artificial Intelligence Analyze CO3: Construct the normal form and represent the knowledge Apply CO3: Construct the normal or Retrieval and Speech Recognition in the real-world problems Analyze CO3: Poi PO3 PO3 PO3 PO3 PO3 PO3 PO	35	5021101	-03	ART	IFICIA	AL NEU	URAL	NETW	ORKS			SE	3	0	0		3						
2-* Fuzzy sets to solve hard real-world problems 3. To give an overview of Genetic algorithms and machine learning techniques to solving hard real-world problems 4. To study about Algorithm COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Identify the different agent and its types to solve the problems Understand CO2: Know about the problem solving technique in Artificial Intelligence Analyze CO3: Construct the normal form and represent the knowledge Analyze CO4: Identify the extension of condition probability and how to apply in the real time environment. CO5: Apply the Information Retrieval and Speech Recognition in the real-world problems Analyze M IL Co P01 P01 P012 PS01 PS02 PS03 Co S M L - - - - L M S M CO4: S P03 P04 P05 P06 P07 P08 P09 P010 P011 P0	PREA This syl contains represer know at PRERE ARTIFI COURS	MBLE labus is s intellig nt knowl cout AI CUAL II SE OBJ To giv real- world Funda	intende gent age ledge af and its TE NTELL IECTIV ve an un proble	ed for the ent, Kno nd in ma concept JGENC VES nderstar ms s of arti	ne Engin owledge achine l as, appli EE nding or	neering Represe learning cation.	studen sentatio g contai ndamer	ts and e n and N n some ntals of	enables Machine import non-tra	them to learnin ant prec ditional d fuzzy	lean ab ng, and a liction r	SE out Artific application nethod. Th logies and	2 sial Intell a, This is a, this s approach algorithm	igence. useful t syllabus hes to s	This to ho s focu olvin	sylla w ises o g hai	abus on to rd						
4. To study about Algorithm COURSE OUTCOMES Understand algorithm COI: Identify the different agent and its types to solve the problems Understand CO2: Know about the problem solving technique in Artificial Intelligence Analyze CO3: Construct the normal form and represent the knowledge Apply CO4: Identify the extension of condition probability and how to apply in the real time environment. CO5: Apply the Information Retrieval and Speech Recognition in the real-world problems MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Cos P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 P801 P802 P803 Cos S M L - - - L M M M Cos S M L - - - - L M S M Cos S M L - - - </td <td>2. 3.</td> <td>Fuzzy</td> <td>v sets to</td> <td>solve h</td> <td>ard rea</td> <td>l-world etic alg</td> <td>proble</td> <td>ms s and m</td> <td>achine</td> <td>learning</td> <td>o techni</td> <td>aues to so</td> <td>lving har</td> <td>d real-v</td> <td>vorld</td> <td>prol</td> <td>blems</td>	2. 3.	Fuzzy	v sets to	solve h	ard rea	l-world etic alg	proble	ms s and m	achine	learning	o techni	aues to so	lving har	d real-v	vorld	prol	blems						
COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Identify the different agent and its types to solve the problems Understand CO2: Know about the problem solving technique in Artificial Intelligence Analyze CO3: Construct the normal form and represent the knowledge Apply CO4: Identify the extension of condition probability and how to apply in the real time environment. CO5: Apply the Information Retrieval and Speech Recognition in the real-world problems Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Cos P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 Cos P01 P02 P03 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 Cos M L - - - - L M M Cos M L - - - - L M M<	4.	To stu	idy abo	ut Algo	rithm		,				5	1				proc							
On the successful completion of the course, students will be able to Understand CO1: Identify the different agent and its types to solve the problems Understand CO2: Know about the problem solving technique in Artificial Intelligence Analyze CO3: Construct the normal form and represent the knowledge Apply CO4: Identify the extension of condition probability and how to apply in the real time environment. Analyze CO5: Apply the Information Retrieval and Speech Recognition in the real-world problems Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Analyze Co3 P01 P02 P03 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 Co1 S M L - - - L M S M Co2 S M L - - - L M S M Co3 S M L - - - - L M S M Co3 S M L - - - - - S </td <td>COURS</td> <td>SE OUT</td> <td>ГСОМ</td> <td>ES</td> <td></td>	COURS	SE OUT	ГСОМ	ES																			
CO1: Identify the different agent and its types to solve the problems Understand CO2: Know about the problem solving technique in Artificial Intelligence Analyze CO3: Construct the normal form and represent the knowledge Apply CO4: Identify the extension of condition probability and how to apply in the real time environment. Analyze CO5: Apply the Information Retrieval and Speech Recognition in the real-world problems Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Malyze Co3 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 Co1 S M L - - - - L M S M Co2 M L - - - - - L M S M Co3 S M L - - - - - S S M Co3 S M L - - - - S S M M M	On the s	successf	ul com	pletion	of the c	ourse, s	students	s will be	e able to)													
CO2: Know about the problem solving technique in Artificial Intelligence Analyze CO3: Construct the normal form and represent the knowledge Apply CO4: Identify the extension of condition probability and how to apply in the real time environment. Analyze CO5: Apply the Information Retrieval and Speech Recognition in the real-world problems Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Analyze Cos P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 Co1 S M L - - - L M S M Co2 S M L - - - - L M S M Co3 S M S - - - - M M M Co3 S M - - - - - M M M Co4 S S S - - - - - M <td< td=""><td>CO1: Io</td><td>lentify t</td><td>he diffe</td><td>erent ag</td><td>ent and</td><td>its type</td><td>es to sol</td><td>lve the</td><td>problen</td><td>15</td><td></td><td></td><td>Underst</td><td>and</td><td></td><td></td><td></td></td<>	CO1: Io	lentify t	he diffe	erent ag	ent and	its type	es to sol	lve the	problen	15			Underst	and									
CO3: Construct the normal form and represent the knowledge Apply CO4: Identify the extension of condition probability and how to apply in the real time Analyze CO4: Identify the extension of condition probability and how to apply in the real time Analyze CO5: Apply the Information Retrieval and Speech Recognition in the real-world problems Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Cos PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO5 M L C PO6 PO7 PO8 PO10 PO11 PO12 PS01 PS02 PS03 CO5 M L C M M C CO5 M M M M <th <="" colspan="6" td=""><td>СО2: К</td><td>Lnow ab</td><td>out the</td><td>probler</td><td>n solvir</td><td>ng techr</td><td>nique in</td><td>Artific</td><td>ial Inte</td><td>lligence</td><td>•</td><td></td><td>Analyze</td><td></td><td></td><td></td><td></td></th>	<td>СО2: К</td> <td>Lnow ab</td> <td>out the</td> <td>probler</td> <td>n solvir</td> <td>ng techr</td> <td>nique in</td> <td>Artific</td> <td>ial Inte</td> <td>lligence</td> <td>•</td> <td></td> <td>Analyze</td> <td></td> <td></td> <td></td> <td></td>						СО2: К	Lnow ab	out the	probler	n solvir	ng techr	nique in	Artific	ial Inte	lligence	•		Analyze				
CO4: Identify the extension of condition probability and how to apply in the real time Analyze Analyze CO5: Apply the Information Retrieval and Speech Recognition in the real-world problems Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COs P01 P012 PS01 PS02 PS03 COS M L PS05 PO6 PO7 PO8 PO1 PO12 PS01 PS02 PS03 COS PO1 PO12 PS01 PO12 PS03 PS03 COS PO1 PO12 PS03 PS04 PS PO10 PO11 PO12 PS03 PS M M M S M M A - - C PS <th colspan<="" td=""><td>CO3: C</td><td>Construc</td><td>t the no</td><td>rmal fo</td><td>rm and</td><td>represe</td><td>ent the k</td><td>nowled</td><td>lge</td><td></td><td></td><td></td><td>Apply</td><td></td><td></td><td></td><td></td></th>	<td>CO3: C</td> <td>Construc</td> <td>t the no</td> <td>rmal fo</td> <td>rm and</td> <td>represe</td> <td>ent the k</td> <td>nowled</td> <td>lge</td> <td></td> <td></td> <td></td> <td>Apply</td> <td></td> <td></td> <td></td> <td></td>	CO3: C	Construc	t the no	rmal fo	rm and	represe	ent the k	nowled	lge				Apply									
CO5: Apply the Information Retrieval and Speech Recognition in the real-world problemsAnalyzeMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCosP01P02P03P04P05P06P07P08P09P010P011P012PS01PS02PS03Co1SMLLSSMCo2SMLLMSMCo3SMLLMSMCo3SMSMMMCo4SSSMMMCo5SMMMSMCo5SMMMSM	CO4: I environ	dentify ment.	the exte	ension o	of condi	tion pro	obabilit	y and h	ow to a	pply in	the real	time	Analyze										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES C0s P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 C01 S M L - - - - L S S M C02 S M L - - - - - L M S M C03 S M S - - - - - M M S M C03 S M S - - - - - - M M S M C04 S S S - - - - - M	CO5: A	apply the	e Inforr	nation I	Retrieva	ıl and S	peech I	Recogni	ition in	the real	-world	problems	Analyze										
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 C01 S M L - - - - - L S S M C02 S M L - - - - - L M S M C03 S M S - - - - - M S M C03 S M S - - - - - - M S M C04 S S S S - - - - - M	MAPPI	NG WI	ITH PF	ROGRA	MME	OUTC	COMES	S AND	PROG	RAMN	IE SPE	CIFIC O	UTCOM	ES									
CO1 S M L - - - - - L S S M CO2 S M L - - - - - L S S M CO3 S M S - - - - - L M S M CO3 S M S - - - - - L M S M C04 S S S - - - - - M M M M C05 S M M - - - - - M S M C05 S M M - - - - - M S M	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	SO2	PSO3						
CO2 S M L - - - - - L M S M CO3 S M S - - - - - L M S M CO3 S M S - - - - - L M S M CO4 S S S - - - - - - M M M M CO4 S S S - - - - - - M M M M CO5 S M M - - - - - - M S M CO5 S M M - - - - - - M S M	CO1	S	M	L			-	-	-	-	-	-	L	S	_	S	M						
CO3 S M S - - - - - S - M CO4 S S S - - - - - S - M M M M CO4 S S S - - - - M M M M CO5 S M M - - - - - M S M	CO2	S	M	L			-	-	-	-	-	-	L	M	_	S	M						
CO4 S S - - - - - M M M M CO5 S M M - - - - - M M M M CO5 S M M - - - - - M S M	CO3	8	M	S			-	-	-	-	-	-	-	S		-	M						
<u>CO5 S M M I M S M</u>	CO4	S	S	S			-	-	-	-	-	-	M	M	1	<u>М</u>	M						
	CO5		M	M			-	-	-	-	-	-	-	M		S	Μ						

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

FUZZY SET THEORY

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents-Problem Solving Approach To AI Problems-Problem Formulation

OPTIMIZATION

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed earch Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

NEURAL NETWORKS

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

NEURO FUZZY MODELING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

APPLICATIONS OF COMPUTATIONAL INTELLIGENCE

Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel Efficiency Prediction – Soft Computing for Color Recipe Prediction.

TEXT BOOKS

1.J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2011

REFERENCES

Fimothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.
DavisE.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003.
R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence - PC Tools", AP Professional, Boston, 2005.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	Dr.S.Senthil kumar	Assistant Professor	CSE / VMKVEC	senthilkumars@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

3502110704	NETWORK PROCRAMMING	Category	L	Т	Р	Credit
3502110104		SE	3	0	0	3

PREAMBLE

The purpose of this course is to understand the concepts of network programing. Identify the components required to build different types of networks. Identify the solution for each functionality for each layer. Trace the flow of information from one node to another node in the network.

PREREOUISITE NIL **COURSE OBJECTIVES** To provide basic knowledge in networking concepts. 1 2 To introduce and demonstrate various bridges, switches and Ethernets. 3 To introduce different methodologies in APIs. 4 To learn about Web Programming & Security 5 To provide knowledge about different application protocols. **COURSE OUTCOMES** On successful completion of the course, students will be able to **CO1**.Learn the fundamentals of networks and different types of OSI Layers. Remember and Understand **CO2**.Learn the different Ethernet, wireless networks, switching and bridging concepts Remember and Understand CO3. Design solutions for complex routing methods and different multicast routing Understand, Apply, analyse and techniques. evaluate **CO4**.Learn the concepts of different protocols for transmission purpose and study the Understand, Apply, analyse and quality of service for TCP protocol. evaluate CO5.Learn different types of application protocols and its architecture. Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	S	М	-	-	-	-	-	-	-	-	-	-
CO2	S	Μ	L	Μ	S	-	-	-	-	-	-	-	-	-	-
CO3	S	S	S	S	Μ	-	-	-	-	-	-	-	-	-	-
CO4	S	S	S	S	S	Μ	-	-	-	-	-	-	-	-	-
CO5	S	М	М	-	М	-	-	-	М	L	-	L	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

Unit- I

Networking & TCP/IP: Communication protocols, Network architecture, UUCP, XNS, IPX/SPX for LANs, TCP & IP headers, IPv4 & v6 address structures, Programming Applications: Time & date routines, Internet protocols: Application layer, Transport layer, Network layer, Datalink layer protocols, Chat, Email, Web server working method & programming. UNIT-II

Socket Programming: Creating sockets, Posix data type, Socket addresses, Assigning address to a socket, Java socket programming, Thread programming, Berkeley Sockets: Overview, cocket address structures, byte manipulation & address conversion functions, elementary socket system calls – socket connect, bind, tisten, accept, fork, exec, close, TCP ports (ephemeral, reserved), Berkeley Sockets: I/O asynchronous & multiplexing models, select & poll functions, signal & fcntl

functions, socket implementation (client & server programs), UNIX domain protocols.

UNIT-III

APIs & Winsock Programming: Windows socket API, window socket & blocking I/O model, blocking sockets, blocking functions, timeouts for blocking I/O, API overview, Different APIs & their programming technique, DLL & new API's, DLL issues, Java Beans.

UNIT- IV

Web Programming & Security: Java network programming, packages, RMI, Overview of Javascript, WAP architecture & WAP services, Web databases, Component technology, CORBA concept, CORBA architecture, CGI programming, Firewall & security technique, Cryptography, Digital Signature.

UNIT- V

Client Server Programming: Client side programming: Creating sockets, implementing generic network client, Parsing data using string Tokenizer, Retrieving file from an HTTP server, Retrieving web documents by using the URL class. Server side programming: Steps for creating server, Accepting connection from browsers, creating an HTTP server, Adding multithreading to an HTTP server.

TEXT BOOKS:

- 1. Behrouz A. Foruzan, "Data communication and Networking", Seventh Edition, Tata McGraw-Hill, 2017.
- 2. Andrew S. Tannenbaum, David J. Wetherall "Computer Networks", Pearson Education, Eighth Edition, 2016. **REFERENCES:**
 - 1. William Stallings, "Data and Computer Communication", Eighth Edition, Pearson Education.
 - 2. Knuth,D.E., "Computer Communication and Networks", Sixth Edition, McGrath-Hill, 2016.

cochor					
S. No.	Name of the faculty	Designation	Department / Name of the College	Mail Id	
1	Mr. S. SenthilKumar	Assistant Professor	CSE / VMKVEC	senthilkumars@vmkvec.edu.in	
2	Mr. S. Muthuselvan	Assistant Professor Gr. II	CSE / AVIT	muthuselvan@avit.ac.in	

M. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3502110T05 INTERNET AND WEB TECHNOLOGY Cate									Catego	ry L	Т	P (Credit		
SI										SE	3	0	0	3	
PREA This co 'langua graphic advanc	MBLE ourse is age of t c produ ced topi	s intenc the We ction w cs such	led to b' – H vith a sprog as prog	teach the TML, the pecific	he basi the fun stress o ing and	cs invo dament on crea scripti	olved in als of ting grand	n publis how th aphics	shing c e Intern for the	ontent o net and t Web, an	n the Web he Web d a gene	orld Wid function ral grour	le Web. , a basionding int	This inc c underst troduction	ludes the anding of n to more
PRER	EQUIS	SITE –	RICH	INTER	NET A	PPLIC	ATION	J							
COUR	RSE OF	BJECT	IVES												
1	To int	roduce b	basic co	ncepts c	of intern	et									
2	To learn about HTML & XML														
3	To learn about internet security														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1 .	1 . Analyze a web page and identify its elements and attributes.Analyze														
CO2. 0	CO2. Create web pages using XHTML and Cascading Style Sheets. Apply														
CO3. Build dynamic web pages using JavaScript (Client side programming). Apply															
CO4. Create XML documents and Schemas Apply															
CO5. Build interactive web applications using JSP Apply															
MAPF	PING V	VITH I	PROGI	RAMM	IE OU	гсом	IES AN	D PRO	OGRA	MME SI	PECIFIC	COUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	М	-	-	М	S	М	М
CO2	S	М	L	-	М	-	-	-	М	-	-	-	S	М	М
CO3	S	М	L	-	L	-	-	-	М	-	-	L	S	М	М
CO4	S	М	L	-	М	-	-	-	М	-	-	-	S	М	М
CO5	S	М	L	-	М	-	-	-	М	-	-	L	S	М	М
S- Stro	ong; M-	Mediur	n; L-Lo	ow								L		•	
SYLL	ABUS														
INTR	ODUC'	FION 7	FO IN	FERNI	ET										
Introdu	iction, l	Evoluti	on of Ir	nternet,	Interne	et Appl	ications	s, Interr	net Prot	ocol -TC	CP/IP, UI	OP, HTT	P, Secur	e Http(Sl	nttp)
Interne	et Addre	essing -	- Addre	essing S	Scheme	– Ipv4	& IPv	5, Netw	ork By	te Order	Domain	Name S	erver ar	d IP Add	resses,
Mapping . Internet Service Providers, Types Of Connectivity Such As Dial-Up Leaded Vsat Etc. Web Technologies:															
Three '	Three Tier Web Based Architecture; Jsp, Asp, J2ee, .Net Systems														
	Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.														

Т

Τ

Т

HTML CSS AND SCRIPTING

HTML – Introduction, Sgml, Dtd(Document Type Definition, Basic Html Elements, Tags and usages, HTML Standards, Issues in HTML Dhtml: Introduction Cascading Style Sheets: Syntax ,Class Selector, Id Selector Dom (Document Object Model) & Dso (Data Source Object) Approaches To Dynamic Pages: Cgi, Java Applets, Plug Ins, Active X, Java Script – Java Script Object Model, Variables-Constant – Expressions, Conditions- Relational Operators- Data Types – Flow Control – Functions & Objects-events and event handlers – Data type Conversion & Equality – Accessing HTML form elements

XML

What is XML – Basic Standards, Schema Standards, Linking & Presentation Standards, Standards that build on XML, Generating XML data, Writing a simple XML File, Creating a Document type definition, Documents & Data ,Defining Attributes & Entities in the DTD ,Defining Parameter Entities & conditional Sections, Resolving a naming conflict, Using Namespaces, Designing an XML data structure, Normalizing Data, Normalizing DTDS

INTERNET SECURITY & FIREWALLS

Security Threats From Mobile Codes, Types Of Viruses, Client Server Security Threats, Data & Message Security, Various electronic payment systems, Introduction to EDI, Challenges–Response System, Encrypted Documents And Emails, Firewalls: Hardened Firewall Hosts, Ip- Packet Screening, Proxy Application Gateways, Aaa (Authentication ,Authorization And Accounting).

WEBSITE PLANNING & HOSTING

Introduction, Web Page Lay-Outing, Where To Host Site, Maintenance Of Site, Registration Of Site On Search Engines And Indexes, Introduction To File Transfer Protocol, Public Domain Software, Types Of Ftp Servers (Including Anonymous), FtpClients Common Command. Telnet Protocol, Server Domain, Telnet Client, Terminal Emulation. Usenet And Internet Relay Chat.

TEXT BOOKS

1. Internet & Intranet Engineering,- Daniel Minoli, TMH.

2 .Alexis Leon and Mathews Leon – Internet for Every One, Tech World.

REFERENCES

1. Eric Ladd, Jim O'Donnel -- "Using HTML 4, XML and JAVA"-Prentice Hall of India -1999.

2. "Beginning Java Script "- Paul Wilton - SPD Publications -2001

Course Designers:

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

													<u>г</u>		
21	-021101	506	W	IRELI	ESS A	ND M	OBIL	Æ		Ca	tegory	L	Т	Р	Credit
55	COMMUNICATION S							SI	Ξ	3	0	0	3		
PREAMBLE This course provides basic knowledge on security issues in mobile communications. Students will study about mobile computing and security services in mobile communications.															
PRER	PREREQUISITE: Computer networks														
COUR	SE OI	BJEC	FIVES	5											
1 To understand security issues in mobile phone															
2	To st	udy se	curity	in mol	oile co	mmun	icatior	ıs							
3	To u	ndersta	and and	d apply	prote	ction t	echnic	lues in	mobil	e comn	nunicati	ion			
4	To understand and apply network based security services														
5	5 To study protection techniques in mobile transactions														
COURSE OUTCOMES															
On the	succes	sful co	omplet	ion of	the co	urse, s	tudent	s will l	be able	e to					
CO1:	Able to	o unde	rstand	mobil	e com	nunica	ation.					Unders	tand		
CO2:	To unc	lerstan	d and	apply	securit	y in m	obile d	commu	inicati	ons		Unders	tand a	nd app	ly
CO3: comm	To unc unicati	lerstan on and	d and l wirele	apply j ess net	protect work.	tion te	chniqu	ies in r	nobile			Unders	tand a	nd app	ly
CO4:	To app	oly net	work t	ased s	ecurity	y servi	ces					apply			
CO5:	To app	oly pro	tection	techn	iques f	for mo	bile tra	ansacti	ions			Apply			
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO2	2 PSO
<u> </u>	~						~				1 	М	N 4		3
	S M	M	-	- M	_	-	S	-	-	-	M	M	IVI S	5	IVI
CO3	M	M	<u> </u>	IVI M	_	- \/	-	- T			I I		S	M	S
CO4	M	S	M			M	-		_	М	-	М	-	M	-
C05	$\overline{5}$ M M S M - L M M M														
S- Stro	S = Strong; M - M - S - M - L - C - M														

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

UNIT I - INTRODUCTION

Introduction to Mobile Security - Security of GSM Networks - Security of UMTS Networks LTE Security - Vulnerabilities in Cellular Services - WiFi and Bluetooth Security - SIM/UICC Security - Security of Mobile VoIP Communications.

UNIT II - MOBILE COMMUNICATION AND SECURITY

Threats, Hacking, and Viruses in Mobile Communications. Access Control and Authentication in Mobile Communications. Common Techniques for Mobile Communications Security. Smart Card Security: The SIM/USIM Case.

UNIT III - ATTACKS AND PROTECTION TECHNIQUES IN MOBILE COMMUNICATION

MOBILE COMMUNICATION8 HoursSecurity of GSM Networks. Security of 3G Networks. Wireless Local Area Network Security. Security
of Ad Hoc Networks.

SECURITY OF NETWORK-BASED SERVICES IN MOBILE COMMUNICATION

Inter-System Roaming and Internetworking Security. Securing Mobile Services. Security of Mobile Sensor Networks. Security of Satellite Services.

PROTECTION TECHNIQUES FOR MOBILE APPLICATIONS

Security of Mobile Payments. Security of Mobile Voice Communications. Security of Multimedia Communications

TEXT BOOKS

- 1. Nourreddine Boudriga, Security of Mobile Communications, Aurerbach Publications, CRC Press, 2019.
- 2. Noureddine Boudriga, "Security of Mobile Communications", CRC Press, 2009.

REFERENCES

1. Himanshu Dwivedi, Chris Clark and David Thiel, "Mobile Application Security", McGraw-Hill, 1st Edition, 2010.

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

10 Hours

10 Hours

9 Hours

8 Hours

35021IOT08	ADVANCED DATABASE SYSTEM	Category	L	T P		Credit				
		SE	3	0	0	3				
PREAMBLE:										
This course aim	ns at facilitating the student to understand	the various conce	pts and	func	tionaliti	es of Database				

Management Systems, the method and model to store data and how to manipulate them through query languages, the effective designing of relational database and how the system manages the concurrent usage of data in multi user environment.

PREREOUISITE:

DATABASE MANAGEMENT SYSTEMS

COURSE OB IECTIVES

COURS	E ODJI		EO												
1	To describe a relational database and object-oriented database.														
2	To crea	ate, mai	ntain ai	nd man	ipulate	a relatio	onal dat	abase u	sing SQ	QL.					
3	To describe ER model and normalization for database design.														
4	To examine issues in data storage and query processing and can formulate appropriate solutions.														
5	To design and build database system for a given real world problem.														
COURSE OUTCOMES															
On the s	uccessfu	l comp	letion o	f the co	urse, st	udents	will be	able to							
CO1. Illustrate the database design for applications and database adminstrators. Understand															
CO2. Build and manipulate the relational database using Structured Query Language and relational languages.															
CO3. De constrair	CO3. Develop a normalized database for a given application by incorporating various Apply														
CO4. Ap	oply con	currenc	y contro	ol & rec	covery 1	nechan	ism for	databa	se probl	lems.			Ap	ply	
CO5. Co	onstruct	data str	uctures	like ind	lexes ar	nd hash	tables f	for the f	ast retr	ieval of c	lata.		Ap	ply	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
							_					PO1	PS	PS	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	2	01	02	PSO3
CO1	S	М	М	М	М	-	-	-	-	-	Μ	S	S	Μ	S

SYLLABUS

CO2

CO3

CO4

CO5

Μ

Μ

S

S

S- Strong; M-Medium; L-Low

Μ

Μ

М

Μ

Μ

S

М

Μ

PARALLEL AND DISTRIBUTED DATABASES

L

М

Μ

Μ

Μ

Μ

L

Μ

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

Database System Architectures: Centralized and Client-Server Architectures - Server System Architectures -Parallel Systems - Distributed Systems - Parallel Databases: I/O Parallelism - Inter and Intra Query Parallelism - Inter and Intra operation Parallelism - Distributed Database Concepts - Distributed Data Storage - Distributed Transactions - Commit Protocols - Concurrency Control - Distributed Query Processing - Three Tier Client Dept. of Computer Science & Engs Server Architecture- Case Studies. V.M.K.V. Engg. College, Salem. **OBJECT AND OBJECT RELATIONAL DATABASES**

350

Μ

Μ

Μ

Μ

Μ

L

М

Μ

9

S

S

S

S

Μ

Μ

S

Μ

S

S

S

S

Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems : Object Relational feature sin SQL/Oracle – Case Studies.

XML DATABASES

XML Databases: XML Data Model – DTD - XML Schema - XML Querying – Web Databases – JDBC – Information Retrieval – Data Warehousing – Data Mining

MOBILE DATABASES

Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management - Location Dependent Data Distribution - Mobile Transaction Models - Concurrency Control - Transaction Commit Protocols- Mobile Database Recovery Schemes

MULTIMEDIA DATABASES

Multidimensional Data Structures – Image Databases – Text/Document Databases - Video Databases – Audio Databases – Multimedia Database Design.

REFERENCES

- 1. R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education/Addison Wesley, 2007.
- 2. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Third Edition, Pearson Education, 2007.
- 3. Henry F Korth, Abraham Silberschatz, S. Sudharshan, "Database System Concepts", Fifth Edition, McGraw Hill, 2006.
- 4. C.J.Date, A.Kannan and S.Swamynathan,"An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 5. V.S.Subramanian, "Principles of Multimedia Database Systems", Harcourt India Pvt Ltd., 2001.
- 6. Vijay Kumar, "Mobile Database Systems", John Wiley & Sons, 2006.

COURSE DESIGNERS											
S. No.	Name of the faculty	Designation	Department	Mail Id							
1	Mr. S. SenthilKumar	Assistant Professor	CSE	senthilkumar@vmkvec.edu.in							
2	Mr. S. Muthuselvan	Assistant Professor Gr. II	CSE	muthuselvan@avit.ac.in							

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

9

9

3502110709		9	BIG DATA VISUALIZATION								Category	L	Т	Р	Credit
BIG DATA VISU.								SE	3	0	0	3			
PREAN	PREAMBLE														
This cou	This course focuses on big data technologies used for storage, analysis and manipulation of data. The student will learn														
about fu	ındamer	tals of	Hadoo	p, Map	Reduce	, Pig, F	live, R	and ha	ve hand	l on trai	ning on t	he same	It also	help	to develop
projects	and app	oly exist	ting dat	a analy	tics tool	s to gai	in comp	orehensi	ve knov	wledge o	n Data ai	nalytics.			
PRERE	PREREQUISITE : Nil														
COURSE OBJECTIVES															
1.	1. To introduce the basic concepts of Big Data.														
2.	2. Summarize the NoSQL Data management.														
3.	3. To discuss the basic concepts of Hadoop.														
4.	4. To discuss the map reduce applications in big data.														
5. To discuss the hadoop related other tools like Pig, Hive, HBase and Cassandra.															
COURS	COURSE OUTCOMES														
On the s	On the successful completion of the course, students will be able to														
CO1: Out	line the	basic bi	g data co	oncept.								Remembe	er		
CO2: Cat	tegorize	and sum	nmarize	the proc	essing i	n Big Da	ta and it	s impor	tance.			Understar	nd		
CO3: Sim	ulate va	rious Big	g data te	chnolog	ies like I	Hadoop	MapRed	duce, Pig	g, Hive, H	lbase and	No-SQL.	Apply			
CO4: Det	ermine t	ools and	d techni	ques to a	analyze	Big Data	I					Analyze			
CO5:Disc	uss the	Hadoop	related	tools.								Create			
MAPPI	NG WI	TH PR	OGRA	MME	OUTC	OMES	AND]	PROGI	RAMM	E SPEC	CIFIC OU	JTCOM	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PS	O2	PSO3
CO1		S			S								S	5	S
CO2	Μ	S	L	S	Μ							Μ	S	5	S
CO3	L	Μ	S	Μ	Μ	Μ						Μ	N	1	Μ
CO4		Μ	Μ		S								Ν	1	
CO5	CO5 L M M M S														
S-Stron	g; M-M	edium;	L-Low												

UNDERSTANDING BIG DATA

What is big data – why big data – convergence of key trends – unstructured data – industry examples of big data – web analytics – big data and marketing – fraud and big data – risk and big data – credit risk management – big data and algorithmic trading – big data and healthcare – big data in medicine – advertising and big data – big data technologies introduction to Hadoop – open source technologies – cloud and big data – mobile business intelligence – Crowd sourcing analytics – inter and trans firewall analytics

NOSQL DATA MANAGEMENT

Introduction to NoSQL – aggregate data models – aggregates – key-value and document data models – relationships – graph databases – schemaless databases – materialized views – distribution models – sharding – master-slave replication – peerpeer replication – sharding and replication – consistency – relaxing consistency – version stamps – map-reduce – partitioning and combining – composing map-reduce calculations

BASICS OF HADOOP

BASICS OF HADOOP	HT.M
Data format – analyzing data with Hadoop – scaling out -	- Hadoop streaming - Hadoop pipes - design of Hadoop distributed
file system (HDFS) - HDFS concepts - Java interfac	e – data flow – Hadoop I/O – data integrity – compression –
serialization – Avro – file-based data structures	Dr. M. NITHYA,
	- Prof & Head.

MAPREDUCE APPLICATIONS

Dept. of Computer Science & Engs MapReduce workflows – unit tests with MRUnit – test data and local tests – anatomy of MapReduce job run – classic Map-reduce – YARN – failures in classic Map-reduce and YARN – job scheduling – shuffle
and sort – task execution – MapReduce types – input formats – output formats

HADOOP RELATED TOOLS

Hbase – data model and implementations – Hbase clients – Hbase examples – praxis.Cassandra – cassandra data model – cassandra examples – cassandra clients – Hadoop integration.

Pig – Grunt – pig data model – Pig Latin – developing and testing Pig Latin scripts.

Hive – data types and file formats – HiveQL data definition – HiveQL data manipulation – HiveQL queries.

TEXT BOOKS:

1. Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.

REFERENCES:

- 1. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", Addison-Wesley Professional, 2012.
- 2. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 3. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.
- 4. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 5. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 6. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010. Alan Gates, "Programming Pig", O'Reilley, 2011.

COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	Mr. S. Muthuselvan	Assistant Professor Gr. II	CSE	muthuselvan@avit.ac.in								
2	Dr.S.Senthilkumar	Assistant Professor	CSE	senthilkumars@vmkvec.edu.in								

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021IOT07	IOT METHODOLOGY AND APPLICATIONS	Category	L	Т	Р	Credit					
SE 3 0 0											
PREAMBLE To study and understand the technologies involved in Internet of Things (IoT) and apply them practically.											
PREREQUISITE :NIL											
COURSE OBJECTIVES											

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

1.	To und	lerstand	l the bas	sic conce	epts of I	ОТ									
2.	To stu	dy the r	nethodo	logy of	IOT										
3.	To De	velop IO	OT appl	ications	using R	aspberr	y PI								
4.	To De	velop IO	OT appl	ications	using A	rduino	and Inte	l Edisor	1						
5.	То ар	ply clou	id conce	epts in l	OT										
COUR	SE OU	тсом	ES												
On the	success	ful com	pletion	of the co	ourse, st	udents v	will be a	ble to							
CO1:	Able to understand basics in IOT Understand														
CO2:	: Able to understand Methodology in IOT Apply														
CO3:	3: Able to design IOT applications using Raspberry Analyze														
CO4 : .	Able to	design	IOT a	pplicati	ons usi	ng Aur	dino an	d Intel	Edison			Analyze	e		
CO5:	Able to	apply	Cloud	comput	ting in l	[OT						Apply			
MAPP	ING W	ITH P	ROGRA	AMME	OUTC	OMES .	AND PI	ROGRA	MME	SPECIE	FIC OU	JTCOM	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-	-	M	Μ	Μ
CO2	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-	-	M	M	Μ
CO3	Μ	Μ	S	M	-	-	-	-	-	-	-	-	M	М	Μ
CO4	4 S M M M M M S														
CO5	D5 S M M M - - - - - - M M S														
S- Stro	ng; M-	Mediur	n; L-Lo	W											

SYLLABUS INTRODUCTION

Introduction-Characteristics-Physical design - Protocols – Logical design – Enabling technologies – IoT Levels – Domain Specific IoTs – IoT vs M2M.

IOT METHODOLOGY

IoT systems management - IoT Design Methodology - Specifications Integration and Application Development.

IOT WITH RASPBERRY

Basics of Raspberry PI, Physical device - Raspberry Pi Interfaces - Programming - APIs / Packages - Web services

IOT WITH AURDINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino- Interfaces - Arduino IDE - Programming - APIs and Hacks

APPLICATIONS

Dr. M. NITHYA, Prof & Head.

Real time applications of IoT- Connecting IoT to cloud – Cherd Storage for lot – Data Analytics for IoT – Software & Management Tools for IoT.

TEXT BOOKS

 Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015.
Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.

REFERENCES

1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. R. Jaichandran	Assistant professor G-II	CSE	rjaichandran@avit.ac.in
2.	Dr. M. Nithya	Professor	CSE	nithya@vmkv@edu.in

Mitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021IO T10	INDUSTRIAL INTERNET OF THINGS	Category	L	Т	Р	Credit
		SE	3	0	0	3

Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

PREREQUISITE: Basic knowledge of computer and internet

COURSE OBJECTIVES

- 1 IIOT concerns the transformation of industrial processes through the integration of modern technologies such as sensors, communication, and computational processing.
- 2 Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing, Machine Learning, and Data Analytics are considered to be the different drivers necessary for the transformation.
- 3 Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.
- ⁴ HoT links the automation system with enterprise, planning and product lifecycle.
- 5 Real case studies

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply & Analyzing the transformation of industrial process by various techniques.	Analyze
CO2. Evaluate the transformation technologies are considered to be the different drivers.	Apply
CO3. Existing industrial systems will adopt the applications of IIoT.	Apply
CO4. Intensive contributions over automation system with enterprise, planning and product life cycle	Analyze

Will.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

CO5. Analyze of various Real time case studies.													Analyze		
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO 1	PO2	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO 2	PSO 3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
CO2	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO3	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO4	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO5	S	S	S	S	М	-	-	-	-	-	-	М	S	М	М
S- Strong; M-Medium; L-Low															

INDUSTRIAL INTERNET OF THINGS INTRODUCTION:

Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIoT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

IIOT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, Industrial IoT- Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

- 2. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.Gilchrist, Alasdair, "Introduction to JoT", Apress, 2016
- 3. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016 Dept. of Computer Science & Engy

V.M.K.V. Engg. College, Salem.

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Rajaprakash	Associate	Cse	rajaprakash@avit.ac.i								
		Professor		n								
2	Dr. R. Jaichandran	Assistant professor G- II	CSE	rjaichandran@avit.ac.in								

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

250	35021DS01 BIG DATA TOOLS AND TECHNIQUES Categor											L	Т	P	Credit
330	210301								20	SF	0 0	3	0	0	3
										SE		3	U	U	3
PKEAN	IBLE	ore fou	ndation	al taabi		nd tool		rad for	big da	to onoly	tion This	0011700	notlight	ta tha	aonaanta
nrincinle	and te cov	els lou	nuation es are a	nnlicah	liques a	inu 1001 data ar	alvtics	enviror	ment ir	industr	v and rea	l-world e	vperien		concepts,
PRERE		re FE		ppneub		, uutu ui	laryties	environ	intent n	maasu	y and rea		xperient		
NIL	QUIST														
COURS	SE OBJ	ECTIV	ES												
1.	To understand how big data analytics can leverage into a key component														
2.	To une	derstand	l the big	g data to	ols with	n their a	pplicati	ions							
3.	To understand the big data reports for the existing tools														
4.	To understand the big data applications like MongoDB, Cassandra and Hive.														
COURS	SE OUT	COME	2S												
On the s	uccessfu	ıl comp	letion o	f the co	urse, stu	idents v	vill be a	ble to							
CO1 : U	Indersta	nd the b	basics of	digital	data an	d introd	luction	to big da	ata			Understa	and		
CO2: A	nalyze	the basi	c big da	ta chall	enges, i	mporta	nt and te	echnolo	gies.			Analyze			
CO3: S	olve big	; data ar Ltechno	nalytics	challen	ges with	the he	lp of Ha	adoop ai	nd Mon	goDB		Apply			
CO4: A	Analyze	big data	storage	e like M	ongoDI	B, Cassa	andra ar	nd Hive.				Analyze			
CO5: A	nalyze	Pig and	Hive in	terms of	of proce	ssing a	nd to de	esign Jas	sper Rep	ports.		Analyze			
MAPPI	NG WI	TH PR	OGRA	MME (DUTCC	MES A	AND PI	ROGRA	AMME	SPECI	FIC OU	ГСОМЕЯ	5		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	2 PSO3
C01	S	М	L	_	М	-	_	-	_	-	-	М	S	М	М
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	Μ	М
CO3	S	М	L	-	М	-	-	-	-	-	-	М	S	M	М
CO4	S	М	L	-	М	-	-	-	-	-	-	М	S	Μ	М
CO5	S	М	L	-	М	-	-	-	-	-	-	М	S	Μ	М
S-Stron	· Strong; M-Medium; L-Low														

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

DIGITAL DATA AND INTRODUCTION TO BIG DATA

Types of Digital Data - Structured Data - Semi-Structured Data - Unstructured Data - Introduction to Big Data - What is Big Data - Why Big Data - Traditional Business Intelligence (BI) versus Big Data - Typical Hadoop Environment - Changes in the Realms of Big Data - Coexistence of Big Data and Data Warehouse.

BIG DATA ANALYTICS

What's in Store? - Big Data Analytics - Classification of Analytics - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Big Data Analytics Important - Technologies for Meet the Challenges Posed by Big Data - Data Science - Data Scientist - Big Data Environment - Analytics Tools.

HADOOP

Introduction to Hadoop - Hadoop Components - Hadoop Conceptual Layer - High Level Architecture of Hadoop - Business Value of Hadoop -Hadoop Distributed File System - Processing Data with Hadoop - MapReduce Daemons - MapReduce working - MapReduce Example - Managing Resources and Application with Hadoop YARN - Hadoop Ecosystem.

MONGODB, CASSANDRA AND HIVE

MongoDB - RDBMS and MongoDB - Data Types in MongoDB-CRUD- Introduction to Apache Cassandra - Features of Cassandra - CQL Data Types -CQLSH- Keyspaces-CRUD-Collections- Using a Counter - Time To Live (TTL)-Alter - Import and Export - Export to CSV - Import from CSV - Import from STDIN - Export to STDOUT - System Tables - Practice Examples - Introduction to Hive - Hive Architecture - Hive Data Types - Hive File Format - Hive Query Language - RCFILE Implementation - SERDE - UDF.

PIG AND JASPER REPORTS

Anatomy of Pig - Pig on Hadoop - Pig Philosophy - Use Case for Pig: ETL Processing - Pig Latin Overview - Data Types in Pig - Running Pig - Execution Modes of Pig - HDFS Commands - Relational Operators - Eval Function -Complex Data Type - Piggy Bank - UDF (User Defined Function) - Parameter Substitution - Diagnostic Operator -Word Count Example - When to use Pig? - When NOT to use Pig? - Pig at Yahoo - Pig versus Hive - Hive Vs Pig - Introduction to Jasper Reports, Jaspersoft Studio - Connecting to MongoDB NoSQL database - Connecting to Cassandra NoSQL Databases

TEXT BOOKS:

- 3. Big Data and Analytics Seema Acharya and Subhashini C Wiley India
- 4. Big data for dummies Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman
- 5. Hadoop: The Definitive Guide by Tom White
- **6.** Hadoop in action Chuck Lam
- 7. Hadoop for dummies Dirk Deroos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown

REFERENCES:

COURSE DESIGNERS

- **6.** Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
- 7. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007
- 8. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 9. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.
- **10.** Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012.

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE / AVIT	rjaichandran@avit.ac.in
2.	Dr.M. Nithya	Professor	ese withya	nithya@vmkvec.edu.in

361

Dept. of Computer Science & Engy

V.M.K.V. Engg. College, Salem.

3502	35021DS02 DATA MINING AND ANALYTICS										Category	L	Т	Р	Credit
											SE	3	0	0	3
PREAM Data wa Mathema from larg among so	IBLE arehousi atics, Si ge data cientists	ing and tatistics bases I s of var	l data s, Inforr t is a n ious dis	mining nation ' ew emo scipline	is one Fechno erging i s.	of the logy an interdis	e most d infor ciplinar	advand mation y area	ced field Sciences of resea	ls of c s in dis rch and	computer s covering n d developn	science v lew infor nent whi	which irmation ich has	involv and k create	es use of mowledge ed interest
PREREQUISITE Database Management System															
COURS	COURSE OBJECTIVES														
1.	1. Distinguish a data warehouse from an operational database system, and appreciate the needs for developing a data warehouse for large corporation.														
2.	2. Describe the problems and processes involved in the development of a data warehouse														
3. To explain the process of data mining and its importance.															
COURS	COURSE OUTCOMES														
On the su	uccessf	ul comp	pletion	of the c	ourse, s	tudents	will be	e able to)						
CO1:. ไ	Underst	tand th	e basic	s of da	ta ware	ehousir	ng and	mining	5			Underst	and		
CO2: A	pply th	ne data	prepro	cessin	g, lang	uage, a	rchited	ctures,	concept	descri	iption.	Apply			
CO3: U	Inderst	and ass	sociatio	on rules	s and it	s algor	ithms.				ן	Underst	and		
CO4 : C	lassify	and cl	usterin	g rules	and th	e respe	ective a	lgorith	ms		4	Apply			
CO5: Ui	ndersta	and the	latest	trends	about t	he data	a wareł	nousing	g and m	ining		Apply			
MAPPIN	NG WI	TH PR	ROGRA	MME	OUTC	OMES	AND	PROG	RAMM	E SPE	CIFIC OU	JTCOM	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	D2 PSO3
CO1	S	L		М	-	-	-	-	-	-	-	М	М	М	М
CO2	S	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	S	L		L	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	L	-	-	-	-	-	-	-	М	М	М	S
S- Strong	g; M-M	edium;	L-Low												

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

INTRODUCTION AND DATA WAREHOUSING

Introduction, Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Implementation, Further Development, Data Warehousing to Data Mining.

DATA PREPROCESSING, LANGUAGE, ARCHITECTURES, CONCEPT DESCRIPTION

Why Preprocessing, Cleaning, Integration, Transformation, Reduction, Discretization, Concept Hierarchy Generation, Data Mining Primitives, Query Language, Graphical User Interfaces, Architectures, Concept Description, Data Generalization, Characterizations, Class Comparisons, Descriptive Statistical Measures.

ASSOCIATION RULES

Association Rule Mining, Single-Dimensional Boolean Association Rules from Transactional Databases, Multi-Level Association Rules from Transaction Databases.

CLASSIFICATION AND CLUSTERING

Classification and Prediction, Issues, Decision Tree Induction, Bayesian Classification, Association Rule Based, Other Classification Methods, Prediction, Classifier Accuracy, Cluster Analysis, Types of data, Categorization of methods, Partitioning methods, Outlier Analysis.

RECENT TRENDS

Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Databases, Multimedia Databases, Time Series and Sequence Data, Text Databases, World Wide Web, Applications and Trends in Data Mining.

TEXT BOOK

1. J. Han, M. Kamber, "Data Mining: Concepts and Techniques", Harcourt India / Morgan Kauffman, 2001.

REFERENCES

- 1. Margaret H.Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education 2004.
- 2. Sam Anahory, Dennis Murry, "Data Warehousing in the real world", Pearson Education 2003.
- 3. David Hand, Heikki Manila, Padhraic Symth, "Principles of Data Mining", PHI 2004.
- 4. W.H.Inmon, "Building the Data Warehouse", 3rd Edition, Wiley, 2003.
- 5. Alex Bezon, Stephen J.Smith, "Data Warehousing, Data Mining & OLAP", MeGraw-Hill Edition, 2001.
- 6. Paulraj Ponniah, "Data Warehousing Fundamentals", Wiley-Interscience Publication, 2003.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
2.	Dr. K. Sasikala	Assistant Professor	CSE	sasikalak@vmkvec.edu.in

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021DS03	BASICS OF DATA SCIENCE	Category	L	Т	Р	Credit
		SE	3	0	0	3

Data Science is about drawing useful conclusions from large and diverse data sets through exploration, prediction, and inference. Exploration involves identifying patterns in information. Prediction involves using information we know to make informed guesses about values we wish we knew. Inference involves quantifying our degree of certainty. The primary tools for exploration are visualizations and descriptive statistics, for prediction are machine learning and optimization, and for inferenceare statistical tests and models. Throug hunder standing aparticular domain, the students learn to ask appropriate questions about their data and correctly interpret the answers provided by inferential and computational tools

PREREQUISITE

NIL

COURSE OBJECTIVES

1.	To obtain a Comprehensive knowledge of various tools and techniques for Data transformation and visualization
2.	To learn the probability and probabilistic models of datascience
3.	To learn the basic statistics and testing hypothesis for specific problems
4.	To learn about the prediction models

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: U further a	Jndersta analysis	nd how	to appl	ly pre-p	rocessii	ng techi	niques t	o conve	ert raw	data so	as to enab	l Understa	ind		
CO2: U identify	Indersta pattern	nd and s	apply e	xplorate	ory data	analys	is and c	create in	nsightfu	l visuali	zations to	Understa	ind		
CO3: U of rando	Understa om varia	nd how ibles an	to deri d use th	ve the p nese tec	orobabil hniques	ity dens to gen	sity fun erate da	ction of ta from	f transfo variou	ormation s distrib	ns utions	Understa	ind		
CO4: U of certai	Indersta	nd the s prediction	tatistica	al found ng statis	lations of the states of the s	of data st and n	science 10dels	and an	alyze th	e degre	e	Understa	und		
CO5: F	amiliari	ze with	machir	ne learn	ing algo	orithms	for pre	diction	and to	derive in	nsights	Understa	ind		
MAPPI	ING W	ITH PF	ROGRA	AMME	OUTC	COMES	S AND	PROG	RAMM	IE SPE	CIFIC O	UTCOM	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	Μ	-	-	-	-	-	-	-	-	М	Μ	Μ
CO2	S	Μ	Μ	Μ	-	-	-	-	-	-	-	-	М	Μ	Μ
CO3	S	-	-	-	-	-	-	-	-	-	-	-	M	Μ	М
CO4	S	Μ	Μ	Μ	-	-	-	-	-	-	-	-	М	М	S
CO5	CO5 S M M										-	М	М	S	
S- Stror	ng; M-M	ledium;	L-Low	1	•	•	•	•	•	•		•	•	•	•

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

SYLLABUS INTRODUCTION:

Data Science, Big Data and Data Science – Data fication - Current landscape of perspectives - Skill sets needed; Matrices - Matrices to represent relations between data, and necessary linear algebraic operations on matrices -Approximately representing matrices by decompositions (SVD and PCA); Statistics: Descriptive Statistics: distributions and probability - Statistical Inference: Populations and samples - Statistical modeling - probability distributions - fitting a model - Hypothesis Testing - Intro to R/ Python.

DATA PREPROCESSING:

Data cleaning - data integration - Data Reduction Data Transformation and Data Discretization. Evaluation of classification methods – Confusion matrix, Students T-tests and ROC curves-Exploratory Data Analysis - Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA - The Data Science Process.

BASIC MACHINE LEARNING ALGORITHMS:

Association Rule mining - Linear Regression- Logistic Regression - Classifiers - k-Nearest Neighbors (k-NN), k-means -Decision tree - Naive Bayes- Ensemble Methods - Random Forest. Feature Generation and Feature Selection - Feature Selection algorithms - Filters; Wrappers; Decision Trees; Random Forests.

CLUSTERING:

Choosing distance metrics - Different clustering approaches - hierarchical agglomerative clustering, k-means (Lloyd's algorithm), - DBSCAN - Relative merits of each method - clustering tendency and quality.

DATA VISUALIZATION:

Basic principles, ideas and tools for data visualization.

REFERENCE BOOKS

- 1. Cathy O'Neil and Rachel Schutt, "Doing Data Science, Straight Talk From The Frontline", O'Reilly, 2014.
- 2. Jiawei Han, Micheline Kamber and Jian Pei, "Data Mining: Concepts and Techniques", Third Edition. ISBN 0123814790, 2011.
- 3. Mohammed J. Zaki and Wagner Miera Jr, "Data Mining and Analysis: Fundamental Concepts and Algorithms", Cambridge University Press, 2014.
- 4. Matt Harrison, "Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visualization, O'Reilly, 2016.
- 5. Joel Grus, "Data Science from Scratch: First Principles with Python", O'Reilly Media, 2015.
- Wes McKinney, "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, 2012

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	Mr.S.Karthik	Assistant Professor	CSE / VMKVEC	karthik@vmkvec.edu.in

Dr. M. NITHYA. Prof & Head. Dept. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

350)21DS04		IN	FORM	ATION	STRC)AGE	AND			Category	L	Т	Р	Credit			
				N	/ANA(GEME	NT				SE 3 0 0							
PREAN This sy with pe	ABLE yllabus i ertinence	s intend e to mo	led for t deling,	the Eng query c	ineering peratio	g studer ns and i	nts and indexin	enable g.	them to	underst	and the b	asics of	Informa	tion St	orage			
PRERE	PREREQUISITE: DATA MINING & DATA WAREHOUSING																	
COURS	SE OBJ	ECTIV	VES															
1	To understand the responsibility data storage and protection as it is the crucial component of any computing system																	
2	To un	derstan	d the ne	ed for	network	king to s	store an	nd acces	s data a	across m	ultiple sto	orages						
3	To un	derstan	d securi	ity need	ls.													
4	To un	derstan	d the va	rious a	pplicati	ons of]	Informa	ation										
5	To lay	/ found	ation fo	r learni	ng the S	Security	y Manag	gement										
COUR	SE OUI	COM	ES															
On the s	successf	ul com	pletion of	of the c	ourse, s	tudents	will be	e able to)									
CO1: D	Describe	the obj	ectives	of infor	mation	retrieva	al syste	ms				Underst	and					
CO2:	Underst	and abo	out the v	various	IR mod	els						Apply						
CO3:	Underst	and the	static a	nd dyna	amic in	dices ar	nd query	y opera	tions			Apply						
CO4 : i	mpleme	nt clust	ering al	gorithn	ns like l	nierarch	ical clu	stering	and cla	ssificatio	on	Apply						
CO5: <i>A</i>	Able to I	Underst	and sea	rching	,ranking	g and di	gital lił	oraries				Apply						
MAPPI	NG WI	TH PF	ROGRA	MME	OUTC	OMES	AND	PROG	DGRAMME SPECIFIC OUTCOMES									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	S	М	-	М	М	М	-	-	-	-	-	М	S	S	S			
CO2	S	S	S	М	М	L	-	М	-	-	-	М	S	М	М			
CO3	S	L	L	-	L	-	-	-	-	-	-	S	Μ	S	S			
CO4	S	S	S	М	Μ	Μ	-	Μ	-	-	-	М	S	-	S			
CO5	S	S	М	М	Μ	L	-	-	-	-	-	- M M M N						
S- Stror	S- Strong; M-Medium; L-Low																	

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

UNIT I - INTRODUCTION

Review data creation and the amount of data being created and understand the value of data to a business, Challenges in Data Storage and Management, Data Storage Infrastructure. Storage Systems Environment: Components of a Storage System Environment: Disk drive components, Disk Drive Performance, Logical Components.

UNIT II - DATA PROTECTION

Concept of RAID and its Components, Different RAID levels and their suitability for different application environments: RAID 0, RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6, Comparison of Levels. Intelligent Storage Systems: Components, Intelligent Storage Array, High-level architecture and working of an intelligent storage system. **UNIT III - INTRODUCTION TO NETWORKED STORAGE**

Evolution of networked storage, Architecture, Overview of FC-SAN, NAS, and IPSAN. Network-Attached Storage (NAS): Benefits of NAS, Components, Implementations, File Sharing, I/O operations, Performance and Availability. Content Addressed Storage (CAS): features and Benefits of a CAS. CAS Architecture, Storage and Retrieval, Examples. Storage Virtualization: Forms, Taxonomy, Configuration, Challenges, Types of Storage Virtualizations.

UNIT IV - INFORMATION AVAILABILITY, MONITORING, MANAGING

Datacenter: Information Availability, Business continuity, Failure Analysis, Business impact Analysis, Differentiate between business continuity (BC) and disaster recovery (DR). Disaster Recovery: Backup, Methods, And Technologies, Replication technologies: Local replicas, Technologies, Restore and Restart, Multiple Replicas. Remote Replication. DR in practice.

UNIT V - STORAGE SECURITY AND MANAGEMENT SECURITY

Framework, Storage security domains, List and analyzes the common threats in each domain, Security Implementations. Managing the Storage Infrastructure - Monitoring the Storage Infrastructure, Storage Management Activities, Challenges and solutions.

TEXT BOOK:

1. EMC Corporation, Information Storage and Management, Wiley India. (For Unit I toV).

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	Mr.S.Karthik	Assistant Professor	CSE / VMKVEC	karthik@vmkvec.edu.in

Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

2502	10506		DIIGINI	FOG IN	TELLI		TT ANT			G	Catego	ry	L J	C P	Credit
3502.	21DS06 BUSINESS INTELLIGENCE AND ANALYTICS SE 3 0 0										3				
PREAD Busines analyze Data m	EAMBLE siness Intelligence (BI) refers to the tools, technologies, applications and practices used to collect, integrate, lyze, and present an organization's raw data in order to create insightful and actionable business information in ta mining.														
PRER	EQUIS	ITE – 1	NIL												
COUR	JRSE OBJECTIVES														
1	To Int	roduce	student	s to var	ious bu	siness i	ntellige	ence con	ncepts						
2	To lea	rn the c	concept	s of dat	a integr	ation us	sed to d	evelop	intellig	ent syste	ms for o	decisior	n supp	ort	
3	To int	roduce	visualiz	zation to	ool for j	prepare	the ent	erprise	reportir	ng					
4	To learn analytical components and technologies used to create dashboards and scorecards, data/text/Web mining methods														
4	To gain new insights into organizational operations in implementation of systems for Business Intelligence (BI)							elligence							
COUR	SE OU	TCOM	IES												
On th	e succe	ssful co	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1. L	earn ab.	out the	concep	ts of Ol	LTP and	d OLAI	P for BI	infrast	ructure	develop	ment		ι	Indersta	ind
CO2. Control formula	Gained a te and	an unde solve re	erstandi elevant	ng of ho problen	ow busi ns and h	ness protection new the	ofession y use a	nals car nalytics	use an to supp	alytics te port deci	echniqu sion ma	es to king	A	nalyze	
CO3. A	apply C	lusterin	g, Asso	ciation	and Cla	assifica	tion tec	hniques	for Da	ta Integr	ation		A	pply	
CO4. <i>A</i>	Assess I	BI tools	to solv	e probl	ems, iss	sues, an	d trend	s using	predicti	ive analy	sis		A	pply	
CO5. E indicate	Develop ors for b	system ousiness	ns to me s decisie	easure, on-mak	monito ing pro	r and pacess	redict t	he ente	rprise v	ariables	and per	rforman	ce A	pply	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC	OUTC	OME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO 2	PSO3
CO1	S	М	L	-	М	-	-	-	-	-	-	М	S	M	М
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	M	М
CO3	S	М	L	-	М	-	-	-	-	-	-	М	S	M	М
CO4	S	М	L	-	М	-	-	-	-	-	-	М	S	M	М
CO5	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М

S- Strong; M-Medium; L-Low

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework-Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

BASICS OF DATA INTEGRATION

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

BASICS OF ENTERPRISE REPORTING

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture– Enterprise Reporting using SSRS reporting service

BI ROAD AHEAD

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India, 2011

REFERENCES

1.Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.

2. David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.

3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

COURSE I	DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	V.Subapriya	Assistant Professor	CSE	subapriyacse@avit.ac.in
2	Ms A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in
			Hit . N	

Dr. M. NITHYA,
- Prof & Head.
Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

350210	0\$09]	BIG D	ATA	VISUA	LIZA	TION		(Category	/ L	Т	Р	Credit
											SE	3	0	0	3
PREA This c acces how t	MBLE course for s contro	ocuses ol to vii ge then	on the rtual m	challen achine softwar	iges in s will b e inter	setting e cove faces v	g up a d bred in will be	lata cer depth i discuss	nter. Re in this c sed in c	esource : course. S letail	monitori Setting u	ing usin p of a v	g hype irtual c	rvisors lata ce	and anter and
PRER	EQUIS	SITE													
Databa	ase Man		nt Syst	em											
	KSE OF	JEC I.	IVES												
1	To le	earn the	conce	pts of V	Veb de	sign pa	atterns	and pa	ge desi	ign					
2	To u	ndersta	nd and	learn t	he scri	pting la	anguag	ges with	h desig	n of web	o applica	tions			
3	To le	To learn the maintenance and evaluation of web design													
4	To learn about Resource monitoring and virtual machine data Protection														
COUI	COURSE OUTCOMES														
On the	succes	sful cor	npletio	n of th	e cours	se, stud	lents w	ill be a	ble to						
CO1:	Explain	n the co	oncept	of data	center	and Ev	volutio	n of Da	ata Cer	ntre		Unders	tand		
CO2: manag	Apply gement	enterpr interfac	ise-leve ces, En	el virtu vironm	alizatio ents co	on mac onnecti	hines t vity.	hrough	n softw	are		Apply			
CO3: monit	Illustra oring an	ate the nd migr	virtual ation n	ization nethod	deploy ologies	/ment,	modifi	cation,	, manaş	gement;		Apply			
CO4: the us	Analyz e of har	the ut dware a	tility in and sof	Windo	ows Vi resourc	sta and es in re	l later, eal tim	display e.	ys infor	rmation	about	Analyz	e		
CO5:	Develo	p the re	esource	e monit	oring a	nd virt	tual ma	chine of	data Pr	otection	skills.	Analyz	e		
MAPI	PING V	VITH F	PROG	RAMN	AE OU	TCO	MES A	ND P	ROGR	RAMME SPECIFIC OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
C01	S	Μ	L	-	М	I	-	-	-	-	-	М	S	Μ	-
CO2	S	L	L	-	М	-	-	-	-	-	-	Μ	S	Μ	М
CO3	S	Μ	L	-	М	-	-	-	-	-	-	Μ	S	-	Μ
CO4	S	M	L	-	L	-	-	-	-	-	-	Μ	S	Μ	M
CO5	S	L	L	-	Μ	-	-	-	-	-	-	Μ	S	Μ	-

Chitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

SYLLABUS INTRODUCTION TO DESIGN DRAWING

Introduction to Materials, Tools & Methods - different grades of pencils & exploring- Developing free finger, wrist, hand & arm movement and initiate muscle- Introduction to Observation – Scrutinize, Examine, Study, Inspect, Perceive, Sense, Feel, Notice, Identify, Understand- Training the eye to observe accurately to educate the visual sense-Introduction to Perception – View, Opinion, Insight, Discernment- Introduction to Perspective – Eye level, Vanishing Point

DRAWING OF CUBES and PERSPECTIVES

Introduction to Vanishing Points, View Point, Eye Level, Horizon, Parallel & Converging Lines-One Point Perspective- Two Point Perspective-Three Point Perspective-Perspective in the Environment, Interior Spaces and Objects

VIRTUAL MACHINES & ACCESS CONTROL

Introduction to other geometric forms like cylinder, cuboids etc.- Introduction to Object Drawing-How to observe – shape, proportions, effect of light on the objects etc.- Introduction to Human Form proportions-Human Form – Object Relationships

RESOURCE MONITORING

Physical and virtual machine memory, CPU management and abstraction techniques using a hypervisor **OBJECT DRAWING and HUMAN FORM DRAWING**

Backup and recovery of virtual machines using data recovery techniques; Scalability - Scalability features within Enterprise virtualized environments using advanced management applications that enable clustering, distributed network switches for clustering, network and storage expansion; High Availability : Virtualization high availability and redundancy techniques.

TEXT BOOKS

1.Erik Olofsson, Klara Sjolen, Design Sketching, KEEOS Design Books.

2. K. Morling, Geometric and Engineering Drawing, Third Edition, Graduate of the Institution of Mechanical Mike Laverick, "VMware vSphere 4 Implementation" Tata McGraw-Hill Osborne Media; 1 edition[ISBN: 978-0071664523], 2012.

1. Jason W. McCarty, Scott Lowe, Matthew K. Johnson, "VMware vSphere 4 Administration Instant **REFERENCES**

1. Brian Perry, Chris Huss, Jeantet Fields, "VCP VMware Certified Professional on vSphere 4 Study Guide" Sybex; edition [ISBN: 978-0470569610], 2013.

2. Jason Kappel, Anthony Velte, Toby Velte, "Microsoft Virtualization with Hyper-V: Manage Your Datacenter with Hyper-V, Virtual PC, Virtual Server, and Application Virtualization" McGraw-Hill Osborne [ISBN: 978-007161

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

35021DS08	DATABASE SECURITY AND PRIVACY	Category	L	Т	Р	Credit
		SE	3	0	0	3

This course helps the students to know how database methods can be used in various database techniques, including classification, ranking and preference, as well as learning with multiple data sources and targets. The student knows how convex optimization methods can be used to efficiently train kernel-based models. The student knows how structured data such as sequences, hierarchies and graphs can be tackled through kernel methods.

PREREQUISITE

MACHINE LEARNING

COURSE OBJECTIVES

1.	To ur	nderstai	nd the f	undame	entals o	f securi	ity, and	l how it	relates	to info	rmation s	ystems.			
2.	To ide	entify ri	isks and	d vulner	abilitie	es in op	erating	system	s from	a datab	ase persp	ective.			
3.	To lea	ırn goo	d passv	vord po	licies, a	and tech	niques	to secu	ire pass	swords i	n an orga	nization.			
4.	To le	arn and	l implei	ment ad	ministr	ation p	olicies	for use	rs.						
5.	To un	derstan	d the v	arious c	latabas	e securi	ty mod	lels and	l their a	dvantag	ges or				
COURS	SE OUT	ГСОМ	ES												
On the s	successf	ul com	pletion	of the c	course,	student	s will t	be able	to						
CO1: U	Jndersta	and the	fundan	nental c	oncept	s of sec	urity fu	ındame	ntals				Under	stand	
CO2: U	Jndersta	and the	various	s metho	ds for a	latabas	e securi	ity priv	acy				Ap	ply	
CO3: U	Jndersta	and and	apply	the mod	del and	virtual	databa	se					Ap	ply	
CO4: A	Apply a	nd anal	yze var	ious da	tabase a	auditing	5						Ana	lyse	
CO5: A	Apply a	nd anal	yze var	ious da	ta mini	ng tech	niques						Anal	ysee	
MAPPI	NG WI	ITH PH	ROGR	AMME	OUT	COME	S AND	PRO	GRAM	ME SP	ECIFIC	OUTCO	MES		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	Μ	-	Μ	Μ	-	-	-	S	-	М	-
CO2	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO3	S	М	-	-	М	-	М	Μ	-	-	-	S	-	М	-
CO4	S	М	-	-	М	-	М	Μ	-	-	-	S	-	М	-
CO5	S	М	-	-	Μ	-	М	Μ	-	-	-	S	-	M	-
S- Stron	ig; M-M	ledium;	; L-Lov	V											

M. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

UNIT I - SECURITY ARCHITECTURE & OPERATING SYSTEM SECURITY FUNDAMENTALS Security Architecture: Introduction-Information Systems- Database Management Systems-Information Security Architecture-Database Security–Asset Types and value-Security Methods. Operating System Security Fundamentals: Introduction-Operating System Overview-Security Environment – Components- Authentication Methods-User Administration-Password PoliciesVulnerabilities-E-mail Security.

UNIT II - ADMINISTRATION OF USERS & PROFILES, PASSWORD POLICIES, PRIVILEGES AND ROLES Administration of Users: Introduction-Authentication-Creating Users, SQL Server User-Removing, Modifying Users-Default, Remote Users-Database Links-Linked Servers-Remote Servers-Practices for Administrators and Managers-Best Practices Profiles, Password Policies, Privileges and Roles: Introduction-Defining and Using Profiles-Designing and Implementing Password Policies-Granting and Revoking User Privileges-Creating, Assigning and Revoking User Roles-Best Practices.

UNIT III - DATABASE APPLICATION SECURITY MODELS & VIRTUAL PRIVATE DATABASES Database Application Security Models: Introduction-Types of Users-Security Models- Application Types-Application Security Models-Data Encryption Virtual Private Databases: Introduction-Overview of VPD-Implementation of VPD using Views, Application Context in Oracle-Implementing Oracle VPD-Viewing VPD Policies and Application contexts using Data Dictionary, Policy Manager Implementing Row and Column level Security with SQL Server.

UNIT IV-AUDITING DATABASE ACTIVITIES Auditing Database Activities: Using Oracle Database Activities-Creating DLL Triggers with OracleAuditing Database Activities with Oracle-Auditing Server Activity with SQL Server 2000-Security and Auditing Project Case Study.

UNIT V - PRIVACY PRESERVING DATA MINING TECHNIQUES Privacy Preserving Data Mining Techniques: Introduction- Privacy Preserving Data Mining AlgorithmsGeneral Survey-Randomization Methods-Group Based Anonymization-Distributed Privacy Preserving Data Mining-Curse of Dimensionality-Application of Privacy Preserving Data Mining.

TEXT BOOKS

2. Hassan A. Afyouni, "Database Security and Auditing", Third Edition, Cengage Learning, 2009. (UNIT 1 to IV)

3. .Charu C. Aggarwal, Philip S Yu, "Privacy Preserving Data Mining": Models and Algorithms, Kluwer Academic Publishers, 2008.(UNIT V).

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.R.Jaichandran	Associate Professor	CSE / AVIT	rjaichandran@avit.ac.in
2.	Mrs.T.Narmadha	Assistant Professor	CSE / VMKVEC	narmadha@vmkvec.edu.in

Will.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021DS10	MACHINE LEARNING -I	Category	L	Т	Р	Credit
		SE	3	0	0	3

This course helps the students to know how kernel methods can be used in various machine learning tasks, including classification, ranking and preference learning, as well as learning with multiple data sources and targets. The student knows how convex optimization methods can be used to efficiently train kernel-based models. The student knows how structured data such as sequences, hierarchies and graphs can be tackled through kernel methods.

PREREQUISITE

MACHINE LEARNING

COUR	SE OBJECTIVES
1.	To familiarize on the concepts of kernel based machine learning
2.	To study on the methods for dimensionality reduction
3.	To gain knowledge on the unsupervised models for cluster analysis
4.	To implement various models for Kernel- ridge regression and SVMs
COUR	SE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Understand the fundamental concepts in kernel based machine learning	Understand
CO2: Understand the various methods for dimensionality reduction	Apply
CO3: Understand and apply how unsupervised models work for cluster analysis	Apply
CO4: Apply and analyze various Kernel-Ridge regression models	Analyse
CO5: Apply and analyze various Support Vector Machines and its variants	Analysee

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO2	S	М	-	-	М	-	М	М	I	-	-	S	-	Μ	-
CO3	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO4	S	М	-	-	М	-	М	М	-	-	-	S	-	Μ	-
CO5	S	М	-	-	М	-	М	М	_	_	-	S	-	М	-
S- Stron	ig; M-M	ledium:	L-Lov	V											

M. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

FUNDAMENTALS OF KERNEL BASED MACHINE LEARNING:

Feature representation and dimension reduction – The learning subspace property (LSP) and "kernelization" aof learning models – Unsupervised learning for cluster discovery – Supervised learning for linear classifiers – Gnereralized inner products and kernel function – Performabce metrics Kernel-induced vector spaces: Mercer kernels and kernel-induced similiarity metrics – Training data independent intrinsic feature vectors – Training data-dependent empirical feature vectors – The kernel-trick for nonvectorial data analysis

DIMENSION_REDUCTION:FEATURE SELECTION AND PCA/KPCA:

Subspace projection and PCA - Numerical methods for computation of PCA – Kernel principal component analysis (KPCA) – Kernel principal component analysis(KPCA) Feature Selection: The filtering approach to feature selection – Application studies of the feature selection approach

UNSUPERVISED LEARNING MODELS FOR CLUSTER ANALYSIS:

Unsupervised learning for cluster discovery: The similarity metric and clustering strategy – K-means clustering Models – Expectation-maximization(EM) learning models – Self-organizing maps(SOM) learning models – Biclustering data analysis Kernel methods for cluster analysis: Kernel based K-means learning models – Kernel Kmeans for nonvectorical data analysis – K-means learning models in kernel-induced spectral space – Kernelized Kmeans learning models – Kernel- induced SOM learning models – Neighbor-joining hierarchical cluster analysis **KERNEL RIDGE REGRESSORS AND VARIANTS:** Kernel-based regression and regularization analysis: Linear least-squares-error analysis - Kernel-based regression

analysis – Regularization via radial basis function (RBF) networks Linear Regression and discriminant analysis for supervised classification: Characterization of supervised learning models – Supervised learning models overdetermined formulation – A regularization method for robust learning: training versus prediction performances – Kernelized learning models in empirical space: linear kernels Kernel ridge regression for supervised classification: Kernel-based discriminant analysis(KDA) – Kernel ridge regression (KRR) for supervised classification -Perturbational discriminant analysis(PDA): Decision component and the regression ratio in special space – Application studies: KDA versus KRR – Trimming detrimental (anti-support) vectors in KRR learning models – Multi-class and multi-label supervised classification – Supervised subspace projection methods

SUPPORT VECTOR MACHINES AND VARIANTS:

Support vector machines: Linear support vector machines – SVM with fuzzy separation : roles of stack variables – Kerrnel-based support vector machines – Application case studies – Empirical space SVM for trimming of training vectors Support vector learning models for outlier detection – Support vector regression(SVR) – Hyperplane based one-class SVM learning models – Hypersphere-based one class SVM – Support vector clustering Ridge-SVM learning models – Roles of C and o on WECs of KRR and SVM – Ridge-SVM learning models - Impacts of design parameters on the WEC of ridge SVM – Prediction accuracy versus training time – Application case studies

TEXT BOOKS

4. Kernel Methods and Machine Learning, S.Y.Kung, Cambridge University Press, 2014. COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.R.Jaichandran	Associate Professor	CSE / AVIT	rjaichandran@avit.ac.in
2.	Mrs.T.Narmadha	Assistant Professor	CSE / VMKVEC	narmadha@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

[г		
350	21DS05	5		T	EXT M	IINING	Ĵ			Ca	ategory	L	Т	P C	Credit
											SE	3	0	0	3
PREAM This co classifi knows structu PRERE	ABLE ourse he ication, how co red data QUISI	elps the ranking onvex o a such a TE	e studer g and p ptimiza is seque	nts to k preferen ation m ences, h	now he ce lear ethods ierarch	ow kern ning, a can be ies and	nel met s well a used to graphs	hods ca as learr o efficie can be	an be u ning wi ently tra tackleo	th mult ain kerr throug	various r iple data iel-based ih kernel	nachine le sources a models. ' methods.	earning and targ The stud	tasks, ir ets. The dent kno	cluding student ws how
	SE OBJ		VES												
1.	To und	erstand	the bas	sic issue	es and t	ypes of	text m	ining.							
2.	•To app	preciate	e the dif	ferent	aspects	of text	catego	rization	and cl	ustering	ç.				
3.	To und	erstand	the rol	e playe	d by te	xt minii	ng in In	format	ion retr	ieval ar	d extract	ion.			
4.	To app	reciate	the use	of prob	abilisti	c mode	ls for t	ext min	ing.						
	To app	reciate	the cur	rent trei	nds in t	ext min	ing.								
COURS	SE OUI	ГСОМ	ES												
On the c		hil com	nlation	of the		atudant		a abla	to						
On the s	successi	ui com	pietion	of the c	course,	student	s will t	be able	10						
CO1:	Identify	the dif	ferent f	features	that ca	in be m	ined fro	om text	and we	eb docu	ments		Unde	rstand	
CO2: text dat	Use ava a sets.	ilable o	open so	urce cla	ssifica	tion and	l cluste	ring too	ols on s	ome sta	ndard		Ар	ply	
CO3:	Modify s used.	existin	g classi	ficatior	n/cluste	ring alg	gorithm	s in ter	ms of f	unction	ality or		Ар	ply	
CO4:	Design	a syster	m that u	ises tex	t minin	g to im	prove t	he func	tions o	f an exi	sting		Ana	lyse	
CO5:	Implem	arch en ent a te	gine. xt mini	ng syst	em that	t can be	used f	or an ap	oplicati	on of yo	our		A mai	-	
choice		ти рі				COME	S ANT		[¬] DAM	ME SD	FCIFIC		Ana.	lysee	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	<u>ИО2</u> М	-	-	<u>И М</u>	-	<u>ио</u> ,	M	-	-	-	S	-	M	-
CO2	S	M	-	-	М	-	М	Μ	-	-	_	S	-	М	-
CO3	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO4	S	М	-	-	Μ	-	М	М	-	-	-	S	-	М	-
CO5	S	М	-	-	М	-	Μ	М	-	-	-	S	-	Μ	-
S- Stron	ng; M-M	Iedium	; L-Lov	V											
L									C	Nit	M.				

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

UNIT I INTRODUCTION

Overview of text mining- definition- general architecture – algorithms – core operations – Preprocessing types of problems- basics of document classification - information retrieval- clustering and organizing documents - information extraction - prediction and evaluation-textual information to numerical vectors collecting documents- document standardization – tokenizationlemmatization-vector generation for prediction sentence boundary determination -evaluation performance

UNIT II TEXT CATEGORIZATION AND CLUSTERING

Text Categorization – definition – document representation – feature selection - decision tree classifiers - rulebased classifiers - probabilistic and naive bayes classifiers - linear classifiers classification of linked and web data - meta-algorithms- clustering -definition- vector space models - distance - based algorithms - word and phrase-based clustering - semi-supervised clustering - transfer learning

UNIT III TEXT MINING FOR INFORMATION RETRIEVAL AND INFORMATION EXTRACTION Information retrieval and text mining- keyword search- nearest-neighbor methods- similarity- webbased document search – matching- inverted lists- evaluation. information extraction - architecture - co-reference named entity and relation extraction- template filling and database construction – applications. inductive unsupervised algorithms for information extraction. text summarization techniques - topic representation influence of context - indicator representations - pattern extraction - Apriori algorithm – FP tree algorithm

UNIT IV PROBABILISTIC MODELS Probabilistic models for text mining -mixture models - stochastic processes in bayesian - nonparametric models - graphical models - relationship between clustering, dimension reduction and topic modeling - latent semantic indexing - probabilistic latent semantic indexing -latent dirichlet allocation- interpretation and evaluation - probabilistic document clustering and topic models - probabilistic models for information extraction - hidden markov models - stochastic context-free grammars - maximal entropy modeling - maximal entropy markov models -conditional random fields

UNIT V RECENT TRENDS Visualization approaches - architectural considerations - visualization techniques in link analysis - example- mining text streams - text mining in multimedia - text analytics in social media opinion mining and sentiment analysis - document sentiment classification - opinion lexicon expansion - aspectbased sentiment analysis - opinion spam detection – text mining applications and case studies.

TEXT BOOKS

- 1. Sholom Weiss, NitinIndurkhya, Tong Zhang, Fred Damerau "The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data", Springer, paperback 2010.
- 2. Ronen Feldman, James Sanger," The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data", Cambridge University press, 2006.
- 3. Charu C. Aggarwal , Cheng Xiang Zhai, "Mining Text Data", Springer; 2012.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	V.Subapriya	Assistant Professor	CSE	subapriyacse@avit.ac.in
2	Ms A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA. - Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021DS07	WEB INTELLIGENCE	Category	L	Т	Р	Credit
		SE	3	0	0	3

This course helps the students to know how kernel methods can be used in various machine learning tasks, including classification, ranking and preference learning, as well as learning with multiple data sources and targets. The student knows how convex optimization methods can be used to efficiently train kernel-based models. The student knows how structured data such as sequences, hierarchies and graphs can be tackled through kernel methods.

PREREQUISITE

MACHINE LEARNING

COUR	SE OBJECTIVES	
1.	To familiarize basics of Internet.	
2.	To manage the Web designing and uploading	
3.	To understand various scripting languages like Java scripting and VB scripting.	
4.	To appreciate the use of Queries	
	To appreciate the current trends in Web Technology.	
COUR	SE OUTCOMES	
On the	successful completion of the course, students will be able to	
CO1:	Identify the different features that can be mined from text and web documents	Understand
CO2: text da	Use available open source classification and clustering tools on some standard ta sets.	Apply
CO3: feature	Modify existing classification/clustering algorithms in terms of functionality or es used.	Apply
CO4: open s	Design a system that uses text mining to improve the functions of an existing ource search engine.	Analyse
CO5: choice	Implement a text mining system that can be used for an application of your	Analysee

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO2	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO3	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO4	S	М	-	-	М	-	М	М	-	-	-	S	-	М	-
CO5	S	М	-	-	М	-	М	М	-	-	_	S	-	М	-

S- Strong; M-Medium; L-Low

HH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

UNIT I - INTERNET CONCEPTS

Fundamental of Web ,History of Web, Web development overview, Domain Name System (DNS), DHCP, and SMTP and other servers ,Internet service provider (ISP), Concept of IP Address, Internet Protocol, TCP/IP Architecture and protocol (IP) ,Web Browser and Web Server.

UNIT II - HTML and DHTML

HTML Tag, Rules of HTML, Text Formatting & Style, List, Adding Graphics to Html Document, Tables and Layout, Linking Documents, Frame, Forms, Project in HTML, Introduction to DHTML, CSS, Class & DIV, External Style Sheet.

UNIT III - JAVA SCRIPT AND VB SCRIPT

Java Script (JS) in Web Page, Advantage of Java Script, JS object model and hierarchy ,Handling event, Operators and syntax of JS, Function, Client side JS Vs Server side JS ,JS security Introduction to VB Script, Operator & Syntax of VB Script, Dialog Boxes, Control & Loop, Function in VBS.

UNIT IV - XML

Introduction to XML, XML in Action, Commercial Benefits of XML, Gaining Competitive advantage with XML, Programming in XML, XML Schema ,XSLT ,DOM structure model ,XML quires and transformation .

UNIT V - JQUERY

Introduction to jQuery : What Does jQuery Do for Me?, Obtaining jQuery, Installing jQuery - Selecting and Filtering : Using the Selectors API, Filtering a Selection, Searching within a Selection with find method, Finding an Element's Siblings with siblings method, Searching Ancestors Using the parents and parent Methods - Events - Filtering Selections and Arrays : Basic Iteration, Filtering Selections and Arrays - jQuery CSS : CSS Method, The outerWidth and outerHeight Methods - jQuery Effects : Showing and Hiding Elements, Sliding Elements, Fading Elements, Custom Animation.

TEXT BOOKS:

- 1. Margaret Levine Young, "Internet-The Complete Reference", McGraw Hill, 2nd Edition (For Unit I to III)
- 2. Jon Ducket, (2005), "Web Programming with HTML, CSS and JavaScript", Wiley Publishing. (For Unit IV to V)

COURSE DESIGNERS				
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	V.Subapriya	Assistant Professor	CSE	subapriyacse@avit.ac.in
2	Ms A.Kasthuri	Assistant Professor	CSE	kasthuri@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.