AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation, Deemed to be University, Salem, Tamil Nadu, India) (AICTE APPROVED AND NAAC ACCREDITED)

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE

Faculty of Engineering and Technology

REGULATIONS 2017

Programme:

B.E / B.Tech -

ELECTRICAL AND ELECTRONICS ENGINEERING

Full Time (4 Years)

STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS)

CURRICULUM AND SYLLABUS

(Semester I to VIII)

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
D 07	to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader
	in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write effective presentations, and give and
	write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOS)

Graduating Students of Electronics and Communication Engineering programme will be able to:

Sl. No.	Description
PSO 1	Apply science, mathematics and engineering through differential and integral calculus,
	complex variables to solve electrical engineering problems.
PSO 2	Demonstrate proficiency in use of software and hardware to be required to practice electrical
	engineering profession.
PSO 3	Provide socially acceptable technical solution with the knowledge of ethical and management principles for sustainable development.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

Sl. No.	Description
PEO1	To impart the graduates to promote basic science and mathematical foundation, as also the principles and technology advancements made in electrical and electronics engineering and allied fields.
PEO2	To induce the graduates to design Electrical, Electronics and Computingsystems those are innovative and socially acceptable.
PEO3	To motivate the graduates to exhibit professionalism, ethics, communicationskills, team work and Application oriented research.

Credit Requirement for the Course Categories

Sl. No.	Category of Courses	Credits to be earned Min – Max.
	A.Foundation Courses (FC)	54 - 81
01	i. Humanities and Sciences (English and Management Courses)	12 - 21
01	ii. Basic Sciences (Maths, Physics and Chemistry Courses)	24 - 33
	iii. Engineering Sciences (Basic Engineering Courses)	18 - 27
02	B. Core courses (CC) relevant to the chosen Programme of study.	81
	C. Elective Courses (EC)	18 - 24
03	i. Programme Specific (Class Room or Online)	12 – 15
	ii. Open Elective (Class Room or Online)	6 - 9
	D. Project + Internship + Industry Electives (P + I + I)	18
04	i. Project	9
04	ii. Internship	3
	iii. Industry Supported Courses	6
	**E. Employability Enhancement Courses+ Co - Curricular Courses + Extra Curricular Courses	9 - 18
05	i. Employability Enhancement Courses (Personality Development Training, Participation in Seminars, Professional Practices, Summer Project, Case Study etc.)	3 - 6
	ii. Co - Curricular Courses (NCC, NSS, Sports, Games, Drills and Physical Exercises)	3 - 6
	iii. Extra Curricular Courses	3 - 6
	Minimum Credits to be earned	180
CGPA	Iandatory, Credits would be mentioned in Mark sheets but not incl A Calculations. For overall CGPA calculations, a student has to ear redits in Categories A to D.	

CURRICULUM

B.E / B.Tech. ELECTRICAL AND ELECTRONICS ENGINEERING

SEMESTER I TO VIII

	B.E/B.Tec	EGORY A – FOUNDATION COURSES -		OURSES	- C	REDI	FS (54 -	·63)	
		(i) HUMANITIES AND SCIENCES (ENGLISH AN	,					,	
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEG ORY	L	Т	Р	С	PREREQUIS TE
1.	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC (HS)	3	0	0	3	NIL
2.	17EGHS02	BUSINESS ENGLISH	ENGLISH	FC (HS)	3	0	0	3	NIL
3.	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC (HS)	0	0	4	2	NIL
4.	17YMHS82	YOGA & MEDITATION	PHYSICAL EDUCATION	FC (HS)	0	0	4	2	NIL
5.	17MBHS04	TOTAL QUALITY MANAGEMENT	MANAGEMENT	FC (HS)	3	0	0	3	NIL
6.	17MBHS01	ENGINEERING STARTUPS AND ENTREPRENERIAL MANAGEMENT	MANAGEMENT	FC (HS)	3	0	0	3	NIL
		(ii) BASIC SCIENCES (MATHS, PHYSICS		,	1	1	, 	1	1
1.	17MABS01	ENGINEERING MATHEMATICS	MATHEMATICS	FC (BS)	2	2	0	3	NIL
2.	17PCBS02	PHYSICAL SCIENCES	PHYSICS & CHEMISTRY	FC (BS)	4	0	0	4	NIL
3.	17MABS06	DIFFERENTIAL EQUATIONS AND TRANSFORMS	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERIN MATHEMATIC
4.	17PHBS05	SMART MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL
5.	17MABS10	PARTIAL DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA	MATHEMATICS	FC (BS)	2	2	0	3	DIFFERENTIA EQUATIONS AND TRANSFORM
6.	17MABS16	NUMERICAL METHODS	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERING MATHEMATIC
7.	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS & CHEMISTRY	FC (BS)	0	0	4	2	NIL
8.	17CHBS01	ENVIRONMENTAL SCIENCE AND ENGINEERING	CHEMISTRY	FC (BS)	3	0	0	3	NIL
		(iii) ENGINEERING SCIENCES (BASI	C ENGINEERING CO	URSES) - C	REDI	TS (18 -	27)		
1	17CSES01	ESSENTIALS OF COMPUTING	CSE	FC(ES)	3	0	0	3	NIL
2	17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	4	0	0	4	NIL
3	17CSES05	PROGRAMMING IN PYTHON	CSE	FC(ES)	3	0	0	3	NIL
4	17CMES02	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	4	0	0	4	NIL
5	17EEES04	ELECTRIC MACHINERY	EEE	FC(ES)	3	0	0	3	NIL
5	17EEES82	ENGINEERING SKILLS PRACTICE LAB 1. BASIC ELECTRICAL ENGINEERING 2. BASIC ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	0	0	4	2	NIL
7	17CSES83	PROGRAMMING IN PYTHON LAB	CSE	FC(ES)	0	0	4	2	NIL
8	17CMES81	ENGINEERING SKILLS PRACTICE LAB A. BASIC CIVIL ENGINEERING B. BASIC MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	0	0	4	2	NIL
Ð	17MEES84	ENGINEERING GRAPHICS (THEORY + PRACTICE)	MECHANICAL	FC(ES)	1	0	4	3	NIL

		TECH. – ELECTRICAL								
CT	САТ	EGORY B – CORE COUR		ANT TO THE	PRO	GRAN	1ME	- Cl	. ,	DACE NO
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE	PAGE NO
1.	17EECC01	ELECTRIC CIRCUIT ANALYSIS	EEE	CC	3	0	0	3	BASICS ELECTRICAL AND ELECTRONICS ENGINEERING	53
2.	17ECCC20	SEMICONDUCTOR DEVICES AND CIRCUITS	ECE	CC	3	0	0	3	BASICS ELECTRICAL AND ELECTRONICS ENGINEERING	55
3.	17EECC02	ELECTRICAL MACHINES – I	EEE	CC	3	0	0	3	BASICS ELECTRICAL AND ELECTRONICS ENGINEERING	57
4.	17EECC03	ELECTRO MAGNETIC THEORY	EEE	CC	3	0	0	3	NIL	59
5.	17EECC04	MEASUREMENTS AND INSTRUMENTATION	EEE	CC	3	0	0	3	BASICS ELECTRICAL AND ELECTRONICS ENGINEERING	61
6.	17EECC05	ELECTRICAL MACHINES – II	EEE	CC	3	0	0	3	BASICS ELECTRICAL AND ELECTRONICS ENGINEERING	63
7.	17ECCC05	DIGITAL LOGIC CIRCUITS & DESIGN	ECE	CC	3	0	0	3	BASICS ELECTRICAL AND ELECTRONICS ENGINEERING	65
8.	17EECC06	POWER ELECTRONICS	EEE	CC	3	0	0	3	SEMICONDUCTOR DEVICES AND CIRCUITS	67
9.	17EECC07	TRANSMISSION & DISTRIBUTION	EEE	CC	3	0	0	3	NIL	69
10.	17EECC08	CONTROL SYSTEMS	EEE	CC	3	0	0	3	BASICS ELECTRICAL AND ELECTRONICS ENGINEERING	71
11.	17EECC09	POWER SYSTEM ANALYSIS	EEE	CC	3	0	0	3	NIL	73
12.	17ECCC10	LINEAR INTEGRATED CIRCUITS	ECE	CC	3	0	0	3	SEMICONDUCTOR DEVICES AND CIRCUITS	75
13.	17ECCC07	MICROCONTROLLERS & ITS APPLICATIONS	ECE	CC	3	0	0	3	NIL	77
14.	17EECC10	POWER SYSTEM OPERATION AND CONTROL	EEE	CC	3	0	0	3	POWER SYSTEM ANALYSIS	79
15.	17EECC11	SOLID STATE DRIVES	EEE	CC	3	0	0	3	POWER ELECTRONICS	81
16.	17EECC12	PROTECTION & SWITCHGEAR	EEE	CC	3	0	0	3	ELECTRICAL MACHINES- II	83
17.	17ECCC22	EMBEDDED SYSTEM	ECE	CC	3	0	0	3	NIL	85
18.	17EECC13	HIGH VOLTAGE ENGINEERING	EEE	CC	3	0	0	3	NIL	87
19.	17EECC14	ELECTRICAL MACHINES AND DRIVES	EEE	CC	3	0	0	3	BASICS ELECTRICAL AND ELECTRONICS ENGINEERING	89
20.	17EECC15	ELECTRICAL TECHNOLOGY	EEE	CC	3	0	0	3	BASICS ELECTRICAL AND ELECTRONICS ENGINEERING	91
21.	17EECC16	POWER ELECTRONICS AND DRIVES	EEE	СС	3	0	0	3	NIL	93
22.	17EECC19	ROBOTICS AND AUTOMATION (THEORY & PRACTICE)	EEE	CC	3	θ	0	3	NIL	95
23.	17EECC81	ELECTRIC CIRCUITS LAB	EEE	CC	2	θ	2	3	NIL	97
24.	17ECCC93	SEMICONDUCTOR DEVICES AND CIRCUITS LAB	ECE	CC	0	θ	4	2	NIL	98
25.	17EECC82	ELECTRICAL TECHNOLOGY LAB	EEE	CC	0	θ	4	2	NIL	99

26.	17EECC83	ELECTRICAL MACHINES –I LAB	EEE	CC	θ	θ	4	2	NIL	101
27.	17EECC84	MEASUREMENTS AND INSTRUMENTATION LAB	EEE	СС	θ	θ	4	2	NIL	102
28.	17EECC85	ELECTRICAL MACHINES - II LAB	EEE	CC	0	0	4	2	NIL	104
29.	17ECCC82	DIGITAL LOGIC CIRCUITS & DESIGN LAB	ECE	CC	0	0	4	2	NIL	106
30.	17EECC86	POWER ELECTRONICS LAB	EEE	CC	0	0	4	2	NIL	107
31.	17ECCC94	LINEAR INTEGRATED CIRCUITS LAB	ECE	CC	0	0	4	2	NIL	109
32.	17EECC87	CONTROL SYSTEMS LAB	EEE	CC	0	0	4	2	NIL	110
33.	17EECC88	POWER SYSTEM SIMULATION LAB	EEE	CC	0	0	4	2	NIL	112
34.	17EECC89	SOLID STATE DRIVES LAB	EEE	CC	0	0	4	2	NIL	114
35.	17ECCC95	MICROCONTROLLERS LAB	ECE	CC	0	0	4	2	NIL	115

B.	E./B.TECH	ELECTRICAL AND ELI								FAILS
		OF ELECTIVE COUR						ATI	ON	
	(CATEGORY C – ELI i) PROGRAMME SPECIFIC (,	10 1	5)	
SL.	Ì		OFFERIN		,	Γ	Ī		PREREQUISITE	PAGE NO
NO	CODE	COURSE	G DEPT.	CATEGORY	L	Т	Р	С	Therebyersite	Indento
1.	17EEEC01	ADVANCED CONTROL SYSTEM	EEE	EC (PS)	3	0	0	3	CONTROL SYSTEMS	117
2.	17EEEC02	ADVANCED TOPICS IN POWER ELECTRONICS	EEE	EC (PS)	3	0	0	3	POWER ELECTRONICS	119
3.	17EEEC03	COMPUTER AIDED DESIGN OF ELECTRICAL APPARATUS	EEE	EC (PS)	3	0	0	3	NIL	121
4.	17EEEC04	EHV AC & DC POWER TRANSMISSION	EEE	EC (PS)	3	0	0	3	TRANSMISSION AND DISTRIBUTION	123
5.	17EEEC05	FLEXIBLE AC TRANSMISSION SYSTEM	EEE	EC (PS)	3	0	0	3	TRANSMISSIO N AND DISTRIBUTION	125
6.	17EEEC06	HIGHVOLTAGE DIRECT CURRENT TRANSMISSION	EEE	EC (PS)	3	0	0	3	TRANSMISSION AND DISTRIBUTION	127
7.	17EEEC07	INTELLIGENT CONTROLLERS	EEE	EC (PS)	3	0	0	3	CONTROL SYSTEMS	129
8.	17ECEC25	MICRO ELECTRO MECHANICAL SYSTEMS	ECE	EC (PS)	3	0	0	3	NIL	132
9.	17EEEC09	POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEM	EEE	EC (PS)	3	0	0	3	POWER ELECTRONICS	134
10.	17EEEC10	POWER QUALITY	EEE	EC (PS)	3	0	0	3	NIL	136
11.	17EEEC11	POWER SYSTEM PLANNING AND RELIABILITY	EEE	EC (PS)	3	0	0	3	NIL	138
12.	17EEEC12	POWER SYSTEM TRANSIENTS	EEE	EC (PS)	3	0	0	3	NIL	140
13.	17EEEC13	SPECIAL ELECTRICAL MACHINES	EEE	EC (PS)	3	0	0	3	ELECTRICAL MACHINES – I & II	142
14.	17EEEC14	WIND ENERGY CONVERSION SYSTEMS	EEE	EC (PS)	3	0	0	3	POWER ELECTRONICS	144
15.	17EEEC15	POWER SYSTEM RESTRUCTURING AND DEREGULATION	EEE	EC (PS)	3	0	0	3	POWER SYSTEM OPERATION AND CONTROL	146
16.	17EEEC16	ELECTRIC VEHICLES	EEE	EC (PS)	3	0	0	3	NIL	148
17.	17EEEC17	PHOTOVOLTAIC (PV) ENERGY CONVERSION	EEE	EC (PS)	3	0	0	3	NIL	150
18.	17EEEC18	RENEWABLE ENERGY TECHNOLOGY	EEE	EC (PS)	3	0	0	3	NIL	152
19.	17EEEC19	DRIVE SYSTEM IN ELECTRIC TRACTION	EEE	EC (PS)	3	0	0	3	NIL	154
20.	17EEEC20	MATHEMATICAL MODELLING AND SIMULATION	EEE	EC (PS)	3	0	0	3	NIL	157
21.	17EEEC21	NON- CONVENTIONAL ENERGY SOURCES	EEE	EC (PS)	3	0	0	3	NIL	159
22.	17EEEC22	SCADA	EEE	EC (PS)	3	0	0	3	NIL	161
23.	17EEEC23	PRINCIPLES OF AUTOMATIC CONTROL	EEE	EC (PS)	3	0	0	3	NIL	163

		SPECIALIZATION I	N BIOMEI	DICAL ENG	GINEER	ING				PAGE NO
1.	17BMEC02	BIOTELEMETRY	BME	SE	3	0	0	3	NIL	165
2.	17BMCC03	BIOSENSORS AND TRANSDUCERS	BME	SE	3	0	0	3	NIL	167
3.	17BMEC12	HOSPITAL MANAGEMENT	BME	SE	3	0	0	3	NIL	169
4.	17ECSE12	MEDICAL ELECTRONICS	ECE	SE	3	0	0	3	NIL	171
5.	17BMCC10	MEDICAL IMAGE PROCESSING AND ANALYSIS	BME	SE	3	0	0	3	NIL	173
6.	17BMSE16	WEARABLE TECHNOLOGY	BME	SE	3	0	0	3	NIL	175
7.	17BMCC82	BIOMEDICAL INSTRUMENTATION LAB	BME	SE	0	0	4	2	NIL	177
8.	17ECSE13	BIOMEDICAL IMAGE PROCESSING LAB	ECE	SE	0	0	4	2	NIL	178
9.	17ECSE14	BIOMEDICAL SIGNAL PROCESSING LAB	ECE	SE	0	0	4	2	NIL	180
10.	17ECSE15	DATA ACQUISITION LAB	ECE	SE	0	0	4	2	NIL	182
		SPECIALIZATION - P	OWER SY	STEMS EN	GINEE	RING				
1.	17EESE01	POWER ELECTRONICS IN POWER SYSTEMS	EEE	SE	3	0	0	3	NIL	183
2.	17EESE02	INDUSTRIAL POWER SYSTEM ANALYSIS ANDDESIGN	EEE	SE	3	0	0	3	NIL	185
3.	17EESE03	ARTIFICIAL INTELLIGENCE APPLICATIONSTO POWERSYSTEMS	EEE	SE	3	0	0	3	NIL	187
4.	17EESE04	MODELLINGAND ANALYSIS OF ELECTRICAL MACHINES	EEE	SE	3	0	0	3	NIL	189
5.	17EESE05	TRANSIENTS IN POWER SYSTEM	EEE	SE	3	0	0	3	NIL	191
6.	17CSEC29	TCP/IP TECHNOLOGY	CSE	SE	3	0	0	3	NIL	193
7.	17EESE81	POWER SYSTEM SIMULATION LAB - I	EEE	SE	0	0	4	2	NIL	195
8.	17EESE82	POWER SYSTEM SIMULATION LAB - II	EEE	SE	0	0	4	2	NIL	196
9.	17EESE83	POWER ELECTRONICS SIMULATION LAB -I	EEE	SE	0	0	4	2	NIL	197
10.	17EESE84	POWER ELECTRONICS SIMULATION LAB -II	EEE	SE	0	0	4	2	NIL	199

		SPECIALISATION - S	OLAR AND A	LTERNA	TE E	NERG	Y			PAGE NO
1		NON-CONVENTIONAL								200
1.	17EESE06	ENERGY SOURCE AND	EEE	SE	3	0	0	3	NIL	
		ITS APPLICATIONS								
		SOLAR COLLECTORS AND		SE						202
2.	17SACC05	THERMAL ENERGY	EEE		3	0	0	3	NIL	
		CONVERSION								
		ENERGY CONSERVATION		SE						204
3.	17SACC10	AND	EEE		3	0	0	3	NIL	
		MANAGEMENT			5	Ŭ	Ŭ	5		
4.	17EESE07	CONCEPTS OF GREEN		SE						206
ч.	TTELSEOT	BUILDING	EEE	SE	3	0	0	3	NIL	200
5.	17EEEC34	NUCLEAR REACTOR		SE						208
5.	17LLLC34	THEORY	EEE	SL	3	0	0	3	NIL	208
		CONVENTIONAL AND		SE						210
6.	17EESE09		EEE	31	2	0	0			210
		ALTERNATIVE ENERGY			3	0	0	3	NIL	
		SYSTEMS								
7.	17SACC81	SOLAR ENERGY LAB	EEE	SE	0	0	4	2	NIL	212
0	175 4 6 6 9 2	SOLAR ENERGY LAD		CT.		-				214
8.	17SACC82	WIND ENERGY LAB	EEE	SE	0	0	4	2	NIL	214
0	17EESE83	POWER ELECTRONICS		SE					NIL	216
9.	1/EESE65		EEE	SE	0	0	4	2	NIL	210
10	17050504	SIMULATION LAB -I		0E					NIII	210
10.	17EESE84	POWER ELECTRONICS	EEE	SE	0	0	4	2	NIL	218
		SIMULATION LAB -II			~~~					
		(ii) OPEN ELECTIVE (CLAS		,) - CR	EDITS	6 (6 - 9))		
1.	17ATEC12	FUEL CELL TECHNOLOGY	AUTOMOBILE	EC(OE)	3	0	0	3	NIL	219
2.	17CVEC18	WIND ENGINEERING	CIVIL	EC(OE)						221
				_==(==)	3	0	0	3	NIL	221
3.	17BMCC04	BIOMEDICAL	BME	EC(OE)						223
5.		INSTRUMENTATION &			3	0	0	3	NIL	_
		MEASUREMENTS								
4.	17CSCC01	DATA STRUCTURES	CSE	EC(OE)	3	0	0	3	NIL	225
-	150175005			EG(OD)						
5.	17CVEC07	DISASTER MITIGATION AND	CIVIL	EC(OE)	3	0	0	3	NIL	227
6.	17CSCC04	MANAGEMENT COMPUTER ARCHITECTURE		EC(OE)						220
0.	17C3CC04	COMPUTER ARCHITECTURE	CSE	EC(UE)	3	0	0	3	NIL	229
7.	17CSCC19	INTERNET OF THINGS		EC(OE)						231
/.	i/cscci)	INTERNET OF THINGS	CSE	LC(OL)	3	0	0	3	NIL	231
8.	17CSEC09	ETHICAL HACKING		EC(OE)						233
			CSE		3	0	0	3	NIL	200
9.	17CSEC11	GREEN COMPUTING	COL	EC(OE)	2	0	0	2	NUI	235
			CSE		3	0	0	3	NIL	
10.	17ECCC04	SIGNALS AND SYSTEMS	ECE	EC(OE)	3	0	0	3	NIL	237
					5	0	0	5	NIL	
11.	17ECCC15	ANALOG & DIGITAL	ECE	EC(OE)	3	0	0	3	NIL	239
		COMMUNICATION			2	ů	Ű	5		
12.	17ECCC17	FPGA SYSTEM DESIGN	ECE	EC(OE)	3	0	0	3	NIL	241
12	1550500		ECE	EG(OD)				-		2.12
13.	17ECEC02	PCB & PLC	ECE	EC(OE)	3	0	0	3	NIL	243
14.	17ECEC04	DSP WITH FPGA	ECE	EC(OE)		1				215
14.	1/ECEC04		ECE	EC(UE)	3	0	0	3	NIL	245
15.	17ECEC06	MEMS AND SENSORS	ECE	EC(OE)						247
	1.202000			(01)	3	0	0	3	NIL	271
16.	17ECEC20	ROBOTICS AND	ECE	EC(OE)	-	_	~	_		249
		AUTOMATION		, í	3	0	0	3	NIL	
17.	17MECC03	ENGINEERING MECHANICS	MECH	EC(OE)	2	0	0	2	NIT	251
					3	0	0	3	NIL	
18.	17CVCC34	FLUID MECHANICS AND	CIVIL	EC(OE)	3	0	0	3	NIL	253
	1	MACHINERY			3	U	U	3	INIL	
19.	17MECC16	INDUSTRIAL AUTOMATION	MECH	EC(OE)	3	0	0	3	NIL	255
					5	· · ·			1111	

20.	17MESE30	DESIGN OF THERMAL POWER EQUIPMENTS	MECHANICAL	EC(OE)	3	0	0	3	NIL	257
21.	17MEEC11	INDUSTRIAL ROBOTICS	MECHANICAL	EC(OE)	3	0	0	3	NIL	259
22.	17MEEC13	INDUSTRIAL SAFETY	MECHANICAL	EC(OE)	3	0	0	3	NIL	261
23.	17ATEC02	NEW GENERATION AND HYBRID VEHICLES	AUTOMOBILE	EC(OE)	3	0	0	3	NIL	263
24.	17ATEC04	SPECIAL TYPES OF VEHICLES	AUTOMOBILE	EC(OE)	3	0	0	3	NIL	265
25.	17ATEC06	AUTOMOTIVE SAFETY	AUTOMOBILE	EC(OE)	3	0	0	3	NIL	267
26.	17BMEC09	DESIGN OF MEDICAL DEVICES	BME	EC(OE)	3	0	0	3	NIL	269
27.	17ATEC18	ALTERNATIVE FUELS	AUTOMOBILE	EC(OE)	3	0	0	3	NIL	271
28.	17ECEC21	ADVANCED ROBOTICS	ECE	EC(OE)	3	0	0	3	NIL	273
29.	17MESE09	NEW PRODUCT DEVELOPMENT	MECHANICAL	EC(OE)	3	0	0	3	NIL	275
30.	17MESE22	AUTOMOTIVE INFOTRONICS	MECHANICAL	EC(OE)	3	0	0	3	NIL	277
31.	17MESE23	MICRO AND NANO MACHINING	MECHANICAL	EC(OE)	3	0	0	3	NIL	279
32.	17ATEC10	ALTERNATIVE ENERGY SOURCES FOR AUTOMOBILES	AUTOMOBILE	EC(OE)	3	0	0	3	NIL	281
33.	17ECCC11	DATA COMMUNICATION NETWORKS	ECE	EC(OE)	3	0	0	3	NIL	283
34.	17AREC03	UNMANNED AIRCRAFT SYSTEMS	AERO	EC(OE)	3	0	0	3	NIL	285
35.	17CSCC33	PROBLEM SOLVING USING COMPUTER	CSE	EC(OE)	3	0	0	3	NIL	287
36.	17CSCC08	COMPUTER NETWORKS	CSE	EC(OE)	3	0	0	3	NIL	289

B.F	C/B.TECH. –	ELECTRICAL AND H	ELECTRONI	CS ENGINE	ERIN	G - S	EME	STE	RITO	VIII		
(CATEGORY D – PROJECT + INTERNSHIP + INDUSTRY ELECTIVES (P + I + I)- CREDITS (18) (i) PROJECT - CREDITS (9)											
SL. NO	SL. CODE COURSE OFFERING CATEGOR L T P C PREREC											
(i) PF	ROJECT - CRE	DITS (9)										
1	17EEPI01	PROJECT WORK AND VIVA VOCE	EEE	PI	0	0	18	9	NIL	291		
(ii) I Y	TERNSHIP +	INDUSTRY ELECTIVES	- CREDITS (9)									
1.	17EEPI02	MINIPROJECT	EEE	Ы	0	0	6	3	NIL	293		
2.	17CSPI07	LEARNING IT ESSENTIALS BY DOING	INFOSYS	PI	3	0	0	3	NIL	295		
3.	17CSPI04	BUSINESS INTELLIGENCE AND ITS APPLICATIONS	INFOSYS	PI	3	0	0	3	NIL	297		
4.	17EEPI03	VIRTUAL INSTRUMENTATION	NATIONAL INSTRUMENTS	PI	3	0	0	3	NIL	299		
5.	17EEPI04	INTRODUCTION TO INDUSTRIAL INSTRUMENTATION	EEE	PI	3	0	0	3	NIL	301		

CATEGORY E – EMPLOYABILITY ENHANCEMENT COURSES, CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)** - CREDITS (9 - 18) (** MANDATODY CREDITS WOLLD BE MENTIONED IN MARK SUFETS BUT NOT INCLUDED FOR

(** - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR CGPA CALCULATIONS.)

(i) EMPLOYABILITY ENHANCEMENT COURSES (EEC)

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQU ISITE	PAGE NO
1.	17APEE01	PERSONALITY SKILLS DEVELOPMENT – I	MATHS	EE		WEEKS FRAININ		1	NIL	303
2.	17APEE02	PERSONALITY SKILLS DEVELOPMENT – II	ENGLISH & MANAGEMENT	EE		WEEKS FRAININ		1	NIL	305
3.	17ECEE01	BASICS ON ELECTRONIC GADGETS, COMPONENTS ASSEMBLING AND SOLDERING	ECE	EE	0	0	2	1	NIL	307
4.	17EEEE01	MATLAB TRAINING	EEE	EE	0	0	4	2	NIL	307
5.	17EEE02	EMBEDDED SYSTEMS & ROBOTICS TRAINING	EEE	EE	0	0	4	2	NIL	309
6.	17EEEE03	ELECTRICAL MACHINE FAULT DETECTION AND DIAGNOSIS – HANDS ON TRAINING	EEE	EE	0	0	4	2	NIL	310
7.	17EEEE04	POWER PLANT CONTROL AND INSTRUMENTATION	EEE	EE	3 0 0		3	NIL	311	
		(ii) CO - CU	RRICULAR COU	URSES (CCC))					
1.	17APEE03	NCC	NCC CELL	EE		WEEKS INING IN CAMP		1	NIL	313
2.	17APEE04	NSS	NSS CELL	EE	SOCIA	WEEKS AL SER V	ICE IN	1	NIL	315
3.	17APEE05	SPORTS AND GAMES (INTER -COLLEGIATE LEVEL)	PHYSICAL EDUCATION	EE		-		1	NIL	317
4.	17APEE06	SPORTS AND GAMES (INTRA-UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE		-		2	NIL	318
5.	17APEE07	SPORTS AND GAMES (ALL INDIA INTER UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE	-		3	NIL	319	
		EXTR	A CURRICULAR	COURSES						
1.	17ECEE06	EXTRA CURRICULAR COURSE – I	EEE	EE	15 HOURS		1	NIL		
2.	17ECEE07	EXTRA CURRICULAR COURSE – II	EEE	EE	15 HOURS		1	NIL		
3.	17ECEE08	EXTRA CURRICULAR COURSE – III	EEE	EE	15 HOURS		1	NIL		
4.	17ECEE09	EXTRA CURRICULAR COURSE – IV	EEE	EE		15 HOUF	RS	1	NIL	

17E0	GHS01			TECH	NICAL	ENGL	ISH				Categor	y	L	Т	Р	Credit
											HSS		3	0	0	3
Techni commu outcom in Engl	unication ne of the	skills i course i age and	n Englis s to help thereby	sh, esse the stu	ntial for dents ac	r unders quire th	tanding e langua	and ex age skills	pressing s of List	g the idea ening, Sp	and Techn as of diffe reaking, Ro obalised sc	erent peading	profe g and	essional	l contex	t. The
COUR	RSE OBJ	ECTIV	ES													
1	To ena	able stud	lents to c	levelop	LSRW s	skills in	English.	(Listen	ing, Spe	aking, Re	ading, and	l Writi	ing.)			
2	To ma	ke them	to becom	me effec	ctive cor	nmunica	ators									
3	To ens	sure that	learners	use Ele	ectronic	media n	naterials	for dev	eloping	language						
4	To aid	the stud	lents wit	h emplo	yability	skills.										
5	To mo	tivate st	udents c	ontinuo	usly to u	ise Engl	ish lang	uage								
6	To dev	velop the	e student	s comm	unicatio	n skills	in forma	al and in	formal s	ituations						
COUR	RSE OUT	COME	S													
On the	successf	ul comp	letion of	the cou	rse, stud	lents wil	l be able	e to								
CO1. I	Listen, rei	nember	and resp	ond to o	others in	differer	nt scena	rio							Remem	ber
CO2. U	Understar	d and sp	oeak flue	ently and	l correct	ly with	correct p	oronunci	ation in	different	situation.				Underst	and
CO3. 1	Fo make t	he stude	ents expe	erts in pi	rofession	nal writi	ng								Apply	
CO4	To make	the stud	lents in r	oroficier	nt techni	cal com	municat	or							Apply	
									o be the	oretically	strong.				Apply	
		ne studer	nts recog	gnize the	e role of	technica	al writin	g in thei	r careers	s in busine	ess, techni	cal an	d		Analyze	;
	fic field		0.05 + -	0.0.0	I I I I I I I I I I I I I I I I I I I		ID DD 2			DOPER	outract	IF C				
											OUTCON					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSO2	PSO
CO1	Μ	Μ			Μ	Μ	S	-	L	S	L	S		S	Μ	Μ

CO1	Μ	Μ			Μ	Μ	S		L	S	L	S	S	Μ	Μ
CO2	L	Μ		L	Μ	Μ	S		L	S	S	S			
CO3	Μ	L	L	Μ			L	L	L	Μ	S	S		Μ	Μ
CO4		Μ				Μ	Μ		L	S		S	Μ	S	S
CO5	Μ	Μ		Μ	Μ	Μ	S	Μ	L	S	Μ	S	Μ	S	Μ
CO6	Μ		Μ			Μ					S	Μ	S	Μ	S
S- Stroi	ng; M-M	ledium; l	L-Low												
1															

SYLLABUS

LISTENING

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

SPEAKING

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homonyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.

REPORT WRITING

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

READING

Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

WRITING

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae.

TEXTBOOK

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002. Course Designers:

S.No.	Name of the Faculty	Mail ID
1.	Dr.P.Saradha / Associate Professor - English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor/Assistant Professor-English	Prem.english@avit.ac.in

17E0	GHS02		BUSI	NESS I	ENGLIS	SH					Catego	ry]	L T	P (Credit
											HSS		3 0	0	3
	MBLE	oftha	most vo	luad no	ancion	ofmon	It opto	0.0 ron	ocitory	of wiedor	n Among	all oth	er languag	oc Engli	ah tha
interna		iguage p	plays a v										lds and as		
PRER	EQUISI	ΓE: NII	L												
COUR	RSE OBJ	ECTIV	ES												
1	To in	ipart and	1 enhanc	ce corpo	rate com	munica	tion.								
2	To en	able lea	rners to	develop	present	ation ski	ills								
3	To bu	uild cont	fidence	in learne	ers to use	e Englisł	ı in Bus	iness co	ntext						
4	To ma	ke them	experts	in profe	essional	writing									
5							ng in all	forms of	of comm	unication	l				
6	To equ	ip stude	ents with	n employ	ability a	and job s	searchin	g skills							
COUR	RSE OUT	COME	S												
	successf														
	Communi		U									Unders	and		
							interac	tion skil	ls and co	onsider ho	DW 1	Apply			
	ommunica Strengther						ness coi	ntext				Apply			
	-	-													
	Create int											Apply			
	Make the			_	-			-	ive diffe	erent idea		Apply			
			-						IMF SP	FCIFIC		Apply			
													DIC 1	DCOC	DO
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PSO2	PSC 3
CO1	М		L		L	S	S		Μ	S	1	S	S	М	
CO2		М	S	Μ		Μ	Μ		L	S		S			
CO3	L	Μ				Μ		L		S	L	Μ			Μ
CO4		L	Μ	Μ			L	Μ	Μ	S	L	M	М	S	
CO5				Μ				Μ	L	S		L	Μ		Μ
CO6		L		Μ	1	L	L	1	1	S	1	S		S	1

SUBJECT AND VERB AGREEMENT

SYLLABUS

Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension - Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

STRESS

Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

READING SKILLS

Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs - E - Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

CORPORATE COMMUNICATION

Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences - Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations

CRITICAL READING

Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

TEXTBOOK

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English - Writing, Reading and Speaking - Pickett and Lester, Harper and Row

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

17EG	HS81			ENGI	JSH I	ANG	UAGE	LAB			Categor	y L	Т	P	Credit
											HSS	0	0	4	2
	MBLE														
											s. It acts				
-	0	-	0	anguag	e skills	through	gh inte	ractive	lesson	is and c	ommunic	ative n	node of	teach	ing.
	EQUI														
	RSE OI														
1								e corpo							
2				ole of	mother	tongu	e in se	cond la	nguag	e learni	ng and to	avoid	interfer	ence o	of
2	mother			<u></u>	1 .1	1 1	<u>CC</u>		•						
3					<u> </u>			t activit	ıes						
4					the tele	1	-		•						
5					-		-	s of con	nmuni	cation					
6		-		l skills	of the	studer	its								
	RSE OU			0											
	e succes		-)				.	
	Give be	1		U	· •										erstand
	Best per								speak	ıng.				App	-
	Give be								1					App	
			anding	of nua	ances o	f Engl	ish lan	guage t	hroug	h audio	-visual ex	xperien	ce and	App	ly
	activiti		1 .1	1 .	1	C" 1		1 • 1 •		1	.1 .	1	1 .1.		1
cos. skills	Speakir	ng skil	Is with	i clarit	y and	confid	ence w	hich if	i turn	enhanc	es their o	employ	ability	Арр	ly
	Acquire	e strate	gic cor	nneten	ce to u	se both	spoke	en and y	vritten	langua	ge in a v	vide rar	nge of	App	lv
	unicatio			npeten	00 to u	50 00 U	pone	iii uiid	110001	iunguu	.ge 111 u i	i ao i ai	190 01	· •PP	- 5
				RAM	ME O	UTCO	MES	AND P	ROG	RAMN	IE SPEC	CIFIC O	OUTCO	OME	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1		S	М	S		L			S	S	М				
CO2	М		<u> </u>			<u> </u>			М	S		М			М
CO3	М									S		М	М		М
CO4	М		<u> </u>			<u> </u>				М					М
CO5	М			S						М			М		S
CO6		М	М							Μ			Μ	Μ	S
S-Stro	ong; M-	Mediu	m; L-I	LOW											

SYLLABUS

Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to a song and understanding- (fill in the blanks) Telephone Conversation

MODULE II

MODULE I

Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

MODŮLE III

Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual. **MODULE IV**

Telephone Etiquette, Dining Etiquette, Meeting Etiquette.

MODULE V

Case study of Etiquette in different scenario.

Course Designers:

Cours	be Designers.			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

VINAYAKA MISSION RESEARCH FOUNDATION

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

YOGA AND MEDITATION

SYLLABUS- 2018-19

UNIT - I SURYA NAMASKAR AND ASANAS

SuryaNamaskar, Padmasana, Vajrasana, Navasana, Bhujangasana, Dhanurasana, TriKonasana, Uttakatasana, Eka pada pranamasana, Pirai Asana, Padha Hasthasana, Savasana.

UNIT – II PRANAYAMA

Surya pranayama, Chandra Pranayama, Anulom Vilom, Sheetali, Brahmari Pranayama.

UNIT – III MUDRA

Chin mudra, Rughi mudra, Yoga mudra, Maha mudra, Shanmukhi mudra.

UNIT - IV KRIYA

Kapalabathi, Bhastrika.

UNIT - V MEDITATION

Simple, Vibrational, Mantra, Yoga Nitra

References:

- 1. Dr.V.Krishnamoorthy, *Simple Yoga for Health*, Sri Mathi Nilayam, 2012.
- 2. Dr.Ananda Balayogi Bhavanani, A Primer of Yoga Theory, Dhivyananda Creations, 2008.
- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.
- 4. Dr.Asana Andiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Yogacharya Sundaram, Sundra Yoga Therapy, Asana Publications, 2009
- 6. Dr.John B.Nayagam, *Mudumaikku Mutrupulli Vaikkum Muthiraigal*, Saaru Prabha Publications, 2010.

17MBHS04	TOTAL QUALITY MANAGEMENT	Category	L	Т	Р	Credit
		HSS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: NIL

COURSE OBJECTIVES:

1. To understand the Total Quality Management concepts.

2. To practice the TQM principles.

3. To apply the statistical process control

4. To analyze the various TQM tools

5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.UnderstandCO2: Practice the relevant quality improvement tools to implement TQM.ApplyCO3: Analyse various TQM parameters with help of statistical tools.AnalysingCO4: Assess various TQM Techniques.EvaluateCO5: Practice the Quality Management Systems in a different organizationApplyEnvironment.Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
												-			
CO1	М	-	-	-	-	-	L	L	L	М	L	М	-	-	-
CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М
CO3	S	S	М	S	S	-	-	L	-	L	-	L	L	М	L
CO4	L	М	S	L	М	-	L	-	L	М	L	М	-	-	-
CO5	L	L	М	-	L	М	S	S	М	L	L	М	-	-	М
S- Stro	ng; M	-Medi	ium; I	L-Low	,	1	1	1	1	1	1	1	1	1	1

7

SYLLABUS:

INTRODUCTION

Quality: Definition - Dimensions - Planning- costs – Analysis Techniques for Quality Costs- Basic concepts of Total Quality Management- Historical Review- Principles - Leadership – Concepts- Role of Top Management- Quality Council – Quality Statements- Strategic Planning- Deming Philosophy- TQM Implementation – Barriers.

TQM PRINCIPLES

Customer satisfaction – Perception of Quality- Complaints- Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment - Teams- Recognition and Reward- Performance Appraisal- Benefits-Continuous Process Improvement – Juran's Trilogy- PDSA Cycle- 5S – Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC)

The Seven tools of Quality- Statistical Fundamentals – Measures of central Tendency & Dispersion- Population and Sample- Normal Curve- Control Charts for variables and attributes- Process capability- Concept of six sigma- New seven Management tools.

TQM TOOLS

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process- Benefits-Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA.

QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

S.No	Name of the Faculty	Designation	Department	Mail ID	
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in	
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in	

17MBHS01		E	GIN	EERI	NG ST	TART	UPS A	ND		Categor	y I	_ T	Р	Crec	lit
]	ENTI	REPR	ENEU	JRIAI	L MAI	NAGE	MEN	Г	HSS	2	3 0	0	3	
PREAMBLE:													-		
A startup mean	s con	npany	y initi	ated b	y indi	vidual	innov	vator o	r entre	preneur	rs to se	arch fo	or a rep	beatable	and
scalable busines	ss moo	del. M	lore sp	pecific	ally, a	startu	p is a 1	newly e	emerge	d busin	ess ven	ture that	at aims	to devel	op a
viable business	model	l to m	eet a 1	narket	place	needs	or war	nts in a	n optin	num ma	nner.				
PREREQUISIT	E: Not	t Requ	uired												
COURSE OBJE	CTIV	ES:													
1. To u	nderst	tand t	he bas	sics of	Startu	ps Ma	nagem	ent and	d comp	onents.					
2. To a	nalyze	e the	startup	os fund	l mana	gemer	nt prac	tices							
3. To p	ractic	e the	variou	ıs kind	s of st	ocks a	nd em	ployme	ent con	siderati	ons in s	tartups	•		
4. To a	pply t	he im	portar	nce of	intelle	ctual p	propert	y right	s and i	ts proce	dures.				
5. To e	xplore	e the o	entrep	reneur	ial mir	ndset a	nd cul	ture.							
COURSE OUT	COME	ES:													
After successful	comp	letion	of the	cours	e, stud	ents w	ill be a	ble to							
CO1: Explain t	he cor	ncept	ofeng	gineeri	ng stai	rtups, o	objecti	ves an	d funct	ions an	d its			Unders	tanc
compone	ents.														
CO2: Analyze	the sta	artups	fundi	ng issu	ues and	d remu	inerati	on prac	ctices in	n startuj	ps busir	ness.		Analyse	e
CO3: Analyze	the va	rious	kinds	of sto	cks and	d emp	loyme	nt oppo	ortuniti	es and o	conside	ration i	n	Analyse	e
startups b	usines	ss.													
CO4: Compare	and c	ontra	st the	variou	s form	s of ir	tellect	ual pro	perty p	protecti	on and	practice	2.	Analyse	e
CO5: Explore	the ent	trepre	neuria	l minc	lset an	d cult	ure tha	t has b	een de	velopin	g in			Evaluat	te
companie	s of al	ll size	es and	indust	ries.										
MAPPINO	- WIT	'H PI	ROGE	RAMN	/E OI	ITCO	MES	AND F	PROG	RAMM	IE SPE	CIFIC	OUTC	COMES	
		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	1
COS POI I	-	-	-	-	M N	M	S S	-	M	-	M	-	M	L	
CO1 M CO2 S	S	- M	- M	M	L	141	3	_	141		M	L	141	L	
CO2 S CO3 S	S S	S	M	M	L M	-	-	-	-	-	M	L	M	M	
CO3 S CO4 S	S S	s S	M	M	M	-	-	-	-	-	M		-	L	-
CO4 S CO5 S	S S	-	M	M	M	-	-	-	-	-	M	M	-	M	-
	5	-	141	141	141	-	1 -	-	-	⁻	1/1	111	1 -	141	1

SYLLABUS:

Elements of a successful Start up: Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service –Write your Business Plan

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start – up : Salaries – Headhunters – Equity Ownership – Form of Equity incentive vehicles – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk-Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares – Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Entrepreneurship: Entrepreneurship - Introduction to Technology Entrepreneurship and Technology Ventures – Engineers as Entrepreneurs, The Mindset of the Entrepreneurial Leader, Creating and Selling the Entrepreneurial Value Proposition - Essentials of Successful Entrepreneurs – Social environment in entrepreneurial development – Economic environment in entrepreneurial development.

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guie for theHigh-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entreprenuership Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

COURSE DESIGNERS:

Subjec	ENGINEERING MATHEMATIC	ENGINEERING MATHEMATICS	Category	L	Т	Р	Credit
17MA	ABS01		BS	2	2	0	3
PREA	MBLE				1		
The dri	iving forc	e in Engineering Mathematics is the rapid growth of tech	hnology and	is design	ed to pro	ovide	the basic
tools of	f calculus	mainly for the purpose of modelling the engineering prob	lems mathem	natically	and obtai	ning s	olutions.
This is	a foundat	tion course which mainly deals with topics such as single	variable and	multivar	iable calc	ulus a	and plays
an imp	ortant ro	le in the understanding of science, engineering, econo	omics and c	omputer	science,	amo	ng other
discipli	nes.						
PRERI	EQUISIT	TE - NIL					
COUR	SE OBJI	ECTIVES					
1	To iden	tify the characteristics of a linear system with Eigen values	s and Eigen v	vectors.			
2	To impr	rove their ability in solving geometrical applications of dif	ferential calc	ulus			
3	To find	a maximum or minimum value for a function of several va	ariables subje	ect to a gi	iven cons	traint.	
4	To unde	erstand the integration techniques for evaluating surface an	nd volume int	egrals.			
5	Incorpo	rate the knowledge of vector calculus to support their cond	current and su	ubsequen	t enginee	ring s	tudies
COUR	SE OUT	COMES					
On the	successfu	l completion of the course, students will be able to					
CO1. <i>A</i> method		nderstand the system of linear equations arising in all en	ngineering fie	elds using	g matrix	Und	lerstand
CO2. I	Determine	e the evolute and envelope for a given family of curves				App	oly

CO2. Determine the evolute and envelope for a given family of curvesCO3. Apply differentiation to solve maxima and minima problems.

CO4. Compute the area and volume of plane using integration

CO5. Evaluate the surface and volume integral using Green's, Stokes and Gauss Divergence theorems Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO12	PSO1	PSO2	PS
											11				03
CO1	S	М	М	М	М	-	-	-	-	-	-	М	S	М	Μ
CO2	S	М	М	М	М	-	-	-	-	-	-	М	S	М	Μ
CO3	S	М	М	М	М	-	-	-	-	-	-	М	S	М	М
CO4	S	М	М	М	М	-	-	-	-	-	-	М	S	М	Μ
CO5	S	М	М	М	М	-	-	-	-	-	-	М	S	М	M
C Stro	na M	Madium	. I I o									•			

Apply

Apply

S- Strong; M-Medium; L-Low

SYLLABUS

MATRICES: Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

DIFFERENTIAL CALCULUS: Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

FUNCTIONS OF SEVERAL VARIABLES: Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

MULTIPLE INTEGRALS: Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Triple integration.

VECTOR CALCULUS: Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green's theorem, Gauss divergence theorem and Stoke's theorem (excluding proof).

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

REFERENCES:

COUDSE DESIGNEDS

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

4. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10th Edition).

COURSE	DESIGNERS		OURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Name of the College	Mail ID											
1	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in											
2	Ms.S.Gayathri	Asst.Prof.Grade I	AVIT	gayathri@avit.ac.in											

17PCBS02	PHYSICAL SCIENCES	Category	L	Т	Р	Credit
	PART A - ENGINEERING PHYSICS	BS	2	0	0	2

PREAMBLE

Engineering Physics is the study of advanced physics concepts and their applications in various technological and engineering domains. Understanding the concepts of laser, types of lasers, thepropagation of light through fibers, applications of optical fibers in communication and different types of non-destructive techniques will help an engineer to analyze, design and to fabricate various conceptual based devices.

PREREQUISITE : NIL

COURSE OBJECTIVES To recall the properties of laser and to explain principles of laser 1 2 To assess the applications of laser 3 To detail the principles of fiber optics 4 To study the applications of fiber optics 5 To explain various techniques used in Non-destructive testing **COURSE OUTCOMES** On the successful completion of the course, students will be able to Understand CO1. Understand the principles laser, fiber optics and non-destructive testing Understand CO2. Understand the construction of laser, fiber optic and Non-Destructive testing equipments Apply CO3. Demonstrate the working of laser, fiber optic and Non-Destructive testing based components and devices Apply CO4. Interpret the potential applications of laser, fiber optics and Non-Destructive testing in various fields. Analyze CO5. Differentiate the working modes of various types of laser, fiber optic and Non-Destructive testing based devices. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 **PO8** PO9 PO10 PO11 PO12 PS PSO2 01 CO1 S Μ Μ Μ _ _ _ _ _ _ _ _ _ CO2 S L _ _ _ _ _ Μ Μ _ _ _ _ -CO3 S _ _ Μ _ _ М М Μ _ _ _ _ CO4 S S S Μ _ Μ Μ Μ ---Μ _ -CO5 S Μ Μ Μ Μ _ _ _

PSO3

_

-

_

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT-I

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram

UNIT-II

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

UNIT-III

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be

University), Salem.

2. P.K. Palanisamy, Engineering Physics, Scientific Publishers, 2011.

3. Dr.M. N. Avadhanulu, Engineering Physics, S.Chand & Co, 2010.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2001.

4. Avadhanulu.M.N., Arun Murthy.T.V.S, Engineering Physics Vol. I, S.Chand, 2014.

5. Rajendran. V, Engineering Physics, Tata McGraw Hill Publication and Co., New Delhi, 2009.

6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu. in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in

	2 PHYSICAL SCIENCES 2 PART B -ENGINEERING CHEMISTRY Semester I (Common to All Branches)							Categor	y L	-	Т	Р	C
	Sem	ester I	(Com	non to	All Bra	anches)		BS	2	2	0	0	2
Preamble													
	of this cou												
	s on diffe												
	nistry, Ener											s, classific	cation
	on conventio	onal sou	rces of	Energy	y and v	arious ac	Ivance	d Engine	eering	materia	als.		
Prerequisi	te												
					No	t require	d						
Course Ob	v												
	o impart b	asic kn	owledg	ge in C	Chemist	ry so tł	nat the	student	i will	unders	tand th	he engine	ering
C	oncept												
	o familiar v								.1		•		.1 1
<	o lay found		-	tical app	plicatio	ns of wa	ater so	ftening r	nethoo	is and	its trea	tment me	thods
	engineerin			- C C - 1	1 .	1 1		. 1					
4 T	o inculcate	the kno	wiedge	or fuel	is and a	uvanced	mater	1a1.					
Course Ou	tcomes												
After the su	ccessful co	mpletio	n of th	e course	e, learn	er will b	e able	to					
CO1. D	escribe the	alactro	hemia	try bott	arian a	nd work	ing pri	nciple of	fonor	w atom		nderstand	1
	escribe ule	electro	lienns	iry, Dati	leffes a	lu work	ing pri	neipie of	lenerg	gy store	ige U	nuerstand	1
	stimate the	hardnes	sofw	nter							Δ	pply	
	lentify suita											nalyze	
	utline the in										A	nalyze	
	vith Progra									DCO1	DECO	DCOC	
COs PO1 CO6. S	PO2 PO3 M -	PO4 M	PO5		07 PC S S		PO10	PO11 L	PO12 M	PSO1 S	PSO2	PSO3 M	
CO7. S	S M	-	-		M M		-	-	M	-	-	-	
CO8. S	S M	-	-		S M		-	-	М	-		-	
CO9. S		-	L	LI	M L	-	-	-	S	М	М	М	
0	M-Medium;	L-Low											
SYLLABU			- 11		11								
	hemistry, E						Calara	al and C	1)	a a 11 a			
Electrode	e potential -	mernst	equalic	n - Ele	ctrodes	S (SПЕ, ч	Caloin	er and G	1ass) -	cens -	ENIT I	neasurem	lent.
Primary 1	oattery (Da	niel and	l dry c	ell) – se	econda	ry batter	y (lea	d Acid s	torage	batter	y and I	Nickel-Ca	ıdmiu
battery) -	- Fuel cell (H2-O2 fi	uel cell)									
	(2 -2 -		/									
WatanT	ahnalagy	and Co	nnocio										
	echnology of water – i				and its	datarmi	nation	(probler	ns to k		ded)	hoiler tro	ublas
		-						-					
water sof	tening (Zeo	olite & l	Demine	eralisati	on) – I	Domestic	e water	r treatme	ent – D	Desalina	ation (E	Electrodia	lysis
Reverse (Osmosis).												
Reverse	051110515).												
Fuels Ar	d Chemist	rv of A	dvance	ed Mate	erials								
	ation of Fue	U C				luclear a	nd Bio	fuels) –	Calor	ific Va	lue of a	a fuel –N	on
	n Fuels –No								Curor				
	d Applicati								oys, po	olymers	s (PVC	, Teflon,	

TEXT BOOKS

1. Engineering Chemistry by prepared by Vinayaka Mission's Research Foundation, Salem.

REFERENCE BOOKS

- A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
 Engineering Chemistry by Jain & Jain, 15th edition Dhanpatrai Publishing Company (P) Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

Cour	se Designers:			
S.	Name of the Faculty	Designation	Department	Mail ID
No				
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant	Chemistry	asmgill80@gmail.com
		Professor		
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in
		Professor		

Subje	ct Code				Subje	ect Titl	e			Categ	orv	L	Т	Р	Credit
	ABS 06		DIFF		ITIAL ΓRAN			NS AN	D	BS	-	2	2	0	3
Ord with re time d	espect to omain.)ifferen to mor Howe	e than ver, the	one in e analy	depend sis of a	lent va 1 signa	riable. l is far	A real more o	time r	partial of the partial of the partial of the partial of the particular partic	v availał he frequ	ole signation	al is i omain	n the fo	orm of
	EQUI eering N		natics	(17MA	BS01)										
COUI	RSE OI	BJEC	rives	}											
1	To lea	arn ord	inary c	lifferer	tial eq	uations	s with o	constan	t and v	variable	coeffici	ents			
2	To le transf		aplace	transfo	orm an	d its	Inverse	e meth	od to	solve d	ifferenti	ial Equa	ations	and ir	ntegral
3	To de	rive a	Fourie	r series	of a gi	ven pe	riodic	functio	on by e	valuatin	g Fourie	er coeffi	cients	5	
4	To calculate the Fourier transform of periodic functions														
5	5 To learn about Z- transforms and its applications														
COUI	RSE OI	UTCO	MES												
	On the			ompleti	on of t	he cou	rse, stu	dents v	will be	able to					
	Solve order l								able co	oefficien	ts and	Simulta	neous	first	Appl y
CO2.	Use the	Lapla	ce Tra	nsform	techni	que to	solve o	ordinar	y diffeı	rential e	quations	5.			Appl y
CO3.7	To appl	y Four	rier ser	ies met	hods to	o solve	bound	ary val	ue prol	blems fo	or linear	ODEs.			Appl y
	To use process		ourier t	ransfor	m as th	ne tool	to con	nect th	e time	domain	and fre	equency	dom	ain in	Appl y
CO5.	To gain	the ki	nowled	ge in Z	Z Trans	form to	o the A	nalysis	of Dig	gital Filt	ers and	Discrete	e Sign	al.	Appl y
MAP	PING V	VITH	PROC	GRAM	ME O	UTCO	MES .	AND F	ROG	RAMM	E SPE(CIFIC C	OUTC	COMES	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PSO2	PS O3
CO1	S	S	М	М	М							М	S	М	М
CO2	S	S	М	М	М							М	S	М	Μ
CO3	S	S	Μ	М	М							М	S	Μ	М
CO4	S	S	M	M	M							M	S	M	M
CO5	S	S	M	M	Μ							Μ	S	Μ	М
	ong; M	-Medi	um; L	-Low											
SYLL	ABUS														

ORDINARY DIFFERENTIAL EQUATIONS: Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

LAPLACE TRANSFORMS: Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems – Transform of periodic functions-Inverse Laplace transform – Convolution theorem – -Solution of linear ODE of second order with constant coefficients.

FOURIER SERIES: Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

FOURIER TRANSFORMS: Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS: Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

TEXT BOOKS:

- 1. Engineering mathematics I & II ", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- 3. Dr.A.Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).

REFERENCES:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 2. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 3. Veerarajan, T., "Engineering Mathematics I,II and III", Tata McGraw Hill Publishing Co., New Delhi (2011).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr. M.Vijayarakavan	Asso.Prof	VMKVEC	vijayarakavan@vmkvec.edu.in
2	Dr.A.K.Thamizhsudar	Asso.Prof. grade II	AVIT	thamizhsudar@avit.ac.in

17PHBS05	SMART MATERIALS	Category	L	Т	Р	Credit
1/1111505		Basic Sciences	3	0	0	3

PREAMBLE

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials & Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconducting materials.

PREREQUISITE

NIL

1	To explain the fundamental properties and classification of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.														
2	To paraphrase the basic crystalline structure and its properties.														
3	To illustrate the synthesis and fabrication of Nano materials.														
4	To predict the application of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.														
5	To analyze the various parameters of crystalline materials.														
COU	RSE OU	JTCON	MES												
On the	e succes	sful con	mpletio	n of th	e course	e, stude	ents wil	l be abl	le to						
CO1.	01. Restate the properties of various materials. Understand														
CO2.	Summa	rize the	variou	s struct	ures of	materi	als.					Understa	and		
CO3.	Predict	the app	licatior	s of va	rious m	naterials	s to des	igning	equipn	nents.		Apply			
CO4.	Illustrat	e the pr	opertie	s of ma	terials	to desig	gning e	quipme	ents.			Apply			
CO5.	Calculat	te the c	rystalli	ne para	meters	of the 1	nateria	ls.				Analyze			
MAP	PING V	VITH I	PROG	RAMN	IE OU'	тсом	IES AN	D PRO	OGRA	MME S	PECIF	IC OUT	COMES	•	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	М	S				М			S	S		
CO2	S	М	S	М	S				М			М	S	М	М
CO3	S	S	S	S	S				S			М	S		М
CO4	S	М	S	М	S				М			М	S		М
CO5	М	S	S	М	М				S			М	М		М

YLLABUS

SMART MATERIALS: Shape Memory Alloys (SMA) - Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell - atomic radius - coordination number - packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS: Nanophase materials - Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach - Sol-gel method - Carbon nanotubes - Fabrication - applications.

MAGNETIC MATERIALS: Basic concepts - Classification of magnetic materials - Domain theory - Hysteresis -Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner

effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

TEXT BOOK:

Mani P, Engineering Physics II, Dhanam Publications, 2018.

REFERENCES:

- 1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2018.
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2018.

COURSE DESIGNERS

COUN	COURSE DESIGNERS										
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. S. MOHAMMED HARSHULKHAN	Asst.Prof	Physics	harshulkhan@vmkvec.edu.in							
2	Mr. R. SAKTHI GANAPATHY	Asst.Prof	Physics	sakthiganapthy@vmkvec.edu.in							
3	Dr .G. LATHA	Professor	Physics	latha.physics@avit.ac.in							
4	Dr. R. N. VISWANATH	Professor	Physics	viswanath.physics@avit.ac.in							

17MABS10		0	PARTIAL DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA						Categ	ory	L	Т	Р	Cre dit	
				ANL			LGLD	MA		BS	5	2	2	0	3
PREA															
														, Electro al theory	
mather	matical	system	ms inv	olving	additi	on and	scala	r multi	plication	on has t	he app	lications	to ma	any area	
			ems. L	inear A	Algebra	is use	d in an	alog ar	d digi	tal comn	nunicati	on syste	m.		
	EQUI		1	T		177 4 4									
		-	ns and		orms (I/MA	B200)								
						6	. 1 1.0	<u> </u>	1	.•					
1								ferentia		tions					
2				-			-	ations							
3				-		-	-			nations	and dia	gonaliza	tion		
4	-			-	-		-		-	ization.					
5	To co	mpute	the lin	ear tra	nsform	ations	and fin	ıd matr	ices of	general	linear t	ransforn	nations	•	
COUF	SE O	UTCO	MES												
On the	succes	ssful co	ompleti	ion of t	he cou	rse, stu	dents	will be	able to)					
										fferentia	l equati	ons rela	ted	TT 1 .	1
	ineerin				1			Ĩ			1			Understa	and
	-			-			g in en	igineer	ing pro	blems li	ke wav	e equation	ons	Apply	
		-	ion by											n pp iy	
		-		-		-		ills to c	omput	e the dir	nension	of row		Apply	
space a	and col	umn sj	pace lo	r the g	lven ve	ctor sp	ace.							r ppry	
CO4.	Apply	the co	ncept o	of inner	r produ	ct spac	e in va	rious l	inear s	ystem re	lated pi	oblems.		Apply	
<u>CO5.</u>]	Form o	rthogo	nal has	sis and	use the	em to s	olve er	ngineer	ing nro	blems.				Apply	
		-						-		RAMM	F SPF(TIFIC (
COS	PO1	PO2	PO3	PO4	PO5		PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	P
CUS	FUI	FU2	103	FU4	103	FUU	10/	100	F U9	F010	FUII	FU12	1	F302	P S
															C
	0	16											0		3
CO1	S	M		M	M							M	S	M	N
CO2	S	S		M	M							M	S	M	N
CO3	S	S		M	M							M	S	M	N
CO4	S	S		M	M							M	S	M	N
CO5	S	S		M	Μ							М	S	М	N
<u>S- Stro</u>	ong; M	I-Medi	ium; L	-Low											
SVLI	ABUS														

PARTIAL DIFFERENTIAL EQUATIONS: Formation - Solutions of standard types f(p,q) = 0, Clairaut's form, f(z,p,q) = 0, f(p,x) = g(q,y) of first order equations - Lagrange's Linear equation - Linear

partial differential equations of second and higher order with constant coefficients.

BOUNDARY VALUE PROBLEMS: Classification of second order linear partial differential equations -Solutions of one - dimensional wave equation, one-dimensional heat equation - Steady state solution of twodimensional heat equation - Fourier series solutions in Cartesian coordinates.

VECTOR SPACE AND SUBSPACE: Introduction to vector space and subspace, Linear independent and dependent, spanning set, Basis and dimension, Row space and column space.

INNER PRODUCT SPACES: Inner products, inner product spaces- Cauchy-Schwarz inequality, Linear functional and adjoints, unitary operations and normal operators- spectral theorem.

ORTHOGONALITY AND LINEAR TRANSFORMATION: Introduction to orthogonality, Least square approximation, Orthogonal basis and Gram Schmidt orthogonalisation, Linear transformation and its matrix representation.

TEXT BOOKS:

- 3. Grewal, B.S., "Higher Engineering Mathematics", 35th Edition, Khanna Publishers, Delhi, 2012.
- 4. Kennath M. Hoffman and Ray Kunze, "Linear Algebra", 2nd Edition, Pearson India Publishing, New Delhi, 2015.
- 5. M.Artin, "Algebra", Prentice Hall of India Pvt. Ltd., New Delhi, 2005.

REFERENCES:

- 5. A.Singaravelu, "Transforms and Partial Differential Equations", Meenakshi Agencies, Chennai, 2015.
- 6. Kreyszig, E., "Advanced Engineering Mathematics" (8th Edition), John Wiley and Sons, (Asia) Pvt. Ltd., Singapore, 2000.
- 7. Dr.Gunadhar Paria, "Linear Algebra", New Central Book Agency (P) Ltd, 2009.

COURSE DESIGNERS									
S.No	Name of the Faculty	Designation	Name of the College	Mail ID					
1	Mrs.V.T.Lakshmi	Asso.Prof	VMKVEC	lakshmi@vmkvec.edu.in					
2	Ms.S.Sarala	Asst.Prof. grade II	AVIT	sarala@avit.ac.in					

17MABS16	NUMERICAL METHODS	Category	L	Т	Р	Credit
		BS	2	2	0	3
			·			

PREAMBLE

This course aims at developing the ability to formulate an engineering problem in a mathematical form appropriate for subsequent computational treatment and to choose an appropriate numerical approach. An under graduate of Engineering student needs to know sufficient numerical methods and techniques for solving engineering problems such as static or steady state problems, vibration or stability problems and initial value or transient problems etc.

PREREQUISITE

1.Engineering Mathematics (17MABS01)

2.Differential Equations and Transforms (17MABS06)

2.Diffe	Differential Equations and Transforms (1/MABS06)															
COUR	COURSE OBJECTIVES															
1	To fai	niliar w	ith nun	nerical	solution	n of equ	ations									
2	To be	get exp	osed to	finite o	lifferen	ces and	l interp	olation								
3	To be	thoroug	gh with	the nur	nerical	Differe	ntiatio	n and ii	ntegrati	on						
4	To fin	d nume	erical so	lutions	of ordi	nary dif	fferenti	al equa	tions							
5	To find numerical solutions of partial differential equations															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
	CO1. Solve the system of linear algebraic equations and single non linear equations arising in the field Apply of Engineering.										Į					
CO2. <i>A</i>	CO2. Apply methods to find intermediate numerical value & polynomial of numerical data. Apply										/					
CO3. A	O3 . Apply methods to find integration, derivatives of one and two variable functions.											Appl	Apply			
CO4. S	Solve th	e initial	value p	problem	ns using	single	step ar	d mult	istep m	ethods.				Appl	/	
CO5. S	Solve th	e bound	lary val	ue prot	olems us	sing fin	ite diff	erence	method	s.				Analy	Analyze	
MAPP	'ING W	ITH P	ROGR	AMMI	EOUT	COME	S ANI) PRO	GRAM	IME SI	PECIF		ГСОМЕЯ	5		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3	
CO1	S	S	М	М	М							М	S	М	М	
CO2	S	S	М	М	М							М	S	М	М	
CO3	S	S	М	М	М							М	S	М	М	
CO4	S	S	S	S	М							М	S	М	М	
CO5	S	S	S	S	М							М	S	М	М	
~ ~																

SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS: Method of false position, Newton-Raphson method for single variable, Solutions of a linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss- Seidel methods. Inverse of a matrix by Gauss-Jordan method. Eigen value of a matrix by Power Method.

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both 1/3rd and 3/8th) rules. Romberg's rule, Two and Three point Gaussian quadrature formula. Double integrals using Trapezoidal and Simpson's rule.

INITIAL VALUE PROBLEMS OF ODE: Single Step Methods - Taylor Series, Euler and Modified Euler, Runge-Kutta method of fourth order -first and second order differential equations. Multistep Methods - Milne and Adam's-Bash forth predictor and corrector methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS: Finite difference solution for the second order ordinary differential equations, Finite difference solution for one dimensional heat equation (both implicit and explicit). One dimensional wave equation and two dimensional Laplace and Poisson equations.

TEXT BOOKS:

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers, 2015.
- 2. S. R. K. Iyengar, R. K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition, 2012.
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2004).

REFERENCES:

- 1. Joe D. Hoffman , Steven Frankel, "Numerical Methods for Engineers and Scientists", 3 rd Edition, 2015, Tata Mc-Graw Hill. (New York).
- 2. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education, 2010.

S.No	Name of the Faculty	Designation	Name of the college	Mail ID
1	Dr. S.Punitha	Associate Professor	VMKVEC	punitha@vmkvec.edu.in
2	Dr.A.K.Bhuvaneswari	Asst.Prof. grade II	AVIT	bhuvaneswari@avit.ac.in

I II I SICAL SCIENCES LAD. I ANI A – KEAL	Cate
AND VIRTUAL LAB IN PHYSICS	τ

PREAMBLE

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE

NIL

COURSE OBJECTIVES

COUN	COURSE OBJECTIVES														
1	To im	part bas	sic skill	s in tak	ing read	ding wi	th preci	sion of	physics	s experin	nents				
2	To inc	culcate (the hab	it of haı	ndling e	equipme	ents app	propriat	ely						
3	To ga	in the k	nowled	ge of pi	acticin	g exper	iments	through	n virtual	l laborato	ory.				
4	To know the importance of units														
5															
COUR	SE OU	TCOM	IES												
On the successful completion of the course, students will be able to															
CO10. Recognize the importance of units while performing the experiments calculating the physical parameters and obtaining results										nents,	Understand				
COl	O11. Operate the equipments with precision										Apply				
CO12	CO12. Practice to handle the equipments in a systematic manner											Apply			
C013	3.	Demo	onstrate	the exp	erimen	ts throu	ıgh virtı	ual labo	oratory				Apply		
COl	4.	Calcu	late the	result	with ac	curacy							Analyze		
MAPP	'ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (OUTC	OMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PS O1	PSO2	PSO3
CO1	S	S													
CO2	S	S	М	М	S				М			М	Μ		
CO3	S														
CO4	S	S	Μ	М	S							S	Μ		
CO5	S	S													

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Young's modulus of a bar Non-uniform bending
- 2. Rigidity modulus of a wire Torsional Pendulum
- 3. Viscosity of a liquid Poiseuille's method
- 4. Velocity of ultrasonic waves in liquids Ultrasonic Interferometer
- 5. Particle size determination using Laser
- 6. Wavelength of spectral lines grating Spectrometer
- 7. Thickness of a wire Air wedge Method
- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka Missions Research Foundation (Deemed to be University), Salem.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in							
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in							
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in							
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	<u>dhanalakshmi.phy@avit.ac.in</u>							

	PHYSICAL SCIENCES	Category	L	Т	Р	С
	PART B - ENGINEERING CHEMISTRY LAB					
17PCBS81	Semester I (Common to All Branches)	BS	0	0	2	1

Preamble

The main objective of this course is to develop the intellectual and psychomotor skills of the students by imparting knowledge in water technology and quantitative analysis.

Prerequisite

Not required

Course Objectives

\sim	ourse	Objectives
	1	Fo impart basic skills in Chemistry so that the student will understand the engineering concept.
	2	Fo inculcate the knowledge of water and electrochemistry.
-	3	Fo lay foundation for practical applications of chemistry in engineering aspects.
C		Outcomes

Course Outcomes

After the successful completion of the course, learner will be able to

CO1.	Estimate the chemical properties of water	Apply
CO2.	Determine the presence of various elements in the water	Analyze
CO3.	Calculate the strength of acids, oxidizing and reducing agents	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
5.	S	М	М	-	L	М	М	S	-	-	-	М	S	-	М
6.	S	М	М	-	L	М	М	L	-	-	-	М	-	М	-
7.	S	S	М	-	L	М	М	М	-	-	-	М	М	-	М

S-Strong; M-Medium; L-Low

SYLLABUS

- . Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometric method
- 8. Acid Base titration by pH method
- 1. Estimation of Ferrous ion by Potentiometric method

- 5. Determination of Dissolved oxygen by Winkler's method
- 5. Estimation of Sodium by Flame photometer
- 7. Estimation of Copper from Copper Ore Solution

Estimation of Iron by Spectrophotometer

TEXT BOOKS

2. Laboratory Manual on Engineering Chemistry prepared by Vinayaka Mission's Research Foundation, Salem.

8.

REFERENCE BOOKS

1. Laboratory Manual on Engineering Chemistry, K. Bhasin S, Dhanpat Rai Publishing Co Pvt Ltd

Course Designers:

S. No	Name of the Faculty	Designation	Department	Mail ID				
l.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com				
2.	Mr. A. Gilbert Sunderraj	Assistant Professor	Chemistry	asmgill80@gmail.com				
3.	Dr. R. Nagalakshmi	Professor	Chemistry	hagalakshmi.chemistry@avit.ac.in				
1.	Dr.K.Sanghamitra	Associate Professor	Chemistry	sanghamitra.chemistry@avit.ac.in				

17CHBS01	Environmental Science & Engineering (Common to All Branches)	Category	L	Т	Р	С
		BS	3	0	0	3

Preamble

Environmental science and Engineering is an <u>interdisciplinary field</u> that integrates physical, chemical, biological, <u>information sciences</u> and provides the basic knowledge of structure and function of ecosystem and better understanding of natural resources, biodiversity and their conservation practices. The course helps to create a concern for our environment that will generate pro-environmental action, including activities we can do in our daily life to protect it. Furthermore, it deals the social issues and ethics to develop quality engineer in our country.

Prerequisite

Not required

Course Objectives

Cou	Course Outcomes:							
5	To impart fundamental knowledge on human welfare measures							
4	To educate the ways and means to manage natural calamities							
3	To create awareness on the various pollutions and their impact.							
2	To provide comprehensive insight in natural resources and protect natural resources							
1	Applying Science and Engineering knowledge to protect environment							

After Successful completion of this course, the students will be able to:

CO1.	Comprehend the impact of engineering solutions in a global and societal	Understand
	context	
CO2.	Illustrate the contemporary issues that results in environmental degradation	Understand
	and would attempt to provide solutions to overcome those problems	
CO3.	Illustrate the importance of ecosystem and biodiversity	Apply
CO4.	Practice to improve the environment and sustainablity	Apply
CO5.	Conclude the importance of conservation of resources.	Analyze
CO6.	Estimate the important role of IT in healthy environment for future	Analyze
	generations	

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3
										0	1	2			
CO18.	S	Μ	-	-	-	M	S	S	M	M	-	S	М	-	S
CO19.	S	-	-	-	-	S	S	S	-	-	-	S	М	-	S
CO20.	S	-	-	-	-	M	S	M	L	-	-	S	М	-	S
CO21.	S	-	-	-	-	М	S	S	M	M	-	S	Μ	М	S
CO22.	S	-	-	-	-	М	S	S	M	M	-	S	М	Μ	S
CO23.	S	-	-	-	-	M	S	S	M	M	-	S	М	М	S

ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development.

ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

ENVIRONMENTAL POLLUTION

Pollution - Definition, man made impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation -Nuclear hazards – Hazardous waste management : Solid waste, waste water and biomedical waste - Prevention of pollution and role of individual – Disasters management : Floods, earthquake, cyclone and land slides - Clean technology options.

SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people -Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board.

HUMAN POPULATION AND ENVIRONMENT

Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights - Value education - Women and child welfare, Role of information technology in environment and human health.

TEXTBOOK

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

REFERENCES

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and tandards Vol I & II, Enviro media.
- 4. Dr. J. Meenambal, Environmental Science and Engineering, MJP Publication, Chennai
- 5. Gilbert M. Masters : Introduction to Environmental Engineering and Science, Pearson Education Pvt Ltd., II Edition, ISBN 81-297-0277-0, 2004

Course Designers:

S.	Name of the	Designation	Department	Mail ID
No	Faculty			
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert	Assistant	Chemistry	asmgill80@gmail.com
	Sunderraj	Professor		
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in
		Professor		

17CSES01	ESSENTIALS OF COMPUTING	Category	L	Т	Р	Credit		
		ES	3	0	0	3		

PREAMBLE

This course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and emphasizing principles application packages. Studying the fundamentals concepts of Algorithms, to resolve the real world application.

PRERQUISITE – Nil

COUF	RSE OI	BJEC	FIVES												
1	To pro	ovide ba	asic kno	owledge	of har	dware a	ind soft	ware co	ompone	nts of co	mputers.				
2	To int	roduce	and der	nonstra	te vario	ous soft	ware ap	plicatio	on pack	ages.					
3	To stu	dy Pro	blem so	lving T	echniqu	ues and	progra	m deve	lopmen	t cycle.					
4	To lea	rn abou	ut vario	us algoi	rithm ar	nd ident	tifying	the algo	orithm e	fficiency	•				
5	To learn different algorithm for various application.														
COUF	COURSE OUTCOMES														
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents	will be	able to)					
CO1.7	O1. To understand the Basic knowledge on hardware and software terminologies. Understand														
CO2. 7	CO2. To Demonstrate the various Application Packages like MS-word, MS- Excel etc. Apply														
CO3.T	O3.To Understand Program Devolvement Cycle and apply various Problem Solving Techniques. Apply														
CO4.T	'o analy	ze the e	efficien	cy of A	lgorithi	ms.								Analyze	
CO5.T	'o Imple	ement o	of Algor	ithms f	or vario	ous con	cepts.							Apply	
MAP	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPE(CIFIC (OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	S	-
CO2	2 S M M - M M												-	М	-
CO3	S	S	S	-	М	-	-	-	-	-	-	-	-	-	-
CO4	S	S	S	-	S	-	-	-	-	-	-	-	-	-	-
CO5	S	М	М	-	М	-	-	-	-	-	-	S	-	-	-
0 0		N / 1'			•	•	•	•	•	•	•	•			•

BASICS OF COMPUTER AND INFORMATION TECHNOLOGY: Computer – Generations, Types of Computers, Block diagram of a computer – Components of a computer system –Hardware and software definitions – Categories of software – Booting – Installing and Uninstalling a Software –Software piracy – Software terminologies – Applications of Computer – Role of Information Technology – History of Internet – Internet Services.

SOFTWARE APPLICATIONS: Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

PROBLEM SOLVING METHODOLOGIES: Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation – Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

INTRODUCTION TO ALGORITHMS: Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

IMPLEMENTATION OF ALGORITHMS: Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India, 1996.

REFERENCES:

1. Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

17EE	ES03	F				GINEE	RING				Catego	ory L	Т	Р	C	redit
			А.	BASI	C ELE	CTRI	CAL E	NGINE	ERIN	G	FC(ES	S) 2	0	0		2
It is a	sed her	inary c			00			-		outline o al engin				0		
PRER	EQUIS	SITE –	Nil													
COURSE OBJECTIVES																
1 To understand the electrical inventions, basic concepts of AC and DC circuits and basic laws of electrical engineering.																
2	2 To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments.															
3	3 To understand the fundamentals of safety procedures, Earthing and Power system.															
COUR	COURSE OUTCOMES															
On the successful completion of the course, students will be able to																
CO1: Explain the evolution of electricity, name of the inventors, electrical quantities and basic laws of electrical engineering.										er						
CO2: Demonstrate Ohm's and Faraday's Law. Apply																
CO3: applica		tand tl	he basi	c conc	epts of	f meas	uring i	nstrum	ents, el	lectrical	machin	eries a	nd its	Und	ersta	nd
	Analyze nt equip		rious ty	pes of	electric	al loads	s, powe	r rating	of elec	etrical m	achineri	es and	energy	Ana	lyze	
CO5: I	Explain	the ele	ctrical s	safety a	nd prot	ective d	levices.							Und	ersta	nd
	Compar on-convo			• •	lectrical	l power	genera	ation sy	stems b	y applic	ation of	conver	ntional	Ana	lyze	
MAPP	PING V	VITH I	PROG	RAMM	E OUI	COM	ES ANI	D PRO	GRAM	IME SP	ECIFIC	OUT	COME	S		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	SO2	PSO3
CO1	S	М	L		S							L	Μ			
CO2	S	М	S	S					М	-		М	М		L	
CO3	L	S	L		S					L		L	L		L	
CO4	S	М	S	L	L	S	S			S		L	М		L	
CO5	L	М	S	М		S	М	М		S		L		L		L
CO6	S	L	S	L	М	S	S			М		L	L			L
S- Stro	S- Strong; M-Medium; L-Low															

HISTORY OF ELECTRICITY, OUANTITIES AND CIRCUITS

Evolution of Electricity and Electrical inventions, Electrical quantities- Charge, Electric potential, voltage, current- DC & AC, power, energy, time period, frequency, phase, flux, flux density, RMS, Average, Peak, phasor & vector diagram. Electric Circuits - Passive components (RLC), Ohm's law, KCL, KVL, Faraday's law, Lenz's law. Electrical materials - Conducting and insulating materials.

MEASURING INSTRUMENT AND ENERGY CALCULATION

Measuring Instruments – Analog and Digital meters – Types and usage. AC and DC Machines & Equipment- Types, Specifications and applications.

Loads – Types of Loads- Power rating and Energy calculation – for a domestic load. Energy Efficient equipments – star ratings.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Electric Power- Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
 R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.
- 4. P. Selvam, R. Devarajan, A. Nagappan, T. Muthumanickam and T. Sheela" Basic Electrical and Electronics Engineering", First Edition, VMRFDU, Anuradha Agencies, 2017

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second Edition, PHI Learning, 2007.

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in								
2	Mr. R. Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in								
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in								
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in								

17000	17EEES03BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERINGCategoryLB. BASIC ELECTRONICS ENGINEERINGFC(ES)2									S C	ategory	L	Т	P	Cre	edit
	303		B. BA	SIC EI				INEEF	RING	1	FC(ES)	2	0	0	2	2
PREAM The cour engineeri transistor circuits, c	rse ain ing co rs. It	ncepts enables	. The os the s	course l tudent	begins to desi	with cl gn sma	assifica Il digit	tion of tal logi	variou cs like	is active multiple	and pas exer, der	sive con	npone	ents,	diodes	and
PRERQ					0 1					2						
COURS	E OB	JECTI	VES													
1 7	To learn and identify various active and passive components and their working principles.															
2 7	To understand the number conversion systems.															
3 7	Fo lear	m the d	ligital l	ogic pri	nciples	and rea	alize ad	ders, m	ultiplex	ker, etc.,						
4 7	Го unc	lerstand	d the ap	plicatio	on orien	ited con	cepts in	n the co	ommuni	cation sy	stems.					
COURS	COURSE OUTCOMES															
	On the successful completion of the course, students will be able to															
	01. Interpret working principle and application of various active and passive electronic components understand e resistors, capacitors, inductors, diodes and transistors.															
CO2. Co	nstruc	t the re	ctifiers	and reg	gulators	s circuit	s and e	xplore	their op	erations.				Ap	ply	
CO3. Ex	ecute	number	r systen	n conve	rsions a	and con	npute se	everal d	ligital lo	ogic oper	ations.			Ap	ply	
CO4. De	•		-			-								Ap	ply	
CO5. Ap OLED, H		he mo	dern te	chnolog	gies in	develo	ping aj	pplicati	on orie	ented gad	lgets like	e the U	HD,	Ap	ply	
MAPPIN		ITH P	ROGR	AMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPI	ECIFIC	OUTCO	OMES	5		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	D1	PSO2	PSO 3
CO1	М	М							М				-		-	-
CO2	D2 S M M M M M M M M															
CO3	S	М	М						М				S		-	-
CO4	S	М	М	М			М		М			М	N	1	-	-
CO5	S	М			М		М		М	М		М	-		-	М
S- Strong; M-Medium; L-Low																

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers - Voltage Regulation. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Conversion from one to another – Logic Gates – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM – RADAR – Satellite Communication – Mobile Communication, LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela,"Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

1708	SES05	F	PROGE	RAMM	IING I	N PYTI	HON		CATE	GORY	L	Т	Р	CRE	DIT
I/Ct			ROOI						I	ES	3	0	0		3
PREAME	BLE														
for differe	se of this control of this control of the second se	g systei			-		-	-	-	-	-	-			
PRERQU	ISITE														
NIL															
COURSE	OBJECT	IVES													
1	To pr	ovide l	oasic kr	owledg	ge on P	ython p	rogram	ming c	concep	ots.					
2	To in	troduce	e differe	ent met	hods in	list, str	ing, tu	ple, dic	tionar	y and se	ts.				
3	То со	ompute	differe	nt prog	rams us	sing pyt	hon co	ntrol st	tateme	ents.					
4	To le	arn abo	out diffe	erent fu	nctions	in pyth	ion.								
5	То со	To compute the exception handling functions, file concepts and CSV and JSON.													
COURSE	OUTCON	1ES													
On the suc	cessful cor	npletio	n of the	course	e, stude	nts will	be able	e to							
CO1. Lea	n python st	atemer	its, com	ments	and inc	lentatio	n, toke	ns, inpi	ut and	output r	nethods	using		Understa	nd
	ample prog									•		C			
CO2. App	ly the diffe	rent me	thods i	nvolve	d in Lis	st, String	g, Tupl	es and	Dictio	onary.				Apply	
CO3. Desi	gn solution	s for co	omplex	progra	ms usin	ng decis	ion ma	king aı	nd loo	ping stat	tements.			Apply.	
CO4.Appl	y the functi	on pro	grams v	with all	the con	ncepts li	ike lam	bda, de	ecorate	ors and g	generato	ors.		Apply.	
	pute the ex	ception	n handli	ing pro	grams,	file con	cept pi	rogram	s and	understa	nd the c	oncepts	of	Apply	
CSV and J										~~~~~		~~~~~			
	G WITH P														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSC 1	PSO2	PSC 3
CO1	S	М	М	М	М	-	-	-	-	-	-	-	-	М	М
CO2	S	М	М	М	М	-	-	-	-	-	-	-	М	М	М
CO3	М	S	S	S	М	-	-	-	-	-	-	-	М	М	М
CO4	S	S	S	S	М	-	-	-	-	-	-	-	М	М	М
	S	М	М	М	М	-	_	-	-		-	-	М	М	М

UNIT-1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

UNIT-2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

UNIT-3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

UNIT-4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

UNIT-5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files:File input/output operations-Dictionary operations-Reading and writing in structured files:CSV and JSON.

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COURSE DESIGNERS S.No. Name of the Faculty Designation Department Mail ID Mr. K.Karthik CSE 1 Assistant Professor karthik@avit.ac.in 2 Mrs. T. Narmadha Assistant Professor CSE narmadha@vmkvec.edu.in

The aim of the subject is to provide a function PREREQUISITE - NIL COURSE OBJECTIVES 1 To understand the basic concepts of survey 2 To impart basic knowledge about building COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES MA E course, stud COURSE OUTCOMES MA bability to design and conduct experiment MAPPING WITH PROGRAMME OUTCOMING COS POI PO2 PO3 PO4 PO5 PO6 PO COI S M L S M S - COUL S M L S M S - COULABUS SURVEYING AND CIVIL ENGINEERING M SURVEYING: Objects – types – classification – – determination of areas – illustrative examples. CIVIL ENGINEERING MATERIALS: Bricks BUILDING COMPONENTS AND STRUCTULE FOOMONENTS AND STRUCTULE FOOMONENTS AND STRUCTULE FOOMONENTS AND STRUCTULE GUPERSTRUCTURE: Brick masonry	ECHAI G	'a	ategory	L	Т	Р		Credit						
PREAMBLE The aim of the subject is to provide a function PREREQUISITE- NIL COURSE OBJECTIVES 1 To understand the basic concepts of survey 2 To impart basic knowledge about building COURSE OUTCOMES On the successful completion of the course, stud CO1. An ability to apply knowledge of mathemat CO2. An ability to design and conduct experiment MAPPING WITH PROGRAMME OUTCOMI CO3 P01 P02 P03 P04 P05 P06 P0 CO1 S M L S M S - CO2 S M L S M S - CO2 S M L S M S - CO2 S M L S M S - S-Strong; M-Medium; L-Low SYLLABUS SURVEYING AND CIVIL ENGINEERING M SURVEYING: Objects – types – classification – Ottermination of areas – illustrative examples. CIVIL ENGINEERING MATERIALS: Bricks BUILDING COMPONENTS AND STRUCTUU Mecha	ENGIN		EG					•						
PREREQUISITE- NIL COURSE OBJECTIVES 1 To understand the basic concepts of survey 2 To impart basic knowledge about building COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES MAL 0.00000000000000000000000000000000000	nches)		ES	2	0	0		2						
PREREQUISITE- NIL COURSE OBJECTIVES 1 To understand the basic concepts of survey 2 To impart basic knowledge about building COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES MAL 0.00000000000000000000000000000000000														
COURSE OBJECTIVES 1 To understand the basic concepts of survey 2 To impart basic knowledge about building COURSE OUTCOMES On the successful completion of the course, stud CO1. An ability to apply knowledge of mathemat COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud CO2. An ability to design and conduct experiment MAIL - M S - CO2 S M L S M S - CO2 S M L S M S - Systomg; M-Medium; L-Low SURVEYING AND CIVIL ENGINEERING M SURVEYING COMPONENTS AND STRUCTU FOUNDATIONS: Types, Bearing capacity – Rec SUPERSTRUCTURE: Brick masonry – stone m B	amental	ba	oasic Civ	vil Eng	ginee	ring								
1 To understand the basic concepts of survey 2 To impart basic knowledge about building COURSE OUTCOMES On the successful completion of the course, stud CO1. An ability to apply knowledge of mathemat CO2. An ability to design and conduct experiment MAPPING WITH PROGRAMME OUTCOMI COS P01 P02 P03 P04 P05 P06 P0 CO1 S M L S M S - CO2 S M L S M S - CO2 S M L S M S - CO2 S M L S M S - SURVEYING AND CIVIL ENGINEERING M SURVEYING: Objects – types – classification – – determination of areas – illustrative examples. CIVIL ENGINEERING MATERIALS: Bricks BUILDING COMPONENTS AND STRUCTUR FOUNDATIONS: Types, Bearing capacity – Rec SUPERSTRUCTURE: Brick masonry – stone m plastering – Mechanics – Internal and external for Dams – Basics of Interior Design and Landscaping TEXT BOOKS: 1 "Basi														
2 To impart basic knowledge about building COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud COURSE OUTCOMES On the successful completion of the course, stud CO1 An ability to design and conduct experiment MAPPING WITH PROGRAMME OUTCOMI COS PO1 PO2 PO3 PO4 PO5 PO6 PO COUS COU S M L - M S - CO2 S M L S M S - Strong; M-Medium; L-Low SYLLABUS SURVEYING AND CIVIL ENGINEERING M SURVEYING AND CIVIL ENGINEERING M SURVEYING COBjects – types – classification – – determination of areas – illustrative examples. CIVIL ENGINEERING MATERIALS: Bricks BULLDING COMPONENTS AND STRUCTUP FOUNDATIONS: Types, Bearing capacity – Rec SUPERSTRUCTURE: Brick masonry – stone m plastering – Mechanics – Internal and external for Dams – Basics of Interior Design and Landscaping TEXT BOOKS:<														
COURSE OUTCOMES On the successful completion of the course, stud CO1. An ability to apply knowledge of mathemat CO2. An ability to design and conduct experiment MAPPING WITH PROGRAMME OUTCOMI COS PO1 PO2 PO3 PO4 PO5 PO6 PO CO1 S M L - M S - CO2 S M L S M S - CO2 S M L S M S - Soluty Coll S M L S M S - SURVEYING AND CIVIL ENGINEERING M SURVEYING: Objects – types – classification – – determination of areas – illustrative examples. CIVIL ENGINEERING MATERIALS: Bricks BUILDING COMPONENTS AND STRUCTUR FOUNDATIONS: Types, Bearing capacity – Rec SUPERSTRUCTURE: Brick masonry – stone m plastering – Mechanics – Internal and external for Dams – Basics of Interior Design and Landscaping TEXT BOOKS: 1. "Basic Civil and Mechanical Engineering", D Seetharaman S., "Basic Civil Engineering", A COURSE DESIGNERS S. No. Name of the Facul	ng and o	ate	terials.											
On the successful completion of the course, studCO1. An ability to apply knowledge of mathematCO2. An ability to design and conduct experimentMAPPING WITH PROGRAMME OUTCOMICOSPO1PO2PO3PO4PO5PO6POCO1SML-MS-CO2SMLSMS-S-Strong; M-Medium; L-LowSYLLABUSSURVEYING AND CIVIL ENGINEERING MSURVEYING: Objects – types – classification –– determination of areas – illustrative examples.CIVIL ENGINEERING MATERIALS: BricksBUILDING COMPONENTS AND STRUCTURFOUNDATIONS: Types, Bearing capacity – RecSUPERSTRUCTURE: Brick masonry – stone mplastering – Mechanics – Internal and external forDams – Basics of Interior Design and LandscapingTEXT BOOKS:1. "Basic Civil and Mechanical Engineering", VMREFERENCES:1.Ramamrutham S., "Basic Civil Engineering", D2. Seetharaman S., "Basic Civil Engineering", D2. Seetharaman S., "Basic Civil Engineering", ArCOURSE DESIGNERSS. No.Name of the FacultyDesignation1S. SupriyaAssist. Profest	compone													
CO1. An ability to apply knowledge of mathematCO2. An ability to design and conduct experimentMAPPING WITH PROGRAMME OUTCOMICOSPO1PO2PO3PO4PO5PO6PO7COISML-MS-CO2SMLSMS-S- Strong; M-Medium; L-LowSYLLABUSSURVEYING AND CIVIL ENGINEERING MSURVEYING: Objects – types – classification –– determination of areas – illustrative examples.CIVIL ENGINEERING MATERIALS: BricksBUILDING COMPONENTS AND STRUCTUUFOUNDATIONS: Types, Bearing capacity – RecSUPERSTRUCTURE: Brick masonry – stone mplastering – Mechanics – Internal and external forDams – Basics of Interior Design and LandscapingTEXT BOOKS:1. "Basic Civil and Mechanical Engineering", D2. Seetharaman S., "Basic Civil Engineering", ArCOURSE DESIGNERSS. No.Name of the FacultyDesignatio1S. Supriya														
CO2. An ability to design and conduct experimentMAPPING WITH PROGRAMME OUTCOMICOSPO1PO2PO3PO4PO5PO6POCO1SML-MS-CO2SMLSMS-S-Strong; M-Medium; L-LowSYLLABUSSURVEYING AND CIVIL ENGINEERING MSURVEYING: Objects – types – classification –– determination of areas – illustrative examples.CIVIL ENGINEERING MATERIALS: BricksBUILDING COMPONENTS AND STRUCTUIFOUNDATIONS: Types, Bearing capacity – RecSUPERSTRUCTURE: Brick masonry – stone mplastering – Mechanics – Internal and external forDams – Basics of Interior Design and LandscapingTEXT BOOKS:1. "Basic Civil and Mechanical Engineering", VMREFERENCES:1.Ramamrutham S., "Basic Civil Engineering", D2. Seetharaman S., "Basic Civil Engineering", ArCOURSE DESIGNERSS. No.Name of the FacultyDesignatio1S. Supriya	ents will													
MAPPING WITH PROGRAMME OUT COMICOSPO1PO2PO3PO4PO5PO6PO7CO1SML-MS-CO2SMLSMS-S- Strong; M-Medium; L-LowSYLLABUSSURVEYING AND CIVIL ENGINEERING MSURVEYING: Objects – types – classification –– determination of areas – illustrative examples.CIVIL ENGINEERING MATERIALS: BricksBUILDING COMPONENTS AND STRUCTURFOUNDATIONS: Types, Bearing capacity – RecSUPERSTRUCTURE: Brick masonry – stone mplastering – Mechanics – Internal and external forDams – Basics of Interior Design and LandscapingTEXT BOOKS:1. "Basic Civil and Mechanical Engineering", VMREFERENCES:1.Ramamrutham S., "Basic Civil Engineering", AnCOURSE DESIGNERSS. No.Name of the FacultyDesignatio1S. Supriya	O1. An ability to apply knowledge of mathematics, science, and engineering.													
COSPO1PO2PO3PO4PO5PO6PO7CO1SML-MS-CO2SMLSMS-S-Strong; M-Medium; L-LowSVLLABUSSURVEYING: Objects – types – classification –– determination of areas – illustrative examples.CIVIL ENGINEERING MATERIALS: BricksBUILDING COMPONENTS AND STRUCTURFOUNDATIONS: Types, Bearing capacity – RecSUPERSTRUCTURE: Brick masonry – stone mplastering – Mechanics – Internal and external forDams – Basics of Interior Design and LandscapingTEXT BOOKS:1. "Basic Civil and Mechanical Engineering", VMREFERENCES:1.Ramamrutham S., "Basic Civil Engineering", D2. Seetharaman S., "Basic Civil Engineering", ArCOURSE DESIGNERSS. No.Name of the FacultyDesignatio1S. Supriya				<u>^</u>			-	pply						
CO1SML-MS-CO2SMLSMS-S-Strong; M-Medium; L-LowSYLLABUSSURVEYING AND CIVIL ENGINEERING MSURVEYING: Objects – types – classification –– determination of areas – illustrative examples.CIVIL ENGINEERING MATERIALS: BricksBUILDING COMPONENTS AND STRUCTULFOUNDATIONS: Types, Bearing capacity – RecSUPERSTRUCTURE: Brick masonry – stone mplastering – Mechanics – Internal and external forDams – Basics of Interior Design and LandscapingTEXT BOOKS:1. "Basic Civil and Mechanical Engineering", VMREFERENCES:1. Ramamrutham S., "Basic Civil Engineering", D2. Seetharaman S., "Basic Civil Engineering", AnCOURSE DESIGNERSS. No.Name of the FacultyDesignation1S. SupriyaAssist. Profest	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSPSO3													
CO2SMLSMS-S- Strong; M-Medium; L-LowSYLLABUSSURVEYING AND CIVIL ENGINEERING M SURVEYING: Objects – types – classification – – determination of areas – illustrative examples.CIVIL ENGINEERING MATERIALS: Bricks BUILDING COMPONENTS AND STRUCTUR 	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS O 1							PSO3						
S- Strong; M-Medium; L-Low SYLLABUS SURVEYING AND CIVIL ENGINEERING M SURVEYING: Objects – types – classification – – determination of areas – illustrative examples. CIVIL ENGINEERING MATERIALS: Bricks BUILDING COMPONENTS AND STRUCTUR FOUNDATIONS: Types, Bearing capacity – Rec SUPERSTRUCTURE: Brick masonry – stone m plastering – Mechanics – Internal and external for Dams – Basics of Interior Design and Landscaping TEXT BOOKS: 1. "Basic Civil and Mechanical Engineering", VM REFERENCES: 1.Ramamrutham S., "Basic Civil Engineering", An COURSE DESIGNERS S. No. Name of the Faculty 1 S. Supriya	-	T	-	-	M	-		L						
SYLLABUSSURVEYING AND CIVIL ENGINEERING MSURVEYING: Objects – types – classification –– determination of areas – illustrative examples.CIVIL ENGINEERING MATERIALS: BricksBUILDING COMPONENTS AND STRUCTURFOUNDATIONS: Types, Bearing capacity – RecSUPERSTRUCTURE: Brick masonry – stone mplastering – Mechanics – Internal and external forDams – Basics of Interior Design and LandscapingTEXT BOOKS:1. "Basic Civil and Mechanical Engineering", VMREFERENCES:1.Ramamrutham S., "Basic Civil Engineering", AnCOURSE DESIGNERSS. No.Name of the FacultyDesignation1S. Supriya	-	I	-	-	-	S		-						
S. No.Name of the FacultyDesignation1S. SupriyaAssist. Profest	- stones RES : uiremen usonry – es – stre U, (2017 nanpatra	nt la nn as td	t – conc ations. ns – lint sticity – d., New	rete – f els – re Types Delhi,	steel oofin s of B 2009	sectio g – fl tridge	ons. oor	ing –						
1 S. Supriya Assist. Profest	-		~ 0			Ма	:I TI	D						
S. Supriya		c C	ge C	jansu	priva	Ma nair@		nail.com						
2 Mrs.Pa.Suriya Asst. Professo				suriya			Ũ							

			BASI	CS OF	CIVI	L AND	MEC	HANI	CAL	C	ategory	L	Т	Р	Credit
			21202	00 01		INEER									
17CN	MES02	2	PAR	T - B				IANIC	AL		ES	2	0		2
						INEER					ES		U	0	2
				(Coı	nmon	to All l	Branch	nes)							
PRE	AMBI	Æ													
and A work	Autome ing pri	obile e nciple	enginee of an A	ring. A	n eng	ineer n	eeds to		stand,		-	-	-		acturing ues and
PRE	REQU	ISITE													
NIL															
COU	COURSE OBJECTIVE														
1															
2															
COURSE OUTCOMES:															
On the successful completion of the course, students will be able to															
CO1.	CO1. Illustrate the application of casting and metal joining processes in manufacturing Apply														
CO2	Demo	nstrate	the ope	eration	of auto	omotive	engin	es and i	mporta	nt com	ponents			Ap	ply
MAP	PING	WITH	H PRO	GRAN	IME (OUTCO	OMES	AND P	ROGI	RAMM	E SPE	CIFIC	OUTC	OMI	ES
СО	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSPSO3COPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSPSO3														PSO3
0	101	102	105	104	105	100	107	108	109	1010	1011	1012	01	O2	1505
CO1	S	М	М	L	L	М	-	-	-	-	-	М	L	-	-
CO2	S	М	L	L	L	М	-	-	-	-	-	М	L	-	-
S- Sti	rong;]	M-Me	dium; I	L-Low	I										
SYL	SYLLABUS														
FOU	NDRY	AND	WELI	DING											
Foundry: Introduction to Casting - Types, Pattern- Definition, Function. Foundry tools. Green Sand															
	Moulding application.														
Weld	ing:	Introdu	uction	to wel	ding, (Classifi	cation	– Gas	weldi	ng, Arc	Weldi	ng, TIO	G, MI	G, Pl	asma –
Defin	itions.	Arc V	Velding	g - Metl	hods ar	nd Mec	hanism	ıs – App	olicatio	ns.					

AUTOMOTIVE ENGINES AND COMPONENTS

Introduction, Two stroke and four stroke cycle - Petrol and Diesel Engines - Construction and working,

Fundamentals of automotive components - Brakes, Clutches, Governor, Flywheel, Axles, Drives etc., Fuel supply systems, Exhaust emission and control.

TEXT BOOKS

1	Basic Civil and Me Salem															
REFE	RENCE BOOKS															
1	K.Venugopal, Basi	ic Mechanical Engineeri	ng, Anuradha Publicat	ions, Chennai												
2	NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida															
3	TJ.Prabu, Basic Mechanical Engineering, SCITECH Publications, Chennai															
COUR	SE DESIGNERS															
S.No	Faculty Name	Designation	Dept / College	Email id												
1	S. Duraithilagar	Associate Professor	Mech / VMKVEC	sduraithilagar@vmkvec.edu.in												
2	T.Raja	Assistant Professor	Mech / VMKVEC	rajat@vmkvec.edu.in												

17EEES04	ELECTRIC MACHINERY	Category	L	Т	Р	Credit
TTEEE504		FC(ES)	3	0	0	3

Preamble

In a modern world the electrical motors plays a vital role in all the applications especially in bio medical field its employed in various medical and health care equipments such as patient handling equipment, compressors, respirators, pacemakers, defibrillators, exercisers, wheelchairs, massage apparatus, therapy equipment, etc. Hence the course provides the knowledge about basic concepts with performance analysis of DC, AC and special electrical machines under different load and unloaded condition as well as the knowledge required for implementation of the above machines in biomedical field.

PREREQUISITE

1 To study the importance of electrical machines in bio medical field and to understand the principle concepts of electro mechanical energy conversion. 2 To understand the concepts of transformer to determine the performance of the device through the equivalent circuit and working principle. 3 To illustrate the construction, operating principle and types of DC machines with its starting and speed control methods. 4 To elucidate the construction, working principle of Synchronous & Induction machine with conventional starting and speed control methods. 5 To describe the construction and principle operation of special electrical machines such as BLDC motor, inear motor and universal motor etc. COURSE OUTCOMES C01. Define and understand the concept of electromechanical energy conversion process and easy to implement the concepts to biomedical applications. Remember C02. Identify the parts of transformer, explain the concept and predetermine the performance of the device for biomedical applications. Analyze CO3. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the performance at different loading, un loading conditions and applications. Analyze CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. Apply CO5. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. Apply														
1 electro mechanical energy conversion. 2 To understand the concepts of transformer to determine the performance of the device through the equivalent circuit and working principle. 3 To illustrate the construction, operating principle and types of DC machines with its starting and speed control methods. 4 To describe the construction and principle of Synchronous & Induction machine with conventional starting and speed control methods. 5 To describe the construction and principle operation of special electrical machines such as BLDC motor, PMBLDC motor, linear motor and universal motor etc. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Define and understand the concept of electromechanical energy conversion process and easy to implement the concepts to biomedical applications. CO2. Identify the parts of transformer, explain the concept and predetermine the performance of the transformer. CO3. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the Performance at different loading, un loading conditions and applications. Analyze CO4. So for the course of DC machine and analyze the performance. Apply CO3. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the performance at different loading, un loading conditions and applications. Apply CO5. Choose the suitable sp	COURSE OBJECTIVES													
2 circuit and working principle. 3 To illustrate the construction, operating principle and types of DC machines with its starting and speed control methods. 4 To elucidate the construction, working principle of Synchronous & Induction machine with conventional starting and speed control methods. 5 Podeucidate the construction and principle operation of special electrical machines such as BLDC motor, PMBLDC motor, linear motor and universal motor etc. COURSE COUTOMES On the successful completion of the course, students will be able to Col. Define and understand the concept of electromechanical energy conversion process and easy to implement the concepts to biomedical applications. CO2. Identify the parts of transformer, explain the concept and predetermine the performance of the transformer. CO3. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the Performance at different loading, un loading conditions and applications. Analyze CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. Apply COS Conse the suitable special electrical machine and evaluate the performance of the device for biomedical applications. CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9	¹ electro mechanical energy conversion.													
To illustrate the construction, operating principle and types of DC machines with its starting and speed control methods. 4 To elucidate the construction, working principle of Synchronous & Induction machine with conventional starting and speed control methods. 5 To describe the construction and principle operation of special electrical machines such as BLDC motor, PMBLDC motor, linear motor and universal motor etc. Remember COURSE OUTCOMES On the successful completion of the course, students will be able to COL Letting and speed control methods. COURSE OUTCOMES On the successful completion of the course, students will be able to COL Letting the parts of transformer, explain the concept and predetermine the performance of the transformer. CO2. Identify the parts of DC machine, describe the concepts of DC machine and analyze the Performance at different loading, un loading conditions and applications. Analyze CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. Analyze CO5. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
4 starting and speed control methods. 5 To describe the construction and principle operation of special electrical machines such as BLDC motor, PMBLDC motor, linear motor and universal motor etc. COURSE OUTCOMES On the successful completion of the course, students will be able to COURSE OUTCOMES Remember On the successful completion of the course, students will be able to COURSE OUTCOMES Remember Understand the concept of electromechanical energy conversion process and easy to implement the concepts to biomedical applications. CO2. Identify the parts of transformer, explain the concept and predetermine the performance of the transformer. CO3. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the Performance at different loading, un loading conditions and applications. CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. CO5. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. CO5 MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7	To illustrate the construction, operating principle and types of DC machines with its starting and speed control													
S PMBLDC motor, linear motor and universal motor etc. COURSE OUTCOMES On the successful completion of the course, students will be able to COI. Define and understand the concept of electromechanical energy conversion process and easy to implement the concepts to biomedical applications. Remember CO2. Identify the parts of transformer, explain the concept and predetermine the performance of the transformer. Understand CO3. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the Performance at different loading, un loading conditions and applications. Analyze CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. Apply CO5. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. Evaluate MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 M L M M M S S CO3 S S M M M S S CO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 <td< td=""><td colspan="14">4 starting and speed control methods.</td></td<>	4 starting and speed control methods.													
On the successful completion of the course, students will be able to Remember CO1. Define and understand the concept of electromechanical energy conversion process and easy to implement the concepts to biomedical applications. Remember CO2. Identify the parts of transformer, explain the concept and predetermine the performance of the transformer. Understand CO3. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the performance at different loading, un loading conditions and applications. Analyze CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. Apply CO5. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. Evaluate CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 CO2 M S M M M M	5 To describe the construction and principle operation of special electrical machines such as BLDC motor,													
C01. Define and understand the concept of electromechanical energy conversion process and easy to implement the concepts to biomedical applications. Remember C02. Identify the parts of transformer, explain the concept and predetermine the performance of the transformer. Understand C03. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the Performance at different loading, un loading conditions and applications. Analyze C04. Implement the concepts of Induction and Synchronous machines to various applications. Apply C05. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. Evaluate C05 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 3 C02 M S M M M M C03 S S M M M M M M M M M M M M M M M M M M M M M <t< td=""><td colspan="14">JRSE OUTCOMES</td></t<>	JRSE OUTCOMES													
implement the concepts to biomedical applications. Refinitive CO2. Identify the parts of transformer, explain the concept and predetermine the performance of the transformer. Understand CO3. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the Performance at different loading, un loading conditions and applications. Analyze CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. Apply CO5. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. Evaluate MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 M L M M S S CO2 M S M M M M CO3 S M L M M M S S CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 </td <td colspan="13"></td>														
Implement the concepts to biomedical applications. CO2. Identify the parts of transformer, explain the concept and predetermine the performance of the transformer. Understand CO2. Identify the parts of transformer, explain the concept and predetermine the performance of the transformer. Understand CO3. Categorize the parts of DC machine, describe the concepts of DC machine and analyze the Performance at different loading, un loading conditions and applications. Analyze CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. Apply CO5. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. Evaluate CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO1 PO1 PO1 PO1 PO1 PO1 PO1 PO1 PO1 PO2 PO3 PO6 PO7 PO8 PO1 PO1 PO1 PO1 PO1 <th col<="" td=""><td colspan="13">. Define and understand the concept of electromechanical energy conversion process and easy to Remember</td></th>	<td colspan="13">. Define and understand the concept of electromechanical energy conversion process and easy to Remember</td>	. Define and understand the concept of electromechanical energy conversion process and easy to Remember												
Order stand Conder stand Performance at different loading, un loading conditions and applications. CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. CO5. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 M CO2 M CO2 M CO3 S CO4 S CO5 CO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO CO2 M S M M M <td< td=""><td colspan="13">implement the concepts to biomedical applications.</td></td<>	implement the concepts to biomedical applications.													
Performance at different loading, un loading conditions and applications. Analyze CO4. Implement the concepts of Induction and Synchronous machines to various applications to determine the performance. Apply CO5. Choose the suitable special electrical machine and evaluate the performance of the device for biomedical applications. Evaluate MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5 PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO CO2 M L M PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 SO1 S M A PSO 3 S PO1 PO11 PO12 PSO1 PSO2 PSO CO2 M L A														

INTRODUCTION

Need of electrical machines in Bio medical field – Typical applications and requirements of biomedical motors-Electrical Machines - Classification - Basic and Electromagnetic induction Principle - statically induced EMF, Dynamically induced EMF and back EMF – principles of electromechanical energy conversion –Forces and torque -Energy and co energy – Single and Multiple excited systems.

TRANSFORMER

Principle of operation of transformer – Types – Constructional features – EMF equation – Phasor diagram on No Load and Load - Equivalent circuit, Losses and Efficiency of transformer and regulation - OC and SC tests -Predetermination of efficiency and regulation – Autotransformer – Applications.

DC MACHINES

Construction and principle operation of DC machines – EMF equation – Types of DC machines – DC generators – Magnetization and load characteristics of DC generators, DC Motors - Characteristics of DC motors - Armature reaction - Commutation - Voltage and Torque equation - Starting methods of DC machines - Losses and efficiency -Speed control of DC shunt motor – Applications.

INDUCTION MACHINES AND SYNCHRONOUS MACHINES

Construction and Principle of operation of Induction machines - Types - Double revolving field theory - Equivalent circuit of induction machines - Starting methods of induction machines - Speed control of induction machines -Principle of operation of synchronous motor – Different Excitations of synchronous motor – Starting methods – Equivalent circuit- Applications.

SPECIAL ELECTRIC MACHINES

Switched reluctance motor, Stepper motor, Servo motor, BLDC motor, Permanent magnet BLDC motor- Permanent magnet synchronous motor - Universal motor - Hysteresis motor - Linear induction motor - Working principles, Speed-Torque characteristics – Applications.

TEXT BOOKS:

- 1. D P Kothari and I J Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 3rd Edition, 2010.
- 2. B. L. Theraja, A. K. Theraja, "A Text Book of Electrical Technology", Volume II, S.Chand & Company Ltd, New Delhi, 2016.

REFERENCES:

- 1. Stephen J. Chapman, "Electric Machinery fundamentals", McGraw Hill Education, New Delhi, 5th Edition, 2011.
- 2. Fitzgerald A.E, Charles Kingsley Jr, Stephen D. Umans, "Electric Machinery", Mc Graw Hill Book Company, 6th Edition, 2005.
- 3. T. Kenjo and S.Nagomari, "Permanent magnet and brushless DC motors", Clarendon 125 Press, London, 1985.

COUR	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Mr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in										
2	Mr.S.Mathankumar	Associate Professor	EEE/VMKVEC	mathansub84@vmkvec.edu.in										
3	Dr.G.Ezhilarasan	Professor	EEE/AVIT	ezhilarasan.eee@avit.ac.in										

17EE	17EEES82 ENGINEERING SKILLS PRACTICE LAB A. BASIC ELECTRICAL ENGINEERING									Categ	ory	L	Т	Р	C	redit	
			А. В	ASIC	ELECI	RICA	L ENG	INEE	AING		FC(E	S)	0	0	2		1
PREA It is a l types o	aborato	ory cou		ch fam	iliarizes	the ba	sic elec	etrical w	viring, 1	measure	ment of	elec	trical	l quant	ities	and v	arious
PRER	QUISI	TE – N	IIL														
COUR	SE OF	BJECT	IVES														
1	To le	arn the	residen	tial wir	ing and	l variou	s types	of elec	trical w	iring.							
2	To m	easure	the var	ious ele	ctrical	quantiti	es.										
3	To kı	now the	e necess	ity and	types of	of earthi	ing and	measu	rement	of earth	resistan	ce.					
COUR	SE OU	JTCON	MES														
On the	success	sful coi	mpletio	n of the	course	, studer	nts will	be able	to								
CO 1: 1	Implem	nent the various types of electrical wiring. Apply															
CO 2: 1	Measur	e the fu	indame	ntal pai	ameter	s of AC	circuit	s.				Ana	lyze				
CO 3: 1	CO 3: Measure the earth resistance of various electrical machineries. Apply																
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012	PSO1	PS	502	PSO3
CO1	S	М	L		S]	L	М]	L	
CO2	S	М	S	S					М			N	M	М		L	
CO3	L	S	L		S					L]	L	М		L	
S- Stro	ng; M-	Mediur	n; L-Lo	W				1		1							
1. R 2. Fl 3. St 4. M 5. M 6. M REFE 1. L	 Stair case wiring. Measurement of electrical quantities – voltage, current, power & power factor in RLC circuit. Measurement of energy using single phase energy meter. 																
COUR				_						_							
S.No.		Name of the Faculty Designation Deversion Professor					Depart			1.		ail I		1 .			
1 2			DevarajanProfessor. SathishAssistant Professor						EEE/VM EEE/VM			devarajan@vmkvec.edu.in sathish@vmkvec.edu.in					
3										EEE/VIVI EEE/A			dsaranya@avit.ac.in				
4		Saranya Assistant Professor (Gr-II)Prakash Assistant Professor (Gr-II)								EEE/A			sprakash@avit.ac.in				

17EF	EES82	DA			ING SK				LAB EERIN		Category	L	T I	P C	redit	
DDEA	1015		KID-	DASI			NICS E	INGIN.	LEKIN	G	FC(ES)	0	0 2	2	1	
This c		s to pr									neering. In struct and					
PRER	QUISI	TE – N	il													
COU	RSE OE	BJECT	IVES													
1	To fan	niliarize	e the ele	ectronic	compo	nents, ł	basic el	ectroni	c equipi	nents a	nd solderi	ng techn	iques.			
2		2			of Diod	,										
3 4			.	<u> </u>	of vari	Ų	Ų	Ų								
	RSE OU			neept 0	1 Dasie	mouula		inique								
				n of the	0011750	studon	to will	ha ahla	to							
	On the successful completion of the course, students will be able to CO1. Construct experiments for PN and Zener diode characteristics Understand															
													Inderstar	ld		
CO2.]	02. Demonstrate the fundamentals of soldering techniques.											A	pply			
CO3.	3. Classify the characteristics of Diodes, BJT and FET. Apply											pply				
CO4.]	204. Distinguish between amplitude and frequency modulation techniques.											A	pply			
CO5. Verify the truth tables of logic gates (AND, OR, NOT, NAND, NOR, XOR).											A	Apply				
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	М	-	-	-	-	-	-	М	-	М	-	-	М	-	
CO2	М	М	М	-	-	-	-	-	М	-	М	-	М	-	-	
CO3	S	М	-	-	-	-	-	-	М	-	М	-	-	-	-	
CO4	S	М	-	-	-	-	-	-	М	-	М	-	М	-	М	
CO5	S	Μ	Μ	-	-	-	-	-	М	-	М	-	Μ	-	-	
S- Stro	ong; M-	Mediun	n; L-Lo	W												
 Ider Prace Prace Character <li< td=""><td colspan="11">S- Strong; M-Medium; L-Low LIST OF EXPERIMENTS 1. Identifying Electronics Components. 2. Practicing of Soldering and Desoldering. 3. Characteristics of PN junction Diode. 4. Characteristics of Zener diode. 5. Input & Output characteristics of BJT.</td><td></td></li<>	S- Strong; M-Medium; L-Low LIST OF EXPERIMENTS 1. Identifying Electronics Components. 2. Practicing of Soldering and Desoldering. 3. Characteristics of PN junction Diode. 4. Characteristics of Zener diode. 5. Input & Output characteristics of BJT.															
	ification															
	dy of Ar	-														
	dy of Fr	-														
COURSE DESIGNERS																
S.No	o Name of the Faculty Designation						Depart	ment		Ν	/Iail ID					
1	Dr.T.S	Dr.T.Sheela Associate Professor						EC	E	sheela@v	mkvec.	edu.in				
2		Mrs.A.Malarvizhi Assistant Professor Mr.R.Karthikeyan Assistant Professor (Gr-II							EC		malarvizh					
3		Karthik Mohani							EC EC		rrmdkarth			ın		
4	Ms.R.Mohana Priya Assistant Professor						5550F (C	JI-II)			mohanap	nya@av	n.ac.m			

17CS	F\$83	PR	OGRA	MMIN	JC IN I	оутна		R	Category L T P C						Credit
1700	1000		JUNA						E	S	0	0	4		2
PREA	MBLE	1						I			1				
This la in pyth	-	enable	es the st	udents	clearly	underst	and the	basic c	concepts	s of pyth	on, contr	rol stat	ements a	and file	commands
PRER NIL	QUISI	ſE													
	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able 1	to						
CO1. L	Learn Sy	ntax ar	nd Sema	untics a	nd creat	te Func	tions in	Pythor	l			1	Understa	and	
CO2. H	CO1. Learn Syntax and Semantics and create Functions in Python CO2. Handle Strings and Files in Python.													and	
CO3. Design solutions for complex programs using decision making and looping statements.												nts.	Apply		
CO4.Understand Lists, Dictionaries in Python. Apply															
CO5. Compute the exception handling programs Apply															
MAPP	ING W	TTH P	ROGR	AMM	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	М	L	-	-	-	-	-	-	-	-	-	-	М	М
CO2	S	М	L	-	-	-	-	-	-	-	-	-	М	М	М
CO3	S	М	М	-	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	-	-	-	-	-	-	-	-	-	М	М	М
CO5	S	М	М	-	-	-	-	-	-		-	-	М	М	М
S- Stro	ng; M-N	Medium	n; L-Lov	N											

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

REFERENCES:

- 1. Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2013.
- 3. Mark Lutz, "Python Pocket Reference", 5th Edition, O'Reilly Media, 2014.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
3	Mrs. T. Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

							CE LAB ERING	-	Catego	ry	L	Т	Р	Cr	edit
17CMES81	-				All Bra				ES						
		(-)				0	0	2		2
PREAMBL	E														
Engineering S It deals with f												-	-		
planning the j	ob and i														
PREREQU Nil	ISITE														
COURSE O	BJEC	TIVES													
1 To und	nderstand the basic concepts of surveying and construction materials.														
2 To imp	npart basic knowledge about building components.														
COURSE O	OUTCOMES														
On the suc	successful completion of the course, students will be able to														
CO1.Prepare	e the dif	fferent	types o	of fittir	ıg.							Apply			
CO2.Prepare	e the dif	fferent	types o	of joint	s using	g wood	len mate	erial				Apply			
MAPPING	WITH	PROG	GRAM	ME O	UTCO	OMES	AND P	ROG	RAMM	E SPE(CIFIC	OUTC	COM	ES	
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO	PS	502	PS O3
CO1 S	L	L	L	L	L	L	L	L	L	L	L	-		S	-
CO2 S	S	S	L	L	L	L	L	L	L	L	L	L		-	М
S- Strong; M	I-Mediu	ım; L-I	LOW		1		1		1		1				
SYLLABUS															
Buildings:															
1. Study Plumbing W	-	nbing ar	nd carpo	entry co	ompone	ents of 1	residentia	al and	industrial	building	gs, Saf	ety aspe	ets.		
-		-	nts, its l	ocatior	and fu	nctions	: valves,	taps,	couplings	, unions,	, reduc	ers, elbo	ws in		
	hold fitt	0	tions re	auirem	ents fo	r pump	s and tur	bines.							
-				-					ige works						
									ections w	ith diffe	rent joi	ining co	npon	ents.	
6. Demo Carpentry us		-	-	-	ments of	of high-	-rise buil	dings.							
					•										
7. Study Hands-on-exe	-						urniture. 1g and cu	ıtting.							

TEXT BOOK

1. Basic civil engineering Lab Manual by Department of Civil Engineering, VMRF.

COURSE	DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.i n
2	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in

		ENG	GINEE	ERING	SKII LAB	LLS P	RACTI	CE	Cate	gory	L	Т	Р		Credit
17CM	IES81		B.B	ASIC ENG			CAL		FC(ES)	0	0	2		1
Pream	ıble														
Works	hop is	a har	nds-on	trainir	ng pra	ctice t	o Mech	nanica	al Eng	ineerir	ng stud	lents.	It deals	with fi	tting, carpentry,
		veldin	g relate	ed exe	rcises.	Also,	it will in	nduce	e the h	abit of	select	ing rig	ht tools,	plannin	g the job and its
execut	ion.														
	quisite														
	e Obje				11.00		0.01								
							es of fit								
							ing woo								
	To perform and acquire in depth knowledge in metal joining processes. To demonstrate the pattern using foundry processes.														
				•											
Cours						-	letion of			e, stud	ents v	vill be a	able to		
CO1.							using M							Apply	
CO2.				21	<u> </u>		sing woo							Apply	
CO3.							process		etal by	Arc W	/elding	5		Apply	
CO4.	Make	e use o	of diffe	rent ty	pes of	green	sand mo	ould						Apply	
Mappi	ing wit	h Pro	gramn	ne Out	tcomes	and]	Program	nme	Specif	ic Out	tcome	5			
<u> </u>	PO	РО	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	PSO3
CO1	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO3	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO4	S	М	L	L	L	I	-	-	-	-	-	-	L	-	-
S- Stro	ong; M	-Med	ium; L	-Low											
Syllab	us														
LIST	OF EX	PERI	MEN	ГS											
Tee - F	Titting														
Vee - F	0														
	ation of														
Prepare Half I	ation of ap Joint				iece pa	ttern									
	ail Join														
	int – We		· r ····)												
Butt Jo	int – We														
Text B	1														
1			ECHA	NICA	L EN	GINE	ERING	, LA	B MA	NUAI					
Refere	ence Bo														
1							ineering								
2		1	urmath	, Basio	e Mech	anical	Engine	ering	, Vika	s Publi	ication	s, Noic	la		
Cours	e Desig	ners													
S.No	Facul	lty Nai	me		Desig	nation		-	rtment e Colle		ne	Email i	id		
1	Dr. V	. <u>K.</u> K	Trishna	n	Asso Profe]	Mech	n / VM	KVEC		vkkrish	nan@vr	mkvec.eo	du.in
2	B.SE	LVA	BABU		Assis Profe			Mech	n/AVI7			selvaba	abu@av	it.ac.in	

1 77 7	IEES84 ENGINEERING GRAPHICS (Theory & Practice) EC(ES)								ory	L]	г р		Credit	
17M	EES84			(Theo	ry & Pr	actice)		FC(E	ES)	1	(0 4		3
Prean	nble														
Engin	eering	Grapł	nics is re	eferred	as langu	lage o	f engine	ers. An	engin	eer nee	ds to	unders	stand the	physica	l geometry
any ol	bject th	rougl	n its ort	hograp	hic or p	oictoria	l projec	tions.	The kn	owledg	ge on	engine	eering g	raphics i	s essential
propos	sing ne	ew pr	oduct t	hrough	drawin	igs an	d interp	reting	data fi	rom ex	isting	draw	ings. Tl	nis cours	e deals wi
orthog	graphic	and p	oictorial	projec	tions, se	ctiona	l views	and dev	elopm	ent of	surfac	es.			
Prere	quisite	– NI	Ĺ												
	- se Obje														
1				orthog	graphic p	project	ions of 1	points.	straigh	t lines.	plane	surfac	es and s	olids.	
2					aphic pr										
3					tes of the							1			
4					jections					of sim	ple so	lids.			
5					he ortho										
-					essful c				U	1			e to		
					cal geor	-			,					victorial	UNDERST
CO1.		ection		P.1.951	eur geor	linetry	or any	oojee	i unot		ortin	Brupi		letomar	AND
	1 5			n of di	awing c	of the	orthoors	phic p	roiectio	ons of	noints	strai	oht line	nlane	Apply
CO2.			nd solid			1 110		-r P	Jeen		r Sints	, strui	one mic	, Pluite	· - ۲۲-J
CO3.					of draw	ing of	the orth	ogranhi	ic proie	ections	of sec	tioned	l solids :	and true	Apply
005.			he section		or ara m	119 01	uie orui	ograpin	e proje		01 500		, sonas (ina trao	· · · PP · J
CO4.					of the so	olid se	ction an	d cut se	ection of	of solid	S.				Apply
CO5.					ections (ds.			Apply
CO6.					ch of the								ew		Apply
							<u> </u>			-	•	inur vi			rippiy
Mapp	omg wi	th Pr	ogramr	ne Out	tcomes a	and Pi	ogram	ne Spe	cific U			DO1	1	1	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
CO1	S	S	L	S	L	-	-	-	-	-	-	-	L	-	
$\frac{CO1}{CO2}$	S	S	L	S	L	-	_	_	-	-	-	-	L	_	
CO3	S	S	L	S	L	-	-	_	-	-	-	-	L	_	
CO4	S	M	L	S	S	-	_	_	-	-	-	-	L	_	
CO5	S	S	L	S	L	-	-	-	_	_	-	-	L	_	
CO6	S	S	L	S	L	-	_	_	-	_	-	-	L	_	
			dium; I		Ц			l					Ľ		
Syllab	0	1-1010	uiuiii, i	1-110 W											
		RVE	SAND	FRFF	HAND	SKET	CHIN	2							
				-		·		•		vs – De	evelop	ing vis	sualizati	on skills	through fre
					from pi	ctoria	l views o	of objec	ets.						
PROJ	ECTI	ON O	F POI	NTS, L	INES										
Proiec	tion of	point	s Proie	ction o	f straigh	t lines	located	in the	first ar	adrant	· incli	ned to	both pla	nes – De	termination
					ons – rot								e o un pre		
	Ŭ		F SOL		100			104 0111							
						yramio	ls, cylin	der and	l cone	when the	he axi	s is inc	clined to	any one	reference
			f positio												
SECT	TION ()F SC	DLIDS .	AND I	DEVEL	OPME	ENT OF	SURF	ACES	5					
Sectio	ning of	ahov	e solide	in sim	nle vert	ical no	sition h	v cuttin	o nlan	es incli	ned to	anvo	ne refer	ence pla	ne and
															nd truncate
					inders ar				evenot		n iatel	ai sui l		simple a	na nuncate
					RSPEC			CTIO	N						
	-	isom	etric Vi	ew – is	ometric	scale -	- isomet	ric viev	v of si	mple so	olids- I	ntrodu	action to	Perspec	tive
-										-					
Princi _j projec	tion									-					
-	tion														

Text B	ooks			
1	Natarajan K V, "Engine	ering Graphics", Tata M	AcGraw-Hill Publishir	ng Company Ltd. New Delhi.
2	K.Venugopal and V.Pra	bhu Raja, "Engineering	Graphics", New Age	International Private Limited.
3	K.R.Gopalakrishna"Eng	gineering Drawing" (Vo	ol. I & II), Subhas Pub	lications, 2014.
Refere	ence Books			
1	N.D. Bhat and V.M. Pa	nchal, Engineering Graj	phics, Charotar Publis	ners 2013
2	E. Finkelstein, "AutoC	AD 2007 Bible", Wiley	Publishing Inc., 2007	
3	R.K. Dhawan, "A text b	<u> </u>	<u> </u>	
4	DhananjayA.Jolhe, "En Company Limited, 2008	e e e	an Introduction to Au	utoCAD", Tata McGraw Hill Publishing
5	G.S. Phull and H.S.San	dhu, "Engineering Grap	hics", Wiley Publicati	ons, 2014.
Course	e Designers			
S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	Prof. N.Rajan	Associate Professor	Mech / VMKVEC	rajan@vmkvec.edu.in
2	Prof. M.SARAVANAN	Asst. Prof	Mech / AVIT	<u>saravanan@avit.ac.in</u>

17EECC01	ELECTRIC CIRCUIT ANALYSIS	Category	L	Т	Р	Credit
17220001		CC	3	0	0	3

PREAMBLE

Electric circuit theory is the fundamental theory upon which all branches of electrical engineering are built. Many areas of electrical engineering, such as power, electric machines, control, electronics, communications, and instrumentation, are based on electric circuit theory. Therefore, the basic electric circuit theory course is the most important course for an electrical engineering student, and always an excellent starting point for a beginner in electrical engineering education. Circuit theory is also valuable to students specializing in other branches of the engineering because circuits are a good model for the study of energy systems in general, and because of the applied mathematics, physics, and topology involved.

PREREQUISITE

INLAL	1	7EES0		ic of E	lectrica	al and l	Electro	nics Eı	ngineer	ring, 171	MABS)1 Engir	neering	Mather	natics
COURS	E OBJ	IECTI	VES												
1	To u	ndersta	and bas	sic circ	uit con	cepts.									
2	To s	tudy ne	etwork	s and s	olution	of DC	C and A	C circ	uits.						
3	To u	ndersta	and ser	ies and	l parall	el reso	nance	concep	ts and	analysis	s of cou	pled cir	cuits.		
4		• •	otectic circui		alanced	l and u	nbalan	ced loa	ads and	l measur	rement (of powe	er and po	ower fac	ctor in
5	To u	ndersta	and tra	nsient	analysi	s of RI	L, RC a	and RL	C circu	uits with	n DC an	d sinus	oidal ex	citation	s.
COURS	E OU	ГСОМ	IES												
On the s	uccessi	ful con	npletio	n of the	e cours	e, stud	ents wi	ill be a	ble to						
CO1		•					ige lav Metho		imple	circuits	and S	Solve		Apply	
CO2	Appl	y Netv	vork th	eorems	s to sol	ve sim	ple and	l comp	lex line	ear circu	iits			Apply	
CO3			Series a uble tu			resonai	nce cir	cuit, a	nalyze	the per	forman	ce of	A	Analyze	
CO4	Expla	ain thre	ee phas	se bala	nced ar	nd unb	alanced	l star, c	lelta ne	etwork			Ur	nderstan	d
CO5	Deve	lop the	e Trans	ient re	sponse	of RL	C circu	its usi	ng Lap	laceTra	nsform,		Analy	ze and c	create
MAPPI	NG W	ITH P	ROGI	RAMN	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	L	Μ	L	-	Μ	S	М	М	S	-	М
CO2	S	S	Μ	S	L	-	-	-	-	-	-	-	S	М	М
CO3	S	М	-	S	S	-	Μ	-	Μ	L	L	М	S	-	-
CO4	М	Μ	Μ	Μ	S	-	Μ	-	-	L	L	М	S	-	-
CO5	Μ	Μ	Μ	Μ	S	-	Μ	-	Μ	L	L	М	S	М	М
S- Strong	g; M-N	Iedium	n; L-Lo	W											

BASIC CIRCUIT CONCEPTS

Review of basic concepts- DC & AC circuits - R, L, and C elements phasor diagrams-Complex impedance - Real & Reactive power- Series & Parallel circuits– Formation of matrix equations and analysis of complex circuits using mesh- Current and nodal - Voltage methods.

NETWORK THEOREMS AND TRANSFORMATIONS

Voltage – Current – Source transformation. Star Delta transformation - Superposition theorem – Reciprocity theorem – Substitution theorem – Maximum Power Transfer theorems – Thevenin's theorem – Norton's theorem and Millman's theorem with applications.

RESONANCE AND COUPLED CIRCUITS

Series resonance and parallel resonance – Bandwidth and Q factor. Inductively coupled circuits –Co-efficient of coupling - Dot convention - Multi winding coupled circuits - Analysis of coupled circuits.

THREE PHASE CIRCUITS

Analysis of three phase 3 wire and 4 wire circuits with star and delta connected balanced and unbalanced loadsphasor diagram of Voltages and Currents – Measurement of power and power factor in three phase circuits by using single, two and three Watt meter method.

TRANSIENT ANALYSIS

Transient response – Natural response- forced response – DC response of RL, RC and RLC circuits – sinusoidal response of RL, RC, RLC circuits

TEXT BOOKS

1. Dr.S. Arumugam, Premkumar, Circuit Theory - Khanna publishers, 1991

2. Sudhakar, A. and Shyam Mohan S.P.,'Circuits and Network Analysis and Synthesis', Tata McGraw-Hill Publishing C.Ltd., New Delhi, 2006.

3. A Nagoor Kani, Circuit Theory - Sriram publications -2016

REFERENCES

- 1. Prof. T. Nageswara Rao, "Electric circuit analysis" A.R.Publications.
- 2. Hyatt, W.H. Jr and Kemmerly, J.E., 'Engineering Circuits Analusis', McGraw-Hill International Editions, 2002.
- Edminister, J.A., 'Theory and Problems of Electric Circuits', Schaum's outline series McGraw Hill Book Company, 5th Edition, 2011.

COURS	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	e-Mail ID								
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in								
2.	D. SARANYA	Assistant Professor GR-II	EEE/AVIT	dsaranya@avit.ac.in								

17ECCC20	SE	MICC)NDU	CTOR I	DEVIC	ES AN	D CIR	CUITS	Ca	ategory	L	Т	P	Credit
							-			CC	3	0	0	3
PREAMBLE														
This is an intr	oducti	on cou	urse to	semico	nductor	device	s. The	course	begins	with a	discuss	sion on	how e	lectron
energy bands	are	forme	d in	semicor	nductors	s. It e	xamin	es the	princi	ples ar	nd ope	rations	of es	sential
semiconductor	devi	ces us	sed in	today's	electro	nics: d	iodes,	light e	mitters	s, bipol	lar junc	ction tr	ansisto	rs and
MOSFETs. It	inclu	des an	alysis	of sma	ll signa	l mode	1 and	large si	gnal n	nodel o	of the d	levices	which	is the
prerequisite fo	or nex	t level	l cours	ses. This	s subjec	et helps	s the s	tudents	to des	sign, m	odel an	d deve	elop an	plifier
circuits, Oscill	ator ci	ircuits,	, Tuneo	d amplif	iers and	many	other r	eal time	applic	ation ci	rcuits.			
PREREQUIS				- Basic	Electric	al and l	Electro	onics En	gineeri	ng				
COURSE OB														
				cteristic					als and	Diode.				
				ing of tr						1.0				
				cuits and							lers			
				ing of Fe								1. 6.	1	т 1
			e work	ing and	to find t	he effic	ency	of differ	ent typ	bes of P	ower A	mplifie	rs and	Iuned
COURSE OU	lifiers.													
On the success			onofi	he cour	a stude	nto wil	1 ha ah	la to						
CO1. Explain									e such	96			Unders	tand
				ner diode		S OI LIC	cuom		s such	as			Unders	tanu
CO2. Explain						tics of l	BJT ar	d FET					Unders	tand
CO3. Demons									using s	imulati	on tool		Apply	turia
and to obtain i				8	-6		r		0 ~			-		
CO4. Illustrat				of variou	s Feedb	ack am	plifier	s and Os	scillato	r circui	ts and to	0 .	Apply	
obtain the Gai							1						11.2	
C05. Classify	the d	ifferen	t confi	guration	and ob	tain the	e devic	e small s	signal	model c	of		Analyz	e
				ulation to										
MAPPING W		PROG	GRAM	ME OU	JTCOM	IES AN	D PR	OGRAI	MME	SPECI	FIC O	UTCO	MES	
COS PO	РО	РО	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	2	3												
CO1 S	L	М	-	-	М	-	-	-	-	-	М	L	-	-
CO2 S	М	L	-		М	_	_	_	_	_	М	L	_	
					171						171			
CO3 S	S	М	-	М	-	-	-	-	-	-	М	М	S	-
CO4 S	S	S	М	S							М	М	S	
JU4 S	3	3	IVI	2	-	-	-	-	-	-	IVI	IVÍ	S	-
CO5 S	S	S	-	S	-	-	-	-		-	М	S	S	-
S- Strong; M-I	Mediu	m· L_I	.0W		1	1	II						I	1

SEMICONDUCTOR MATERIALS AND DIODE APPLICATIONS

Semiconductor materials, Intrinsic Materials, Energy Levels, n-Type and p-Type Materials, Semiconductor Diode and equivalent circuits, Diode Testing, Zener Diodes, Diode current Equation, Light-Emitting Diodes, Half-Wave Rectification, Full-Wave Rectification, Clipper, Clamper, Voltage-Multiplier Circuits, **Practical Applications** – Polarity Insurance, Polarity Detector.

TRANSISTORS & SPECIAL DEVICES

Transistor: Construction, Transistor Operation and characteristics, Common-Base Configuration, Common-Emitter Configuration, Common-Collector Configuration, Limits of Operation, Construction and Characteristics of JFETs, Transfer Characteristics, Depletion-Type MOSFET, Enhancement-Type MOSFET.

Special Devices: SCR, Shockley Diode, Diac, Triac, Unijunction Transistor, Phototransistors, MISFETs, MESFETs, TFETs, HEMTs, Silicon Nano Wire Transistor,

Practical Applications- Current Limiter, Phase shift Oscillator.

BIASING CIRCUITS & SMALL SIGNAL ANALYSIS

BJT Biasing : Operating Point, Fixed Bias Configurations, Emitter Bias Configuration, Voltage Divider Bias Configuration, Emitter Follower Bias Configuration, Hybrid Equivalent model, stability factor, Small Signal Analysis of Single stage BJT Amplifiers.

FET Biasing : Fixed bias, Self bias and Voltage divider bias, FET amplifiers – small signal model and Configurations using simulation tool.

Practical Applications-Random Noise Generator, Sound Modulated Light Source.

FEEDBACK AMPLIFIERS & OSCILLATOR CIRCUITS

Concept of feedback – effects of negative feedback, Types of feedback amplifier-Voltage and Current Series, Voltage and Current Shunt, Gain Bandwidth Product.

Oscillator Circuits: Oscillator Principles – LC oscillators – RC oscillators – Crystal oscillators. **Real time applications**.

POWER AMPLIFIERS & TUNED AMPLIFIERS

Power Amplifier : Class A, Push –Pull Amplifier-Class B, Class C & D amplifiers, Amplifier Distortion, Amplifier Efficiency.

Tuned amplifiers : Single tuned, Double tuned, Synchronous tuned amplifiers –Stability of Tuned Amplifiers using simulation tool.

Real Time Applications of Amplifiers – Outdoor Musical Systems, Video Amplification.

TEXT BOOKS:

1.Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill,4th Edition, 2015.

2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11th Edition, 2013.

REFERENCE BOOKS:

- 1. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.
- 2. D.Roy choudhury and shail B.Jain, —Linear Integrated circuits ||, 4th edition, New Age International Pvt. Ltd, 2014.
- 3. Thomas L. Floyd, "Electronic Devices", 9th edition, Pearson Education, 2011.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
2	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

COURSE DESIGNERS

													г		
17EE	CC02	2		ELE	CTR	ICAL I	MACI	HINES	-I		Catego	ry L	Т	Р	Credit
											CC	3	0	0	3
	al Ma f ma ering S	chines - chines = Sector.	and tr	ansfor	mers.	This	course	e aims	to en	able to	o work p				ications of Electrica
COURS	SE O	BJECT	IVES												
1 7		derstand		oncep	ts of f	ield en	ergy, c	co energ	gy, meo	chanica	al force an	nd proo	luction	of torqu	ie and
2 7	To an	alyze th	e perf	orman	ce cha	aracteri	stics o	f differ	ent typ	es of D	C Gener	ator.			
3 7.	To an	alyze th	e perf	orman	ce cha	aracteri	stics o	f differ	ent typ	es of D	C motor	s.			
4 7	To un	derstand	d diffe	rent ty	pes of	f Trans	forme	rs, cons	tructio	n, worl	king prin	ciple a	nd thei	r perfori	nance.
		miliarize		the ap	plicat	ions of	DC m	achines	s and the	ransfor	mer.				
COURS															
On the s			-												
CO1: lea	arn th	ne conce	pts an	d laws	ofele	ectroma	agnetic	e induct	ion in	rotating	g machin	es		Und	erstand
CO2: stu	udy c	onstruct	tion, c	haracte	eristic	s and a	pplica	tions of	DC ge	enerato	rs.			Und	erstand
CO3: Ex	xplair	n the cor	nstruct	tion, cl	naract	eristics	and a	pplicati	on of I	DC Mo	tors			Und	erstand
CO4: Cl	larify	the star	ter and	d speed	d cont	rol met	hod of	f DC M	otors					А	pply
CO5: Ill	lustra	te the co	onstrue	ction a	nd wo	orking o	ofSing	gle Phas	se and '	Three I	Phase Tra	insform	ners	А	pply
CO6: A	nalyz	e the tes	sting o	f DC l	Machi	nes & [Гransf	ormer						Eva	aluate
MAPPI	ING	WITH	PROG	RAM	ME (OUTCO	OMES	S AND	PROG	RAM	ME SPE	CIFIC	COUT	COMES	5
COS F	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	-	-	L	-	L	-	L	L	-	S	L	-
CO2	S	М	L	-	L	-	-	L	L	L	L	L	S	М	-
CO3	S	М	L	-	L	-	-	L	-	L	L	L	S	М	-
CO4	М	S	L	L	М	L	-	L	-	L	L	L	S	L	-
CO5	S	L	М	L	-	L	L	L	-	М	-	М	S	L	-
CO6	S	М	М	L	S	-	-	L	L	L	М	L	S	М	L
S- Stron	ıg; M	-Mediur	n; L-L	JOW					<u> </u>		I				1

BASIC CONCEPTS IN ROTATING MACHINES

Energy in Magnetic Systems-Field Energy and Co Energy-Determination of Mechanical Force- Singly and multiply excited systems -Laws of Electromagnetic induction - Torque and EMF production in rotating machines.

DC GENERATOR

Introduction – electric generator- Constructional features- Principle of operation of DC generator - EMF equation-circuit model - methods of excitation - Losses in DC generator –power stages –condition for maximum efficiency - armature reaction – compensating winding, Commutation - Operating Characteristics of DC generators - Parallel operation of DC generators - Applications of DC generators

DC MOTORS

Principle of operation of DC motors - Back EMF - Torque Equation-Types of DC motors- characteristics of DC motors - Starting of DC motors: review of mechanical starter, electronic soft starters for DC motor with energy saving. Speed control: Field control, Armature control, voltage control– efficiency- Applications.

TRANSFORMERS

Construction - principle of operation - EMF equation - transformer on no load and on load -effects of resistance and leakage reactance of the windings - Ideal transformer - equivalent circuit - phasor diagram transformer losses - Voltage regulation- All day efficiency- Three phase transformers-connections - Scott Connection - Phasing of transformer- parallel operation of three phase transformers Auto transformer - tap changing transformers

TESTING OF DC MACHINES & TRANSFORMERS

Losses and efficiency - Condition for maximum efficiency - Testing of DC machines: Brake test, Swinburne's test, Retardation test, Hopkinson's test, Testing of transformer: polarity test, load test, Open circuit and short circuit test, Sumpner's test.

TEXT BOOKS:

- 1. D. P. Kothari and I. J. Nagrath, "Electric Machines", Tata McGraw Hill Publishing Company Ltd, 2010.
- 2. Dr.S.K.Bhattacharya, " Electrical Machines" Tata McGraw Hill Publishing, New Delhi, 1998
- 3. Dr. Murugesh Kumar K. "DC Machines and Transformers", Vikas Publishing House Pvt Ltd., 2010.

REFERENCE BOOKS:

- 1. B. L. Theraja, A. K. Theraja, A Text Book of Electrical Technology, Volume II, S. Chand & Company Ltd, New Delhi, 2007.
- 2. R.K. Rajput, Electrical Machines, Laxmi Publications Ltd, New Delhi, 2011.
- 3. E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, Electric Machinery, Tata McGraw Hill Publishing Company Ltd, New Delhi ,2003.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Mr. G. Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in
3	Dr. G. Ezhilarasan	Professor	EEE/AVIT	ezhilarasan.eee@avit.ac.in

17EI	ECC03		E	LECT	'RO M	IAGN	ETIC	THEO	DRY		Category	y L	Т	Р	Cr	edit
DDFA	MBLE	,									CC	3	0	0		3
			dament	als of	electro	maan	etic fie	lde wa	wes ar	d their	applicatio	ns in F	Ingin	eerii	nα	
		SITE :		uis 01		Jinagii		1 u 5, we	ives ui		applicatio		ingin			
		BJECT														
1		ndersta		conce	pts of	Electr	ostatics	s and th	neir ap	olicatio	ons					
2					-					-	plications					
3					-		-				MF and the	eir appl	licati	ons.		
4				-				-			e propagati					
5		ndersta														
COUR	RSE O	UTCO	MES													
On the	succes	sful co	mpletic	on of th	ne cou	rse, st	udents	will be	able t	0						
CO1:	Explain	n the be	havior	ofele	ctric a	nd ma	gnetic	fields.							Unde	erstand
CO2:	Illustra	te the c	haracte	eristics	and a	pplica	tions o	f Elect	ric and	Magn	etic fields				Ap	oply
CO3:	Develo	p Indu	ctance	and C	apacita	ance o	f a give	en elec	trical c	compor	nent				Ana	alyze
CO4:	Relate	Electric	c and M	lagnet	ic field	ds with	n help o	of Fara	day's l	Law, L	enz's law	and			Ar	oply
	Maxwe	ell's Eq	uation	and th	eir app	olicatio	ons to l	Electric	cal mae	chines						pry
CO5:	Examiı	ne Elec	tromag	netic v	vave p	oropaga	ation ir	n differ	ent me	edia					Ana	alyze
CO6:	Compu	te Field	d Mode	eling &	c Com	putatio	on								Aŗ	oply
															1	
MAPI	PING V	VITH	PROG	RAM	ME O	UTCO	OMES	AND	PROG	RAM	ME SPEC	CIFIC	OUT	CO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSC	D1	PSO 2	PSO:
CO1	M	L	L			М				L	L	М				L
CO2	M	L	L							М	М	М				L
002	6	M	M	T	C	м			T		M					
CO3	S	М	M	L	S	М			L		М		I		М	
CO4	М	M	L			М										
CO5	М	L	L			М					М					
CO6	L	S										М				
CO_0	1	1	1	1	1	1	1	1		1			1		1	1

ELECTROSTATICS

Introduction– Sources and effects of electromagnetic fields - Difference between field theory and circuit theory - Charge - Coulomb's law - Continuous charge distribution - Electric field intensity - Electric flux - Gauss's law – Potential - boundary value problems - Laplace and Poisson's equations -Electrostatic energy – Dielectrics -Capacitance.

MAGNETOSTATICS

Current Density - Magnetic field - Magnetic flux - Magnetic flux density - Biot-Savart's law - Ampere's law - Torque – Force - Vector potential - Boundary value problem – Energy Density

ELECROMAGNETIC FIELDS

Faraday's law - Lenz's law - Self inductance - Mutual inductance - Co-efficient of coupling - Dot rule for coupled circuits - Series, Parallel - Inductance of solenoid, Toroid, Maxwell's equations (boundary conditions) - Displacement current - Eddy current.

ELECTROMAGNETIC WAVES

Introduction - Solution of wave equation in free space - Conducting media -Uniform plane wave propagation, phase velocity, Group velocity - Conductors and transmission lines - Pointing vector

FIELD MODELLING AND COMPUTATION

 $\label{eq:problem} Problem \ formulation \ - \ boundary \ conditions \ - \ solutions \ - \ analytical \ methods \ - \ variables \ separable \ methods \ - \ conformal \ transformation \ - \ method \ of \ images \ - \ numerical \ methods \ - \ finite \ difference \ method \ - \ finite \ element \ method \ - \ finite \ element \ method \ - \ finite \ element \ method$

Text Books

- 1. John D. Kraus, "Electromagnetics with application" McGraw Hill, 5th edition, 2011.
- 2. William Hayt, "Engineering Electromagnetics", McGraw Hill, New York, 7th edition, 2014.
- 3. Kraus and Fleish, Electromagnetics with Applications, McGraw Hill International Editions, Fifth Edition, 2008.

Reference Books

- 1. K. A. Gangadhar, P.M. Ramanathan, Electromagnetic Field Theory, Khanna Publishers, Sixteenth Edition, 2011.
- 2. Matthew. N.O. Sadiku, "Elements of Electromagnetics", Fourth Edition, Oxford University Press, 1st Indian Edition, 2010.
- 3. AshutoshPramanik, "Electromagnetism Theory and Applications", Prentice-Hall of India Private Limited, New Delhi, 2006.
- 4. Md. Abdus Salam, "Electromagnetic Field Theories for Engineering", Springer Singapore, ISBN: 978-981-4585-65-1, 2014.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Mr. S. Prakash	AP (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

		ME	ASUR	EME	NTS A	ND II	NSTR	UME	NTAT	ION		Catego	ry l	Ĺ	Т	Р	С
17EE(C04	Tota	l Cont	act Ho	ours – 4	45						CC	,	3	0	0	3
17220		Prere	equisit	e – Ba	sic Ele	ectrica	l & Ele	ectroni	ics Eng	gineeri	ng						
		Co-r	requisi	te - NI	L												
Preamb	e																
This com measurer using bri	nent of	currer	nt, volt	tage, p	ower,	energy											
COURS	E OBJ	ЕСТІ	VES														
1		To in	ntrodu	ce the	fundaı	mental	s of el	ectrica	l and e	electror	nic inst	ruments	5				
2		To u	nderst	and th	e work	king pr	inciple	es of th	e elec	trical a	nd elec	etronic r	neters				
3		To U	Inderstand the working principle of AC, DC bridges. http://www.action.com/actional-action														
4		To in	ntrodu	ce vari	ous da	ata stor	age ar	ıd disp	lay de	vices.							
5		To i	ntrodu	ce vari	ous tra	ansduc	ers an	d the d	lata aco	quisitic	on syste	ems.					
COURS	E OUT	COM	ES														
On succ	essful c	omple	tion o	f the c	ourse	, the st	udent	s will	be abl	e to							
CO	1			e func ng inst			nts, ch	aracte	ristics,	, stand	ards ar	nd calib	ration		Ap	ply	
CO	2	Desc	cribe tl	ne wor	king o	f vario	ous eleo	ctrical	and el	ectroni	ic mete	ers		۱	Unde	rstan	ıd
CO	3	Dete	ermine	unkno	wn va	lues u	sing br	ridges.						۱	Unde	rstan	ıd
CO	4	Desc	cribe tl	ne oper	ration	of stor	age an	d disp	lay dev	vices.				I	Unde	rstan	ıd
C0	5	Expl	lain the	e work	ing of	variou	is trans	sducer	s, ADC	C and I	DAC.				Ар	ply	
Mapping	with P	rogran	nme ou	itcome	s and	Progra	mme S	Specifi	ic Outc	comes							
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	Р	PSO2	PS	603
CO1	S	M	L	М	_	М	_	_	S	_	М	-	S		М		М
CO2	M	L	M	M	_	_	_	_	_	_	_	_	M		_		_
CO3	S	M	S	L	_	_	_	S	M	_	_	_	S		М		_
								M									
CO4	М	M	L	S	-	-	-	-'-	-	-	М	М	S		М		-
CO5	S	S	Μ	М	-	-	-	-	-	-	-	М	S		S		-

UNIT - I INTRODUCTION 9

Functional elements of an instrument - static and dynamic characteristics – errors in measurement - statistical evaluation of measurement data - standard and calibration

UNIT - II ELECTRICAL AND ELECTRONICS INSTRUMENTS 9

Principle and types analog and digital ammeters and voltmeters – single and three phase Wattmeters and Energy meter– instrument transformers – instruments for measurement of frequency and phase.

9

9

9

UNIT - III COMPARISON METHODS OF MEASUREMENTS

D.C & A.C potentiometers, D.C & A.C bridges, transformer ratio bridges, self-balancing bridges. Interference & screening – Multiple earth and earth loops – Electrostatic and electromagnetic interference – Grounding techniques.

UNIT - IV STORAGE AND DISPLAY DEVICES

TRANSDUCERS

Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger

UNIT - V

Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers- Elements of data acquisition system – A/D, D/A converters – Smart sensors.

TEXTBOOK

- 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004.
- 2. Doebelin E.O. and Manik D.N., Measurement Systems Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007.

REFERENCES

1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004.

2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997.

3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.

4. John P. Bentley, 'Principles of Measurement Systems', III Edition, Pearson Education, 2000.

COURSE I	DESIGNERS			
Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. P.Selvam	Professor	EEE	selvam@vmkvec.edu.in
2	D.Saranya	AP (Gr-II)	EEE	srnlekha@gmail.com
3	Dr. R. Sankarganesh	Associate Professor	EEE	sankarganesh@vmkvec.edu.in

17EECC05	ELECTRICAL MACHINES – II	Category	L	Т	Р	Credit
I/EECC05		CC	3	0	0	3

PREAMBLE

In a modern world the electric motor especially Alternating current motors and Special applications-oriented motors has played a leading role in the high productivity of modern industry, and it is therefore directly responsible for the high standard of living being enjoyed throughout the industrialized world. Hence the course provides the knowledge about the basic study and performance analyzing techniques of AC machines and Special electrical machines.

PREREQUISITE:17EEES03- Basic of Electrical & Electronics Engineering. **COURSE OBJECTIVES** To determine the voltage regulation of an alternator from its working principles 1 2 To describe the synchronous motor operating principle and analyze the synchronous motor with different excitations. To explain the working principle of single phase and three phase induction motor and determine their applications 3 from their characteristics. To employ the different starting and speed control methods of three phase induction motor. 4 To describe the construction and principle of operation of single phase induction motor and various machines which 5 is involved in special Applications. **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

 CO1: Identify the parts and predetermine the performance of synchronous generator by varies types of voltage regulation methods.
 Remember

 CO2: Explain the principle operation and performance characteristics of synchronous motor.
 Understand

 CO3: Analyze the characteristics of three phase induction motor through its equivalent circuit and circle diagram.
 Analyze

 CO4: Apply suitable starting and speed control methods to enhance the performance of three phase induction motors.
 Apply

CO5: Evaluate the performance of special machines and can able to choose the suitable starting methods of single phase induction motor.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	S	-	-	-	-	М	L	-
CO2	S	М	-	М	-	-	-	М	-	-	-	-	М	М	-
CO3	S	S	-	М	-	-	-	М	-	-	-	-	М	М	-
CO4	S	М	-	М	-	L	-	М	-	-	-	М	S	М	-
CO5	S	L	М	L	L	L	-	Μ	-	-	-	М	S	S	-
S-Stro	ng; M-N	Aedium	; L-Lov	W											•

SYLLABUS SYNCHRONOUS GENERATOR

Basic Principle – Details of Construction - Types of Rotor - Equation of Induced EMF - Effect of Harmonics on Pitch and Distribution Factors - Vector Diagrams of Loaded Alternator - Synchronous Reactance - Synchronous Impedance-Armature Reaction - Voltage Regulation - EMF,MMF,ZPF and ASA methods - Synchronizing and Parallel Operation of Alternator – Salient Pole Synchronous machines- Two Reaction Theory - Determination of Xd and Xq using Slip test - Operating Characteristics - Capability Curves.

SYNCHRONOUS MOTOR

Principle of operation - Starting Methods - Torque Equation - Power Flow within a Synchronous Motor– Power Developed by a Synchronous Motor – Equivalent Circuit - Effect of increased Load with Constant Excitation – Effect of Changing Excitation at Constant Load – V curve and inverted V curve – hunting and Methods of Suppression - Synchronous Motor Applications

THREE PHASE INDUCTION MOTOR

Construction and types of rotor - Principle of operation – Starting torque – Running torque - Condition for Maximum Torque - Slip-Torque equation - Slip Torque Characteristics - Equivalent Circuit- Power Flow Diagram - Losses and Efficiency - Load test - No load and Blocked rotor tests - Circle diagram – Cogging and Crawling - Separation of No Load Losses - Double Cage Rotors - Induction Generator - Synchronous Induction Motor- Applications

STARTING AND SPEED CONTROL OF THREE PHASE NDUCTION MOTOR

Need and necessity of starting and starters - types of starters - stator resistance and reactance starters, rotor resistance starter, auto transformer and star-delta starters – Need of speed control – Types - change of voltage - change of number of poles - change of frequency - cascade connection - slip power recovery scheme.

SINGLE PHASE INDUCTION MOTOR AND SPECIAL MACHINES

Construction of Single Phase Induction Motor - Double revolving field theory - Equivalent Circuit - Load Characteristics - Starting Methods of Single Phase Induction Motor - Variable Reluctance Motor - Stepper Motor - Hysteresis Motor - AC Series Motor - Repulsion Motor - Linear Induction Motor - Universal Motor- Permanent Magnet DC and AC motors – Applications

TEXT BOOKS

1. Nagarath.I.J. and Kothari.D.P., "Electric Machines", T.M.H. Publishing CoLtd., New Delhi, 4th edition 2010.

2. M.G.Say, "Performance and Design of Alternating Current Machines", 3rd Edition, CBS Publisher.

3. B. L. Theraja, A. K. Theraja, "A Text Book of Electrical Technology", Volume II, S.Chand & Company Ltd, New Delhi, 2007.

3. Vincent Del Toro, 'Basic Electric Machines' Pearson India Education, 2016.

REFERENCES

COUDSE DESIGNEDS

1. Gupta., "Theory and Performance of Electrical Machines", Kataria and Sons, 14th edition 2009.

2. A. E. Fitzgerald, Charles Kingsley, Jr.Stephen D. Umans, "Electric Machinery", Sixth Edition, Tata McGraw Hill Publishing Company Ltd., 2002.

3. Raj put R.K, "Electric Machines", Lakshmi publication, fifth edition, reprinted at 2011.

COUR	SE DESIGNEKS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mr.A. Balamurugan	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in
2.	Mr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in
3.	Mr.S.Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

17ECCC05	DIGITAL LOGIC CIRCUITS & DESIGN	Category	L	Т	Р	Credit
T/ECCC03	DIGITAL LOGIC CIRCUITS & DESIGN	CC	3	0	0	3

PREAMBLE

One of the most important reasons for the unprecedented growth of Digital Electronics and systems is the advent of integrated circuits(ICs).Developments in the IC technology have made it possible to fabricate complex digital circuits such as microprocessors, memories and FPGAs etc. This course provides various methods and techniques suitable for a variety of digital system design applications.

PREREQUISITE

17EEES03 - Basics of Electrical and Electronics Engineering

COURSE OBJECTIVES	
1 To understand the various number systems and their conversions.	
2 To learn the Boolean expressions, Boolean postulates and Karnaugh map method to	reduce the variables.
3 To impart the design knowledge of various combinational logic circuits and sequen	tial circuits.
4 To understand the basics of hardware descriptive language.	
5 To design the RTL for various logic circuits.	
COURSE OUTCOMES	
On the successful completion of the course, students will be able to	
CO1. Explain the basic principles of digital system, Logic gates and Boolean laws.	Understand
CO2. Simplify Boolean expression using K-Map techniques.	Appl
CO3. Examine various Combinational circuits using logic gates.	Appl
CO4. Illustrate the operation of sequential circuits using Flip flops	Anal
CO5.Analyze various digital circuits using HDL programming.	Anal

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	L	-	-	-
CO2	S	М	М	L	L	-	-	-	-	-	-	L	S	-	-
CO3	S	S	М	М	М	-	-	-	-	-	-	L	-	М	-
CO4	S	S	Μ	М	М	-	-	-	-	-	-	L	М	М	-
CO5	S	S	М	М	М	-	-	-	-	-	L	L	М	М	М

S- Strong; M-Medium; L-Low

Basics of digital system:

About Digital system, Analog versus Digital, Advantages of processing information in digital form, Number System-Binary,Octal,Decimal & Hexadecimal Number Systems & its Conversion, Complement Arithmetic, Signed Binary Numbers, Binary Codes, Binary Storage And Registers.

Boolean Algebra, Logic Gates & Gate – Level Minimization:

Introduction, Boolean Algebra, basic theorem & properties of Boolean Algebra, Boolean functions, canonical & standard forms, logical operations, logic gates, Integrated circuits, Map method-upto four variable K- maps, Product of Sums (POS) & Sum of Products (SOP) simplification, don't care conditions, NAND & NOR implementations, Exclusive-OR Function, Hardware Description Language(HDL).

Combinational logic:

Introduction, Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder, Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Code Converters, Encoders, Decoders, Multiplexers.

Synchronous Sequential Logic, Register & Counters:

Sequential circuits, storage elements: latches, flip flops, Analysis of clocked sequential circuits, Moore and Mealy circuits ,state diagram, state reduction & Assignment, design procedure, shift registers, ripple counters, synchronous counters.

Design At The Register Transfer Level:

Register Transfer Level Notation, Register Transfer Level In HDL, ASM, Sequential Binary Multiplier, Control Logic, HDL Description Of Binary Multiplier, Design With Multiplexers, Race Free Design, Latch Free Design.

TEXT BOOKS :

- 1. Morris Mano, "Digital Design (with an introduction to the verilog HDL)", Prentice-Hall of India.
- 2. John F. Wakerly, "Digital Design Principles & Practices", 4th edition, Prentice-Hall, 2005.

REFERENCE BOOKS:

1. Stephen D. Brown, and Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design,

- 2nd Edition," McGraw Hill, June, 2007.
- 2. William Kleitz, "Digital Electronics: A Practical Approach with VHDL", Ninth Edition, Pearson, 2002.
- 3. Floyd T.L., "Digital Fundamentals", Charles E. Merrill publishing Company, 1982.
- 4. Tokheim R.L., "Digital Electronics Principles and Applications ", Tata McGraw Hill, 1999.
- 5. Jain R.P., "Modern Digital Electronics ", Tata McGraw Hill, 1999

S.No.	Name of the Faculty	Designation	Department	Mail
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
3	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17EF	ECC06			PO	OWEF	R ELE	CTRO	DNICS			Categor	y L	Т	Р	Cre	edit
											CC	3	0	0	3	3
PREA			volves	tha at	udv of	f vario	us onr	licatio	ns of e	lectroni	c devices	for c	onver	rion	contr	ol and
					•						wide ra					
	-						-	-		-	lecom pr	-				
etc.	y/ u v 1011		<i>uueus</i> , 1	naasti	luipio	uuets,	Trans	portation	on sys	ienn, re	lecom pi	ouuen	<i>,</i> 1010	uicu	i equip	mento
PRER	EOUIS	SITE: 1	17ECC	C20-S	emico	nducto	or Devi	ices and	d Circu	uits.						
COUR																
1				of dif	ferent	types	of pow	ver sem	icondu	ictor dev	vices, swi	itching	chara	acter	istics a	ind
	-	ction ci				51	1				,					
2				operati	ion, ch	aracte	ristics	and pe	rforma	nce para	ameters o	of cont	rolled	and	uncon	trolled
	rectif	iers.														
3	To st	udy the	e opera	tion, o	charac	teristic	es of v	oltage	and cu	irrent so	ource inv	erters	and le	earn	the di	fferent
	modu	lation	techniq	ues, h	armon	ic redu	uction	method	ls.							
4	To u	ndersta	nd the o	operati	on of	switch	ing mo	ode reg	ulators	, choppe	ers and it	's cont	rol.			
5	To st	udy the	e opera	tion of	AC t	o AC	conver	ters, M	latrix c	onverte	rsand app	licatio	ons of	ром	ver elec	etronic
	circu	-	-											-		
COUR																
On the																
	-		_								/residenti		ities		Under	stand
CO2:E	xplain	operation	on and	perform	nance	chara	cteristi	cs ofpo	ower se	micond	uctor dev	ices			Under	stand
CO3:P	redict f	ilters fo	or the g	iven p	owerc	onvert	ers								٨٣	
			_	_											Ap	ргу
CO4: I	ntrepre	t rectifi	iers, inv	verters	andD	C-DC	conve	rters fo	r the g	ivenapp	lication				Ap	ply
COL		- CC 4	- 61	•	•										A	1
CO5: A					_										Ana	lyze
CO6:In	terpret	the per	rformar	nce ofg	given j	power	conver	rter usi	ngPSP	ICE / M	ATLABS	softwa	re		Ap	ply
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	MES	AND	PROG	RAMM	E SPEC	IFIC	OUT	CON	AES	
COS	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	PO10		PO12			PSO2	PSO:
C01	S	L	100	101	M	100	M	100	107	1010	1011	1012	100		1002	100.
~ ~ ~ ~											~					
CO2	S	L									S					
CO3	S	M	M	L	М						S	М	L		S	
	c	11/1	101	L	11/1								L		G	
CO4	S	М	Μ	L	Μ		Μ				S	М	L		S	
CO5	S	S	М	М		Μ			S	S	М		М		S	
	6	2	1V1	IVI					د	د 			IVI		۵	
CO(S	S	М	М	S	М			S	S	S	S			S	
CO6	~															

POWER ELECTRONICS DEVICES

Overview of switching devices - Principles of operation, Characteristics, Protection and Gate drive circuits of Power Diode & Power Transistor, MOSFET, IGBT, SCR and TRIAC - Design of filters.

AC to DC CONVERTERS

Single Phase and Three Phase uncontrolled Rectifiers - Single Phase and Three Phasecontrolled Rectifiers - performance parameters - Dual converters.

DC to AC CONVERTERS

Single Phase and three Phase Voltage Source Inverters - Current source inverter - PWM Schemes - Frequency and Voltage Control - Harmonic reductions.

DC-DC CONVERTERS

Stepdown and stepup chopper – Time ratio control and current limit control – Switching mode regulators Buck, Boost, Buck-Boost.

AC-AC CONVERTERS& POWER ELECTRONIC APPLICATIONS

AC voltage controllers - single phase and three phase cycloconverter - Matrix converters - UPS - SMPS – HVDC systems - Computer simulation of PE circuits.

TEXT BOOKS:

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice HallIndia, 3rd Edition, New Delhi, 2004.
- 2.Ned Mohan, T.M.Undeland, W.P.Robbins, "Power Electronics: Converters, applications and design", John wiley and Sons, 3rd Edition, 2006.

REFERENCE BOOKS:

- 1. Cyril.W.Lander, "Power Electronics", McGraw Hill International, Third Edition, 1993.
- 2. P.S.Bimbra "Power Electronics", Khanna Publishers, third Edition 2003.
- 3. Philip T.Krein, "Elements of Power Electronics" Oxford University Press, 2004 Edition.

4. Muhammad H. Rashid, "Power Electronics Circuits, Devices and Applications", Pearson India Education Services Pvt.Ltd, 3rd Edition, ISBN: 978-93-325-1844-5, 2014.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in									
2	Mr. P. Rajasekaran	Associate Professor	EEE/AVIT	rajasekaran@avit.ac.in									

17EE	CC07		т	RANS	MISSI	ON &	DISTR	IBUTI	ON			tegory	L		P C
			•					iberi				CC	3	0) 3
Distribu	It is cor leling of tion Sys	the contems.	ponents	, enric	h with th	ne fair	knowle	dge in	the rec			ribution le er Transm			vstems
PRERE	QUISI	re: eli	ECTRO	MAG	NETIC	THE	ORY(17	7EECO	C 03)						
COURS	SE OBJ														
1				of elec	ric pow	er syst	em and	to deve	elop ex	pressions	s for the	computati	ion of tra	ansmissi	on
-	line parameters.														
2	To obtain the equivalent circuits for the transmission lines based on distance and to determine the voltage														
3	•	regulation and efficiency. To study different types of insulators and constructional features of HT & LT cables.													
4		To study the classification and functions of major components of substations.													
5	To understand the structure of AC and HVDC Transmission systems and its various operating voltages.														
	SE OUT								5			1	0	0	
On succ	cessful c	ompleti	on of th	e cour	se, the s	tuden	ts will b	e able	to						
CO 1	Explai	n the im	portance	e and tl	ne functi	oning	of trans	missio	n line p	parameter	s.			Unders	tand
CO 2	Model	the tran	smissior	lines	and ana	lyse th	eir perfo	ormanc	e					Analy	ze
CO 3	Explai	n the kn	owledge	of line	e insulat	ors and	d underg	ground	cables	•				Unders	tand
CO 4	Descri	be the co	omponei	nts of s	ubstatio	n and	groundi	ng.						Unders	tand
C0 5	Compa	are the H	IVDC ar	nd AC	systems	and a	nalyse t	he perf	forman	ce of AC	distribu	tion syste	ms.	Analy	ze
Mappin	g with P	rogramn	ne outco	mes ar	d Progr	amme	Specific	e Outeo	omes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L		S	L	М					L	S	S	
CO2	S	М	S		S	L						L	S S L		
CO3		М	М			L	М					М	L		L
CO4		М				М						L			М
CO5	S	М	М			М	М					L			М

TRANSMISSION LINE PARAMETERS

Structure of electrical power system: various levels such as generation, transmission and distribution - Parameters of single and three phase transmission lines with single and double circuits: Resistance, inductance and capacitance of solid, stranded and bundled conductors: Symmetrical and unsymmetrical spacing and transposition - Application of self and mutual GMD - Skin and Proximity effects - Interference with neighboring communication circuits - Typical configuration, conductor types and electrical parameters of 400, 220, 110, 66 and 33 kV lines.

MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Classification of lines: Short line, medium line and long line - equivalent circuits, attenuation constant, phase constant, surge impedance, transmission efficiency and voltage regulation - Sag tension calculation: Factors affecting sag, Support at same level, Effect of ice and wind, Total length of conductor, Equivalent span, Support at different levels - Ferranti effect, Phenomena of corona and its losses.

LINE INSULATORS AND UNDERGROUND

Purpose and requirement of line insulators – material for insulators – pin, suspension, strain, stray and shackle insulators – failure of insulator – testing of insulators – voltage distribution over a string of suspension insulators – string efficiency – equalization of potential across each unit – corona and it's effect (problems in voltage distribution over a string of insulators) Underground cables :- Advantages of cables – classification of cables – belted cable – oil filled cables – advantages and disadvantages of oil filled cables – laying of cables – grading of cables.

SUBSTATION , GROUNDING SYSTEM AND DISTRIBUTION SYSTEM

Classification functions and major components of substations. Bus-bar arrangements – substation bus schemes – single bus, double bus with double breaker, double bus with single breaker, main and transfer bus, ring bus, breaker- and - a half with two main buses, double bus-bar bypass isolators. Importance of ear thing in a substation. Qualitative treatment to neutral grounding and ear thing practices in substations. Feeders, distributors and service mains. DC distributor – 2 - wire and 3 - wire, radial and ring main distribution. AC distribution - single phase and three phase 4 -wire distribution.

AC TRANSMISSION & HVDC TRANSMISSION

Typical layout of AC power supply scheme – influence of voltage on conductor materials – limits of line voltage – Kelvin's law – It's limitations – OH lines –line supports – various types of supports with their applications – spacing between conductors – length of span – sag calculations for the over head– effect of ice covering and wind over the line – calculations of sag at the time of erection – when the supports are at equal level and at unequal level –skin effect – ferranti effect , High voltage DC transmission – HVDC projects in INDIA and abroad – advantages and disadvantages of HVDC transmission – basics of protection of HVDC system.

ТЕХТВООК

1. B.R.Gupta, 'Power System Analysis and Design', S.Chand, New Delhi, 2003.

- 2. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, 2002.
- 3. Veerappan.N and Krishnamurthi .S.R,' Power Systems Switch Gear and Protection', S.Chand Edition 2009.
- 4. Ravindranath, B and Chander, N, 'Power System Protection and Switchgear', Wiley Eastern Ltd., 1977

REFERENCES

- 1. Luces M.Fualkenberry, Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 1996.
- 2. HadiSaadat, 'Power System Analysis,' Tata McGraw Hill Publishing Company', 2003.
- 3. V.K.Mehta, Rohit Mehta,' Principles of power system', S.Chand & Company Ltd, New Delhi, 2013.
- 4. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi.
- 5. Wadhwa, C.L., 'Electrical Power Systems', New Age International (P) Ltd., Publishers, 1995.
- 6. Patra, S.P., Basu, S.K. and Chowduri, S., 'Power systems Protection', Oxford and IBH Publishing Co, 1983.

COURSE D	COURSE DESIGNERS												
Sl.No.	Name of the Faculty	Designation	Department	Mail ID									
1	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in									
2	Dr. R. DEVARAJAN	Associate Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in									
3	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in									

17EECC08	CONTROL SYSTEMS	Category	L	Т	Р	Credit
TTELECOO	CONTROL STOLENIS	CC	3	0	0	3

PREAMBLE

This course shall introduce the analysis and regulation of the output behaviors of dynamical systems subject to input signals. The course focuses primarily on using Laplace and frequency-domain techniques. The course will be useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well as the feedback control of such systems. At the end of this course, one should possess in-depth knowledge of concepts from classical control theory, understand the concept of transfer function and use it for obtaining system response, analyze dynamic systems for their stability and performance, and design controllers (such as Proportional-Integral-Derivative) based on stability and performance requirements.

PREREQUISITE

17EEES03 – Basics of Electrical and Electronics Engineering

COUDS		БСТІ	VEC												
COURS	1			11 1	1.0	1.0			1	11 1	1.			C	
1	syste		the fe	edbacl	c and f	eed-fo	rward	control	; apply	y block (liagram	represe	entation	s of con	trol
2		ind tim ΓLAB.		onse of	given	contro	l syste	m mod	el, vari	ous con	trollers	design	and sim	ulation	using
3	To understand the frequency domain analysis, use of frequency response methods for open loop and closed loop control systems.														
4		To analyze the stability of closed and open loop systems using various methods and to design compensators,													
5	To develop and analyze the state space models.														
COURS	SE OUTCOMES														
	e successful completion of the course, students will be able to I Find Transfer function of systems. Understand														
CO1	Find	Transf	er fund	ction of	t systei	ns.								Unders	stand
CO2	Find	the tir	ne resp	oonse c	of given	n contr	ol syste	em mo	del and	l to desi	gn a coi	ntroller.		Create	
CO3	Find	the fre	quency	y respo	nse of	contro	l systei	n mod	el usin	g freque	ncy res	ponse p	lots.	Analyz	ze
CO4	Anal	yze the	e stabil	ity of t	he con	trol sys	stem ar	nd desig	gn the	suitable	compe	nsators.		Create	
CO5	Appl	y state	space	technic	ques to	mode	contro	ol syste	ms.					Evalua	ite
MAPPI	NG W	ITH P	ROGE	RAMM	IE OU	TCON	IES A	ND PH	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	S	L	S	M	-	-	-	-	-	М	M	S	M	-
CO2	S	M	-	M	S	-	-	M	-	-	-	M	S	M	S
CO3	S	M	-	M	S	-	-	-	-	-	-	M	S	M	-
CO4 CO5	S S	M M	-	M M	S S	- L	M L	-	- M	-	M	M M	S S	M M	S
S- Stron			- 		3	L	L	-	IVI	-	Μ	IVI	3	IVI	-
9- 2000	g, wi-w	Icululi	I, L-L0	vv											

INTRODUCTION TO CONTROL SYSTEMS

Basic elements in control systems – Open and closed loop systems – Mechanical Translational and Rotational Systems, Electrical analogy – Transfer function – Block diagram reduction techniques – Signal flow graphs.

TIME RESPONSE ANALYSIS

Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Effects of P, PI, PID modes of feedback control. Design and Simulation of time domain analysis using MATLAB.

FREQUENCY DOMAIN ANALYSIS

Frequency response analysis, ,Frequency domain specifications, Correlation between time and frequency responses, Minimum phase, Non minimum phase and all pass transfer functions, Bode Plot, Polar Plot, Constant M and N circles, Nichols chart, Design and Simulation of frequency domain analysis using MATLAB.

STABILITY ANALYSIS AND COMPENSATOR DESIGN

Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis, Introduction to Root-Locus Techniques, Construction of root loci, Nyquist stability criterion. Lag, Lead and Lag-Lead networks, Compensator design using Bode plots & Root Locus.

STATE VARIABLE ANALYSIS, AND APPLICATION OF CONTROL SYSTEMS

Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time systems. Synchros – AC servomotors- DC Servo motors - Stepper motors- Tacho generator.

TEXT BOOKS

- 1. K. Ogata, "Modern Control Engineering", 4th Edition, Pearson Education, New Delhi, 2003.
- 2. I.J. Nagrath & M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.
- 3. C.J.Chesmond. "Basic Control System Technology", Viva low priced student edition, 1998.
- 4. R.C.Dorf and R.H.Bishop, "Modern Control Systems", Addison-Wesley, 1995 (MATLAB Reference).
- 5. M. Gopal, "Control Systems: Principles and Design", 3rd Edition, McGraw, Hill, 2008
- 6. Nise N.S, "Control Systems Engineering", 6th Edition, Wiley India, 2016.

REFERENCES

1.Benjamin C Kuo, "Automatic Control system", Prentice Hall of India Private Ltd., New Delhi, 2009.

- 2. R.C. Dorf and R.H. Bishop, "Modern Control Systems", 12th Edition, Prentice, Hall, 2010.
- 3. http://www.mathworks.com/access/helpdesk/help/toolbox/control/
- 4. Control Systems N. K. Sinha, New Age International (P) Limited Publishers.

5. S.N.Sivanandam, S.N.Deepa, Control System Engineering using Mat Lab, 2nd Edition, Vikas Publishing, 2012.

CO	COURSE DESIGNERS												
S	S.No.	Name of the Faculty	Designation	Department	e-mail id								
	1	N.P. GOPINATH	Assistant Professor GR-II	EEE / AVIT	gopinathnp@avit.ac.in								
	2	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in								

17EE(CC09	POWER SYSTEM ANALYSIS	Category	L	Г	Р	Credit			
			CC	3	0	0	3			
PREAM			C	1			. 1.			
		rstand the necessity and to become familiar with the modeli ferent methods to analyse power system for the purpose of s	• • •		-		ts and to			
C	appiy un	refer methods to analyse power system for the purpose of s	system planning and	1 opera	uo					
PRERE	QUISIT	E: NIL								
COURS	E OBJE	CTIVES								
1	To mo	del the power system under steady state operating condition	1.							
2	To stu	dy the power flow models and apply efficient numerical me	thods to solve the p	owerf	low	v prob	lem			
3	To mo	del and analyse the power systems under abnormal (or) faul	lt conditions.							
4	To mo	del & analyse the transient behaviour of power system when	n it is subjected to a	ı fault.						
5	To the	study the Importance of stability analysis in power system	planning and opera	tion.						
COURS										
		completion of the course, students will be able to								
CO1: De	escribe th	e modelling of power system and components.				Un	derstand			
CO2: So	lve an so	lution of Load flow problems.				I	Apply			
CO3: Ex	amine th	e various types of Symmetrical faults.				А	nalyze			
CO4:Exa	Examine the various types of Unsymmetrical faults. Analyze									
CO5: Ex	xplain th	e importance of stability analysis in power system planning	and			Und	anatand			
ope	eration.					Und	erstand			

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L		S	L					L		S	S	М
CO2	S	S	М		S				L		S	М	S	S	М
CO3	S	S	S		S	М	М		М		S		S	S	М
CO4	S	S	S		S	М	S		S		S		S	S	М
CO5	S	S	L		S						S	S		М	
CO6	S	L	L	L	S						S	М	S	М	
S- Stron	S- Strong; M-Medium; L-Low														

INTRODUCTION

Modern power system (or) electric energy system - Analysis for system planning and operational studies – basic components of a power system. Generator models Transformer model transmission system model - load representation. Single line Diagram – per phase and per unit representation – change of base. Simple building algorithms for the formation of Y-Bus matrix and Z-Bus matrix.

POWER FLOW ANALYSIS

Importance of power flow analysis in planning and operation of power systems. Statement of power flow problem - classification of buses into P-Q buses, P-V (voltagecontrolled) buses and slack bus. Development of Power flow model in complex variables form and polar variables form. Iterative solution using Gauss-Seidel method including Q-limit check for voltagecontrolled buses – algorithm and flow chart. Iterative solution using Newton-Raphson (N-R) method (polar form) including Q-limit check and bus switching for voltage-controlled buses - Jacobian matrix elements – algorithm and flow chart. Development of Fast Decoupled Power Flow (FDPF) model and iterative solution – algorithm and flowchart; Comparison of the three methods.

FAULT ANALYSIS - BALANCED FAULTS

Importance short circuit (or) for fault analysis - basic assumptions in fault analysis of power systems. Symmetrical (or) balanced three phase faults – problem formulation – fault analysis using Z-bus matrix – algorithm and flow chart. Computations of short circuit capacity, post fault voltage and currents.

FAULT ANALYSIS - UNBALANCED FAULTS

Introduction to symmetrical components – sequence impedances – sequence networks – representation of single line to ground, line to line and double line to ground fault conditions. Unbalanced fault analysis - problem formulation – analysis using Z-bus impedance matrix – (algorithm and flow chart.).

STABILITY ANALYSIS

Importance of stability analysis in power system planning and operation – classification of power system stability - angle and voltage stability – simple treatment of angle stability into small-signal and large-signal (transient) stability Single Machine Infinite Bus (SMIB) system: Development of swing equation - equal area criterion - determination of critical clearing angle and time by using modified Euler method and Runge-Kutta second order method. Algorithm and flow chart.

TEXT BOOKS

- 1. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Publishing Company, New Delhi, 2002.
- 2. Olle. I. Elgerd, 'Electric Energy Systems Theory An Introduction', Tata McGraw Hill Publishing Company Limited, New Delhi, Second Edition, 2003.

REFERENCES

- 1. P. Kundur, 'Power System Stability and Control, Tata McGraw Hill, Publications, 1994.
- 2. John J. Grainger and W.D. Stevenson Jr., 'Power System Analysis', McGraw Hill International Book Company, 1994.
- 3. I.J. Nagrath and D.P. Kothari, 'Modern Power System Analysis', Tata McGraw-Hill Publishing Company, New Delhi, 1990.
- 4. .K.Nagasarkar and M.S. Sukhija Oxford University Press, 2007

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in								
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in								

17ECCC10	LINEAR INTEGRATED CIRCUITS	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBLE

Linear Integrated circuits enables the students to have an insight knowledge on fundamentals of various integrated circuits. The designed course makes the students to work on the various applications of the Integrated Circuits. This subject helps the students to design, model and develop amplifier circuits, comparators, regulators, filters, timer, D/A and A/D converters and PLL.

PRER	REQUI	SITE													
	17EC	CC01	- Semi	conduc	tor De	vices									
COUF	RSE OI	BJEC7	FIVES)											
1	To U	ndersta	and the	basics	of Inte	grated	Circui	ts and	its fabr	ication.					
2	To get familiarized with operational amplifiers and its Characteristics.														
3	To Construct various circuits using operational amplifier and analyze its performance.														
4		0			0		0	rators,	regulat	tors, filters	s and tir	ners circ	uits.		
5				basic c	concept	ts of Pl	LL.								
	JRSE OUTCOMES														
	the successful completion of the course, students will be able to														
	. Describe the Concepts of Fabrication of active and passive components Understand														
	Interpre		-		-							Apply			
	-		-			-		-	ional A	mplifier.		Analyze			
	Design			<u> </u>			<u> </u>					Analyze			
	Designi		-					iits.				Analyze			
CO6. /	Analyz	e the va	arious	functio	nal blo	ocks of	PLL.				1	Analyze			
MAPI	PING V	NITH	PROC	RAM	ME O	UTCC	MES .	AND F	'ROG	RAMME	SPECI	FIC OU	JTCOM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	М	-	-	-
CO2	S	М	М	М	М	-	-	-	-	-	-	М	-	-	-
CO3	S	S	М	М	М	-	-	-	-	-	-	M	S	-	М
CO4	S	S	М	М	М	-	-	<u> </u>	-	-	-	Μ	Μ	-	-
CO5	S	S	М	М	М	-	-	<u> </u>	-	-	-	M	-	М	-
CO6	S	S	Μ	М	Μ	-	-	<u> </u>	-	-	-	Μ	Μ	М	-
C Char		Madin													

S- Strong; M-Medium; L-Low

INTEGRATED CIRCUIT FABRICATION AND CHARACTERISTICS

Integrated Circuit Technology -Basic Monolithic Integrated Circuits-Epitaxial Growth-Masking and Etching-Diffusion of Impurities-Transistors for monolithic circuits-Monolithic Diodes-Integrated Resistors-Integrated Capacitors and Inductors-Monolithic -Circuit Layout-Additional Isolation Methods-Large Scale and Medium Scale Integration.

OPERATIONAL AMPLIFIER

Basic operational Amplifier - Ideal Operational Amplifier - Operational Amplifier Internal Circuits - Examples of IC Op Amps - FET Operational Amplifiers - DC Characteristics - AC Characteristics - Analysis of Data Sheets of an Op Amp.

OPERATIONAL AMPLIFIER APPLICATIONS

Basic Op Amp Applications – Instrumentation Amplifiers – AC Amplifiers – V to I and I to V Converters – Op Amp Circuits Using Diodes - Sample and Hold Circuits - Log/Antilog Amplifiers - Adder/ Sub tractor -Multiplier and Divider – Differentiator and Integrator – Operational Transconductance Amplifier-Pspice Simulation Tools.

COMPARATORS, REGULATORS, FILTERS AND TIMERS

Comparators - Square, Triangular and Sawtooth wave Generators, Series Op Amp Regulators - IC Voltage Regulators - 723 General Purpose Regulators - RC Active Filters - Active Filters using OTA's, Timer -Description of Functional Diagram – Monostable and Astable Operation – Schmitt Trigger

PLL, D/A AND A/D CONVERTERS

PLL - Basic Principles - Phase Detectors/ Comparators - Voltage Controlled Oscillator - Low Pass Filter -Monolithic PLL – PLL Applications – Basic DAC Techniques – A–D Converters – DAC/ ADC Specifications.

TEXT BOOKS:

1. D. Roy Choudhury, Shail B. Jain, "Linear Integrated Circuits", New Age International Publishers, 5th Edition 2018.

2. Jacob Millman, Chirstos C.Halkias, "Integrated Electronics", Tata Mc-GRAW Hill, Edition, 3rd Edition, 2010

REFERENCE BOOKS:

- 1. Robert F Coughlin, Fredrick F.Driscoll," Operational Amplifiers and Linerar Integrated Circuits", Phi Learning,6th Edition,2009.
- 2. Sergio Franco,"DesignwithOperational Amplifiers and Analog Integrated Circuits", Tata Mc-GRAW Hill ,4th Edition, 2016.

COU	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Departm	Mail ID
			ent	
1	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Ms. R. Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17ECCC07	MICROCONTROLLERS &	Category	L	Т	Р	Credit					
TILCCCO	ITS APPLICATIONS	СС	3	0	0	3					
PREAMBL	E	I				I					
developme they have architecture hardware f	Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development in VLSI technology, microcontrollers evolve which function similar to microprocessors but they have most of the peripherals built on-chip. This course makes the students to be familiar with the architecture and programming of Microcontrollers. This course also introduces the architecture and hardware features of PIC 16F877 and ARM7 (LPC2148) microcontrollers.										
PREREQUISITE - Nil											
COURSE (COURSE OBJECTIVES										
1 To	learn the concepts of microprocessors	and knowledge of	interfacing of	devices.							
2 To	study the Architecture of 8051 mic	crocontroller									
3 To (develop skill in simple program wri	ting of microcontr	oller								
4 To s	tudy the interfacing and applications	of microcontroller									
5 To s	tudy the advanced microcontrollers.										
COURSE (OUTCOMES										
On the succ	On the successful completion of the course, students will be able to										
CO1. Expla	in the concept of microprocessor and	interfacing devices				Understand					
CO2. Expla	in the architecture and function of 805	51 microcontroller				Apply					
CO3. Desig	n and implement programs on 8051 M	licrocontroller				Analyze					

CO4. Design and implement applications using 8051 Microcontroller

CO5. Illustrate various applications using advanced Microcontrollers.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	Μ	-	-	-	-	-	-	М	S	-	-
CO2	S	S	S	-	Μ	-	-	-	-	-	-	М	-	-	-
CO3	S	М	М	-	Μ	М	-	-	-	-	-	М	-	-	-
CO4	S	S	М	-	Μ	Μ	-	-	-	-	-	М	М	М	-
CO5	S	М	S	-	Μ	Μ	-	-	-	-	-	М	М	М	Μ
S- Stro	S- Strong; M-Medium; L-Low														

Analyze

Analyze

INTEL 8086 MICROPROCESSOR & I/O INTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization – Signal Description of 8086 - Addressing modes – Data Transfer Instruction – Arithmetic Instruction - Branching Instruction - Program Transfer Instruction – simple programs- Programmable Peripheral Interface 8255 – Programmable Communication Interface 8251 USART – Programmable Interrupt Controller 8259A – Direct Memory Access Controller 8257-Programmable Interval Timer 8253 – Keyboard/Display Controller 8279.

INTEL 8051 MICROCONTROLLER

Introduction to 8 bit microcontroller – architecture of 8051- Signal descriptions of 8051- Role of PC and DPTR- Flags and PSW- CPU registers- Internal RAM & ROM- Special Function Register-Counter & Timers- Serial Communication.

ASSEMBLY LANGUAGE PROGRAM OF INTEL 8051

Interrupt- Addressing Mode- Data Transfer Instruction- Arithmetic Instruction- Logical Instruction- Jump Loop & Call Instruction- I/O Port Programming.

INTERFACING AND APPLICATION OF INTEL 8051

LCD Interfacing - A/D and D/A Interfacing- Sensor Interfacing- Relays and Optoisolators- Stepper Motor Interfacing- DC Motor Interfacing.

ADVANCED MICROCONTROLLERS

PIC 16F877 microcontroller – Architecture On chip ADC, $I^2C - SPI - Watchdog timer - ARM7$ (LPC2148) microcontroller – Architecture and applications.

TEXTBOOKS:

- 1. Muhammad Ali Mazidi and Janica Gilli Mazidi, The 8051 microcontroller and embedded systems, Pearson Education, 5th Indian reprint, 2003.
- 2. Frank D. Petruzella. "Programmable Logic Controllers", McGraw-Hill Book, Company, 1989

REFERENCE BOOKS:

- 1. B.P. Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. Embedded Controller Hand book, Intel Corporation, USA.
- 3. Microcontroller Hand Book, INTEL, 1984.
- 4. Ajay V.Deshmukh, "Microcontrollers- Theory and applications", Tata McGraw-Hill, publisher, 2005.

	KSE DESIGNERS			
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Mr.S.Selvam	Assistant Professor	ECE	selvam@avit.ac.in
2	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
3	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in

Category L Т Р Credit **17EECC10** POWER SYSTEM OPERATION AND CONTROL CC 3 0 0 3 PREAMBLE To become familiar with the preparatory work necessary for meeting the next day's power system operation and the various control actions to be implemented on the system to meet the minute-to-minute variation of system load. PREREOUISITE :17EECC09- POWER SYSTEM ANALYSIS **COURSE OBJECTIVES** 1 Have an overview of system load variation, reserve requirements, operation and control of power system. Give an insight into the role of speed governing mechanism in load frequency control, concept of control area, 2 modeling and analysis of load frequency control loop. 3 Give knowledge of excitation systems and the methods of voltage control. 4 Study the economic dispatch of generated power. 5 Provide adequate knowledge of the functions of energy control center, SCADA system and the security control. **COURSE OUTCOMES** On the successful completion of the course, students will be able to Understand CO1: Define the load curves and load duration curve. Apply CO2: Apply real power control, reactive power control to different cases Understand CO3: Explain the techniques to control power flows, frequency and voltage. CO4: Solve Economic dispatch, Unit commitment problems at different loads using Apply conventional and modern methods. Understand CO5: Define computer control of power system CO6: Design the controllers to maintain power system reliability Create MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO₂ PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S S --S ------S Μ Μ ----------CO2 --S S ---S ---------------S Μ --CO3 -----------------_ S Μ Μ ----М Μ CO4 S S Μ S S S S --------__ ------_ CO5 S S --------S --------S ------CO6 S ----Μ Μ -----------------___ S- Strong; M-Medium; L-Low

SYLLABUS INTRODUCTION

System load – variation - load characteristics - load curves and load-duration curve (daily, weekly and annual) - load factor - diversity factor. Importance of load forecasting and simple techniques of forecasting. An overview of power system operation and control and the role of computers in the implementation. (Qualitative treatment with block diagram).

REAL POWER - FREQUENCY CONTROL

Basics of speed governing mechanism and modeling - speed-load characteristics – load sharing between two synchronous machines in parallel. Control area concept LFC control of a single-area system. Static and dynamic analysis of uncontrolled and controlled cases. Integration of economic dispatch control with LFC. Two-area system – modeling – static analysis of uncontrolled case - tie line with frequency bias control of two-area system - state variable model.

REACTIVE POWER-VOLTAGE CONTROL

Basics of reactive power control. Excitation systems – modeling. Static and dynamic analysis - stability compensation - generation and absorption of reactive power. Relation between voltage, power and reactive power at a node - method of voltage control – tapchanging transformer. System level control using generator voltage magnitude setting, tap setting of OLTC transformer and MVAR injection of switched capacitors to maintain acceptable voltage profile and to minimize transmission loss.

COMMITMENT AND ECONOMIC DISPATCH

Statement of economic dispatch problem – cost of generation – incremental cost curve - co-ordination equations without loss and with loss, solution by direct method and λ - iteration method. (No derivation of loss coefficients).Statement of Unit Commitment problem – constraints; spinning reserve, thermal unit constraints, hydro constraints, fuel constraints and other constraints. Solution methods - Priority-list methods – forward dynamic programming approach. Numerical problems only in priority-list method using full-load average production cost.

COMPUTER CONTROL OF POWER SYSTEMS

Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions - system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions. Network topology – state estimation - security analysis and control. Various operating states (Normal, alert, emergency, in-extremis and restorative). State transition diagram showing various state transitions and control strategies.

TEXT BOOKS

1. Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2003.

2. Chakrabarti&Halder, "Power System Analysis: Operation and Control", Prentice Hall

of India, 2004 Edition.

REFERENCE BOOKS

1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Third Edition, Tata

McGraw Hill Publishing Company Limited, New Delhi, 2003. (For Chapters 1, 2 & 3)

2. L.L. Grigsby, 'The Electric Power Engineering, Hand Book', CRC Press & IEEE Press, 2001.

3. HadiSaadat, "Power System Analysis", (For the chapters 1, 2, 3 and 4)11th Reprint 2007.

4. P.Kundur, 'Power System Stability and Control' MC Craw Hill Publisher, USA, 1994.

5. Olle.I.Elgerd, 'Electric Energy Systems theory an introduction' Tata McGraw Hill Publishing Company Ltd. New Delhi, Second Edition 2003.

0001				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in

17EECC11	SOLID STATE DRIVES	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBLE:

Solid State Drives, both ac and dc types are standardized versions for general-purpose applications. Others are intended for specific tasks. In any case, motors should be selected to satisfy the dynamic requirements of the machines on which they are applied without exceeding rated motor temperature. Thus, the first and most important step in motor selection is determining load characteristics, torque and speed versus time.

COUP	RSE OF	BJECT	IVES												
1	Desc	ribe the	basics	and a	dvanta	iges of	electr	ic drive	es.						
2	Illust	rate sin	gle pha	ase and	d three	phase	contro	olled re	ctifier	based d	c drive.				
3	Inter	oret var	ious do	to dc	conve	rter to	pology	based	dc dri	ve.					
4	Desc	ribe the	operat	tion of	VSI a	nd CS	I drive	in ind	uction	motor d	rives.				
5	Expla	ain the	workin	g of st	epper	motor	, SRM	and Bl	LDC m	notor dri	ve Syste	em.			
COUR	RSE OU	JTCON	MES												
	succes			n of tl	ne cou	rse, sti	udents	will be	able to	0					
CO1: I	Explain	the bas	sics and	l adva	ntages	ofele	ctric di	rives						Under	stand
CO2: I	: Illustrate single phase and three phase controlled rectifier based dc drive Apply														
CO3: 1	Interpre	t variou	is dc to	dc co	nverte	r topo	logy ba	ased dc	drive					Apply	
CO4: I	Explain	the ope	eration	of VS	I and (CSI dr	ive in i	nductio	on mot	or drive	S			Unders	stand
CO5: I	Describ	e the w	orking	of ste	pper m	otor, S	SRM a	nd BLI	DC mo	tor drive	e system	l		Unders	stand
MAPI	PING V	VITH I	PROG	RAM	ME O	UTCO	OMES	AND I	PROG	RAMM	IE SPE	CIFIC	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L													
CO2	S	М	L	М			S		L		S	М			L
	S	М	L	М			S		L		М	М		L	М
CO3			I								S			т	М
CO3 CO4	М	L									~			L	IVI

Electric Drives

Advantage of solid state electric drives - Parts and choice of electrical drives – Status of DC and AC drives -Torque-speed characteristics of motor and load - Selection of Motor power rating - Thermal model of motor for heating and cooling - Classes of duty cycle - Determination of motor rating - Control of Electric drives - Modes of operation - Speed control and drive classifications - Closed loop control of drives.

DC Motor Drives

DC motor and their performance - Speed control - Braking Controlled rectifier fed DC drives - Chopper controlled DC drives.

Induction Motor Drives

Speed control – Stator control-Inverter fed induction motor drives - Rotor resistance control and slip power recovery schemes - Static control of rotor resistance - Vector control of induction motor- Speed Estimation methods – Slip calculation – Direct Synthesis from state equations – Direct Vector control without Speed signal.

Synchronous Motor Drives

Speed control - Inverter fed synchronous motors – Vector control of Synchronous motor – Sensorless control – Trapezoidal SPM machine – Sinusoidal PM Machine.

BLDC Motor and SRM Drives

Operation and control of BLDC motor, Stepper motor and switched reluctance motor drives.

Text Book

1. G. K. Dubey: Fundamental of Electrical Drives - Narosa Publishing House, Chennai, 2004.

Reference Books

- 1. Bimal K.Bose Modern Power Electronics and AC Drives Pearson Education Asia Publication, 2003.
- 2. R.Krishnan Electric motor drives Modeling, analysis and control, Pearson Education, New Delhi, 2003.
- 3. Muhammad H.Rashid, Power Electronics Circuits, Devices & Applications Pearson Education India Publication, New Delhi, II Edition, 2007.
- 4. Ned Mohan, Tore Undeland & William Robbins, Power Electronics : converters Applications and Design-John Willey and sons 2003.
- 5. Gnanavadivel, "Solid State Drives", Anuradha Publications, Chennai, ISBN-10: 8184721528, Chennai, 2010.

COUR				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKCEC	sankarganesh@vmkvec.edu.in
2	Mr. P. Rajasekaran	Associate Professor	EEE/AVIT	rajasekaran@avit.ac.in

17EECC12	PROTECTION & SWITCHGEAR	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBL

To review the over voltages (or) surges due to the phenomena of switching operations and lighting discharge. Also, to study propagation, reflection and refraction of these surges on the equipment their impact on the power system grid.

PREREQUISITE:

17EECC05-Electrical Machines-II

COUR	COURSE OBJECTIVES							
1	To study the basic principles, construction and operation of various protection relays.							
2	To understand the protection schemes of various electrical equipment and application of CTS and PTS.							
3	To study the theory of arc phenomena and arc interruption.							
4	To understand construction, operation and capacitive merits of various types of circuit breakers.							
5	To study protection schemes against over voltages.							
COUF	COURSE OUTCOMES							
On t	On the successful completion of the course, students will be able to							

CO1: Describe the operating principles of various relays and their construction	Understand						
CO2: Compare the various protection systems for power system apparatus.	Analyze						
CO3: Classify the various types of circuit breakers and their working							
CO4: Construct the Protective methods of Power system against over voltages.	Create						
CO5: Design the basic idea about integrated protection.	Create						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

		-	-						-	-					-
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	S	L	-	М	-	М	S	-	-	-	L	М	-
CO2	М	М	М		-	М	L	М	S	-	-	-	L	М	-
CO3	М	М	S	М	-	М	М	М	S	-	-	-	L	М	-
CO4	М	S	S	L	-	М	L	М	S	-	-	-	М	М	-
CO5	М	L	-	L	-	-	-		S	-	-	-	М	М	-
S- Stron	S- Strong; M-Medium; L-Low														

RELAYS -PRINCIPLES & OPERATION

Need for protection – relay terminology – definitions – zones of protection - essential qualities of protective relays. Over current relays directional, distance and differential, under frequency, negative sequence relays - static relays – microprocessor-based relays.

APPARATUS PROTECTION

Apparatus Protection - generator and Transformer Protection, Protection of bus bars, transmission lines, CT's & PT's and their application in protective schemes.

THEORY ARC QUENCHING

Theory of arcing and arc quenching – RRRV – Current Chopping and Capacitive Current breaking – D.C. circuit breaking.

CIRCUIT BREAKERS

Switchgear – fault clearing and interruption of current - various types of circuit breakers - selection of circuit breakers - testing of circuit breakers- intelligent circuit breakers

PROTECTION AGAINST OVERVOLTAGES

Protection against over voltages due to lightning and switching - arcing grounds - Peterson coil - ground wires - surge absorber and diverters Power system earthing – neutral earthing - basic ideas of insulation coordination

TOTAL HOURS : 45

TEXT BOOKS

- 1. Veerappan.N and Krishnamurthi .S.R,' Power Systems Switch Gear and Protection', S.Chand Edition 2009.
- 2. Ravindranath, B and Chander, N, 'Power System Protection and Switchgear', Wiley Eastern Ltd., 1977.
- 3. Chakrabarti .A, Soni .M.L, Gupta .P.V, 'A text book on power system Engineering', Dhanpat rai & Co. pvt. Ltd., 1998.
- 4. Badri Ram, Vishwakarma, "Power System Protection and Switchgear", 2nd Edition, Tata McGraw Hill, New Delhi, 2012.

REFERENCE BOOKS

- 1. Wadhwa, C.L., 'Electrical Power Systems', New Age International (P) Ltd., Publishers, 1995.
- 2. Patra, S.P., Basu, S.K. and Chowduri, S., 'Power systems Protection', Oxford and IBH Publishing Co, 1983.
- 3. Sunil.S.Rao, 'Switchgear and Protection', Khanna Publishers, New Delhi, 1986
- 4. Y.G. Paithankar and S.R. Bhide, "Fundamentals of Power System Protection", 2nd Edition, Prentice Hall of India, New Delhi, 2010.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.A.BALAMURUGAN	Associate Professor	EEE/VMKVE C	balamurugan@vmkvec.edu.in
2.	Mr.Rattan kumar	Assistant Professor (Gr-II)	EEE/AVIT	Rattan.eee@avit.ac.in

17ECCC22	EMBEDDED	Category	L	Т	Р	Credit
	SYSTEM	CC	3	0	0	3

PREAMBLE

We can easily find embedded systems everywhere in our daily lives. The numbers of embedded systems are rapidly growing especially in wireless and web applications. The embedded systems market is one of the fastest growing areas in the world. By name, an embedded system is a special-purpose computing device designed to perform dedicated functions. Some of the embedded systems with real-time constraints are called real-time embedded systems. An embedded system consists of its hardware and software.

PREREQUISITE -

COURSE OBJECTIVES

1 To Understand the about designing of an embedded system for commercial applications.										
2 To the features, architecture and programming of PIC and ARM microcontrollers										
To apply the interfacing peripherals with microcontrollers.										
4 To design the communication protocols in a Microcomputer system.										
5 To apply and develop the fundamentals of real-time operating system in an embedded system.										
COURSE OUTCOMES										
On the successful completion of the course, students will be able to										
CO1. Describe the working of the Programmable Logic Controllers operations Apply										
CO2. Develop the programming in ladder diagram design Apply										
CO3. Generate a interface peripherals with microcontrollers. Apply										
CO4. Generate the communication protocols in application specific. Analyze										
CO5. Develop a design embedded system in real time. Evaluate										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES										
COS PO1 PO2 PO3 PO4 PO5 PO06 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03										
CO1 M										
CO2 S L										
CO3 S L M S M -										
CO4 S S L M - M -										
CO5 S S M S M S L S S M M - M										
S- Strong; M-Medium; L-Low										

Introduction to Embedded : Processor Embedded into a System, Embedded Hardware Units and Devices in a System, Embedded Software in a System, Examples of Embedded Systems, Embedded System on-chip (Soc) and Use of VLSI Circuit Design Technology, Complex Systems Design and Processors, Design Process in Embedded Systems, Formalization of System Design, Design Process and Design Examples, Classification of Embedded Systems.

PIC Microcontroller : PIC 16F877 MCU, Architecture, Features, Memory and memory map, I/O ports, Timers and CCP Devices, ADC, Interrupts, Instruction format, Addressing Modes, Instruction Set, Programming with MPLAB IDE.

ARM Based Microcontrollers : Introduction to 16 bit Processors, ARM Architecture, ARM cortex M3, 16 bit ARM Instruction set, Thumb Instruction set, Exception Handling in ARM, Porting Linux in ARM, Assembly and C programming.

Interfacing I/O Devices and Communication Protocols : LED, liquid crystal display, Motor (DC, Servo, Stepper), Relays, Keypad, Keyboard, Touch screen, Sensors (thermocouple, force, displacement), SD card, Infrared connectivity, Serial communication protocols (UART, I2C, SPI, CAN, USB, LIN), Parallel communication protocols (PCI, ISA), Wireless communication networks (Bluetooth, Xbee, Wifi, GSM), Global positioning system receivers, Embedded Systems and the internet.

Multitasking and the Real Time Operating System: The challenges of multitasking and real-time, Achieving multitasking with sequential programming, RTOS, Scheduling and the scheduler, Developing tasks, Data and resource protection- the semaphore, Examples using Salvo Real-time operating systems.

TEXTBOOKS:

1. Raj Kamal, "Embedded Systems- Architecture, Programming and Design", Second Edition, Tata McGraw-Hill Publications, 2008.

2. Yifeng Zhu, "Embedded Systems with ARM Cortex-M3 Microcontrollers in Assembly Language and C", E-Man Press LLC; 1st edition, 2014.

REFERENCE BOOKS:

1. Tim Wilmshurst, "Designing Embedded Systems with PIC microcontrollers-Principles and Applications", Newnes Publications, 2007.

2. Julio Sanchez Maria P.Canton, "Microcontroller Programming: The microchip PIC", CRC Press, Taylor & Francis Group, 2007.

3. Martin Bates, "Interfacing PIC microcontrollers-Embedded Design by Interactive Simulation", Newnes Publication, 2006.

4. Muhammad Ali Mazidi, Rolin McKinlay, Danny Causey, "PIC Microcontroller and Embedded Systems: Using Assembly and C for PIC18", Prentice Hall publications, 2007.

COUP	KSE DESIGNERS			
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Mr.S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in
2	Mr.S.Selvam	Assistant Professor	ECE	selvam@avit.ac.in

											Categ	ory L	Т	Р	Credit
17EEC	CC13		H	IIGH '	VOLT	AGE I	ENGIN	NEERI	NG		CC	3	0	0	3
PREAM The understar course c generation equipme	course nding of omprel on and	f high v hends t meas	oltage j the con uremei	phenom cept on t of h	nena, an f solid nigh vo	d to pro , liquid oltages	esent th l and g and c	e basica aseous current	s of hig dielec	h voltage trics. Tl	e insulati he itine	ion desi raries p	gn and troduce	techniqu the me	ethod on
PRERE	QUISI	TE					1	NIL							
COURS	SE OB.	IECTI	VES												
1			anding of OH		h volta	ige tec	hnolog	y and	its app	lication	s, Insula	ation de	esign ir	genera	al and
2	To U	Unders	tand bi	reakdo	wn me	chanisı	ms in s	olids, l	iquids	and gas	es				
3	Ana	lyze tra	ansient	over v	oltages	s and d	esign p	orotecti	on.						
4		nalyze pensate		bility	of close	ed and	open l	oop sy	stems ı	ising va	rious m	ethods	and to	design	
5		Apply on the Apply of the Apply		stic tes	ts to ex	kamine	the qu	ality o	f insula	ation an	d apply :	statistic	approa	ch to ar	alyze
COURS	SE OU	ГСОМ	IES												
On the s	uccess	ful con	npletio	n of th	e cours	e, stud	ents w	ill be a	ble to						
CO1		•	causes r voltag		ffects	of over	voltag	es and	protec	tion of <u>p</u>	power s	ystem		Under	stand
CO2	Class	sify the	e differ	ent bre	akdow	n mech	nanism	s in Ga	ases, lio	quids an	d solids	5.		Analyz	ze
CO3										mpulse		s.		Under	stand
CO4	Expl curre		variou	is meas	sureme	nt tech	niques	of hig	h volta	ges and	high			Analyz	ze
CO5	Scru	tinize	the Me	asuren	nent of	High A	AC, D	C and	Impuls	e Volta	ges and	Curren	ts	Analyz	ze
CO6	Testi	ng of l	nigh vo	ltage e	electric	al pow	er appa	aratus						Apply	
MAPPI					-	-	-	-	-	-				-	
COS	PO1	PO2	PO3	PO4	PO5	PO6		PO8			PO11				
CO1	S	L	L	М		S	S		L	L	М	L	M	S	S
CO2	Μ	S	М	М	L		М	L			S	М	S	L	L
CO3	L	L	S			L			Μ				Μ	L	
CO4	L							Μ		L	L	М			
CO5	S		М		L			М			М	М			М
CO6	S	L	L	L	S	L	L	S	М	М	S	S	Μ	S	М
S- Stron	g; M-M	Iediun	n; L-Lo	W											
							0177		C						
							SYL.	LABU	3						

OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION COORDINATION

Causes of over voltages and its effects on power system – Lightning, switching surges and temporary over voltages - protection against over voltages -System faults and other abnormal conditions-Principles of insulation co-ordination.

ELECTRICAL BREAKDOWN IN GASES, SOLIDS AND LIQUIDS

Gaseous breakdown in uniform and non-uniform fields - Corona discharges - Vacuum breakdown - Conduction and breakdown in pure and commercial liquids - Breakdown mechanisms in solid and composite dielectrics.

GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS

Generation of High DC, AC, impulse voltages and currents – Tripping and control of impulse generators.

MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS

Measurement of High voltages and High currents - Digital techniques in high voltage measurement.

HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS

Testing of Insulator - Bushings - Isolators, Circuit breakers - Cables - Transformers - Surge Arresters - Tan Delta measurement - Partial Discharge measurement - Radio interference measurement - International and Indian Standards.

TEXT BOOKS

1. M. S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, 1995.

2. Kuffel, E and Zaengl, W.S., 'High Voltage Engineering Fundamentals', Pergamon Press, Oxford, Londan.1986

3. High voltage engineering, Farouk A M Rizk; Giao N Trinh, CRC Press, [2014] ©20 ©2014

REFERENCES

- 1. E. Kuffel, W. S. Zaengl and J.Kuffel, "High Voltage Engineering Fundamentals", 2nd Edition, Butterworth - Heinmann Publisher, 2000.
- 2. L. L. Alston, 'High Voltage Technology', 1st Edition, Oxford University Press, 1968.
- 3. T.J.Gallagher and A.J Pearmain, "High Voltage Measurement, Testing and Design", 2nd Edition, Wiley. New York, 2007.
- 4. C.L Wadwa, "High Voltage Engineering", 3rd Edition, New Age International, New Delhi, 2012.
- 5. R.D. Begamudre, "High Voltage Engineering (Problems and Solution)", 1st Edition, New Age International, New Delhi, 2010.

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in
2	R. SATHISH	Assistant Professor	EEE / VMKVEC	sathish@vmkvec.edu.in

17EECC14	ELECTRICAL MACHINES AND DRIVES	Category	L	Т	Р	Credit
		CC	3	0	0	3

Preamble

In a modern world the electric drives are essential for all the applications especially in mechanical engineering the Electrical drives represent a dominant source of mechanical power in various applications in production, material handling, and process industries etc. hence the course provides the magnificent knowledge about basic concepts, performance analysis of conventional and solid state control of electric drives which can help the mechanical engineer to understand and implement the concepts to various applications in engineering sector.

Prerequisite

17EEES03 - Basics of Electrical & Electronics Engineering A. Basic Electrical Engineering

Course Objectives

- 1. To select appropriate electrical drive system based on their thermal factors.
- 2. To interpret the characteristics of DC motors and perform appropriate conventional control techniques for desired applications.
- 3. To interpret the characteristics of AC motors and perform appropriate conventional control techniques for desired applications.
- 4. To employ the solid state speed control techniques for DC drives for efficient control.
- 5. To employ solid state speed control techniques for AC drives for proficient and loss less control.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Define the concepts of an electrical drive system and choose a suitable motor drive for different applications.	Remember
CO2. Explain the working principle with their characteristics and Predetermine the performance of DC drives with various load and unload conditions.	Understand
CO3.Interpret the conventional speed control methods of DC motors with starting, braking Methods.	Apply
CO4.Identify the parts of AC motors, Predetermine the performance of AC motors with their characteristics and Interpret the conventional speed control methods of AC motors with starting and braking methods.	Analyse
CO5. Evaluate the proficient control of AC and DC drives by utilize the power electronics concepts.	Evaluate

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO24.	S	М			L								М	М	S
CO25.	S	S	М										М	М	
CO26.	Μ	L	М	S									М	М	М
CO27.	S	S		М									М	М	М
CO28.	S	Μ	S	Μ	М						М	М	S	М	М

S- Strong; M-Medium; L-Low

Syllabus

Introduction

Electrical Drives - Basic Elements of a drive system – Types of Electrical Drives –Multi quadrant operation of Electric Drive -Classes of duty – Selection of power rating for drive motors -Factors influencing the choice of electrical drives – Heating and cooling curves – Applications .

DC Drives

Constructional details of DC Motor – Principle of operation DC Motor – Back EMF and torque equations – Types of DC Motors – Characteristics of DC Motors – Starting of DC Motors – Types of Braking – Conventional Speed Control of DC Motors: Armature Voltage Control, Field Flux Control, Ward Leonard Control. Stepper motor: Permanent magnet stepper motor – Principle of operation – Applications.

AC Drives

Construction and operational details of Single and Three Phase Induction Motors – Types – Slip – Torque Equations – Speed-Torque Characteristics – Types of Starters – Types of Braking – Conventional Speed Control of Induction Motors – Construction and operational details of synchronous motor – Starting methods- types of Excitation -V curve and inverted V curve-Servomotor- Applications.

Solid State Drives and Speed Control of DC Drives

Introduction of Solid state Drives- Functional block diagram and advantages of Solid state Drives – Converter – Phase control- Single Phase and Three Phase Fully controlled Converter: Principle of operation and waveforms of single phase and three phase fully controlled converter fed DC drive – Chopper - Control strategies- Choppers Fed DC Motor Drive – Applications.

Solid State Speed Control of AC Drives

Inverter, AC voltage controller and Cycloconverter - Voltage Source Inverter and Current Source Inverter – VSI fed Three Phase Induction Motors – CSI Fed Three Phase Induction Motors- Cycloconverter Fed Induction Motor Control -Voltage/Frequency Control of induction motor, Static Rotor Resistance Control – Static Scherbius and static Kramer Drives block diagram and explanation – Applications.

TEXTBOOKS

1 Gopal.K.Dubey,"Fundamentals of Electrical Drives" Narosa Publishing House, 2001

2 Theraja,B.L and Theraja, A.K., "A text book of Electrical Technology – Volume II (AC & DC Machines)" S.Chand & Company Ltd., New Delhi, 2016.

REFERENCES

- 1 VedamSubrahmanyam, "Electric Drives Concepts and Applications" Tata McGraw Hill Publishing Company Ltd., New Delhi, 1998.
- 2 M.D.Singh and K.B. Khanchandani, "Power Electronics", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2008

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in
2	Mr.N.P.Gopinath	Assistant Professor	EEE/AVIT	gopinathnp@avit.ac.in

17EEC	C15			FIFC	тріс	AT TE	ECHN		V		Catego	ory L	Т	Р	Credit
1/EEC	C15			ELEC				OLUG	T I		FC	3	0	0	3
	PREAMBLE This course is concerned with the constructions, characteristics and applications of various electrical nachines and transformer.														
PREREC	PREREQUISITE 17EEES03- Basic of Electrical & Electronics Engineering														
COURS	E OBJ			- Dasic		cuicai	& Elev	luome	s Eligi	lieering					
1	To gain knowledge about the working principle, construction, applications of DC machines														
2	To familiarize construction, operation, testing of transformers.														
3	To g	ain kn	owledg	ge abou	t the c	onstruc	ction, o	peratio	on and	applicat	ions of I	DC mae	chines		
4	To g	ain kn	owledg	e abou	t const	ructior	n, princ	iple of	operat	tion and	perform	nance o	f induc	tion m	achines.
5	To understand the construction, operation of special machines.														
COURS	E OUI	ГСОМ	IES												
On the su	iccessf	ùl con	npletion	n of the	e cours	e, stud	ents wi	ill be a	ble to						
CO1	Expla mach		e cons	structio	on, cha	aracter	istics	and aj	pplicat	ions of	DC		Unde	rstand	
CO2	Analy	yze the	e perfoi	rmance	of dif	ferent (ypes o	f DC n	nachin	es			Ana	lyze	
CO3	Expla	ain the	funda	mental	s and o	peratic	on of T	ransfor	mer				Unde	rstand	
CO4	Anal	yze the	e perfoi	mance	of dif	ferent (ypes o	f Trans	sforme	r			Ana	lyze	
CO5	Expla mach		e cons	tructio	n, ope	eration	of A	C maa	chines	and sp	pecial		Unde	rstand	
MAPPIN	IG W	TH P	ROGE	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12	PSO1		2 PSO3
CO1	S	Μ	Μ	М	-	L	-	-	-	М	М	L	S	Μ	-
CO2	М	S	-	L	L	-	-	L	L	-	S	-	S	M	-
CO3	М	Μ	Μ	S	-	-	-	-	-	L	-	L	S	Μ	-
CO4	S	S - M M M L L L - S - S M -								-					
CO5	S	S M M M L - L - M -													
S- Strong	S- Strong; M-Medium; L-Low														

D.C GENERATORS AND DC MOTORS

Principle of operation of DC Machines- EMF equation – Types of generators – Magnetization and load characteristics of DC generators, DC Motors – Types of DC Motors – Characteristics of DC motors – 3-point starters for DC shunt motor – Losses and efficiency – Swinburne's test – Speed control of DC shunt motor – Flux and Armature voltage control methods.

TRANSFORMERS

Principle of operation of single phase transformer – types – Constructional features – Phasor diagram on No Load and Load – Equivalent circuit, Losses and Efficiency of transformer and Regulation – OC and SC tests – Predetermination of efficiency and regulation.

THREE PHASE INDUCTION MOTOR

Principle of operation of three-phase induction motors – Slip ring and Squirrel cage motors – Slip-Torque characteristics – Efficiency calculation – Starting methods.

ALTERNATORS

Alternators – Constructional features – Principle of operation – Types - EMF Equation – Distribution and Coil span factors – Predetermination of regulation by Synchronous Impedance Method – OC and SC tests.

SPECIAL MOTORS

Principle of operation - Synchros-Synchronous reluctance motor -Stepper Motors - Switched reluctance motor-AC servomotor-AC tachometers- Shaded pole motors-Capacitor motors -Characteristics

TEXT BOOKS

1. "Introduction to Electrical Engineering "- M.S Naidu and S. Kamakshaiah, TMH Publ.1995

- 2." Basic Electrical Engineering" T.K. Nagasarkar and M. S. Sukhija, Oxford University Press, 2005
- 3. "Electrical Machines" Er. R.K. Rajput, Laxmi Publications, 5th Edition 2016

REFERENCES

1. "Theory and Problems of basic electrical engineering" - I.J. Nagarath and D.P Kothari, PHI Publications 2016

2. "Principles of Electrical Engineering "- V.K Mehta, S. Chand Publications.2008

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
2	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in

17EECC16	POWER ELECTRONICS AND DRIVES	Category	L	Т	Р	Credit
		СС	3	0	0	3

PREAMBLE

Power electronics deals with the processing and control of 'raw' electrical power from an electrical source such as an AC mains supply, a battery bank, a photovoltaic array, or a wind turbine into a form and quality suitable for a particular electrical load. It is an enabling technology with a very wide range of applications, such as a cell phone charger, a personal computer, a microwave oven, an MRI system, a hybrid electric car, or even the electrical grid. As can be noted, the power levels handled can vary from a few watts to several hundreds of megawatts. In this course, we will study the basic principles behind the power electronic circuits used in most such power processing applications. These circuits include power converters for DC to DC, DC to AC and AC to DC applications.

PREREQUISITE-NIL

COU	RSE OBJECTIVES						
1	To get an overview of different types of power semiconductor devices and their switching characteristics.						
2	To understand the operation, characteristics and performance parameters of controlled rectifiers.						
3	To study the operation, switching techniques and basics topologies of DC-DC switching regulators.						
4	To learn the different modulation techniques inverters and to understand harmonic reduction methods.						
5	To study the operation of AC voltage controller.						
COU	RSE OUTCOMES						
On t	he successful completion of the course, students will be able to						
	The basic semiconductor physics to the properties of real power semiconductor devices and differentiate from wer devices.	Remember					
	The concepts of operation of AC-DC converters in steady state and transient state of both continuous and tinuous modes.	Understand					
CO3: 0	Classify and design choppers for simple electrical application	Apply					
CO4: circuit	Identify the proper gating sequence and control circuit in operating the single phase and three phase inverter s.	Analyze					
	Analyze the performance parameter, various techniques for analysis and design of AC voltage controller and also various control schemes in cycloconverter.	Analyze					
CO6: Describe the concepts of electric machines. Understa							
~~=	mplement the power electronics concepts to AC & DC drives to made the effective control	Analyze					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	Μ	L	L	-	L	L	L	L	L	L	S	-
CO2	S	S	М	М	L	-	М	-	-	-	-	-	L	S	-
CO3	S	S		Μ	L	М	M-	-	-	-	-	-	L	S	-
CO4	S	S	S	М	S	-	М	-	-	-	-	-	L	М	-
CO5	Μ	S	-	Μ	S	-	М	-	-	-	-	-	М	М	-
CO6	М	S	Μ	S	-	-	М	-	-	-	-	-	М	М	-
CO7	М	М	Μ	S	Μ	М	-	-	-	-	-	-	М	М	-
S- Strong; M-Medium; L-Low-															

POWER SEMI-CONDUCTOR DEVICES

Overview of switching devices – Driver and snubber circuit of SCR TRIAC, GTO, IGBT, MOSFET – Computer simulation of PE circuits.

RECTIFIERS & CHOPPERS

Introduction-2 pulse / 3 pulse and 6 pulse converters – Dual converters. Basic Principles of Choppers - Stepdown and stepup chopper – Time ratio control and current limit control – Buck, Boost, Buck-Boost converters.

INVERTERS & AC - AC CONVERTERS

Single phase and three phase $[120^{\circ} \& 180^{\circ} mode]$ inverters – PWM techniques – Sinusoidal PWM, Modified sinusoidal PWM and multiple PWM. Single phase AC voltage controllers – Multistage sequence control – single phase and three phase cycloconverter.

ELECTRICAL DRIVES

Type of Electrical Drives – Selection & factors influencing the selection – heating and cooling curves – loading condition and classes of duty – determination of power rating – simple problems.

SOLID STATE DRIVES (QUALITATIVE TREATMENT ONLY)

Advantages of solid state drives – D.C. motor control using rectifiers and choppers – control of induction motor by V, V/f and slip power recovery scheme using inverters and A.C. power regulators.

Total Hours : 45

TEXT BOOKS:

1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, 3rd Edition, New Delhi, 2004.

2. G.K. Dubey "Fundamental Electrical Drives" second edition 2002, Narosa Publications, Second edition, 2002.

REFERENCES:

1. Cyril.W.Lander, "Power Electronics", McGraw Hill International, Third Edition, 1993.

- 2. P.S.Bimbra "Power Electronics", Khanna Publishers, third Edition 2003.
- 3. Philip T.Krein, "Elements of Power Electronics" Oxford University Press, 2004Edition.
- 4. N.K.De., P.K.Sen "Electric Drives", Prentice Hall, First edition 1999.
- 5. Pillai, S.K., "A First course on Electrical Drives", Wiley Eastern Ltd., New Delhi, 1982

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mr.A.Balamurugan	Assistant Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in		
2	Mr.N.P.Gopinath	Assistant Professor	EEE/AVIT	Gopinathnp@avit.ac.in		
		(Gr-II)				

17EECC19	ROBOTICS AND AUTOMATION	Category	L	Т	Р	Credit
1,22001/	(THEORY & PRACTICE)	CC	2	0	2	3

PREAMBLE

Robotics is the applied science of motion control for multi-axis manipulators and is a large subset of the field of "Mechatronics" (Mechanical, Electronic and Software engineering for product or systems development, particularly for motion control applications). Robotics, sensors, actuators and controller technologies are continuously improving and evolving synergistically. This course supports the students to design and develop multi-DOF manipulator and wheeled mobile robot.

PREREQUISITE - NIL

COURSE OBJECTIVES

1									
2	To apply the forward kinematic model of multi-degree of freedom to develop a robot arm and v	vheeled							
3	3 To apply a static force and dynamic model of two degrees of freedom to develop robot arm								
4	To indoduce different (Jpes of roboties and demonstrate them to identify different parts and components								
5 To practice with the simulation from simple to six axis robot.									
COU	RSE OUTCOMES								
On th	e successful completion of the course, students will be able to								
CO1.]	Describe the working of the subsystems of robotic manipulator and wheeled mobile robot	Understand							
	Demonstrate the forward kinematic model of multi-degree of freedom (DOF) manipulator and inverse kinematic model of two and three degrees of freedom planar robot arm and wheeled robot	Apply							
CO3.]	CO3. Exhibit the static force and dynamic model of two degrees of freedom planar robot arm Apply								
CO4. Implement the programming and control of robots Apply									
CO5.]	CO5. Predict the Path and trajectory planning for given environment Apply								

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	М	-	-	Μ	S	Μ	-
CO2	S	М	Μ	-	-	-	-	-	Μ	-	-	М	S	М	-
CO3	S	М	Μ	-	-	-	-	-	М	-	-	М	S	М	-
CO4	S	М	Μ	Μ	L	-	-	-	Μ	-	L	L	S	М	М
CO5	S	S	S	Μ	М	Μ	-	-	Μ	-	М	М	S	М	М
S-Stro	ong; M-	Mediu	m; L-L	OW											
SYLL	ABUS														

Introduction to Robotics. Mechanical structure: Robot Configuration - Robot Anatomy, Sub-systems/ Elements of Industrial Robot - Performance characteristics of industrial Robots. Mobile robot locomotion: Introduction, key issues for locomotion, wheeled locomotion-wheel design, geometry, stability, manoeuvrability and controllability. Applications - Progressive advancement in Robots – Point to point and continuous motion applications - Mobile manipulators and its applications.

Kinematic model: Forward Kinematics for two DOF manipulator – Algebraic method, Mechanical structure and notations, Coordinate frames, Description of objects in space, Transformation of vectors, Fundamental rotation matrices (principal axes and fixed angle rotation) Description of links and joints, Denavit-Hartenberg (DH) notation, Forward Kinematics for multi-Degrees of Freedom (DOF) manipulator. Inverse kinematics of two DOF planar manipulator - Manipulator workspace. Mobile Robot kinematics: kinematic model and constraints, Mobile robot workspace-motion control.

Static model: Differential relationship - Velocity analysis – Jacobian matrix – Determination of forces and equivalent torques for joints of two link planar robot arm. Dynamic model: Euler –Lagrangian formulation - Forward and inverse dynamic model for two DOF planar manipulator.

PRACTICE :

Different types of robots based on configuration and application, Different type of links and joints used in robots, components of robots with drive system and end effectors.

SIMULATION BASED PRACTICE :

Forward and Inverse Kinematics using Robo Analyzer, Workspace Analysis of a 6 axis robot

TEXTBOOKS

- 5. S.K.Saha, "Introduction to Robotics", Second Edition, McGraw Hill Education (India) Private Limited, 2014.
- 6. Roland Siegwart and Illah R.Nourbakhsh, "Introduction to Autonomous Mobile Robots", Prentice Hall of India (P) Ltd., 2005.

REFERENCE BOOKS

1. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, "Robotics: Modelling, Planning and Control", First Edition,

Springer-Verlag London,2009

- K.S. Fu, R.C Gonzalez and C.S. Lee, "Robotics- Control, Sensing, Vision and Intelligence", Tata McGraw-Hill Editions, 2008.
- 3. John J.Craig, "Introduction to Robotics, Mechanics and Control", Third Edition, Pearson Education, 2005.
- 4. Mark W.Spong, M.Vidyasagar, "Robot Dynamics and Control", Wiley India, 2009.

COUR	SE DESIGNERS			
S.No	Name of the	Designation	Department	Email ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	S.Prakash	AP(Gr-II)	EEE/AVIT	sprakash@avit.ac.in

17F	ECC81			FLF	CTRI	C CIR	CUIT	SLAF	2		Category	L	Т	Р	Cr	edit
1/1/	LCC01					C CIN		5 LAL	•		CC	0	0	4	,	2
PREA	MBLE															
	0										of engine		appli	catio	ns. Fo	or an
			t 1s obli	gatory	to hav	e the p	ractica	l ideas	about	the Elec	tric Circu	its				
PKEF	REQUIS		NIL													
COUI	RSE OB	OBJECTIVES														
1	Unc	lerstand	d and g	ain kno	owledg	e abou	t circu	it laws	and th	eorems.						
2										nsients.						
							-									
3	Unc	lerstand	d the co	oncept	of reso	nance	in serie	es and	paralle	l circuit	s.					
	RSE OU															
On the	e success	ful con	npletio	n of the	e cours	e, stud	ents wi	ill be a	ble to							
CO1	Ana	yze an	d solve	the El	ectrica	l circu	its						An	alyze	;	
	Kno	wledge	about	circuit	theore	ems and	d apply	in an	alysing	proble	ms in			•		
CO2	2 pow	er syste	em							-			Aj	pply		
CO3	B Perf	orm an	alyse o	f coup	ed circ	cuits an	d trans	sient re	sponse	of circu	uits.		An	alyze	;	
MAP	PING W	ТТН Р	ROGE	RAMM	E OU	TCON	IES A	ND PI	ROGR	AMME	SPECIF		UTCO	OMF	S	
COS		PO2	PO3	PO4	PO5	PO6	-	PO8		PO10		012	PSO			PSO3
C01		S	S	S	S	М	S	-	S	М		М	S		M	-
CO2	S	S	S	S	S	S	S	-	S	М	S	Μ	S	I	M	-
CO3	S	S	S	М	М	М	S	I	S	М	S	L	S	l	M	-
S-Stro	ong; M-N	Aediun	n; L-Lo	W												
							SYL	LABU	S							
	OF EXI															
	Verific		-													
2.	Verific															
3.	Verific					m										
4.	Verific															
5.	Verific		-	-												
6.	Verific		-	•												
7.	Verific	ation o	f Maxi	mum P	ower T	Transfe	r theor	em								
8.	Time D		•													
9.	Time D		•		C trans	sient ci	rcuits									
10	. Series l	Series Resonance Circuit														
11	. Paralle	Resor	nance C	Circuit												
12	2. Three I	Phase F	Power N	Measur	ement	by Tw	o Wat	tmeter	metho	d						
COU	RSE DE	SIGNE	ERS													
S.No	Nai	ne of tl	he Facı	ılty	Ι	Design	ation		Depart	ment		H	E-Mai	1 ID		
1.	R. SAT	HISH			Assi	stant P	rofesso	or	EE	E	sathish	@vm	kvec.e	edu.ir	1	
2.	D. SAI	D. SARANYA AP/GRADE-II EEE														

17ECCC93	SEM	ICON	DUCI	OR D	EVICE	S AND	CIRC	UITS	Cate	gory	L	Т	P	Cred	lit
1/ECCC95				L	AB				C	С	0	0	4	2	
PREAMBLE	£														
The goal of the															
experience by															
To improve	ability	of stu	dents	to desi	ign the	analog	g circui	its with	whic	h serv	ices	for	man	y prac	tical
applications.															
PRERQUIS	ITE:	NIL													
COURSE O	BJECT	TIVES													
1 To ur	nderstai	nd the c	haract	eristics	of a Di	odes.									
	otain th	e chara	cterist	ics and	parame	ters of	transist	ors BJT	/FET.						
						ack amp									
			mance	of wav	eform g	generato	or and v	wave sh	aping ci	ircuits.					
COURSE O															
On the succes															
CO1. Experin													-	ply	
CO2. Determ		±							circuit	S			-	ply	
CO3. Determ		1			1								-	ply	
CO4. Classif					1 0			dback a	mplifie	rs circı	iits.			alyze	
C05. Measure														aluate	
MAPPING V	WITH	PROG	RAM	ME OU	JTCON	MES AI	ND PR	OGRA	MME S	SPECI	FIC (OUI	CC	MES	
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO			PSO2	PS
													01		03
CO1 S	М	М	-	-	-	-	-	Μ	-	-	L		S	-	-
CO2 S	Μ	Μ	-	Μ	-	-	-	Μ	-	-	Ν	1	S	-	-
CO3 S	М	Μ	-	М	-	-	-	Μ	-	-	L	,	S	М	-
CO4 S	S	М	-	-	-	-	-	М	-	Μ	L	,	S	М	-
CO5 S	S	L	Μ	-	-	-	-	М	-	Μ	N	1	S	Μ	-
S- Strong; M	-Mediu	m; L-L	ow									<u>.</u>			
LIST OF EX	EXPERI	MENT	S _												

- 1. To study experimentally the characteristics of Diodes, BJT's and FET's.
- 2. To plot the input and output characteristics of a transistor in CE Configuration and to compute the h parameters
- 3. To study Drain characteristics and Transfer characteristics & to find the Transconductance, Drain resistance and Amplification factor of JFET
- 4. Simulation & Hardware realization of Half wave & Full wave Rectifier with and without Filter.
- 5. Simulation & Hardware realization of Clipping & Clamping circuits..
- 6. Simulation & Hardware realization of Voltage Series Feedback amplifiers and its frequency analysis
- 7. Design, Simulation and Hardware realization of Sinusoidal waveform generators.
 - a. RC Oscillators
 - b. LC Oscillators
- 8. Design and simulation of Power amplifiers
- 9. Frequency Response characterization of Single Tuned amplifier circuit.
- 10. Miniproject.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
2	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17EEC	C82		FI	ГСТІ	DICAI	TEC	UNOI	OCV	LAD		Catego	ory L	Т	P C	redit
		ELECTRICAL TECHNOLOGY LABCC0042													
PREAM	PREAMBLE To acquire knowledge on the working of various DC machines and Transformers.														
PRERE	QUISI	TE					N	IL							
COURS	E OBJ	ECTI	VES				IN	IL							
1	Obta	in the j	perform	nance	and ch	aracter	istics o	fElect	rical m	nachines	5.				
2	Gain	know	ledge a	bout s	peed co	ontrol t	echniq	ues on	DC M	achines					
3	Com	pute th	e effic	iency a	and reg	gulation	n of a s	ingle p	hase tr	ansform	ner.				
COURS	E OUT	ГСОМ	IES												
On the su	iccessf	ul com	pletio	n of the	e cours	e, stud	ents wi	ill be a	ble to						
CO1	Analy mach		e perfo	rmance	e chara	cteristi	cs of d	ifferen	t types	of DC			Anal	yze	
CO2	Com	pute th	e effic	iency a	nd reg	ulation	of a si	ngle p	hase tra	ansform	er.		Evalu	iate	
CO3	Testi	ng of a	DC M	Iachine	e to mo	onitor tl	he effic	ciency.					App	oly	
CO4	Obtai	in the c	charact	eristics	s of AC	C Mach	ines						Арр	oly	
CO5	Expla	ain the	Starte	rs of D	C & In	ductio	n Macł	nines					Unders	stand	
MAPPI	NG WI	TH P	ROGI	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPEC	FIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3
CO1	М	L	М	-	-	-	-	-	S	L	-	-	S	-	M
CO2	Μ	L	М	-	-	-	-	-	S	L	-	-	S	-	Μ
CO3	М	L	М	-	-	-	-	-	S	L	-	-	S	-	Μ
CO4	М	L	М	L	L	-	-	-	S	L	-	-	S	-	М
CO5	М	L	М	-	-	-	-	-	S	L	-	-	S	-	Μ
S- Strong	g; M-M	Iedium	i; L-Lo	W											
							SYLL	ABUS							
LIST O	FEXP	ERIM	ENTS	5											
1. L	oad tes	st on D	C shu	nt moto	or										
				es moto											
3. S	peed c	ontrol	of DC	shunt i	notor										

- 4. Open circuit and load characteristics of DC generator (Self and Separately Excited)
- 5. Load test on single phase transformer
- 6. Swinburne's test
- 7. Load test on 3-phase induction motor.
- 8. No load and blocked rotor test on 3-phase induction motor.
- 9. Load test on 1-phase induction motor
- 10. V and inverted V curve of synchronous motors
- 11. Study of induction motor Starters
- 12. Study of DC Starters.

S.No. Name of the Faculty Designation Department e-mail id 1 D.SARANYA Assistant Professor (Gr-II) EEE/AVIT srnlekha@gmail.com 2 R_SATHISH Assistant Professor EEE/VMKVEC sathish@vmkvec.edu in	COURD	E DEDIGITERO			
1 D.SARANYA (Gr-II) EEE/AVIT srnlekha@gmail.com	S.No.	Name of the Faculty	Designation	Department	e-mail id
2 R SATHISH Assistant Professor EEE/VMKVEC sathish@vmkvec.edu.in	1	D.SARANYA		EEE/AVIT	srnlekha@gmail.com
	2	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in

	CC83		EI	LECTE	RICA	L MA	CHINI	ES-I I	LAB		Categor	у	L	Т	Р	Credit
											CC		0	0	4	2
	MBLE															
	-	-	-		-					nd Transfor						
PRE	REQUIS	SITE :	17EE	ES03-	Basic	s Elec	trical ar	nd Ele	ctroni	cs Engineer	ing.					
COU	RSE OI															
1			-							al machines	•					
2										^C Machines						
3				ciency	and r	egulat	ion of a	singl	e-phas	e transform	ler.					
	RSE OU															
	e succes															
										DC machin	nes.				pply	
	-			-			of a sin	gle-pl	nase tr	ansformer.					alyze	
	Testing						.1	· · ·							aluate	
	Testing						or the ef	ficien	cy.						aluate	
	Explain														pply	
$\frac{MAP}{COS}$	PING V	PO2	PROC PO3	JKAN PO4	PO5		PO7	PO8	PRO	GRAMMI PO10		IFIC PO12		PSO1	PSO2	PSO
$\frac{COS}{CO1}$	S	L	M	F04	FUS	FU0	F07		F09		L	L	<u>~</u>	S	M	F30.
$\frac{CO1}{CO2}$	S S	L	M	-	-	- L	- L	-	S S	L L	L	 M		<u>S</u>	M	-
$\frac{CO2}{CO3}$	S	L	M	-	-	L	L L	-	S	L	L	M		S	M	L
$\frac{CO3}{CO4}$	S	L	M	L	L	L	L	-	S	L	L	M		S	M	
$\frac{COT}{CO5}$	S	L	M	-	-	-		_	S	L	L	L		S	M	-
	ong; M-			OW					5	2	Ľ			5	101	
ວ- ວແ				_U W												
5- SU	0115, 141			20 W												
5- SU				20 W		LIS	ST OF I	EXPE	RIMI	ENTS						
טי - אור ו	-				tor	LIS	ST OF 1	EXPE	ERIMI	ENTS						
1.	Load t	test on L	DC sh	unt moi		LIS	ST OF]	EXPE	ERIMI	ENTS						
1. 2.	Load t Load t	test on I	DC shi DC sei	unt moi ries mo	tor.		ST OF]	EXPE	CRIMI	ENTS						
1. 2. 3.	Load t Load t Speed	test on L test on L contro	DC shi DC sei l of D(unt mot ries mo C shunt	tor. moto	r.					arately I	Excit	ed)			
1. 2. 3. 4.	Load t Load t Speed	test on L test on L contro circuit	DC sh DC set l of D(and lo	unt moi ries mo C shunt ad cha	tor. moto racter	r. istics				ENTS elf and Sept	arately I	Excit	ed)			
1. 2. 3. 4.	Load t Load t Speed Open	test on l test on l contro circuit d test on d	DC shi DC set l of D(and lo dc con	unt moi ries mo C shunt ad cha ipound	tor. moto racter genei	r. istics rator.	of DC §				arately I	Excit	ed)			
1. 2. 3. 4. 5.	Load t Load t Speed Open Load t Load t	test on L test on L control circuit test on t test on L	DC sh DC set l of DC and lo dc con single	unt mos ries mo C shunt ad cha ıpound phase t	tor. moto racter gener transfe	r. istics cator. ormer	of DC §	genera	ator (S	elf and Sept	arately I	Excit	(red)			
1. 2. 3. 4. 5. 6.	Load t Load t Speed Open Load t Load t Open Swinb	test on l control circuit test on l test on l circuit urne's	DC shi DC set l of D and lo dc con single & Sho test.	unt moi ries mo C shunt ad cha ipound phase i rt circi	tor. moto racter gener transfe uit test	r. istics cator. ormer on si	of DC g ngle pha	genera ase tra	ator (S	elf and Sept	arately I	Excit	(red)			
1. 2. 3. 4. 5. 6. 7. 8. 9.	Load t Load t Speed Open Load t Load t Open Swinb Separe	test on L control circuit test on t test on t circuit urne's t ation of	DC shi DC set l of D and lo dc con single & Sho test. f Losse	unt moi ries mo C shunt ad cha ipound phase i rt circi	tor. moto racter gener transfe uit test	r. istics cator. ormer on si	of DC §	genera ase tra	ator (S	elf and Sept	arately I	Excit	(red)			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10	Load t Load t Speed Open o Load t Load t Open o Swinb Separa . Hopki	test on f test on f control circuit test on f test on f circuit urne's ation of nson's	DC shi DC set l of DC and lo dc con single & Sho test. f Losse test.	unt mot ries mo C shunt ad cha pound phase t rt circu es in sin	tor. moto racter gener transfa uit test ngle pi	r. istics rator. ormer on si hase t	of DC § ngle pha ransfort	genera ase tra	ator (S	elf and Sept	arately I	Excit	(red)			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11	Load t Load t Speed Open Load t Load t Open Swinb Separa D. Hopkit	test on L control circuit test on c test on s circuit urne's ation of nson's ner's te	DC shi DC sei l of DC and lo dc con single & Sho test. f Losse test. st on 1	unt moi ries mo C shunt ad cha ipound phase i rt circu es in sir -phase	tor. moto racter gener transfd uit test ngle pl transg	r. istics cator. cormer on si hase t forme	of DC § ngle pha ransfort r.	genera ase tra mer.	ator (S	elf and Sept	arately I	Excit	ed)			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12	Load t Load t Speed Open Load t Load t Swinb Separa Swinb Separa Sumpr Sumpr	test on L control circuit test on t test on t circuit urne's ation of nson's ner's test of three	DC shi DC set l of DC and lo dc con single & Sho test. f Losse test. st on 1 e phase	unt mot ries mo C shunt ad cha ipound phase i rt circu es in sin '-phase e transj	tor. moto racter gener transfd uit test ngle pl transg	r. istics cator. cormer on si hase t forme	of DC § ngle pha ransfort r.	genera ase tra mer.	ator (S	elf and Sept	arately I	Excit	(red)			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13	Load t Load t Speed Open Load t Load t Open Swinb Separa Separa Sumpr Study	test on f test on f control circuit test on f test on f test on f test on f test on f test on f three of three of DC S	DC shi DC set l of DC and lo dc con single & Sho test. f Losse test. st on 1 e phase	unt mot ries mo C shunt ad cha ipound phase i rt circu es in sin '-phase e transj	tor. moto racter gener transfd uit test ngle pl transg	r. istics cator. cormer on si hase t forme	of DC § ngle pha ransfort r.	genera ase tra mer.	ator (S	elf and Sept	arately I	Excit	red)			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 Refer	Load t Load t Speed Open Load t Load t Swinb Separa Swinb Separa Sumpr Study Study Study E. Study	test on L control circuit circuit test on c test on s circuit urne's ation of nson's ner's tel of three of DC S ooks	DC shi DC sei l of DC and lo dc con single & Sho test. f Losse test. st on 1 e phase Starter	unt mol ries mo C shunt ad cha pound phase t rt circu es in sin cr circu s in sin sin sin sin sin	tor. moto racter gener transfd uit test ngle pl transg	r. istics cator. cormer on si hase t forme	of DC § ngle pha ransfort r.	genera ase tra mer.	ator (S	elf and Sept	arately I	Excit	ed)			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 Refer Labor	Load t Load t Speed Open Load t Load t Swinb Separa Swinb Separa Swinb Separa Sumpr Study Study Study Study	test on L control circuit test on t test on t test on t circuit urne's t ation of nson's ner's test of three of DC S ooks eferenc	DC shi DC set l of DC and lo dc con single & Sho test. f Losse test. st on 1 e phase Starter e Man	unt mol ries mo C shunt ad cha pound phase t rt circu es in sin cr circu s in sin sin sin sin sin	tor. moto racter gener transfd uit test ngle pl transg	r. istics cator. cormer on si hase t forme	of DC § ngle pha ransfort r.	genera ase tra mer.	ator (S	elf and Sept	arately I	Excit	red)			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 Refer Labor COU	Load t Load t Speed Open Load t Load t Open Swinb Separa Swinb Separa Study Study Study Study Study Study EStudy	test on L control circuit circuit test on c test on s test on s ation of nson's ation of nson's ter's tel of three of DC S ooks eferenc SIGN	DC shi DC sei l of DC and lo dc con single & Sho test. f Losse test. f Losse test. st on 1 e phase Starter e Man ERS	unt mot ries mo C shunt ad cha pound phase t rt circu es in sin cs in sin cs in sin sin ual	tor. moto racter gener transfd uit test ngle pl transg	r. istics cator. ormer on si hase t hase t forme r conn	of DC § ngle pho ransform r. nections	genera ase tro mer.	utor (S ansfor	elf and Sepo mer.			ed)			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 Refer Labor COU	Load t Load t Speed Open Load t Load t Open Swinb Separa Swinb Separa Study Study Study Study Study Study Study	test on f control circuit test on f test on f test on f circuit urne's f ation of nson's ner's test of three of DC S ooks eferenc	DC shi DC sei l of DC and lo dc con single & Sho test. f Losse test. f Losse test. st on 1 e phase Starter e Man ERS	unt mot ries mo C shunt ad cha pound phase t rt circu es in sin cs in sin cs in sin sin ual	tor. moto racter gener transfd uit test ngle pl transg	r. istics cator. ormer on si hase t hase t forme r conn	of DC § ngle pha ransfort r.	genera ase tro mer.	utor (S ansfor	elf and Sept	arately I		ed)			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 Refer Labor	Load t Load t Speed Open Load t Load t Swinb Separa Swinb Separa Swinb Separa Study	test on L control circuit circuit test on c test on s test on s ation of nson's ation of nson's ter's tel of three of DC S ooks eferenc SIGN	DC shi DC set l of DC and lo dc con single & Sho test. f Losse test. st on 1 e phase Starter e Man ERS Faculty	unt mot ries mo C shunt ad cha pound phase t rt circu es in sin cs in sin cs in sin sin ual	tor. moto racter gener transfa uit test ngle pl trans forme	r. istics cator. ormer on si hase t hase t forme r conn	of DC § ngle pho ransform r. nections	genera ase tro mer.	utor (S ansfor	elf and Sepo mer.	Mail	ID		mkvec.e	edu.in	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 Refer Labor COU S.No	Load t Load t Speed Open Load t Load t Swinb Separa Swinb Separa Swinb Separa Study	test on L test on L control circuit test on S test on S circuit urne's test of three of DC S ooks eference SIGN of the L Devara	DC shi DC sei l of DC and lo dc con single & Sho test. f Losse test. f Losse test. st on 1 e phase Starter e Man ERS Faculty	unt mot ries mo C shunt ad cha pound phase t rt circu es in sin cs in sin cs. ual	tor. moto racter gener transfd uit test ngle pl trans forme	r. istics cator. ormer on si hase t forme r conn Desi	of DC § ngle pho ransform r. nections	genera ase tro mer.	utor (S ansfor D EEE	elf and Sepa mer. epartment	Mail	ID	@v	mkvec.e	edu.in vmkvec	.edu.ir

	MEASUREMENTS AND INSTRUMENTATION LAB Catego y Total Contact Hours – 45 CC												gor	LI	P	C
17EECC	Total Co	ontact H	Iours -	- 45								CC				
84	Prerequi	isite – N	۸IL													
	Co-requ	isite - N	NIL													
Preamble																
To develop transducers		designi	ng and	cond	ucting	g expe	riments	s related	l to ap	plicati	ons of	measur	ring i	nstru	men	ts and
COURSE	OBJECT	IVES														
1	Gain kn	owledg	e abou	t the v	vorki	ng of v	arious	Transd	ucers							
2	To give	exposu	re to A	C, DO	C brid	lges an	d trans	sient me	easure	ment						
3	To train etc	the stu	dents	in the	meas	ureme	nt of d	isplace	ment,	resista	nce, in	ductand	ce, to	rque	and	angle
COURSE	OUTCO	MES														
On success	sful comp	oletion	of the	cours	e, the	stude	nts wi	ll be ab	le to							
CO 1	Analyze	the per	rforma	nce of	f vario	ous tra	nsduce	rs.							App	oly
CO 2	Comput	e the va	alues o	f vario	ous br	idges.									App	oly
CO 3	Testing	of the t	ransfo	rmers	for th	eir eff	iciency	7.							App	oly
CO 4	Knowle	dge abo	out the	conve	ersion	techni	ques.								App	oly
C0 5	About th	ne powe	er and	power	facto	or meas	sureme	ent.							App	oly
Mapping w	vith Progra	amme o	outcom	es and	l Prog	gramm	e Spec	ific Ou	tcome	S						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PS	02	PSO3
CO1	S	S	М	S					S	L		М	S]	M	-
CO2	М	L	Μ						S	L		-	S	1	M	-
CO3	М	L	Μ						S	L		М	-		-	-
CO4	М	L	М	L	L				S	L		-	-		-	-
CO5	М	L	М						S	L		М	_		-	-

Sl No	LIST OF EXPERIMENTS
1	Study of displacement and pressure transducers (LVDT).
2	Measurement of water level using capacitive Transducer
3	Measurement of strain using strain Gauge
4	Study of temperature measuring transducers (Thermocouples).
5	AC Bridges.

6		DC Bridges.											
7		Instrumentation amp	plifiers.										
8		A/D and D/A conve	erter.										
9		Calibration of Curre	ent Transformer										
10		Calibration of Single phase Energy meter.											
11		Calibration of Three phase Energy meter.											
12		Measurement of Th	ree phase power and po	ower factor.									
REFER	EN	CE											
1		Laboratory Reference	ce Manual										
COURS	SE I	DESIGNERS											
Sl.No.	N	ame of the Faculty	Designation	Department	Mail ID								
1	D	Dr. P.Selvam Professor EEE selvam@vmkvec.edu.in											
2	J. Suganthi AP(Gr-II) EEE gopinathnp@avit.ac.in												
3	D	Pr. R. Sankarganesh	Associate Professor	EEE	sankarganesh@vmkvec.edu.in								

			EI	ECTR	ICAL	MAC	HINES	5 – II LA	В	C	ategory	L	Т	Р	Credit
17EE(CC85										CC	0	0	4	2
PREAM	MBLE														
	T	he cou	rse prov	vides b	asic kr	owled	ge abo	ut the A	C machi	nes and	l to pro	vide op	portunity	to ide	ntify and
analyze	the var	ious pe	erformar	nce fact	ors in c	lifferer	nt load	and no-le	oad condi	tions					
COUR	SE OB	JECTI	VES												
			Ų	•					st data an	•			arious fa	actors su	ich as
2 T	`o formι	ılate of	two rea	ction n	nodel o	f salier	t pole		and power nous mach stance.				predeter	mine th	e
									se induct				and ana	lyze the	effect
4 T	'o emplo	by the c	lifferent	startin	g and s	peed co	ontrol 1	nethods	of three p	hase in	duction	motor.			
5 T	'o study	about	construc	ction an	d princ	ple op	eration	of Line	ar and Sy	nchrono	ous indu	ction mo	otor.		
COUR															
On the	success	ful con	pletion	of the o	course,	studen	ts will	be able t	0						1
CO1:Pr	edetern	nine the	e regulat	ion of A	Alterna	tor.									emembe
														r	
CO2: A	nalyze	the Per	formanc	e and p	olot the	charac	cteristic	es of Alte	ernator at	differer	nt load co	ondition	s.		nalyze
CO3:D	etermin	e the ef	fect of e	excitati	on on a	rmatur	e curre	nt and p	ower facto	or of sy	nchrono	us moto	r.	U no	ndersta 1
CO4: E	valuate	the per	rforman	ce of th	ree pha	ase indu	uction	motor th	rough the	load ch	aracteris	stics and	circle	E	valuate
diagran	n.													E	valuate
CO5: A	pply th	e suitał	ole spee	d contro	ol meth	od for	any sp	ecifical a	pplication	ns.				A	pply
MAPP	ING W	ITH P	ROGR	AMMF	E OUT	COMI	ES ANI	D PROG	GRAMM	E SPEC	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	S	S	-	-	-	М	-	-	-	-	L	-	L	L	-
CO2	S	М	L	-	L	М	-	-	-	-	М	-	L	М	-
CO3	S	М	L	S	L	М	-	-	-	-	М	-	L	М	-
CO4	S	L	М	S	L	М	-	-	-	-	L	-	L	М	-
CO5	S	М	S	-	-	-	-	-	-	-	L	-	-	M	-
S- Stroi	ng; M-N	Aedium	n; L-Lov	v V		I	1	1	1		I		L	1	<u> </u>

SYLLA	BUS									
SI N	No		LIST	OF EXPERIMEN	TS					
1		Regulation of 3-pha	ase Alternator by EMF	and MMF methods	S.					
2	2	Regulation of 3-pha	ase Alternator by ZPF	and ASA method.						
3	5	Slip test on 3-phase	test on 3-phase Alternator.							
4	Ļ	Load characteristics	s of 3-phase Alternator	r by bus bar loading	ding					
5	5	V and inverted V co	urve of Synchronous n	notors.						
6	ō	Load test on 3-phas	e Induction motor							
7	1	Load test on 1-phas	e Induction motor.							
8	8	No load and Blocke	ed Rotor test on three J	phase induction mot	or.					
9)	Equivalent circuit a motor.	nd pre – determination	n of performance ch	aracteristics of single-phase Induction					
1	0	Separation of losses	s in three-phase induct	ion motor.						
1	.1	Speed control of the	ree phase induction mo	otor						
1	2	Study of Linear ind	uction motor and Syno	chronous Induction	motor.					
	SE DESI									
S. No. Name of the Faculty Designation Department Mail ID										
1.		Balamurugan	Assistant Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in					
2.	Mr.G.R	amakrishnaprabu	Assistant Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in					

EEE/AVIT

Assistant Professor

(Gr-II)

3.

Mr.S.Prakash

sprakash@avit.ac.in

1	7ECCC82		DIG	ITAL I	LOGIC		CUITS	5 & DI	ESIGN	I Ca	tegory	I	T	Р	Credi
						LAB					CC	0	0	4	2
PREAM															
	ide experier									digital lo	gic circ	uits lik	e comb	inationa	1 and
-	al circuits us	•						on softv	ware.						
-	isite : Basic	Electi	rical ai	nd Elec	tronics	Engin	eering								
	UISITE		-												
1	7EEES03 ·	- Basic	cs of E	lectric	al and	Electr	onics	Engine	eering						
COURS	E OBJECT														
1	•			Ų			Ų			combinat		gic circ	uits.		
2				0			-			ng flip f					
3			udents	about	design	and sir	mulatio	on of lo	ogic cii	rcuits usi	ng HDI	.			
	E OUTCO														
	uccessful co				rse, stu	idents v	will be	able to)				_		
	nstruct vario	0												Apply	
	emonstrate th					0		0			onents			Apply	
	nalyze differ		•	-		•	<u> </u>		-	ents.				Analyz	
	st the variou	U	U			0								Evalua	
CO5. M	easure and re	ecord t	he exp	erimen	tal data	for va	rious d	ligital c	ircuits					Evalua	ite
MAPPI	NG WITH	PROC	GRAM	ME O	UTCO	MES	AND 1	PROG	RAM	ME SPE	CIFIC	OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO.
CO1	S	-	-	-	Μ	-	-	-	Μ	-	-	L	-	-	-
CO2	S	-	-	-	S	-	-	-	М	-	-	L	S	-	-
CO3	S	М	М	Μ	Μ	-	-	-	Μ	-	-	L	-	-	-
CO4	S	М	-	-	Μ	-	-	-	Μ	-	-	L	М	Μ	М
CO5	S	М	-	-	М	-	-	-	Μ	-	-	L	-	Μ	-
S- Stron	g; M-Mediu	m; L-I	Low												
	Experiment														
Hardwar	e Experime	nts													
1.	Design and	-				-	-	-							
2.	Design and	-					•	~ ~							
3.	Design and	-								0	0 0	es			
4.	Design and						•			sing logi	c gates				
5.	Design and	-						-							
6.	Design and														
7.	Design and										gic gate	S			
8.	Design and	-								-					
9.	Design and														
10.	Implement), and	PISO s	hift reg	gisters	using f	flip flops	•				
	e Experime						a .		1 1						
	sign and Si						•			•					
	sign and Si				-		-				-				
	sign and Si		on of 8	to I M	uitiple	xer cire	cuit us	ing bel	iavioui	rai level	inodelin	ıg.			
	E DESIGN		14		•	•									
	Name of the				esignat			De	partm				Iail ID	1	
	Mr.B.Raja				iate Pr			-	ECE ECE		ajaseka valarmatl				
$\frac{1}{2}$		armath	IV	ASSOC	iate Pr	oresso1	r -	1	HUH		aiaiiiiati	u y @ VIIII	vec.eau	.111	
1 2 3	Mrs.S.Val Ms.R.Mot		-	Assista					ECE		nohana				

17FF	ECC86			P	OWFR F	LECTRO)NICS I	AB			Catego	ry L	Т	P (Credit
172					JULKE					-	CC	0	0	4	2
PREAM	BLE												LL	I	
•		•			, i						rcuits. St				
		-								DC-DC (converte	rs, DC-	AC cor	nvertei	s, AC
AC conv	erters a	nd thei	r conti	rol circu	uits for	real wo	rld appl	licatio	ns.						
PREREQ	UISITE :	Nil													
COURSE															
1	To co	nduct	exper	iments	on ser	nicond	uctor c	levice	s to c	btain t	heir cha	racter	istics.		
2	To un	dersta	nd the	e perfo	rmanc	e of sir	igle ph	ase h	alf &	full cor	trolled r	ectifie	r and	AC vo	oltage
Ζ	contro	oller.													
3	To stud	ly the p	erform	ance of	choppe	r & cyclo	conver	ter.							
4	To con	trol the	speed	of a dc	motor a	nd induc	tion mo	otor.							
0011005															
COURSE		_	1.1.												
On the s													1		
	•	-	ormai	nce cha	aracteri	stics of	semic	onduc	tor d	evices i	oy condu	icting		Analyz	е
suitable			C						1.			·		5	
	•	ne per	forma	nce of	control	led rect	lifiers &	i chop	per b	y conal	ucting su	itable		Apply	1
experim		o porfo	rmon	o obor	octorict	ioc of A	Cualta	a o oo r	trollo	r ^Q ovol	oconvort	torby			
conduct	5	•			acterist	ICS OF A	C VOILA	ye cor	itrolle		oconvert	ler by		Analyz	е
	Ū	•			motor	& Ind	uction	moto	r hv	condu	cting su	itahla			
experim		ine sp	eeu t		motor	a mu	uction	moto	гру	CONCLU	sting su	ITADIC		Apply	,
-		PROG	RAMN		COMES	S AND P	ROGRA	MME	SPEC	IFIC OU	TCOMES				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO
			FU3	г04		FUO	FU/	FUO		FUIU		FUIZ	F301		F 30
CO1	S	Μ	L	L	Μ				S		М			S	
CO2	S	М	L	М	М				S		S			S	
CO3	S	М	L	S	М				S		М			S	
CO4	S	М	L	М	S				S		S			S	
S- Stron	g; M-Me	dium; l	L-Low												
	-														
						LISTO	F EXPEF	KIIVIEN	12						
1. Chara	octeristic	s of SC	R& TR	IAC											
2. Chara	cteristic	s of MO	DSFET	and IGI	BT										
3. AC to	DC Half	contro	lled co	onverte	r										
4. AC to	DC fullv	contro	lled co	onverte	r										
5. Volta	5														
5. vona	90 00111	natutel		'PCI											

- 6. Resonant dc to dc converter
- 7. AC Voltage Controller
- 8. Single Phase Cyclo-converter
- 9. Converter fed DC Motor Drive.
- 10. Inverter fed Induction Motor Drive.

Reference Books

Laboratory Reference Manual

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Mr. N. P. Gopinath	Assistant Professor	EEE/AVIT	gopinathnp@avit.ac.in

1760	CC94	т	INIE A	D INT	EGRA	TED	CIDCI			Categ	gory	L	Т	Р	Credit
1/EC	UU94	L	IINCA.		EGNA	IED		01151	LAD	CO	C	0	0	4	2
PREA	MBLE:														
To acqu	uire kno	wledge	e on des	igning	amplifie	er and c	oscillato	or circu	its using	g operati	onal amp	lifiers.			
PRER	QUISIT	$\mathbf{E} - \mathbf{N}$	IL												
COUR	SE OB	JECTI	VES												
1.			<u> </u>		operati		<u> </u>								
2.	•			Ū,	ę	0 11			ę		onal amp	lifiers.			
3.				nctional	lity of tl	he circu	its usin	ig op-a	mp and	IC555.					
	SE OU														
	ne succe		•												
	amplif	ier, Inte	egrator	and Dif	fferentia	ator, etc	•		•	•		0	Inverting	App	ly
CO2	. Realize	e and S	imulate	the cir	cuit for	various	applic	ations 1	using op	erationa	l amplifie	ers.		Ana	lyze
CO3	. Realize	e active	networ	rks usin	ıg drivir	ng poin	t functi	ons and	l transfe	er functio	ns using	simulati	on tools.	Ana	lyze
CO4	. Demor	nstrate	the use	of Phas	e Locke	ed Loop	os (PLL	.) and I	С 555 Т	imers us	ing simu	lation to	ols.	Ana	lyze
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	-	-	-	-	М	-	-	L	-	-	-
CO2	S	S	S	-	М	-	-	-	М	-	-	L	S	М	-
CO3	S	S	S	М	М	-	-	-	М	-	-	L	S	М	-
CO4	S	S	S	М	М	-	-	-	М	-	-	М	-	-	М
S- Stro	ng; M-N	Aedium	i; L-Lov	N				1		I					
	DF EXE 1. Desig 2. Desig 3. Desig 4. Desig 5. Desig 6. Desig 7. Desig 9. Desig 10. Desig RENCE	n of In n of A n of In n of co n of re n of os n of As n of fil n of Di gn and	verting dders ar tegrator mparate ctifiers cillators stable a ters usingital to	nd Subt rs and E ors using using o s using nd Mor ang oper analog nentatio	ractors Differen ig opera peration operation ostable ational conver on of Ph	using o tiators u tional a nal amp onal am Multiv amplifi ter and	peration using op umplific ilifiers. uplifier. ibrators er. Analog	nal amportation peration ers. s using g to Dig	olifier. nal amp	Гimer	ifier.				
COUR	SE DE														
S.No.	Nan	ne of th	e Facu	lty]	Designa	ation		Depar	tment		Ν	Iail ID		
1	R.Kar	thikeya	n		Assista	nt Profe	essor (G	ir-II)	EC	ЪЕ	rrmdkar	thikeyan	@avit.ac	.in	
2	N.Mai	nikanda	a Devar	ajan	Ass	istant P	rofesso	r	EC	ĽE	manikar	dadevar	ajan@vn	nkvec.e	du.in
3	G.Sur	esh kur	nar		Ass	istant P	rofesso	r	EC	СE	sureshku	ımar@vı	mkvec.ed	lu.in	

17EECC87	CONTROL SYSTEMS LAB	Category	L	Т	Р	Credit
T/LLCC0/		CC	0	0	4	2

PREAMBLE

Control Systems simulation Lab consists of multiple workstations, each equipped with an oscilloscope, digital multi-meter, PID trainers, control system trainers and stand alone inverted-pendulum, ball and beam control, magnetic-levitation trainers. This lab also covers the industrial implementation of advanced control systems via different computer tools such as MATLAB and Simulink. PREREQUISITE NIL **COURSE OBJECTIVES** To understand the different ways of system representations such as Transfer function representation 1 and state space representations and to assess the system dynamic response To assess the system performance using time domain analysis and methods for improving it 2 To assess the system performance using frequency domain analysis and techniques for improving the 3 performance To design various controllers and compensators to improve system performance Δ **COURSE OUTCOMES** On the successful completion of the course, students will be able to How to improve the system performance by selecting a suitable controller and/or CO1 Understand a compensator for a specific application Apply various time domain and frequency domain techniques to assess the CO2 Apply system performance Apply various control strategies to different applications(example: Power CO3 Analyze systems, electrical drives etc) Test system controllability and observability using state space representation Analyze and CO4 and applications of state space representation to various systems Create MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 C01 S S L Μ S Μ L S L S Μ _ _ _ _ S S S CO2 L Μ S L Μ L Μ Μ S CO3 S S S L S S Μ _ Μ L Μ Μ S CO₄ S S Μ S L Μ L Μ Μ Μ S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS

- 1. Transfer function of self and separately excited DC Generator.
- 2. Transfer function of Armature and Field controlled DC Motor.
- 3. Transfer function of AC Servomotor.

- 4. Frequency response of Lag, Lead & Lag Lead networks.
- 5. Study of Synchros and DC Stepper Motor
- 6. Transfer function of Ward Leonard method of speed control of DC motor.
- 7. Study of DC Position Control system and study of various transducers
- 8. Study of P, PI and PID Controllers (First Order).
- 9. Analog and simulation of type o and type 1 systems
- 10. Stability analysis of Linear Systems
- 11. Digital simulation of first order systems
- 12. Digital simulation of second order systems

COURD	E DEBIGITERS			
S.No.	Name of the Faculty	Designation	Department	e-mail id
1.	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in
2.	N.P. GOPINATH	Assistant Professor GR-II	EEE / AVIT	gopinathnp@avit.ac.in

	ECC88		P	OWER	SYST	EM SII	MULA	TION I	LAB		Cate	gory	L	Т	Р	Credit
			_								CC	C	0	0	4	2
PREA					1.5				1		1 1	1				1
	and sim			-			-			0	-	аскад	es n	lecessa	ry loi	analysis
PRER	EQUISI		-	<u>u</u> sjou			100 p.10		perati							
COUD																
1	SE OBJ			stom nla	nning	and one	rationa	1 studio								
2	-	_	-	_	-	_				a and na	trucal ca		•			
		-					*				etwork s			.1	1	
3		-					-	-	mple i	nethod,	Gauss-S	eidel	P.F.	metho	od	
4	To study						•									
5	To acqu function	-	perience	e in the	e usage	of sta	ndard	package	es for	the follo	owing a	nalysı	s /	sımula	ation	contro
	SE OUT		ES													
	successfi			of the c	ourse, s	tudents	will be	e able to)							
CO1. T	True la instal					1										
COLE	Explain th	ie powe	r syster	m plann	ing and	i operai	lonal si	ludies						U	Inders	tand
CO2:	Explain t	the proc	cedure of	of bus a	dmittar	nce and	impeda	ance ma	trices a	and netw	/ork					
	Explain t solutions	-	cedure o	of bus a	dmittar	nce and	impeda	ance ma	trices a	and netw	/ork			τ	Inders	tand
	-	5.					•		trices a	and netw	vork			τ		tand alyze
CO3: S	solutions Solve the	s. Power	flow pr	oblems	using C	GS and	•		trices a	and netw	vork			τ	An	
CO3: S CO4: E	solutions Solve the Detect Syn	s. Power : mmetrie	flow pr c and U	oblems Jnsymm	using (netrical	GS and fault.	NR me		trices a	and netw	vork			ι	An An	alyze
CO3: S CO4: E CO5: E	solutions Solve the Detect Syn Describe t	B. Power : mmetric he unit	flow pr c and U commi	oblems Jnsymm itment e	using C netrical econom	GS and fault. ic dispa	NR me		trices a	and netw	vork			t	An An Unde	alyze alyze
CO3: S CO4: E CO5: E CO6: E	solutions Solve the Detect Syn	B. Power 2 mmetric he unit e electro	flow pr c and U commi	oblems Jnsymm itment e etic tran	using C netrical econom sient ci	GS and fault. ic disparcuits.	NR me	thod.				OUT(An An Unde	alyze alyze erstand
CO3: S CO4: E CO5: E CO6: E MAPP	solutions Solve the Detect Syst Describe t Design the	B. Power : mmetria he unit e electro TH PR	flow pr c and U commi omagne OGRA	oblems Jnsymm itment e etic tran	using C etrical econom sient ci OUTC	GS and fault. ic dispa rcuits.	NR me atch	thod.	RAMN	/IE SPE		_		MES	An An Unde	alyze alyze erstand eate
CO3: S CO4: D CO5: D CO6: D	solutions Solve the Detect System Describe the Design the ING WI	B. Power : mmetria he unit e electro TH PR	flow pr c and U commi omagne OGRA	oblems Jnsymm itment e etic tran MME	using C etrical econom sient ci OUTC	GS and fault. ic dispa rcuits.	NR me atch	thod.	RAMN	/IE SPE	CIFIC	_		MES	An An Unde	alyze alyze erstand eate
CO3: S CO4: D CO5: D CO6: D MAPP COS CO1	solutions Solve the Detect Syn Describe t Design the TNG WI PO1	B. Power : mmetric he unit e electro TH PR PO2	flow pr c and U commi omagne OGRA	oblems Jnsymm itment e etic tran MME	using C netrical econom sient ci OUTC PO5	GS and fault. ic dispa rcuits. COMES PO6	NR me atch	thod.	RAMN	/IE SPE	CIFIC O	_		MES PSO1	An An Unde Cr	alyze alyze erstand reate
CO3: S CO4: D CO5: D CO6: D MAPP COS CO1 CO2	solutions Solve the Detect Syn Describe t Design the ING WI PO1 S	B. Power : mmetric he unit e electro TH PR PO2 S	flow pr c and U commi omagne OGRA PO3 -	oblems Insymm itment e etic tran MME PO4 -	using C netrical conom sient ci OUTC PO5 -	GS and fault. ic dispa rcuits. COMES PO6 -	NR me atch S AND PO7 -	thod. PROGI PO8 -	RAMN PO9 -	ME SPE PO10 -	CIFIC O PO11 -	PO12		MIES PSO1 S	An An Unde Cr PSC S	alyze alyze erstand reate 2 PSO: M
CO3: S CO4: D CO5: D CO6: D MAPP COS CO1 CO2 CO3	solutions Solve the Detect Syn Describe t Design the PO1 S S	B. Power : mmetric he unit e electro TH PR PO2 S S	flow pr c and U commi omagne COGRA PO3 - S	oblems Insymm itment e etic tran MME PO4 -	using C netrical conom sient ci OUTC PO5 - S	GS and fault. ic dispa rcuits. COMES PO6 -	NR me atch S AND PO7 - -	thod. PROGI PO8 -	RAMN PO9 - M	ИЕ SPE РО10 - М	CIFIC 0 PO11 - -	PO12 -		MIES PSO1 S S	An An Unde Cr PSC S S	alyze alyze erstand reate 2 PSO M M
CO3: S CO4: D CO5: D CO6: D MAPP COS CO1 CO2 CO3 CO4	solutions Solve the Detect Syn Describe t Design the ING WI PO1 S S S	B. Power : mmetric he unit e electro TH PR PO2 S S S S	flow pr c and U commi omagne OGRA PO3 - S S S	oblems Insymm itment e etic tran MME PO4 - -	using C netrical econom sient ci OUTC PO5 - S - S -	GS and fault. ic dispa rcuits. COMES PO6 - - -	NR me atch S AND PO7 - - -	PROG PO8 - - -	RAMI PO9 - M -	ME SPE PO10 - M -	CIFIC 0 PO11 - -	PO12 - -		MES PSO1 S S S	An An Unde Cr PSO S S S S	alyze alyze erstand reate 2 PSO3 M M M
CO3: S CO4: D CO5: D CO6: D MAPP COS	solutions Solve the Detect Sym Describe t Design the PO1 S S S S S	a. Power : mmetric he unit e electro TH PR PO2 S S S S S S	flow pr c and U commi omagne COGRA PO3 - S S - S -	oblems Insymm itment e etic tran MME PO4 - - - -	using C netrical econom sient ci OUTC PO5 - S - S	GS and fault. ic dispa rcuits. COMES PO6 - - - -	NR me atch AND PO7 - - -	thod. PROGI PO8 - - - - -	RAMN PO9 - M - M	ИЕ SPE РО10 - М - М	CIFIC (PO11 - - - -	PO12 - - - -		MES PSO1 S S S S	An Unde Cr PSC S S S S S	alyze alyze erstand reate 2 PSO3 M M M M M

LIST OF EXPERIMENTS

- 1. Computation of Parameters and Modeling of Transmission Lines
- 2. Formation of Network Matrices and Solution of Networks.
- 3. Power Flow Analysis I: Solution of Power Flow and Related Problems Using
- Gauss-Seidel Method.
- 4. Power Flow Analysis II: Solution of Power Flow and Related Problems Using Newton-Raphson and Fast-Decoupled Methods.
- 5. Short Circuit Analysis.
- 6. Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System.
- 7. Transient Stability Analysis of Multimachine Power Systems.
- 8. Electromagnetic Transients in Power Systems.
- 9. Load Frequency Dynamics of Single and Two-Area Power Systems.
- 10. Unit Commitment and Economic Dispatch in Power Systems.

REFERENCE BOOKS

1. Laboratory reference manual.

~ ~				
No.	Name of the Faculty	Designation	Department	Mail ID
1	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in

17EEC	CC89		S	OLID ST	TATE	DRIV	ES LA	B		Cat	egory	L	Т	Р	Cre	dit
										0	CC	0	0	4	2	2
PREAM	BLE															
This labo	oratory g	ives a	practical	exposure	e to the	e stude	nts to	learn a	bout fu	nction	and sir	nula	atior	n of	AC a	and
DC drives	. The stu	idents v	vill be ab	le to desi	gn and	analyz	ze AC	and D	C drives	5.						
PREREQ	UISITE	: Nil														
COURSE	C OBJEC	CTIVE	S													
			C choppe			-	-		-		-			oerin	nents	
2	•	-	performai	nce chara	cteristi	ics of the	he give	en AC	drive by	y condu	cting s	uita	ble			
	experime		and DC	duisson oir		ain a N			1:1-							
3 COURSE			and DC	driver cii	cuits u	Ising N	IAILA	4B-211	nulink.							
			tion of th			40	he chi									
On the suc		_													Ann	1
CO1: Con				-	-				-						App	Iy
CO2: Ana experimer	-	perform	nance cha	aracterist	ics of A	AC driv	ver circ	cuit by	conduc	ting sui	table			1	Analy	/ze
CO3: Con	struct A	C and I	OC driver	circuits	using N	MATL	AB-Si	nulink	•						App	ly
CO4: Eva Simulation		perform	nance of	the giver	n AC a	nd DC	driver	circui	ts using	MATL	AB-			F	Evalu	ate
MAPPIN	G WITI	H PRO	GRAMN	IE OUT	COMI	ES AN	D PRO	OGRA	MME	SPECI	FIC O	UT	CO	MES	5	
COS			D3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PS	501	PSC	D2 P	SO3
CO1			M M											S		
CO2			$\frac{S}{M}$							G				S		
CO3 CO4			$\frac{M}{S} = \frac{M}{M}$	S S						S S				S S		
S- Strong;				5						5				5		
				LI	ST OI	F EXP	ERIM	ENTS								
1. Co	onverter	fed DC	Motor D													
2. In	verter fed	d Induc	tion Mote	or Drive.												
3. V/	F Contro	ol of VS	I Fed Ind	uction M	otor.											
4. Ro	otor Resi	stance (Control o	f Inductio	on Mot	or.										
5. Sir	nulation	of PWI	M inverte	r fed sing	gle pha	se indi	iction	motor	control							
		•	M inverte	•	-			notor c	ontrol							
		• •	fed induc													
		of VSI	fed induc	tion mote	or driv	e analy	sis									
Reference																
Laborator	y Refere	nce Ma	nual													
COURSE				1			I									
	Name of				esignat			Depar		Mai				1		
	$\frac{\text{Dr. R. Sa}}{\text{Dr. K. P}}$			Associa		tessor	E		1KVEC		argane				c.edu	<u>1.in</u>
2	Dr. K. B	oopath	У	Profess	or			EEE/	AVII	bool	pathyk	@av	vit.a	c.1n		

17ECCC95	MICROCONTROLLERS LAB	Category	L	Т	Р	Credit
		CC	0	0	4	2

PREAMBLE:

Microcontroller is one of the usually used methods in many electronic systems and automatic devices. It is essential to know their operation and how they can be used in automated control system applications. The main objective of this lab course is to gain the practical hands on experience of programming the 8086 microprocessor and 8051 microcontroller and gain knowledge on interfacing of different peripherals to microcontroller. Students can be able to write the assembly language programming skills, knowledge in interfacing devices and real time applications of microcontroller.

PRERQUISITE – Nil

COURSE OBJECTIVES

- 1. To Learns Assembly Language Programming For Arithmetic Operations Using 8051.
- 2. To Study The Various Peripheral Devices And Interfacing With Microcontroller.
- 3. To Expand Writing Skills For Assembly Language Programming For Microcontroller.
- 4. Develop Assembly Language Programs For Various Applications Using 8051 Microcontroller.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Write ALP Programming For Microprocessor And Microcontroller

CO2. Interface Different I/Os With Microcontroller

CO3. Generate Different Waveforms Using Microcontroller

CO4. Design Circuits For Various Applications Using Microcontrollers

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М		S				S	L		М	-	-	
CO2	S	S	М		S	М			S	L		М	S	S	-
CO3	S	S	М		S	М			S	L		М	S	-	-
CO4	S	S	М		S	S			S	L		М	-	М	М

Understand

Apply

Apply

Apply

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS

- 1. 8085 & 8086 Assembly Language Program (ALP) for Arithmetic Operations.
- 2. 8051 Assembly Language Program (ALP) for Arithmetic Operations.
- 3. 8051 Assembly Language Program (ALP) for Logical Operations.
- 4. 8051 Assembly Language Program (ALP) for Bit Manipulation Operations.
- 5. 8051 Assembly Language Program (ALP) for arrange the numbers in Ascending and Descending order.
- 6. 8051 Assembly Language Program (ALP) for Interrupt & UART Operations.
- 7. Interfacing an ADC to 8051 Controller.
- 8. Interfacing DAC to 8051 Controller and generate Square, Triangular & Saw-tooth waveform.

9. Interfacing a Stepper motor to 8051 Controller and operate it in clockwise and anti-clockwise directions.
 Interfacing a Keyboard & Display controller (8279) to 8051 Controller.

REFERENCE

1. Laboratory Reference Manual

COUR	SE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1	Mr. R.Karthikeyan	rrmdkarthikeyan@avit.ac.in
2	Dr. R.Ramani	ramaniapece@gmail.com
3	Mr. N.Manikandadevarajan	manikandadevarajan@vmkvec.edu.in
4	Mr. G.Suresh kumar	sureshkumar@vmkvec.edu.in

17 5 55	CO1		٨		NCED	CON	трлі	SVST	TENA		Cate	gory	L	Т	Р	Credit
	EEEC01 ADVANCED CONTROL SYSTEM EC 3 0 0 3 AMBLE course introduces systematic approaches to the design and analysis of control systems for industriations which aims at giving an adequate exposure in state space analysis, state space controll and management matching and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control, either in the design aceutical and food industries, who are involved with process automation and control with the design aceutical and process automation and control systems RESE OBJECTIVES Gain an understanding of the dynamics of processes and modelling methods Gain an understanding of the design process for continuous and discrete controllers for these systems RSE OUTCOMES Understand Inderstand Inderstand		3													
This cou applicati design, automati pharmac or develo PRERE	Arse introduced in the intervention of the interventin of the intervention of the intervention of the inte	ich a syst gineers and fo of con TE 1. 1 ECTI comp	ims at em, N s emp ood ind ntrol sy 7EECO <u>VES</u> rehens	givin Ion-lin loyed ustries vstems C08 Co	ng an ear sy in va s, who , their ontrol s	adequ ystem, rious are inv applica system ge abou	ate ex stabil industr volved ation, c s it struc	posure ity ana ies, su with p operation	in st alysis. ach as rocess on and	tate space The council the practice of the pra	is of co ce anal urse will rocess, tion and ement	ontrol ysis, ll be ener l con	sy sta of j gy, trol	stems te spa particu water , either	for in ace c lar in ; oil	ndustrial ontroller iterest to & gas,
3	Beco	ome fai	miliar	with th	e metł	nodolo	gies av	ailable	for ap	plying o	control	in sir	gle	loop		
4	Gain	an un	derstar	nding o	of the c	lynami	cs of p	rocess	es and	modelli	ing metl	nods				
5			derstar	nding o	of the c	lesign	proces	s for co	ontinuc	ous and	discrete	cont	roll	ers for	[•] these	<u>,</u>
COURS	E OUT	ГСОМ	IES													
On the s	uccessf	ful con	npletio	n of th	e cour	se, stud	dents w	vill be a	able to							
CO1	Deve	lop the	e math	ematic	al moc	lel of t	he syst	em.				Unc	lers	tand		
CO2					oasic c	oncept	s of sta	ability	and an	alyze th	e	Unc	lers	tand		
CO3	Form	ulate a	and ana	alyze tl	he dese	cribing	functi	ons of	non lii	near sys	tems.	App	oly			
MAPPI	NG W															
COS	PO1	PO2	PO3	PO4			PO7	PO8	PO9	PO10	PO11	PO1		PSO1	PSO2	
CO1	- C	S M	M	-	M	L	- M	-	- \/	-	-	M		- M	- C	S M
CO2 CO3	S	M M	M M	-	M M	L	Μ	-	Μ	-	-	M	+	M M	S -	M
S- Stron				-	141				-	-	-	-		141		
s- suon	g, IVI-IV	iculull	і, L-L(, w												

STATE VARIABLE ANALYSIS

Concept of state – State Variable and State Model – State models for linear and continuous time systems – Solution of state and output equation – controllability and\ observability - Pole Placement – State observer

Design of Control Systems with observers.

PHASE PLANE ANALYSIS

Features of linear and non-linear systems - Common physical non-linearities – Methods of linearising nonlinear systems - Concept of phase portraits – Singular points – Limit cycles – Construction of phase portraits – Phase plane analysis of linear and non-linear systems – Isocline method.

DESCRIBING FUNCTION ANALYSIS

Basic concepts, derivation of describing functions for common non-linearities – Describing function analysis of non-linear systems – Conditions for stability – Stability of oscillations.

STABILITY ANALYSIS

Introduction – Liapunov's stability concept – Liapunov's direct method – Lure's transformation – Aizerman's and Kalman's conjecture – Popov's criterion – Circle criterion.

OPTIMAL CONTROL

Introduction -Decoupling - Time varying optimal control – LQR steady state optimal control – Optimal estimation – Multivariable control design.

TEXT BOOKS

1. I.J. Nagrath and M. Gopal, 'Control Systems Engineering', New Age International Publishers, 2003.

2. Ashish Tewari, 'Modern control Design with Mat lab and Simulink', John Wiley, New Delhi, 2002.

3. Sarkar B.N , 'Advanced Control Systems' Prentice Hall India Learning Private Limited (2013)

REFERENCE BOOKS

1. George J. Thaler, 'Automatic Control Systems', Jaico Publishers, 1993.

2. M.Gopal, Modern control system theory, New Age International Publishers, 2002.

3. Gene F. Franklin, J. David Powell and Abbasemami-Naeini, "Feedback Control of Dynamic Systems", Fourth edition, Pearson Education, Low price edition. 2002.

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
2.	N.P. GOPINATH	Assistant Professor AP.GR-II	EEE / AVIT	gopinathnp@avit.ac.in

17EI	EEC02	2	A	ADVA			PICS I RONIC		VER		Catego	ry L	Т	Р	Cre	edit
					EL.		UNIC	, O			EC(PS) 3	0	0		3
	MBLI		knowle	اد مماد	hout m	odern	nower	electr	onic co	nverter	s and its	annlic	ation	e in	electric	nowe
		-		-			-	ciccu			is and its	appric	ation	5 111	ciccuic	powe
			er SMPS													
PREK	EQUI	SITE :	17EEC	C06 I	ower	Electr	onics.									
		BJECI														
1		<u> </u>	•				•			•	DC-DC sw					
2	To a	nalyse tł	ne opera	tion, cl	haracte	ristics	and per	forman	ce para	meters o	of switchin	g mode	e pow	er co	onverters	•
3	To st	udy the	operatio	on of re	esonant	conve	rters an	d conce	ept of Z	ero volta	age Switch	ing.				
4	To le	earn the	concept	t and c	peratio	on of I	nverters	and d	ifferent	modula	tion techn	iques o	of pul	se w	idth moo	dulate
4	inver	ters and	l to unde	erstand	harmo	nic red	uction 1	nethod	s.							
5	To st	udy the	operatio	on of va	arious J	power	electron	ics app	lication	ns like U	PS and file	ers.				
COUR	RSE O	UTCO	MES													
On the	succe	ssful co	ompletio	on of t	he cou	rse, st	udents	will be	e able t	0						
CO1: E	Explain	the oper	ration. s	witchir	ng techi	niques	and bas	ics top	ologies	of DC-I	DC switchi	ng reg	ulator	s	Under	stand
	_	_			-	-		_	-		f switchin					
convert	-	, the of	peration	, enure		ies and	a peno	manee	purun		5 witemin	5 11100	c po	wei	Analys	se
		the one	pration o	freson	ant cor	werter	s and co	ncent	of Zero	voltage	Switching				Apply	
	•	•						•		U U	techniques		se w	dth	r ppry	
			nd to une								teeninques	or pu		uun	Under	stand
CO5: Il	llustrate	e the ope	eration c	of vario	ous pow	ver elec	ctronics	applica	ations li	ike UPS	and filters				Apply	
MAPF	PING	WITH	PROG	RAM	ME O	UTCO	OMES	AND	PROG	RAMN	AE SPEC	IFIC	OUT	CO	MES	
COS	PO1	PO2	PO3	PO4				PO8	PO9	PO10		PO12			PSO2	PSO
CO1	S	М		S			М				L		Ν	1	L	
CO2	S	М		L						М	М	М	Ν	1	S	
CO3	S	L	1	М	S						М		L	_	L	
CO4	S	L	1	S		M	М			M	S	М	N	1	S	М
CO5	S	L	S	S	S	M	M			M	S	М	S	5	S	S
			<u> </u> ∼ m; L-L										~			
5 540	,115, 111	meana	, L L	0 **												
							SV	LLAB	US							
							DI									
DC-D									1		modeling	(F	1 -			D

SWITCHING MODE POWER CONVERTERS

Analysis and state space modeling of flyback, Forward, Luo, Half bridge and full bridge converters- control circuits and PWM techniques.

RESONANT CONVERTERS

Introduction- classification- basic concepts- Resonant switch- Load Resonant converters- ZVS, Clamped voltage topologies- DC link inverters with Zero Voltage Switching- Series and parallel Resonant inverters-Voltage control.

DC-AC CONVERTERS

Single phase and three phase inverters, control using various (sine PWM, SVPWM and advanced modulation) techniques, various harmonic elimination techniques- Multilevel inverters-Concepts - Types: Diode clamped-Flying capacitor- Cascaded types- Applications.

POWER CONDITIONERS, UPS & FILTERS

Introduction- Power line disturbances- Power conditioners –UPS: offline UPS, Online UPS, Applications – Filters: Voltage filters, Series-parallel resonant filters, filter without series capacitors, filter for PWM VSI, current filter, DC filters – Design of inductor and transformer for PE applications – Selection of capacitors.

TEXT BOOKS:

1. Ned Mohan, Tore.M.Undeland, William.P.Robbins, Power Electronics converters, Applications and design- Third Edition- John Wiley and Sons- 2006

2. M.H. Rashid – Power Electronics circuits, devices and applications- third edition Prentice Hall of India New Delhi, 2007.

REFERENCES:

1. M.H. Rashid – Power Electronics handbook, Elsevier Publication, 2001.

- 2. Kjeld Thorborg, "Power Electronics In theory and Practice", Overseas Press, First Indian Edition 2005.
- 3. Philip T Krein, "Elements of Power Electronics", Oxford University Press, 1998.
- 4. <u>Slobodan Cuk</u>, "Power Electronics: Advanced Topics and Designs", Publisher: Slobodan Cuk, 3 edition, ISBN-13: 978-1519520296, 2016.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Dr. G. Ezhilarasan	Professor	EEE/AVIT	Ezhilarasan.eee@avit.ac.in

17EE	EC03	CO	MPUT	ER A				FELEC	TRICA	L C	Category	L	Т	P Cr	edit
					AP	PARA'	105				EC	3	0	0	3
To un	MBLE derstand ical Ma	and fa		ze the	princij	ple, Co	oncepts	of Con	nputer A	Aided D	esign te	chnolo	gy for t	he desig	gn of
COU	RSE OI	BJECI	TIVES												
1]	Learn th	e impo	ortance	of con	puter	aided c	lesign	method.							
2	Underst	and the	e basic e	electro	magne	tic fiel	d equa	tions and	the pro	oblem f	ormulat	ion for	CAD a	pplicati	ons.
3]	Become	famili	ar with	Finite	Eleme	ent Met	thod as	applica	ble for l	Electric	al Engir	neering	•		
4]	Know th	ne orga	nizatio	n of a t	ypical	CAD	packag	je.							
5	Apply F	inite E	lement	Metho	d for t	he desi	ign of	different	Electri	cal appa	aratus.				
	RSE OU														
			-					will be a							
	Underst parame		e conce	pt of e	lectror	nagnet	ic enei	gy conv	ersion a	nd desi	gning		U	nderstar	nd
	±		e mathe	matica	l expr	essions	s for di	fferent f	eld pro	blems.			U	nderstar	nd
	-		-			-		pparatus						Apply	
		-				ical app	paratus	s through	the con	ncepts o	of CAD			Analyze	
CO5:	Design	the ele	ctrical a	apparat	tus.									Create	
MAP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND PF	ROGRA	MME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2	PS O3
CO1	S	М	_	М	-	-	-	-	-	-	-	-	S	М	M
CO2	S	М	-	-	-	-	-	-	-	-	-	-	M	M	М
CO3	S	S	М	М	М	-	-	-	-	-	-	-	М	S	М
CO4	S	S	М	М	М	-	-	-	-	-	-	-	M	S	М
CO5	S	S	S	М	S	-	-	-	-	-	-		M	S	S
S- Str	ong; M-	Mediu	m; L-L	ow	1	1	<u>I</u>	<u> </u>	<u> </u>	1	<u> </u>		<u> </u>	1	<u> </u>

<u>Syllabus</u> INTRODUCTION

Conventional design procedures – Limitations – Need for field analysis based design –Review of Basic principles of energy conversion – Development of Torque/Force.

MATHEMATICAL FORMULATION OF FIELD PROBLEMS

Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector / Scalar potential – Stored energy in Electric and Magnetic fields – Capacitance – Inductance- Laplace and Poisson's Equations – Energy functional.

PHILOSOPHY OF FEM

Mathematical models – Differential/Integral equations – Finite Difference method – Finite element method – Energy minimization – Variational method- 2D field problems – Discretisation – Shape functions – Stiffness matrix – Solution techniques.

CAD PACKAGES

Elements of a CAD System –Pre-processing – Modelling – Meshing – Material properties- Boundary Conditions – Setting up solution – Post processing.

DESIGN APPLICATIONS

Voltage Stress in Insulators – Capacitance calculation – Design of Solenoid Actuator – Inductance and force calculation – Torque calculation in Switched Reluctance Motor.

TEXT BOOKS

1. S.J Salon, 'Finite Element Analysis of Electrical Machines', Kluwer Academic Publishers, London, 1995.

2. Nicola Bianchi, 'Electrical Machine Analysis using Finite Elements', CRC Taylor& Francis, 2005.

REFERENCES

- 1. Joao Pedro, A. Bastos and Nelson Sadowski, 'Electromagnetic Modeling by Finite Element Methods', Marcell Dekker Inc., 2003.
- 2. P.P.Silvester and Ferrari, 'Finite Elements for Electrical Engineers', Cambridge University Press, 1983.

3. D.A.Lowther and P.P Silvester, 'Computer Aided Design in Magnetics', Springer Verlag, New York, 1986.

4. S.R.H.Hoole, 'Computer Aided Analysis and Design of Electromagnetic Devices', Elsevier, New York, 1989.

5. User Manuals of MAGNET, MAXWELL & ANSYS Softwares.

		COURSE DES	IGNERS	
S.	Name of the Faculty	Designation	Department	Mail ID
No.				
1	Mr.G.Ramakrishnaprabu	Associate Professor	EEE / VMKVEC	ramakrishnaprabu@vmkvec.edu.in
2	Mr.S.Prakash	Assistant Professor (Gr-II)	EEE/AVIT	<u>sprakash@avit.ac.in</u>

17EE	EC04			Ε			POWE				Catego	ory L	Т	P Cı	redit	
					IKA	INSMI	SSION				EC-PS	S 3	0	0	3	
PREAM	To prov advanta	iges and	l applic	ations.		U U			-		AC&DC	power	transmis	ssion wit	th it	
PRERI	EQUISI	TE :TF	RANSN	IISSIO	N ANI) DIST	RIBUT	TION(1	7EEC(C 07)						
COUR	SE OBJ	ECTIV	/ES													
1	To us	se the d	ifferent	types of	of AC as	nd DC	links w	ith its a	dvantag	ges and a	pplication	ns.				
2	To le	arn the	differen	nt comp	ensatio	n techn	iques.									
3	To u	nderstar	nd the	concept	of trav	elling v	vaves, t	ypes of	over vo	oltage in	the trans	missio	n line.			
4	To st	udy the	differe	nt com	onents	used ir	n EHV s	system.								
5	To ol	oserve t	he vario	ous pro	blems o	occur in	EHV I	DC syste	em.							
COUR	SE OUT	ГСОМ	ES					•								
On the	successf	ul com	oletion	of the c	ourse, s	students	s will be	e able to)							
CO1: E	xplain tl	ne diffe	rent typ	es of A	C and I	DC link	s with i	ts adva	ntages a	and appli	cations.		U	Understand		
CO2: D	efine the	e shunt	and ser	ies com	pensati	on and	concep	t of FA	CT with	n applica	tion		F	Remembe	er	
	xplain tl ansmissi			ravellin	g wave	s on tra	nsmissi	on line	and the	e overvol	ltage in		U	Jnderstar	ıd	
CO4: D	oifferenti	ate the	various	contro	l of EH	V DC s	system.							Analyze	;	
CO5: D	escribe	the con	verter fa	aults an	d prote	ction ha	armonic	s misoj	peration	l.			U	Inderstar	nd	
CO6: S	olve the	probler	ns of E	HV DC	system	۱.								Apply		
MAPP	ING WI	- TH PR	ROGRA	AMME	OUTC	COMES	S AND	PROG	RAMM	IE SPEC	CIFIC O	UTCO	OMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	-	PSO2	P: O	
CO1	L	S	М	L	М	L						L	М	L	-	
CO2	L	S	M	М	М	L						М	М	М	-	
CO3	М	L	М	L	L	L						L	М	L	-	
CO4		L	L	L	S	L						L	S	M	N	
CO5			М		М	L						L	S	М	-	
CO6	S	S	S	М		L						М	S	S	N	
	ng; M-M															

GENERAL ASPECTS OF DC TRANSMISSION AND COMPARISON OF IT WITH AC TRANSMISSION

Constitution of EHV AC and DC links, Kinds of DC links, limitations and advantages of AC and DC transmission principal, application of AC and DC transmission, trends EHV AC and DC transmission, power-handling capacity converter analysis Garentz circuit, Firing control, overlapping.

COMPENSATION TECHNIQUES

Extra long distance lines, voltage profile of loaded and unloaded line along the line, compensation of lines, series and shunt compensation, shunt reactors, Tuned power lines, problem of extra compensation lines, FACT concept and application.

PROTECTION CIRCUITS OF EHV AC AND DC SYSTEM

Travelling waves on transmission system, Their shapes, attenuation and distortion, effect of junction and termination on propagation of traveling waves, over voltage in transmission system, lighting, switching and temporary over voltage: control of lighting and switching over voltage.

POWER QUALITY IN EHV AC AND DC SYSTEM

Components of EHV dc system, converter circuits, rectifier and inverter valves, Reactive power requirements, harmonic generation, adverse effects, classification, Remedial measures to suppress, ,filters, Ground return, converter faults& protection harmonics misoperation, commutation failure, Multi-terminal D,C. lines.

CONTROL OF EHV DC SYSTEM

Control of EHV DC system desired features of control ,control characteristics, constants current control, constant extinction angle control, lgnition angle control, parallel operation of HVAC & DC system, problems and advantage.

TEXT BOOKS

- 1. Rakesh Das Begamudre, Extra High Voltage AC Transmission Engineering, New Academic Science Limited, 4th edition, March 2011.
- 2. K.R. Padiyar, HVDC Power Transmission System, New Academic Science Limited, Feb 2011.

REFERENCE BOOK

- 1. E.W. Kimbark. EHV-AC and HVDC Transmission Engineering & Practice, Khanna Publishers.
- 2. S.Rao, EHV-AC and HVDC Transmission Engineering Practice, Khanna Publishers, 2010.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in
2.	J.SUGANTHI	Assistant Professor(Grade-II)	EEE/AVIT	suganthi@avit.ac.in

17EE	EC05		FLE	XIBLF	AC T	RANSN	AISSIC	ON SYS	STEMS		Catego	ory L	Т	Р	Credit
											EC-PS	S 3	0	0	3
PREAM		elop the	knowl	edge in	the area	a of FA	CTS co	ontroller	using c	lifferent	techniqu	es.			
	EQUISI			115510	N ANI) DIST	RIBUI	FION(1	7EECC	C 07)					
	SE OBJ														
1	To st	udy the	differe	nt meth	ods use	ed to co	ntrol th	e reacti	ve powe	er in tran	smission	line			
2	To st	udy the	compe	nsation	technic	que for	reactive	e contro	l using	static va	r compen	sator w	ith its ap	oplication	1
3	To st capad		out wor	king pr	inciple,	Differe	ent mod	es of op	peration	and app	olications	of thy	ristors c	ontrolled	series
4	To st	udy the	differe	nt volta	ige sour	ce conv	verters	based F	ACTS o	controlle	rs				
5	To st	udy the	coordi	nation of	of FAC	TS cont	roller u	ising dif	ferent t	echnique	es				
	SE OUT														
	successf)						_
	lentify tl													Remem	ıber
CO2:Ex	xplain th	e conce	epts abo	out load	compe	nsation	technic	ques.						Underst	and
CO3: D	esign a	modelir	ng of va	rious F	ACTS	Control	lers							Creat	e
CO4: P	redict th	e impac	ct of FA	CTS co	ontrolle	rs on A	C trans	mission	system	l.				Analy	ze
CO5: D	ifferenti	ate the	perforn	nance o	f steady	y state a	nd tran	sients o	f facts c	controlle	rs.			Analy	ze
	hoose th	••	•					•	r compe	ensation	in AC			Underst	and
				-	-	•	-		RAMM	E SPEC	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	S		S	М	L			L		М			S	
CO2	S	S												М	M
CO3	S	М	S										S	S	M
CO4	М			S		М								М	
CO5	S	М	М										S	М	
CO6		S	М		L	М					М			М	M
<u>a a</u> ,	ng; M-M	l Iedium:	I J ON	7	1	1	1	1	L				I	1	L

INTRODUCTION

Reactive power control in electrical power transmission lines –Uncompensated transmission line – series compensation – Basic concepts of static Var Compensator (SVC) – Thyristor Switched Series capacitor (TCSC) – Unified power flow controller (UPFC).

STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS

Voltage control by SVC – Advantages of slope in dynamic characteristics – Influence of SVC on system voltage – Design of SVC voltage regulator –Modeling of svc for power flow and transient stability – Applications: Enhancement of transient stability – Steady state power transfer – Enhancement of power system damping – Prevention of voltage instability.

THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) AND APPLICATIONS

Operation of the TCSC – Different modes of operation – Modeling of TCSC – Variable reactance model – Modeling for Power Flow and stability studies. Applications: Improvement of the system stability limit – Enhancement of system damping-SSR Mitigation.

VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS

Static Synchronous Compensator (STATCOM) – Principle of operation – V-I Characteristics. Applications: Steady state power transfer-Enhancement of transient stability – Prevention of voltage instability. SSSC-operation of SSSC and the control of power flow –Modeling of SSSC in load flow and transient stability studies. Applications: SSR Mitigation-UPFC and IPFC.

CO-ORDINATION OF FACTS CONTROLLERS

Controller interactions – SVC – SVC interaction – Co-ordination of multiple controllers using linear control techniques – Control coordination using genetic algorithms.

TEXT BOOKS

1.K.R.Padiyar," FACTS Controllers in Power Transmission and Distribution", New Age International(P) Limited, Publishers, New Delhi, January 2016.

2.R.Mohan Mathur, Rajiv K.Varma, "Thyristor – Based Facts Controllers for Electrical Transmission Systems", IEEE press and John Wiley & Sons, January 2011.

REFERENCES

- 1. R.Mohan Mathur, Rajiv K.Varma, "Thyristor Based Facts Controllers for Electrical Transmission Systems", IEEE press and John Wiley & Sons, January 2011.
- 2. Narain G. Hingorani, "Understanding FACTS –Concepts and Technology of Flexible AC Transmission Systems", Standard Publishers Distributors, New Delhi, March 2011.
- 3. K.R.Padiyar," FACTS Controllers in Power Transmission and Distribution", New Age International(P) Limited, Publishers, New Delhi, January 2016.
- 4. A.T.John, "Flexible A.C. Transmission Systems", Institution of Electrical and Electronic Engineers (IEEE), 1999.
- 5. V.K.Sood,HVDC and FACTS controllers Applications of Static Converters in Power System, APRIL 2004, Kluwer Academic Publishers.

COURSE DESIGNERS

-001				
.No	Name of the Faculty	Designation	Department	Mail ID
1	V.MANJULA	Assistant Professor	EEE/ VMKVEC	manjula@vmkvec.edu.in
2	V.RATTAN KUMAR	Assistant Professor(Gr –II)	EEE/ AVIT	rattankumar@avit.ac.in

17EEEC06			HIGH VOLTAGE DIRECT CURRENT							Categor	y L	Т	Р	Cre	edit	
			TRANSMISSION						EC(PS)) 3	0	0	3	3		
	MBLE					1	1								** 7	
0	0							0			nission in nore attra	1				
	eration,										lore attra	cuve.	11115	cou	ise uca	s with
1			C					•	•							
PRER	EQUIS	SITE :	17EEC	C07 T	ransmi	ission	and Di	stribut	ion							
COUR	SE OI	BJECT	IVES													
1				ificanc	e and	necess	sity of	HVDC	syster 2	n						
2	Recognize the significance and necessity of HVDC system Describe the power converters and harmonic filters used in HVDC system															
											l stability	techr	niaue	s us	ed for I	HVDC
3	syste						-				j		1			
4	Illustrate suitable controller for HVDC converter to obtain desired output															
5	Inter	Interpret suitable protection scheme by identifying the fault in the system														
6	Ident	ifv the	applica	tion o	f HVD	C svs	tem wi	th prac	tical e	xamples	-					
COUR	SE OU	•	11							·· · ·						
	succes			on of th	ne cou	rse, sti	idents	will be	able to	C						
CO1. T	71	41						<u>C</u>							TT. J	
	Explain														Unders	
CO2: I	Discuss	the po	wer cor	ivertei	s and	harmo	nic filt	ers use	ed in H	VDC sy	vstem				Unders	stand
CO3: I	Explain	the rea	quirem	ent of	approj	oriate	contro	l strate	gies an	id stabil	ity techn	iques	used	for	Unders	stand
I	HVDC	system													onder	stand
CO4: I	Design	suitable	e contro	oller fo	or HVI	DC co	nverter	to obt	ain des	ired out	put				Apply	
CO5: 8	Select s	uitable	protect	ion sc	heme	bv ide	ntifvin	g the fa	ault in	the syste	em				Apply	
			-			•	-	-								
CO6: E	Explain	the app	plicatio	n of H	VDC	systen	n with	practic	al exar	nples					Unders	stand
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	OMES	AND	PROG	RAMM	IE SPEC	IFIC	OUI	CO	MES	
COS	PO1	PO2	PO3	PO4	PO5		PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	М	L				L										
CO2	М	L		М		Μ		M		М	L	Μ			М	
CO3	S	М				Μ	Μ				М	М			S	
CO4	S	M	L		М	L	М	S		S	S		L	,	S	
CO5	S	M	L	М	S	S	M	S		S	S				S	L
	M	L			S	М		S		S	S	S			S	
CO6							1								~	

Introduction

Development of HVDC technology-Significance of DC transmission-Overview and organization of HVDC systems-Review of the HVDC system reliability-HVDC characteristics and economic aspects

Power Conversion and Harmonics

Power conversion - Thyristor, Phase converter, Phase full bridge converter, Pulse converter- Harmonics in HVDC and removal-Determination of resulting harmonic impedance-Active power filter

Control of HVDC Converter and System

Converter control for an HVDC system-Commutation failure- HVDC control and design - HVDC control functions- Reactive power and voltage stability- Interactions between AC and DC systems

Protection of HVDC System

Valve protection functions- Protective action of an HVDC system-Protection by control actions-Fault analysis-Insulation coordination of HVDC

Trends for HVDC Applications

Wind Farm Technology- Modern Voltage Source Converter (VSC)- 800 kV HVDC System- Practical examples of an HVDC system

Text Book

1. Chan-Ki Kim, "HVDC TRANSMISSION Power Conversion Applications in Power Systems", John Wiley & Sons Pvt. Ltd., 2009

Reference Books

- 1. P. Kundur, "Power System Stability and Control", McGraw-Hill, 1993
- 2. K.R.Padiyar, "HVDC Power Transmission Systems", New Age International (P) Ltd., New Delhi, 2002.
- 3. J.Arrillaga, "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
- 4. Erich Uhlmann, "Power Transmission by Direct Current", BS Publications, 2004.
- 5. V.K.Sood, "HVDC and FACTS controllers Applications of Static Converters in Power System", Kluwer Academic Publishers, 2004.
- 6. Dragan Jovcic, Khaled Ahmed, "High Voltage Direct Current Transmission: Converters, Systems and DC Grids", John Wiley & Sons, Ltd, ISBN:9781118846667, 2015.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Dr. K. Boopathy	Professor	EEE/AVIT	boopathyk@avit.ac.in

17EEEC07	INTELLIGENT CONTROLLERS	Category	gory L T	Т	Р	Credit
TTLLLCOT		EC	3	0	0	3

PREAMBLE

Intelligent control achieves automation via the emulation of biological intelligence. It either seeks to replace a human who performs a control task (e.g., a chemical process operator) or it borrows ideas from how biological systems solve problems and applies them to the solution of control problems. This course provides an overview of several techniques used for intelligent control and discusses challenging industrial application domains where these methods may provide particularly useful solutions. The subject begins with a brief overview of the main areas in intelligent control, which are fuzzy control and neural networks

PREREQUISITE

17EECC08 Control systems

COURSI	E OBJECTIVES
1	Analyze the performance of the controller using fuzzy logic system and neural network for armature controlled DC motor seed control
2	Analyze the performance of neural network and fuzzy logic systemfor system identification
3	Analyze the reason for better generalization capability of SVM as compared to Neural network
4	Analyze the performance of fuzzy based gain scheduling control

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1	-	ain the basics o		lers	Understand											
CO2	Expla	ain the	model	ns	Understand											
CO3	Appl	Apply fuzzy and neural systems for system identification Apply														
CO4	Analyze the performance of the controllers based on fuzzy and neural for industrial applications.															
CO5	Apply genetic algorithm to Optimal control problems using Simulation Tool Box												Apply			
MAPPI	NG W	ITH P	ROGI	RAMM	IE OU	TCON	AES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	-	М	-	-	-	-	-	-	-	-	-	Μ	-	-	
CO2	S	Μ	S	Μ	М	-	-	-	-	-	-	-	-	-	L	
CO3	S	S S S S S M - M									-	-	S	-	-	
CO4	S	S	S	S	S	S	Μ	-	S	-	-	- S -				
CO5	S	L	S	L	S	-	-	-	L	L	-	-	Μ	S	-	
S- Strong	g; M-N	ledium	n; L-Lo	W												

INTRODUCTION

Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rule-based systems, the AI approach. Knowledge representation. Expert systems.

ARTIFICIAL NEURAL NETWORKS

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron. Learning and Training the neural network. Data Processing: Scaling, Fourier transformation, principal-component analysis and wavelet transformations. Hopfield network, Self-organizing network and Recurrent network. Neural Network based controller

GENETIC ALGORITHM

Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other search techniques like tabu search and ant-colony search techniques for solving optimization problems.

FUZZY LOGIC SYSTEM

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to fuzzy logic modeling and control. Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases. Fuzzy modeling and control schemes for nonlinear systems. Self-organizing fuzzy logic control. Fuzzy logic control for nonlinear time-delay system.

APPLICATIONS

GA application to power system optimisation problem, Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab-Neural Network toolbox. Stability analysis of Neural-Network interconnection systems. Implementation of fuzzy logic controller using Matlab fuzzy-logic toolbox. Stability analysis of fuzzy control systems.

TEXT BOOKS

1. Padhy.N.P. Artificial Intelligence and Intelligent System, Oxford University Press. (2005),

2. KOSKO, B. "Neural Networks And Fuzzy Systems", Prentice-Hall of India Pvt. Ltd., 1994.

3. Siddique, Nazmul, "Intelligent Control", Springer 2014

REFERENCES:

1. Jacek.M.Zurada, "Introduction to Artificial Neural Systems", Jaico PublishingHouse, 1999.

KLIR G.J. & FOLGER T.A. "Fuzzy sets, uncertainty and Information", Prentice-Hall of India Pvt. Ltd., 1993.
 Zimmerman H.J. "Fuzzy set theory-and its Applications"-Kluwer Academic

Publishers, 1994.

4. Driankov, Hellendroon, "Introduction to Fuzzy Control", Narosa Publishers.

5. Goldberg D.E. (1989) Genetic algorithms in Search, Optimization and Machine

learning, Addison Wesley.

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
2.	N.P. GOPINATH	Assistant Professor GR-II	EEE / AVIT	gopinathnp@avit.ac.in

17EC	FC25		Μ	IICRO) ELE	CTRO		Ca	ategory	,	L	Т	Р	Cre	edit
1/EC	EC25		MEC	HANI	CAL S	SYSTE	MS	Ε	C(PS)		3	0	0	3	3
PREA	MBL	E													
MEMS gener Auton scienc involv comp	S ach al a nobile ce, M red ir rehen	ieve s sens Aerc echar des sive t	some sor, a ospace nical, E ign, N reatme	engin n ac e, Hea Electri Manufa ent wi	eering tuator Ith car cal, C acture th syn	i functionand and re are so hemica and ergetic	ons by a sigi some o II, Mate Packaç ; integr	electronal tra f the ar erials a ging c	o mech nsduct reas wh nd Ind f MEN of wide	nanical ion ui nere Mi lustrial /IS de spectr	or ele hit for EMS fo Engine evices.	ectro ch ms the bund ap eering a This	than 1 nemical e MEN oplicatio are the course ne in s	mean /IS de ons. Na discip provid	s. In vice. itural lines es a
PRER	REQU	ISITE													
COUI	RSE C)BJE(CTIVE	S											
1			sic kno techni		e on ov	verview	of ME	MS (Mi	cro elec	tro Mec	chanical	System	and va	arious	
2	This	enab	les the	em to	desigr	n, analy	vsis, fat	oricatio	n and t	esting	the ME	MS ba	sed cor	nponei	nts.
3	Intro	oduce	the st	udents	s vario	us opp	ortuniti	es in th	ne eme	rging fi	eld of N	MEMS.			
COUI	RSE C	OUTC	OMES												
On the	e succe	essful o	comple	etion of	f the co	ourse, st	udents	will be a	able to						
CO1. 5	Summ	arize t	he wo	rking p	orincip	les of M	IEMS a	nd Mic	rosyster	ns				Unde d	rstan
CO2. 5	Solve	proble	ms in s	scaling	laws a	pplicab	le to mi	iniaturiz	ation					Appl	у
CO3. 1	Explai	n Mate	erials f	or ME	MS an	d Micro	system	S						Appl	у
CO4. 5	Select	micro	-systen	n fabri	cation	and Mi	cro-ma	nufactu	ring pro	cess for	r a give	n applic	ation	Appl	у
CO5.1	Explai	n the p	packag	ing asp	ects of	f Micro	System	l						Appl	у
MAPI	PING	WITH	H PRO	GRA	MME	OUTCO	OMES	AND P	ROGR	AMMI	E SPEC	CIFIC C	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	-	-	-	-	-	-	-	L	S	М	-
CO2	S	М	М	М	М	-	-	-	-	-	-	L	S	М	М
CO3	S	М	Μ	-	-	-	-	-	-	-	-	L	S	М	-
CO4	S	S	Μ	М	L	-	-	-	-	-	-	L	S	Μ	Μ
CO5	S	L	L	-	-	-	-	-	-	-	-	L	S	-	-
S- Stro	ong; N	I-Med	ium; L	-Low											

Overview of MEMS and Micro Systems: MEMS and Microsystems, products, Evolution of microfabrication, Micro system and Microelectronics, The multidisciplinary nature of MEMS, Miniaturization, applications of micro systems in automotive, health care, aerospace, and telecommunication fields.

Working Principles of Microsystems: Introduction, micro sensors: Acoustic waves, optical, chemical, pressure, thermal, biomedical and bio sensors. Micro actuation: using thermal forces, shape memory alloys, piezoelectric crystals and electrostatics forces. MEMS with micro actuators: micro grippers, micro motors, micro valves, micro pumps, micro accelerometer

Scaling law in miniaturization: Introduction to scaling, scaling in rigid body dynamics, electrostatic forces, electromagnetic forces, electricity, fluid mechanics and heat transfer.

Materials for MEMS and Microsystems: Introduction, substrate and wafers, active substrate materials, silicon, silicon compounds, silicon piezoresistors, polymers and packaging materials.

Microsystem fabrication process: Introduction, Photolithography, ion implantation, diffusion, oxidation, chemical vapour deposition, physical vapour deposition (sputtering), Deposition by epitaxy, wet and plasma etching.

Overview of Micro manufacturing: Introduction, bulk micromachining, surface micromachining, the LIGA process. Microsystem packaging: Introduction, Microelectronics packaging, Microsystem packaging, Interfaces in microsystem packaging, Essential packaging technologies, Pressure sensor packaging

TEXTBOOKS

3. Tai –Ran Hsu, "MEMS and Microsystem: Design and Manufacture", Tata McGraw Hill, First Edition, 2002.

REFERENCE BOOKS

1. G.K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Athrae "Micro and Smart

System", Wiley India Pvt Ltd, First edition, 2010.

- 4. Chang Liu, "Foundation of MEMS", 2nd Edition, Pearson education, 2012.
- 5. Gad El Hak (Editor), "The MEMS Hand Book", Three volume set, 2nd revised Edition.CRC press, 2005.

	SE DESIGNERS			
S.No.	Name of the	Designation	Departme	Mail ID
	Faculty		nt	
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
2	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

COURSE DESIGNERS

170000		F	OWE	R ELI	ECTRO	ONICS	5 FOR	RENE	EWAB	LE	Categ	ory	L	Т	P C	Credit
17EEEC	.09				ENEF	RGY S	YSTE	Μ			EC (P	PS)	3	0	0	3
PREAM		11 20110	n tha a	nnliggt	iona of	Factors	vabla a		a voto m	a Down	n alaatn	onio			10.010.00	antial
This cou compone																
systems																
devices																
systems	are inv	estigat	ed and	some	solutio	ns are	presen	ted.								
PRERE	-		EECC()6 Pow	er Elec	tronics	8									
COURS	E OBJ	IECTI	VES													
1	Το Ι	Unders	tand th	ne basic	cs of re	newab	le Ener	rgy and	l its ap	plication	18					
2	To s	tudy tł	ne diffe	erent ty	pes of	renew	able en	nergy so	ources	and its f	features	1				
3	To u	ndersta	and the	opera	tions of	f powe	r conve	erters i	n wind	turbine	s.					
4	To a	nalyze	and de	esign g	rid con	nected	conve	rter sys	stems f	or renew	vables					
5	То а	ınalyze	e the te	chniqu	es for i	ntegra	ting m	ultiple	renewa	able ene	rgy sou	rces				
COURS	E OU	ГСОМ	IES													
On the s	uccessi	ful con	npletio	n of the	e cours	e, stud	ents w	ill be a	ble to							
CO1	Expl	ain cor	ntributi	on and	impac	t of rer	newabl	e energ	gy sour	ces					Unders	stand
CO2		ribe th gy syste		res of j	power	electro	nics an	nd their	role in	n renewa	able				Unders	stand
CO3	Desig	gn app	ropriat	e conv	erter fo	or renev	wable e	energy	system	IS					Apply	
CO4		gorize genera		s issues	s exper	ienced	during	g grid c	onnect	ion of					Analyz	æ
CO5		gorize ystems		s issues	s exper	ienced	during	g grid c	onnect	ion of					Analyz	æ
CO6		onstrat V syst		ontrol	aspects	s of cor	nverter	s used	in win	d genera	ators				Apply	
MAPPI	NG W	ITH P	ROGI	RAMM	IE OU	TCON	AES A	ND PH	ROGR	AMME	SPEC	IFIC	0	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2	PSO1	PSO2	PSO 3
CO1	L		L			L	L					L		L		
CO2	L	L	L		М	М	L		L		L	M		М	S	М
CO3	S	M	S	L	-		-		L		М	_			S	L
CO4		M	M	M	L	Μ	L	M	M	M		L		Μ	M	L
CO5	1.6	M	M	M	т		<u>ъ</u> л	т	٦ <i>४</i>		M	т		т	S	L
CO6	M	L	S	L	L		Μ	L	Μ		М	L		L		S
S- Stron	g; M-N	Iedium	n; L-Lo)W												
1							SVI I	ARTI	2							

Credit

Т

Category L

Р

INTRODUCTION

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVERSION

Review of reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG

POWER CONVERTERS

Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection Of inverter, battery sizing, array sizing Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters

ANALYSIS OF WIND AND PV SYSTEMS

Stand alone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG and SCIG Based WECS Grid Integrated solar system

HYBRID RENEWABLE ENERGY SYSTEMS

Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind PV Maximum Power Point Tracking (MPPT).

TEXT BOOK

1. Haitham Abu-Rub, Mariusz Malinowski & Hamal Al Haddad, "Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications", IEEE Press and John Wiley Publications, First Edition, 2014.

2. Power Electronics for Renewable and Distributed Energy Systems: A Sourcebook of Topologies, Control and Integration (Green Energy and Technology), Sudipta Chakraborty, Marcelo G. Simões, William E. Kramer, Springer; 2013 edition, ISBN-10: 1447151038, ISBN-13: 978-1447151036

REFERENCES

1. Rashid .M. H "power electronics Hand book", Academic press, 2001.

2. Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993.

3. Rai. G.D," Solar energy utilization", Khanna publishes, 1993.

4. Gray, L. Johnson, "Wind energy system", prentice hall linc, 1995.

5. Non-conventional Energy sources B.H.Khan Tata McGraw-hill Publishing Company, New Delhi

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in
2	G. RAMAKRISHNA PRABU	Associate Professor	EEE / VMKVEC	ramakrishnaprabu@vmkvec.edu.in
3	Dr. G. EZHILARASAN	Professor	EEE / AVIT	ezhilarasan.eee@avit.ac.in

17E	EEC10				POW	ER O	UALI	тү			Catego	ry L	Т	Р	Cre	edit
											EC(PS) 3	0	0	3	3
	MBLE		knowle	edoe al	out v	arious	electri	cal po	wer au	ality iss	sues and	their o	rioin	and	address	ses the
				U					-	•	mphasis		U			
	rement.	_	unty pr	oblem	5 011 (ui pov	ver sys	,		Inpituoio	need		Υ "	lointoin	ig und
	EQUIS															
NIL	EQUI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														
COUR	RSE OI	BJECT	IVES													
1	Desc	ribe va	rious po	ower q	uality	proble	ems.									
2	Ident	ify the	root ca	use of	power	r quali	ty prot	olems.								
3	Expla	ain the	impact	of PQ	issues	s on va	rious e	electric	al com	ponents	5.					
4	Inter	pret the	need f	or PQ	monit	oring a	and me	easuren	nent.							
5	Illust	rate the	e harmo	onics d	istorti	on in t	he give	en elec	trical d	lrive.						
6	Deter facili		various	powe	r qua	lity iss	sues a	nd the	r solu	tions in	resident	tial / c	comm	nerci	al / ind	lustrial
COUF	RSE OU	UTCO	MES													
On the	succes	sful co	mpletic	on of th	ne cou	rse, sti	idents	will be	able t	0						
CO1: I	Explain	variou	s powe	r quali	ty pro	blems									Under	stand
CO2: I	Discuss	the roo	ot cause	e of po	wer qu	uality _l	proble	ms.							Under	stand
CO3: I	Explain	the im	pact of	PQ iss	sues of	n vario	ous ele	ctrical	compo	nents.					Under	stand
CO4: I	Discuss	the ne	ed for F	'Q mo	nitorir	ng and	measu	remen	t.						Under	stand
CO5: 0	Comput	te the h	armoni	cs dist	ortion	in the	given	electri	cal driv	ve.					Apply	
	Analyz rial faci		ous pov	ver qu	ality i	issues	and th	neir so	lutions	in resi	dential /	comm	nercia	al /	Analyz	ze
	PING V							-								
COS CO1	PO1 M	PO2 L	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11 L	PO12	2 PS	01	PSO2	PSO3
		L L													L	
CO2	M						М	<u> </u>								
CO3	M	L			Ŧ		М					T			M	-
CO4	M	L			L			ļ		М	M	L			S	L
CO5	S	Μ	L	L	М		Μ				S	L	L		М	L
CO6	S	S	М	М	Μ		М			Μ	S		L		S	М
S- Stro	ng: M-	Mediu	m; L-Lo	OW												

Introduction

Power quality - Impact of PQ on end users, Need for PQ monitoring, Various PQ Problems

Voltage disturbances

Voltage dips, over voltages, short supply interruptions, voltage fluctuations and flicker - sources, effects, measurement and mitigation

Transients

Transient system model, examples of transient models and their response, power system transient model, types and causes of transients, lightning, other switching transients.

Voltage and Current Unbalance

Symmetrical components of currents and voltages, sources, effects, measurements and mitigation

Harmonics

Definition, odd and even harmonics, harmonic phase sequence, voltage and current harmonics, individual and total harmonic distortion, harmonic standards, sources, effects on various electrical components, measurements and mitigation, passive and active filters (Case Studies)

Power factor

Active and reactive power flow with nonlinear load, displacement and distortion power factor, power factor penalty, power factor improvement, applications of synchronous condensers and static VAR compensators, automatic power factor controller (Case Studies)

Grounding

Shock and fire hazards, essential of a grounded system, earth resistance tests, methods of grounding.

Solving power quality problems using CPD

Power quality measuring equipment-Smart power quality analyzers, Introduction to custom power devices (CPD) – STATCOM, DVR, UPQC.

Text Book

1. Sankaran C,"Power Quality", CRC Press special Indian edition 2009.

Reference Books

- 1. Angelo Baggini, "Handbook of Power Quality" John Wiley & Sons Ltd, 2008.
- 2. Roger .C. Dugan, Mark F.Mcgranaghan & H.Wayne Beaty," Electrical power system Quality" McGraw-Hill Newyork Second edition 2003.
- 3. Barry W.Kennedy, "Power Quality Primer", McGraw-Hill, New York, 2000.
- 4. Math H.J.Bollen, « Understanding Power Quality Problems : Voltage Sags and Interruptions », IEEE Press, New York, 2000.
- 5. Arrillaga.J, Watson.N.R and Chen.S, « Power System Quality Assessment », John Wiley & Sons Ltd., England, 2000
- 6. Bhim Singh, Ambrish Chandra and Kamal Al-Haddad: Power Quality: Problems and Mitigation Technique, Wiley Publications, 2015.

7. Ewald Fuchs Mohammad Masoum, "Power Quality in Power Systems and Electrical Machines" 2nd Edition,

Academic Press, ISBN: 9780128007822, 2015.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Mr. S. Prakash	AP (Gr–II)	EEE/AVIT	sprakash@avit.ac.in

17EEEC11

PREAMBLE

To make students become familiar with power system operation and the various control actions to be implemented on the power system for reliability.

	EQUISI														
T	SE OBJ	ECTIV	/ES												
1	To intro	duce th	e stude	nts lear	n the ol	ojective	s of pov	ver syst	em.						
2	To mak	e the stu	udents l	earn the	e reliab	ility sta	bility aı	nalysis	of gene	ration in	power s	ystem.			
3	To mak	e the stu	udents l	earn the	e reliab	ility sta	bility ar	nalysis	of trans	mission	in powe	r system.			
4	To fami	liarize t	he stud	ents wi	th the p	lanning	of exp	ansion	of powe	er system	l.				
5	To intro	duce th	e stude	nts with	the ov	erview	of plan	ning of	distribu	tion syst	tem.				
COUR	SE OUT	ГСОМ	ES												
On the	successf	ul com	pletion	of the c	ourse, s	students	will be	e able to)						
CO1: E	Explain tl	he load	forecas	ting , L	oad gro	wth pat	tterns an	nd their	import	ance in p	olanning			Understa	ınd
	Explain th		•				0	•		reliabilit	у			Understa	ınd
	ndices lil									and not					
	Explain th Served in				ke LUI	LP and e	expected	u value	of dem	and not				Understa	ınd
	Solve the				lem in	transmi	ssion sy	/stem ai	nd radia	l distrib	utions			Apply	,
S	system.														
CO5: I	Design th	e prima	ry and	seconda	ary dist	ribution	system	ıs						Create	
CO6: I	Describe	the plar	nning of	expan	sion of	power s	system a	and dist	ribution	n system				Understa	ınd
MAPP	ING WI	ITH PR	ROGRA	MME	OUTC	COMES	S AND	PROG	RAMM	IE SPE(CIFIC C	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S		М							М		М	М
CO2		S										L			М
CO3		S										L			М
CO4	S	S											S	M	М
CO5	S	S	S		S		S			S		М	S	М	М
CO6					М		М							М	
S- Stro	ng; M-M	ledium;	L-Low	<u> </u> ,	1	<u> </u>	<u> </u>	<u>I</u>	<u> </u>	<u>I</u>	1	<u>I</u>	1	<u> </u>	<u>I</u>

LOAD FORECASTING

Objectives of forecasting - Load growth patterns and their importance in planning - Load forecasting Based on discounted multiple regression technique-Weather sensitive load forecasting-Determination of annual forecasting-Use of AI in load forecasting.

GENERATION SYSTEM RELIABILITY ANALYSIS

Probabilistic generation and load models- Determination of LOLP and expected value of demand not served –Determination of reliability of iso and interconnected generation systems.

TRANSMISSION SYSTEM RELIABILITY ANALYSIS

Deterministic contingency analysis-probabilistic load flow-Fuzzy load flow probabilistic transmission system reliability analysis-Determination of reliability indices like LOLP and expected value of demand not served.

EXPANSION PLANNING

Basic concepts on expansion planning-procedure followed for integrate transmission system planning, current practice in India-Capacitor placer problem in transmission system and radial distributions system.

DISTRIBUTION SYSTEM PLANNING OVERVIEW

Introduction, sub transmission lines and distribution substations-Design primary and secondary systems-distribution system protection and coordination of protective devices.

TEXT BOOKS

1.Roy Billinton and Allan Ronald, "Power System Reliability Evaluation, Gordon and Breach,

Science Publishers, Inc., May, 1982."

2.J.Endreny,"Reliability modeling in electric power systems" John Wiley & sons, Jan 1979.

REFERENCES

- 1. Proceeding of work shop on energy systems planning & manufacturing CI.
- 2. R.L .Sullivan, "Power System Planning", February 1977.
- 3. Turan Gonen, Electric power distribution system Engineering 'McGraw Hill, 1986

COURSE DESIGNERS

COUN	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	V.MANJULA	Assistant Professor	EEE/ VMKVEC	manjula@vmkvec.edu.in
2	S.PRAKASH	Assistant Professor/Grade-II	EEE/ AVIT	sprakash@avit.ac.in

17EEEC12	POWER SYSTEM TRANSIENTS	Category	L	Т	Р	Credit
		EC-PS	3	0	0	3
DDEAMDLE						

PREAMBLE

To review the over voltages (or) surges due to the phenomena of switching operations and lighting discharge. Also to study propagation, reflection and refraction of these surges on the equipments their impact on the power system grid.

PRER	EQUISI	TE : N	IL												
COU	RSE OBJ	FCTN	/FS												
1				n of sw	itching	transier	nts and	their co	ntrol us	ing circi	uit – theo	oretical c	oncept.		
2										ighting s			oncepti		
3	To stud									0 0	urges.				
-									Ũ			1		••••	1
4		y the in	ipact of	voltag	e transi	ents cai	ised by	faults,	circuit	breaker a	action, lo	bad rejec	tion on	integrate	a power
5	system. To stud	v the ov	ver volta	ages fau	lts and	switchi	ng surg	ves on ir	ntegrate	d system	1.				
COUI	RSE OUT							,•• •••		<i>u sjsten</i>					
	e successf			of the c	ourse, s	tudents	will be	e able to)						
CO1: 1	Describe	the imp	ortance	of tran	sients i	n syster	n plann	ing.						Under	rstand
CO2:	Explain t	he swit	ching a	nd light	ning tra	ansients	•							Under	rstand
CO3:	Examine	the me	chanisn	n of ligl	nting st	rokes.								Analy	ze
CO4:]	Explain t	he impo	ortance	of propa	agation	reflect	ion and	l refract	ion of ti	ravelling	waves.			Unders	tand
CO5:]	Deduce th	ne volta	ge trans	sients ca	aused b	y faults	•							Analy	ze
	Describe System.	the con	cept of	circuit	breaker	action,	load re	jection	on integ	grated po	ower			Unders	tand
	PING W	TH PR	ROGRA	MME	OUTC	OMES	AND	PROG	RAMM	E SPEC	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S		S							М	S	S	
CO2	S	S	S		S							М	S	S	
CO3	S	L										L	L		
CO4	L											L	М		
CO5	S	S	S		S		М					S	S	S	
CO6	S				S								L		
S-Stro	ong; M-M	ledium;	L-Low	7	1	1	1	1		1	1	1	1	1	I

INTRODUCTION AND SURVEY

Review and importance of the study of transients - causes for transients. RL circuit transient with sine wave excitation - double frequency transients – basic transforms of the RLC circuit transients. Different types of power system transients - effect of transients on power systems – role of the study of transients in system planning.

SWITCHING TRANSIENTS

Over voltages due to switching transients - resistance switching and the equivalent circuit for interrupting the resistor current - load switching and equivalent circuit - waveforms for transient voltage across the load and the switch - normal and abnormal switching transients. Current suppression - current chopping - effective equivalent circuit. Capacitance switching - effect of source regulation - capacitance switching with a restrike, with multiple restrikes. Illustration for multiple restriking transients – ferro resonance.

LIGHTNING TRANSIENTS

Review of the theories in the formation of clouds and charge formation - rate of charging of thunder clouds – mechanism of lightning discharges and characteristics of lightning strokes – model for lightning stroke - factors contributing to good line design – protection using ground wires - tower footing resistance - Interaction between lightning and power system.

TRAVELING WAVES ON TRANSMISSION LINE COMPUTATION OF TRANSIENTS

Computation of transients - transient response of systems with series and shunt lumped parameters and distributed lines. Traveling wave concept - step response - Bewely's lattice diagram - standing waves and natural frequencies - reflection and refraction of travelling waves.

TRANSIENTS IN INTEGRATED POWER SYSTEM

The short line and kilometric fault - distribution of voltages in a power system – Line dropping and load rejection - voltage transients on closing and reclosing lines – over voltage induced by faults - switching surges on integrated system. Qualitative application of EMTP for transient computation.

TEXT BOOKS

1.Allan Greenwood, 'Electrical Transients in Power Systems', Wiley Interscience, New York, 2nd edition, January 2010.

2.R.D.Begamudre, 'Extra High Voltage AC Transmission Engineering', New Academic Science Limited, 4th edition, March 2011.

REFERENCE BOOKS

1.M.S.Naidu and V.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, November 2008.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in
2	D.SARANYA	Assistant Professor(Grade-II)	EEE/AVIT	dsaranya@avit.ac.in

17EEEC13	SPECIAL ELECTRICAL MACHINES	Category	L	Т	Р	Credit
		EC(PS)	3	0	0	3

PREAMBLE:

This course aims to impart in students, a good understanding of fundamental principles of different types of special machines. The course includes constructional details, operating principles, motor characteristics, microprocessor based controllers and applications of various types of special machines.

PREREQUISITE : 17EECC02 & 17EECC05 Electrical Machines – I & Electrical Machines – II.

COURSE OBJECTIVES

	_	_													
1	To understand the construction, principle of operation, torque equation, driver circuits & applications of Synchronous reluctance motors.														
2							of one	eration	torau	e equat	ion driv	ver circu	iits & a	nnlicatio	ons of
2		er moto		140110	., pm	- Pic	or opt	-iution,	, wrqu	e equal	un, un			rpiican	JII5 UI
3	11			onstru	ction,	princi	ple of	operati	on, to	que equ	ation, di	river circ	cuits & a	pplicati	ons of
5	Swite	hed relu	uctance	moto	rs.	_	_	-							
4	To st	udy the	e const	ructio	n, prir	nciple	of ope	eration,	, torqu	e equat	ion, driv	ver circu	its & a	pplication	ons of
	Permanent magnet synchronous motors.														
5	To understand the construction, principle of operation, torque equation, driver circuits & applications of														
5	Permanent magnet brushless DC motors.														
COUR	SE OU	JTCON	AES												
On the															
	Illustrate the basic construction and operating principle of Synchronous Reluctance Motor, Understand														
	Stepper motor, PMSM and PMBLDC Motor														
	: Explain the motor characteristics, power input and torque development in Synchronous ctance Motor, SRM, Stepper motor, PMSM and PMBLDC Motor. Understand														
Kelucia															
	3: Develop the drive systems and control schemes for Stepper motors, SRM,PMSM and														
PMBL	DC Mo	otor.												Ap	ply
CO4: S	Select th	ne suita	ble spe	cial pi	irpose	motor	for th	e speci	fic app	lication				A	1
			1		1			•						Ap	ргу
		the M	icropro	cessor	based	l conti	rol of S	Stepper	moto	rs, SRM	,PMSM	and PM	IBLDC	Under	stand
Motor.			DOCI				MES		DDOC				UTCO	MES	
	ING V	VIIII	NOGI	NAWI			MIES	ANDI	NUG		ESIE			VILS	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L									М				
CO2	М	L		L							М		L	L	
CO3	S	М	L	Μ	М		L		М	L	S			S	
					141		L		171	Ľ					
CO4	S	М	L	L							Μ	L		М	
CO5	М	L		Μ	S		L		М		S	L		S	L
S- Stro	ng; M-	Mediur	n; L-Lo)W						I		I	l		
	<i>U</i> ,		,												

Synchronous Reluctance Motors

Constructional features - Operating principles - Types - Axial and Radial flux motors - Reluctance torque-Torque equation - characteristics - Syncrel drive system - Phasor diagram-Applications.

Stepper motors

Constructional features - Principle of operation - Torque production in Variable Reluctance (VR) stepper motor -Hybrid motor - Multi stack configuration - Modes of excitations - Characteristics - Drive circuits - Closed loop control - Microprocessor control of stepping motors - Applications.

Switched Reluctance Motors

Constructional features - Principle of operation - Rotary and Linear SRMs - Torque equation - Modes of operation - Power converter circuits - Closed loop control of SRM drive - Microprocessor control of SRM drive -Sensor less control of SRM drive - Characteristics - Applications.

Permanent Magnet Synchronous Motors

Constructional features - Principle of operation - EMF and Torque equations - Armature reaction EMF Synchronous Reactance - Sinewave motor with practical windings - Phasor diagram - Torque/speed characteristics - Power controllers - Converter Volt-ampere requirements - Microprocessor based control of PMSM - Applications.

Permanent Magnet Brushless DC Motors

Constructional features - Principle of operation - Classifications - EMF and torque equations - Power controllers - Commutation in DC motors - mechanical and electronic commutators - Hall sensors - Optical sensors Torque-speed characteristics - Magnetic circuit analysis - Sensorless control of BLDC motors - Applications.

TEXT BOOKS:

1. Bimal K.Bose, "Modern Power Electronics and AC Drives", Prentice Hall, New Delhi, 2005.

2. Gopal K.Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House Pvt.Ltd., New Delhi, Second edition, 2015.

REFERENCE BOOKS:

1. R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, Prentice Hall of India, 2009. 2. T.J.E.Miller ,"Brushless Permanent Magnet and Reluctance DC Motor Drives", Clarendon Oxford Press, 1989.

- 3. T. Kenjo, "Stepping Motors and their Microprocessor Controls", Clarendon Oxford Press, 1994.
- 4. K.Venkataratnam, "Special Electrical Machines", University Press (India) Pvt.Ltd., 2009.
- 5. E. G. Janardanan, "Special Electrical Machines", PHI Learning Private Limited, ISBN: 978-81-203-4880-6, Delhi, 2014.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Dr. K. Boopathy	Professor	EEE/AVIT	boopathyk@avit.ac.in

17EI	EEC14		WIND	ENER	RGY C	ONVI	ERSIC	ON SYST	TEMS	(Catego	ry L	Т	P C	Credit
										I	EC(PPS	5) 3	0	0	3
	PREAMBLE To understand and familiarize the principle, Concepts of wind energy conversion system.														
PRE	REQUIS		7EECC	06 Pov	ver ele	ctronic	es								
COU	RSE OF	BJECT	TIVES												
1	To unde			nponer	nts, var	ious th	neories	and dyn	amics	of wind	energy	conve	rsion sy	vstems	
2	To study			-				und ajn			energy	conre		sterns.	
3	To study							energy c	onvers	ion syst	ems.				
4	To study														
5	To intro			•				••		system	5.				
COU	RSE OU		-	connec				gy system							
	e succes								ble to						
CO1:	CO1: Realize the basics of wind energy conversion systems Understand														
	Compre												1	Underst	and
	Underst		e opera	tions o	f vario	us type	es of el	lectrical	machin	eries us	sed for	fixed	1	Underst	and
	l systems Illustra		penerati	on of e	electric	al pow	ver froi	m variab	le spee	d syster	ns			Analyz	ze.
	Acquire								ie spee					apply	
	Design													Create	
	PING V								ROGRA	AMME	SPEC	IFIC ()UTC(OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		PSO1	PSO2	PSO3
C01	S	Μ	-	_	М	S	S	L	-	-	L	-	M	-	М
CO2	S	L	-	-	М	S	S	L	-	-	L	-	L	_	L
CO3	S	L	L	-	S	S	S	L	-	-	L	-	М	L	L
CO4	S	М	L	-	S	S	L	L	-	-	М	-	М	-	-
CO5	S	М	L	L	S	S	S	L	-	-	М		L	-	-
CO6	S	М	L	L	L	L	Μ	L	L	L	S	L	S	L	М
S- Sti	ong; M-	Mediu	m; L-L	ow		1	I	<u> </u>	1	1			1	<u>I</u>	1

SYLLABUS INTRODUCTION

Components of WECS-WECS schemes-Power obtained from wind-simple momentum theory-Power coefficient-Sabinin's theory-Aerodynamics of Wind turbine

WIND TURBINES

HAWT-VAWT-Power developed-Thrust-Efficiency-Rotor selection-Rotor design considerations-Tip speed ratio-No. of Blades-Blade profile-Power Regulation-yaw control-Pitch angle control-stall control-Schemes for maximum power extraction.

FIXED SPEED SYSTEMS

Generating Systems- Constant speed constant frequency systems -Choice of Generators-Deciding factors-Synchronous Generator-Squirrel Cage Induction Generator- Model of Wind Speed- Model wind turbine rotor -Drive Train model-Generator model for Steady state and Transient stability analysis.

VARIABLE SPEED SYSTEMS

Need of variable speed systems-Power-wind speed characteristics-Variable speed constant frequency systems synchronous generator- Variables in wind energy conversion systems – wind power density – power in a wind stream – wind turbine efficiency –Forces on the blades of a propeller- Variable speed generators modeling - Variable speed variable frequency schemes.

GRID CONNECTED SYSTEMS

Stand alone and Grid Connected WECS system- low-voltage ride through (LVRT), ramp rate limitations, and supply of ancillary services for frequency and voltage control, current practices and industry trends wind interconnection -Grid connection Issues-Machine side & Grid side controllers-WECS in various countries

TEXT BOOKS:

- 1. S.Rao & B.B.Parulekar, "Energy Technology", 4th edition, Khanna publishers, 2005.
- 2. Wind energy Handbook, Edited by T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, John Wiley & Sons, 2001

REFERENCE BOOKS:

- 1. L.L.Freris "Wind Energy conversion Systems", Prentice Hall, 1990
- 2. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.
- 3. E.W.Golding "The generation of Electricity by wind power", Redwood burn Ltd., Trowbridge, 1976.
- 4. S.Heir "Grid Integration of WECS", Wiley 1998.

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Mr. P. Loganathan	Assistant Professor	EEE/VMKVEC	loganathan@vmkvec.edu.in
3	Mr. V. Rattankumar	Assistant Professor	EEE/AVIT	rattankumar@avit.ac.in

17EE	EC15		POV	VER SY		<mark>A REST</mark> EGUL			G AND)	Catego	ory	L	Т	Р	Credit
											EC-P	S	3	0	0	3
PREAM		o make	e studen	ts becc	ome fan	niliar th	e overv	view of	power	system r	estructur	ing a	and o	leregula	tion .	
PRERE	QUISI	FE : Po	ower Sy	ystem (Operati	ion and	Contr	ol(17E)	ECC10)						
COURS	SE OBJ	ECTIV	VES													
1 7	Го study	the ov	verview	of the	restruct	ured po	wer sys	stem.								
2 7	Го study	the Di	ifferent	iate bet	ween th	e integ	rated po	ower sys	stem an	d restruc	tured po	wer	syst	em.		
3 7	Го study	the va	rious n	nodels c	of dereg	ulated p	power s	ystem.								
4 7	Го study	the co	mparis	on of di	fferent	method	ls in tra	nsmissi	on prici	ing.						
5 7	Fo study	the ov	verview	of cong	gestion	manage	ement.									
COURS	SE OUT	COM	ES													
On the s	uccessf	ul com	pletion	of the c	ourse, s	students	s will be	e able to)					n		
CO1: Ex	xplain th	ne overv	view of	the res	tructure	ed powe	r syster	n							Unde	erstand
CO2: I	Differen	tiate be	tween t	he integ	grated p	ower s	ystem a	nd restr	uctured	l power s	ystem				Unde	erstand
CO3: Ex	xplain th	ne vario	ous mod	lels of d	leregula	ated pow	ver syst	tem							Under	stand
CO4: Ex	kamine t	he who	olesale	electric	ity marl	ket char	acterist	ics.							Ana	lyze
CO5: Co	ompare	the diff	erent m	nethods	in trans	smissio	n pricin	g							Ana	lyze
CO6: Ex	kplain tł	ne overv	view of	conges	tion ma	anagem	ent.								Unders	tand
MAPPI	NG WI	TH PF	ROGRA	AMME	OUTO	COMES	S AND	PROG	RAMM	IE SPEC	CIFIC O	UT(CON	AES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO3
CO1	-	S	-	-	S	-	-	-	-	-	-	-		-	L	-
CO2	-	S	-	-	-	-	-	-	-	-	-	-		-	М	-
CO3	S	S	-	-	-	-	-	-	-	-	-	-		S	-	-
CO4	-	-	-	-	-	-	-	М	S	S	S	-		-	-	S
CO5	-	-	-	-	-	-	-	М	-	М	S	-		-	-	S
CO6	S	S	-	-	-	-	-	-	-	-	-	-		-	-	М
S- Stron	g; M-M	edium;	L-Low	7	I	<u>I</u>	I	<u>I</u>	1	<u> </u>	I	1		<u> </u>	1	<u> </u>

INTRODUCTION TO DEREGULATION AND RESTRUCTURING

Gencos, transcos, discos, customers, ISO, Market operators. privatization, An overview of the restructured powersystem, difference between integrated power system and restructured power system, transmission open access, wheeling, Power systems operation – old Vs new, Key issues associated with the restructuring of ESIs, advantages of competitive system.

DEREGULATION OF POWER SECTOR

Separation of ownership and operation, Deregulated models – pool model, pool and bilateral trades model, multilateral trade model.

COMPETITIVE ELECTRICITY MARKET

Independent System Operator activities in pool market, wholesale electricity market characteristics, central auction, single auction power pool, double auction power pool, market clearing and pricing, Market Power and its MitigationTechniques, Bilateral trading, Ancillary services.

TRANSMISSION PRICING

Marginal pricing of Electricity, nodal pricing, zonal pricing, embedded cost, postage stamp method, contract pathmethod, boundary flow method, MW-mile method, MVA-mile method, comparison of different methods.

CONGESTION MANAGEMENT

Total Transfer Capability – Limitations – Margins – Available transfer capability (ATC) – Procedure – methodsto compute ATC – Static and Dynamic ATC – Bid, Zonal and Node Congestion Principles – Inter and Intra zonal congestion – Generation Rescheduling – Transmission congestion contracts.

TEXT BOOKS

- 1. Loi Lei Loi, "Power System Restructuring and Deregulation Trading, performance& information technology", John Wiley sons, 2001.
- 2. Kankar Bhattarcharya, et,al., "Operation of restructured power systems", Kluwer academic publishers, 2001.

REFERENCE

- 1. S. A. Khaparde and A. R. Abhyankar, "Restructured Power Systems", Narosa Publishing House, New Delhi, India, 2008.
- 2. S. C. Srivastava and S. N. Singh, "Operation and Management of Power system in Electricity Market", Narosa Publishing House, New Delhi, India, 2008.
- 3. M. Shahidehpour and M. Alomoush, "Restructuring Electrical Power Systems", Marcel Decker Inc., Scholarly Transaction Papersand Utility web sites, 2001.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	V.MANJULA	Assistant Professor	EEE/VMKKEC	manjula@vmkvec.edu.in
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in

17EEEC16		RIC VI	EHICI	ES		C	Category		T P	C	redit
	ELECT					I	EC(PS)	3	0 0		3
PREAMBLE This course introduces the fun	ndamental c	concep	ts, prir	ciples, c	lesign a	nd analy	ysis of h	ybrid,	electric	vehicle	s.
PREREQUISITE: 17EEES	503 Basic E	lectric	al & E	lectronio	cs Engir	neering.					
COURSE OBJECTIVES											
1 To understand the basic	concepts a	nd dyn	amics	of elect	ric vehio	cles.					
2 To familiarize and desig	gn of batter	y back	up.								
3 To analyze the character	ristics of di	fferent	types	of DC &	a AC M	otors.					
4 To understand different	types of po	wer tra	ansmis	sion cor	nfigurati	ion, clut	ch and t	oraking	•		
5 To study about hybrid e	lectric vehi	cles.									
COURSE OUTCOMES											
On the successful completion	of the cour	se, stu	dents v	will be a	ble to						
CO1: Describe the basic concepts of electric vehicles. Understand											
CO2: Design the propulsion s	system for e	electric	vehic	les.						Evalua	te
CO3: Explain the construction	n, character	ristics a	and app	olication	ofbatte	eries.				Analyz	e
CO4: Elucidate performance of	characterist	ics of	DC&A	C electr	rical ma	chines.				Analyz	e
CO5: Design the drive train m	nodel for el	ectric	vehicle	es.						Evaluat	te
CO6: Describe about the varie	ous types a	nd con	figurat	ion of h	ybrid el	ectric ve	ehicle.			Apply	,
MAPPING WITH PROGRA	AMME OI	UTCO	MES	AND PI	ROGRA	MME	SPECI	FIC O	UTCON		
	PO4 PO5	PO6	PO7	PO8	PO9	PO10		PO12	PSO1		PSO3
CO1 S L -	- M	-	L	L	-	-	-	L	S	-	-
CO2 S M S	L M	S	L	М	M	L	М	S	S	S	L
CO3 S L -	- M	L	-	-	-	L	L	-	S	М	-
CO4 S L -	- M	L	-	-	-	L	L	-	S	М	-
CO5 S M S	L M	S	L	M	M	М	М	S	S	S	L
CO6 S L -	- M	L	L	L	-	-	-	L	S	L	-
S- Strong; M-Medium; L-Lov	N N										

ELECTRIC VEHICLES

Introduction, Components, vehicle mechanics – Roadway fundamentals, vehicle kinetics, Dynamics of vehicle motion - Propulsion System Design.

BATTERY

Basics – Types, Parameters – Capacity, Discharge rate, State of charge, state of Discharge, Depth of Discharge, Technical characteristics, Battery pack Design, Properties of Batteries.

DC & AC ELECTRICAL MACHINES

Motor and Engine rating, Requirements, DC machines, Three phase A/c machines, Induction machines,

permanent magnet machines, switched reluctance machines.

ELECTRIC VEHICLE DRIVE TRAIN

Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motor sizing.

HYBRID ELECTRIC VEHICLES

Types – series, parallel and series, parallel configuration – Design – Drive train, sizing of components.

TEXT BOOKS:

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press,
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

REFERENCE BOOKS:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals", CRC Press, 2010.
- 2. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes, 2000 .http://nptel.ac.in/courses/108103009

COURS	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Dr. P. Selvam	Professor	EEE/VMKVEC	hodeee@vmkvec.edu.in
3	Mr. V. Rattankumar	Assistant Professor	EEE/AVIT	rattankumar@avit.ac.in

17EEI	EC17		РНО	τονα)LTAI	IC EN	ERGY	CONV	ERS	ION	Ca	tegor y	L	Т	Р	Credit
											EC	C-PS	3	0	0	3
PREAN First hau PV cell	nd cour		basics	of a so	lar PV	cell, i	ts physi	cs of o	perati	on, cha	racterist	ics, en	ergy	con	versior	n and
PRERE NIL	QUIS	ITE														
COURS	SE OB	JECT	IVES													
1	To U	Underst	tand tl	he con	cepts o	f Sem	conduc	tor phy	vsics r	elated t	o solar H	V cel	ls			
2	To S	Study th	he cha	racteris	stics ar	nd para	meters	of a so	lar PV	cells						
3	To U	Unders	tand va	arious	types o	of conn	ections	of sola	r cell	s and a	ray					
4	To s	tudy th	ne cono	cepts o	fenerg	gy con	version	using s	olar c	ells and	l array					
5	To u	Inderst	and the	e proce	edure a	nd pro	cess in	volved	in sol	ar powe	er modul	e & as	sem	bly		
COURS	SE OU	TCON	AES													
On the s	success	ful cor	npletio	on of th	ne cour	rse, stu	dents w	vill be a	ble to							
CO 1	Expl	ain the	e physi	cal scie	ence be	ehind t	he form	nation o	of a so	lar PV	cell			Unde	erstand	l
CO 2	Pred	ict the	perfor	mance	of a so	olar PV	cell ar	nd array	1					unde	rstand	
CO 3	App	ly elect	trical c	ircuit o	concep	ts for l	PV cell	s series	& par	rallel				Ap	oply	
CO 4	App	raise th	ne ener	gy con	versio	n from	solar r	adiatio	n to el	ectricit	у			Unde	erstand	l
C0 5	Desi	gn the	solar I	PV cell	modu	le asse	mbly							Cr	eate	
MAPPI	NG W	ITH P	ROG	RAMN	ME OU	UTCO	MES A	ND PI	ROGI	RAMM	E SPE	CIFIC	OU	TCC	OMES	
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01	PSO2	PSO3
CO1	S	М		-	-	-	M	-	-	-	-	-	N	Л	М	M
CO2	-	S	L	-	-	-		-	-	-	М	-	S	5	М	M
CO3	-	-	S	-	-	-	S	-	-	-	-	-	N	Л	-	M
CO4	-	М		-	М	-	S	-	-	-	-	-	-	-	-	-
CO5	-	-		-	-	S	-	-	-	-	-	S	S	5	М	M
S- Stron	g; M-N	Aediun	n; L-L	ow		1			1	1	1 1		1			

PROPERTIES OF SEMICONDUCTOR

Semiconductors: Crystals structures, atomic bonding, energy band diagram – direct & indirect band gap- p & n doping and carrier concentration - Hall effect in semiconductors – Intrinsic & extrinsic semiconductor - compound semiconductors – diffusion and drift of carriers, continuity equation – optical absorption – carrier

recombination -Effect of temperature.

SOLAR PV CELL

PV Cell Characteristics and equivalent circuit – model of PV cell- Short circuit, open circuit and peak power parameters – data sheet study –cell efficiency – effect of temperature – temperature effect calculation –fill factor PV efficiency; optical losses; electrical losses, surface recombination velocity, quantum efficiency cell simulation

CONNECTION OF PV CELL

PV cells in series and parallel- load line - non identical cells in series and parallel - protection of PV cells in series - protection of PV cells in parallel - measuring I-V characteristics - simulation

ENERGY COLLECTION AND ATMOSPHERIC EFFECTS

Insolation and irradiance – variation of insolation with time of day – earth centric view point and declination – solar geometry –insolation on a horizontal flat plate – energy on a horizontal flat plate – sunrise and sun set hour angles. Energy on a titled flat plate – atmospheric effects – airmass – energy with atmospheric effects – clearness index

SOLAR CELL MODULE MATERIALS AND ASSEMBLY

PV modules: Module and Circuit Design - Identical and Non-identical Cells – Module Structuring and assembly - Environmental Protection - Thermal Considerations – Electrical Considerations and output conditioning - assembly materials – interconnects – crystalline and thin film modules - issues with solar PV modules, bypass diode and blocking diode – module testing and analysis.

TEXT BOOKS

- 1. Semiconductors for solar cells, H. J. Moller, Artech House Inc, MA, USA, 1993.
- 2. Fundamentals of Solar Cells: PV Solar Energy Conversion, Alan L Fahrenbruch and Richard H Bube ,Academic Press, New York , 1983
- 3. Solar Cells: Operating principles, Technology and Systems Applications, Martin Green, UNSW, Australia, 1997.

REFERENCE BOOKS

- 1. Solar Cells and their Applications, Larry D Partain (ed.), John Wiley and Sons, Inc, New York, 1995.
- 2. J. Nelson, The physics of solar cells, Imperial College Press, 2006.
- 3. Photovoltaic Materials, Richard H Bube, Imperial College Press, 1998
- 4. Solar Cell Array Design Handbook, H S Rauschenbach, Van NostrandReinfold, 1997.

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1.	Dr.G.Ezhilarasan	Professor	EEE / AVIT	ezhilarasan@avit.ac.in
2.	Mr.G.Ramakrishnaprabu	Associate Professor	EEE / VMKVEC	ramakrishnaprabu@vmkvec.edu.in

		Category	L	Т	Р	Credit
17EEEC18	RENEWABLE ENERGY TECHNOLOGY	EC(PS)	3	0	0	3

PREAMBLE

This course helpful for the students to enhance their knowledge in renewable sources and empower the students to understand the need of renewable source, utilization of techniques and its advantages. Energy is a vital input for the development and economic growth of a country. The growth for energy sector is critical for socio-economic development particularly for rural areas. Students will be exposed to the status of energy resources, its interaction with environment, different renewable energy sources technologies, different techniques and technologies for energy management and energy conservation along with the economic aspects of renewable energy based power generation. It is to provide specialist manpower to meet the challenges of the energy sector.

PREREQUISITE

> NIL

COURS	SE OB.	JECTI	VES												
1	To f	amilia	rize the	e stude	nt with	the ut	ilizatic	on meth	nods of	f the ren	iewable	energy	resourc	ces	
2	To le	earn ab	out PV	/ Tech	nology	, princi	ples.								
3	To learn economical and environmental merits of solar energy for variety applications.														
4	To le	earn m	odern v	wind tu	irbine o	control	& mor	nitoring	z .						
5	To le	earn va	rious p	ower o	convert	ers in	the fiel	d of re	newab	le energ	y techn	ologies.			
6	To s	study a	and An	alyze o	lifferer	nt types	s of Po	wer co	nvertei	rs for Re	enewabl	e energ	y conve	ersion	
COURS	SE OU	ГСОМ	IES												
On the s	uccess	ful con	npletio	n of th	e cours	e, stud	ents w	ill be a	ble to						
CO1	Unde	erstand	the va	rious F	V tech	nologi	es						Under	stand	
CO2	Implement The PV technology to various applications. Apply														
CO3	Asse	ss the o	control	and m	onitori	ng sys	stems						Ana	lyse	
CO4	Real	ize mo	dern co	ontrol r	nethod	s of wi	nd turł	oine					Under	stand	
CO5	Anal	yze va	rious p	ower c	onvert	ers.							Ana	lyze	
MAPPI	NG W	ITH P	ROGI	RAMN	IE OU	TCON	⁄IES A	ND PH	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L			М	М			L		М	L		L
CO2	L		L	М	М			L	М		L	М	L	L	М
CO3	S	S	L		М	L			L	L			S	М	S
CO4	L	М		L	S		М		L			М	L	L	S
CO5	S	L	S	М	М					М	М			М	
S- Stron	g; M-N	ledium	n; L-Lo)W	L	L		L		1	1	I	L	1	

SOLAR THERMAL TECHNOLOGIES

Principle of working, types, design and operation of - Solar heating and cooling systems – Thermal Energy storage systems – Solar Desalination – Solar cooker : domestic, community – Solar pond – Solar drying. Principle of working, types, design and operation of - Solar heating and cooling systems – Thermal Energy storage systems – Solar Desalination – Solar cooker : domestic, community – Solar pond – Solar drying.

SPV SYSTEM DESIGN AND APPLICATIONS

Solar cell array system analysis and performance prediction- Shadow analysis: reliability - solar cell array design concepts - PV system design - design process and optimization - detailed array design - storage autonomy - voltage regulation - maximum tracking - centralized and decentralized SPV systems - stand alone - hybrid and grid connected system - System installation - operation and maintenances - field experience - PV market analysis and economics of SPV systems.

DIRECT ROTOR COUPLED GENERATOR (MULTIPOLE) [VARIABLE SPEED VARIABLE FREQ.]

Excited Rotor Synch. Generator / PMG Generator, Control Rectifier, Capacitor Banks, Step Up / Boost Converter (DC-DC Step Up), Grid Tied Inverter, Power Management, Grid Monitoring Unit (Voltage and Current), Transformer, Safety Chain Circuits

MODERN WIND TURBINE CONTROL & MONITORING SYSTEM

Details of Pitch System & Control Algorithms, Protections used & Safety Consideration in Wind turbines, Wind Turbine Monitoring with Error codes, SCADA & Databases: Remote Monitoring and Generation Reports, Operation & Maintenance for Product Life Cycle, Balancing technique (Rotor & Blade), FACTS control & LVRT & New trends for new Grid Codes.

POWER CONVERTERS

Solar: Block diagram of solar photo voltaic system: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection Of inverter, battery sizing, array sizing. Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

TEXT BOOK

1. Goswami, D.Y., Kreider, J. F. and & Francis., Principles of Solar Engineering, Taylor and Francis, 2000

- 2.Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford University Press, 1996
- 3. Renewable Energy Sources and Emerging Technologies, Kothari, Prentice Hall India Learning Private Limited; 2 edition (2011), ISBN-10: 8120344707, ISBN-13: 978-8120344709

REFERENCES

1. Sukhatme S P, J K Nayak, Solar Energy – Principle of Thermal Storage and collection, Tata McGraw Hill, 2008.

2. Solar Energy International, Photovoltaic – Design and Installation Manual – New Society Publishers, 2006

- 3.Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1983
- 4. John D Sorensen and Jens N Sorensen, Wind Energy Systems, Woodhead Publishing Ltd, 2011
- 5. Rashid .M. H "power electronics Hand book", Academic press, 2001.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in
2	R. SATHISH	Assistant Professor	EEE / VMKVEC	sathish@vmkvec.edu.in
3	V. RATTAN KUMAR	Assistant Professor (G-III)	EEE / AVIT	rattankumar@avit.ac.in

17555010		Category	L	Т	Р	Credit
17EEEC19	DRIVE SYSTEM IN ELECTRIC TRACTION	EC (PS)	3	0	0	3

Preamble

Drive system in Electric Traction which provides the basic knowledge about traction drives with motor control, Comparison of the different drives system employed in electric traction. Methods of braking and controlling system. The drive which uses the electric power for moving forward, such type of drive is called an electric traction drive. One of the major applications of an electric drive is to transport men and materials from one place to another. It full fills the real time commercial applications of both Electrical and Mechanical field of drives and applications.

PRERE	QUISI Nil	TE													
COURS	E OBJ	IECTI	VES												
1	To u	To understand theoretical concepts of electric drives.													
2	To a	To analyze the performance of DC motor drives.													
3	To a	nalyze t	he perf	ormanc	e of inc	luction	motor c	lrives f	or vario	us opera	ting con	ditions.			
4	To st	udy the	tractio	n syste	m princ	iple and	l its me	thodolo	ogy						
5	To u	ndersta	nd the v	various	traction	system	and its	s contro	1.						
COURS	E OU	ГСОМ	IES												
On the s	uccessi	ful con	npletio	n of the	e cours	e, stud	ents wi	ill be a	ble to						
CO 1	Learn	the ba	sics of	drives	with c	haracte	eristics	and co	ontrol				U	Jndersta	nd
CO 2	Identify the conventional DC drive system. And its types												F	Rememb	er
CO 3	Analyze the convertor control of drive system. Analyze											e			
CO 4	Under	rstand	various	s induc	tion m	otor dr	ives an	d its co	ontrol.				U	Jndersta	nd
C0 5	Find o	out the	variou	s meth	ods of	tractio	n syste	m and	its con	nparisor	1		U	Indersta	nd
C0 6	under	stand t	he vari	ous typ	pes of t	tractior	ı systei	m and l	oreakin	ng syste	ms		U	Jndersta	nd
MAPPI	NG W	ITH P	ROGI	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	L		L	М			L	S		S	М	L		S
CO2	S	S		М	L	L		М		L	М	L	L	М	
CO3	S			S	М						S		М		М
CO4	М	S	S		L			L		L	L	М		S	L
CO5	М	L	М		S		М				М		М		
CO6	S	L	М	L	L		S	М		L	S	S	L	М	S
S- Stron	g; M-N	ledium	n; L-Lo	W						L		·		·	

FUNDAMENTALS OF ELECTRIC DRIVES

Basic concepts, Characteristics and operating modes of drive motors, Starting, braking and speed control of motors, Four quadrant drives, Nature and classification of load torque and associated controls used in process industries, Selection of motors and rating.

DC MOTOR DRIVES

Analysis of separately excited dc motor with continuous armature current and discontinuous armature current, Analysis of DC series motor drives, Comparative evaluation of phase angle control, Semi-converter operation of full converter, Single phase half controlled and fully controlled rectifier fed DC motors, Sequence control, Three phase half controlled and fully controlled rectifier fed DC motors, Dual converter with circulating and non-circulating current controlled drives, Closed loop control system of DC motor drives, Reversible drives, Analysis and performance characteristics of chopper fed DC motors, Motoring and braking operations, Multi phase chopper, Phase locked loop control of DC drive.

INDUCTION MOTOR DRIVES

Operation with unbalanced source voltages and unbalanced rotor impedances, Effect of time harmonics on the motor performance, Braking, Stator voltage control of induction motor, Variable voltage variable frequency (VVVF) operation, Voltage source inverter (VSI) fed induction motor drive, Static rotor resistance control, Slip power recovery systems, closed loop control of ac drives, Introduction to field oriented control of ac motors, Comparison of ac and dc drive.

ELECTRIC TRACTION- PRINCIPLE AND HISTORY

Systems of traction, The Indian Scenario of Electric traction, Present day State of art Electric traction as a Viable Transport Strategy for the 21st century, Advantages of Electric Traction over other systems of traction, Choice of traction system - Diesel- Electric or Electric. Mechanics of train movement, Speed - time curve for train movement, Requirement of reactive effort and T-N curve of a typical train load, Specific energy consumption & Factors affecting SEC Adhesion & Coefficient of adhesion, Suspension and mechanism of torque transmission, Concept of Weight Transfer & Effect of un-sprung mass and wheel diameter

TRACTION SYSTEMS AND MOTOR CONTROL

Methods of traction - track electrification - DC system - single phase and three-phase low frequency and high frequency system - composite system - kando system - comparison between AC and DC systems - Desirable characteristics of traction motors - suitability of series motor for traction - single phase series motor - repulsion motor - linear induction motor - Control of DC traction motors - series-parallel control - shunt and bridge transition - Rheostatic braking - regenerative braking of DC and three phase induction motors

Text Books

1. K. Dubey, Fundamental of Electrical Drives, Narosa Publication.

2. H. Partab, Modern Electric Traction - DhanpatRai& Co, 2007.

Reference Books

1.S. K. Pillai, First Course on Electrical Drives, Wiley Eastern Limited.

2.V. Subramanyam, Electric Drives- concepts and applications, Tata McGraw Hill.

3.M.H.Rashid, "Power Electronics", P.H.I. Edition

4. Gonzalo Abad, Power Electronics and Electric Drives for Traction Applications, John Wiley & Sons, 2016 ISBN : 1118954440, 9781118954447

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	e-Mail ID								
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in								
2	Dr. R. DEVARAJAN	Professor	EEE / VMKVEC	devarajan@vmkvec.edu.in								

7FFFC20	20	

PREAMBLE

Introduce the students to study the fundamentals of computing and modeling software environments for electrical engineering. This Course contains Programming in numerical computing and modeling software environments for electrical engineering. No prior programming experience or knowledge of SCILAB is assumed, and the course is structured to allow thorough assimilation of ideas through hands-on examples and exercises.

PREREQUISITE

NIL

COURSE OBJECTIVES

		-													
1	To s	tudy ba	asic co	ncepts	of scie	entific	progra	mming	g using	SCILA	B.				
2	To le	earn ab	out the	e Basic	s of Pro	ogram	of SCI	LAB a	nd rela	ted Ma	thematio	cal App	lication	s.	
3	Anal	yze th	e conce	epts of	Progra	m of S	CILAI	3.							
4	To u	To understand the different tools in SCILAB and ODE, DAE													
5	То а	pply a s	softwa	re prog	ram to	Electr	ical cir	cuits a	nd solv	ve the si	mulatio	n based	solutio	ns.	
COURS	E OU	ГСОМ	IES												
On the s	uccessi	ful con	npletio	n of the	e cours	e, stud	ents w	ill be a	ble to						
CO1	Understand the main features of the SCILAB program development environment to enable their usage in the higher learning.														
CO2	Understand the need for simulation/implementation for the verification Understand and Analyze														
CO3	Implement simple mathematical functions/equations in numerical computing environment such as SCILAB.											Analy	ze		
CO4				alize si s/displa	-	nathem	atical f	functio	ns and	operatio	ons	Create	Create and Apply		
CO5	the c		and ve				s and o lation			timate/ j using	predict	Create	2		
MAPPI	NG W	ITH P	ROGI	RAMM	IE OU	TCON	AES A	ND PH	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M					L		L				L	L	М	
CO2	M		L					L		L		L	L	М	
CO3	S	М	L		L		L	L	М	М	L		М	L	L
CO4	S	М	М	L	М	М	М		S	М	М	М	М	L	М
CO5	S	S	L	М	М	L	S	L	М	S	S	S	S	S	S
	1						1			1	1	1	1	1	

S- Strong; M-Medium; L-Low

INTRODUCTION

Introduction to SCILAB – Constants – Data types – SCILAB Syntax – Data type related functions – Over loading.

GRAPHICAL ANALYSIS USING SCILAB

The media – global plot parameters – 2D and 3D plotting – examples – printing graphics and exporting to Latex.

SCILAB PROGRAMMING

Linear algebra – Polynomial and rational function manipulation – Sparse matrices – random numbers – cumulative distribution functions and their inverse – building interface programs – inter SCI – dynamic linking – static linking.

SCILAB TOOLS

Systems and control toolbox – improper systems – system operation – control tools classical control – state space control – model reduction – identification – linear matrix inequalities – integrating ODEs – integrating DAEs.

APPLICATIONS

Resistive circuits – inductive and capacitive circuits – transients – steady state analysis – logics circuits – electronic devices - DC machines

TEXT BOOK

1. Claude Gomez Engineering and Scientific Computing with SCILAB, Birkhauser publications

REFERENCES

- 1.<u>Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering</u> <u>Applications</u>A. Vande Wouwer, P. Saucez, C. V. Fernández 2014ISBN: 978-3319067896
- 2. SCILAB(a Free Software to Matlab), Er. HemaRamachandran and Dr. Achutsankar Nair, S. Chand Publishers, ISBN-10: 8121939704,2011

3. http://in.mathworks.com/

4.https://www.scilab.org/resources/documentation/tutorials

5. http://www.scilab.org/

6.SCILAB: A Begineer's Approach, Anil Kumar Verma, Cengage Learning India Pvt. Ltd.; First edition (2018), ISBN-10: 9386858932, ISBN-13: 978-9386858931

COURS	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	e-Mail ID									
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in									
2	R. SATHISH	Assistant Professor	EEE/ VMKVEC	sathish@vmkvec.edu.in									

											Categ	ory L	Т	P C	redit
17EEF	EC21	I	NON C	CONVI	ENTIC	DNAL	ENER	RGY SO	OURC	ES	EC-P		0	0	3
PREAM Non include depletin sources from wa It can a solving environ establish	Conve anythin g conv of ener aste mat lso be the tw ment. I	g, whi entiona gy suc terial a more o rin pro t conco	ch prov al sour ch as e re gain conven blems erned v	vides p rces of energy ling im liently of en with de	ower t energ from s portan supplie ergy s velopn	hat can y such un, wi ce. Thi ed to u upply nent of	be rep as co nd, bio s energ arban, in a co the na	olenish oal, pe omass, gy is ab rural a lecentra tional	ed with troleun tidal e oundan nd eve alized grid sy	n increas n, "natu nergy, g t, renew en remo manner stem wi	f energy sing der ural gas geo then vable, po te areas and h ill focus	This t nand fo etc. Th mal encollution ollution s. Thus, elping	ype of or r energy he non- ergy an free an it is a in sust	energy s y and w - conve d even d eco-fr lso capa aining o	ources ith fast ntional energy iendly. able of cleaner
PRERE	QUISI				2				0	11					
× 1															
COURS	SE OBJ	IECTI	VES												
1		To impart the knowledge of basics of different non conventional types of power generation & power plants													
2	To u	To understand the need and role of Non-Conventional Energy sources.													
3	To le	To learn economical and environmental merits of solar energy for variety applications.													
4	To learn modern wind turbine control & monitoring.														
5	To learn various power converters in the field of renewable energy technologies.														
6	To s	study a	and ana	alyse di	ifferen	t types	of Pov	ver con	verters	for Rei	newable	e energy	conve	rsion	
COURS	SE OU	ГСОМ	IES												
On the s	uccessi	ful con	npletio	n of the	e cours	e, stud	ents w	ill be a	ble to						
CO1		-						source energy.		the p	ower		Under	stand	
CO2				ar Rad plicati		differ	ent M	lethods	of S	olar Er	nergy		Ana	lyse	
CO3				Vinds be tappe	0.	y as a	alternat	te form	n of er	nergy ai	nd to		Under	stand	
CO4	Expl	ore the	Geoth	ermal	Energy	Resou	irces a	nd its n	nethod	s.			Under	stand	
CO5	Ident	ify the	Bio m	ass and	d Bio g	as reso	ources	and its	tappin	g techni	que		Ana	lyze	
CO6		-		dal, W and MI				ergy, C	Concept	s of The	ermo-		Ana	lyse	
MAPPI	NG W	ITH P	ROGI	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	L		M	M		L	L		L			M		-	L
$\frac{CO2}{CO3}$	S	L	M	L S	M	M	S	L	Μ	M	M S	S	S	L	S L
CO3 CO4	M	M L	М	3	L	M S	L	S	S	L L	S M	S	L	M	L M
CO4	171	M	L	М	L	L	М	L	S	M	S	L	L	L	M
	L						Μ		S	S		М	М		L

INTRODUCTION

Statistics on conventional energy sources, Classification of Energy Resources, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. - Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources

SOLAR ENERGY CONCEPT

Introduction to Solar Energy - Radiation and its measurement, Solar Energy conversion and its types -Introduction to Solar Energy Collectors and Storage, Applications of Solar Energy: Solar Thermal Electric Conversion Systems, Solar Electric power Generation, Solar Photo-Voltaic, Solar Cell Principle, Semiconductor Junctions, Conversion efficiency and power output, Basic Photo Voltaic System for Power Generation, Stand-alone, Grid connected solar power satellite

WIND ENERGY CONCEPT

Introduction - Basic Principles of Wind energy conversion-The nature of wind- The power in the wind (No derivations) - Forces on the Blades (No derivations)-Site Selection considerations-Basic components of a wind energy conversion system (WECS)-Advantages & Limitations of WECS-Wind turbines (Wind mill)-Horizontal Axis wind mill-Vertical Axis wind mill-performance of wind mills-Environmental aspects - Determination of torque coefficient, Induction type generators

GEOTHERMAL AND BIOMASS ENERGY

Geothermal Sources - Hydro thermal Sources - a. Vapor dominated systems b. Liquid dominated systems -Prime movers for geothermal energy conversion - Biomass Introduction - Biomass conversion techniques-Biogas Generation-Factors affecting biogas Generation-Types of biogas plants- Advantages and disadvantages of biogas plants-urban waste to energy conversion - MSW incineration plant.

TIDAL AND OTEC ENERGY

Tidal Energy-Basic Principles of Tidal Power-Components of Tidal Power Plants- Schematic Layout of Tidal Power house-Advantages & Limitations of Tidal, Wave, OTEC energy - Difference between tidal and wave power generation, OTEC power plants, Design of 5 Mw OTEC pro-commercial plant, Economics of OTEC, Environmental impacts of OTEC.

TEXT BOOK

1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003

- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.
- 3. Non Conventional Energy Resources, Shobh Nath. Singh, Pearson Education India, 2016, e ISBN:

978933255906 - 6

REFERENCES

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
- 3. Non Conventional Energy Sources. Rai.

COURS	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	e-Mail ID									
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in									

										Categor	y L	Т	Р	Credit
17EEEC22					SCAD	А			_	EC(PS)	-	0	0	3
PREAMBLE Co	ommun	ication	tool to a	analyze	the po	wer sys	tem dat	e in rea	l time ap	plication	, 			
PREREQUIS	ITE – I	NIL												
COURSE OB	JECTI	IVES												
1 To un	To understand the fundamentals of SCADA.													
2 To an	To analyze the SCADA Components.													
3 To ap	To apprise the communication in SCADA.													
4 To lea	To learn the Concept of Monitoring and Control unit of SCADA.													
5 To an	To analyze the application of SCADA in power System.													
COURSE OU	RSE OUTCOMES													
On the success	On the successful completion of the course, students will be able to													
CO1. Estima	O1. Estimate the system components of SCADA. Evaluate													
CO2. Outlin	e the fu	ındameı	ntals of	SCAD	А.							Ana	lyze	
CO3. Comp	are the	various	SCAD	A comm	nunicat	ion pro	tocol.					Analyze		
CO4. Illustra	ate the S	SCADA	comm	unicatio	on.							Apply		
CO5. Explai	n the m	onitori	ng and o	control	unit of	SCAD	A.					Understand		
CO6. Descri	be the a	applicat	ions of	SCAD	A in po	wer sys	tem .					Unc	lerstand	
MAPPING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	L	L	L	М	М							L	L	М
CO2 M				М	М							L		L
CO3 L	М			М	М		L		S		L	М	L	М
CO4 L	М			М	М				S		L	М	L	М
CO5 L				L	М						L	М	М	М
CO6 S	S			L	М						L	L	L	М
S- Strong; M-N	Medium	n; L-Lov	W										•	

INTRODUCTION TO SCADA

Evolution of SCADA, SCADA definitions, SCADA Functional requirements and Components, SCADA Hierarchical concept, SCADA architecture, General features, SCADA Applications, Benefits.

SCADA SYSTEM COMPONENTS

Remote Terminal Unit (RTU), Interface units, Human- Machine Interface Units (HMI), Display Monitors/Data Logger Systems, Intelligent Electronic Devices (IED), Communication Network, SCADA Server, SCADA Control systems and Control panels.

SCADA COMMUNICATION

SCADA Communication requirements, Communication protocols: Past, Present and Future, Structure of a SCADA Communications Protocol, Comparison of various communication protocols, IEC61850 based communication architecture, Communication media like Fiber optic, PLCC etc. Interface provisions and communication extensions, synchronization with NCC, DCC.

SCADA MONITORING AND CONTROL

Online monitoring the event and alarm system, trends and reports, Blocking list, Event disturbance recording. Control function: Station control, bay control, breaker control and disconnector control.

SCADA APPLICATIONS IN POWER SYSTEM

Applications in Generation, Transmission and Distribution sector, Substation SCADA system Functional description, System specification, System selection such as Substation configuration, IEC61850 ring configuration, SAS cubicle concepts, gateway interoperability list, signal naming concept. System Installation, Testing and Commissioning

TEXT BOOKS:

- 1. Stuart A. Boyer: SCADA-Supervisory Control and Data Acquisition, Instrument Society of America Publications, USA, 2004
- 2. Gordon Clarke, Deon Reynders: Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems, Newnes Publications, Oxford, UK,2004.
- З.

REFERENCES:

- 1. William T. Shaw, Cybersecurity for SCADA systems, PennWell Books, 2006
- 2. David Bailey, Edwin Wright, Practical SCADA for industry, Newnes, 2003
- 3. Michael Wiebe, A guide to utility automation: AMR, SCADA, and IT systems for electric Power, PennWell 1999.
- 4. Dieter K. Hammer, Lonnie R.Welch, Dieter K. Hammer, "Engineering of Distributed Control Systems", Nova Science Publishers, USA, 1st Edition, 2001

COUR	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in										
2	L.CHITRA	Associate Professor	EEE/AVIT	chitra@avit.ac.in										

17EEEC23		PRINCIPLES OF AUTOMATIC CONTROL							Catego	ry L	Т	Р	Cı	redit		
			TRACE LES OF RETOMATIC CONTROL							EC	3	0	0		3	
PREAMBLE																
To provide the basics and fundamental concepts of automatic control systems. This will permit an engineer to																
-	exploit time domain and frequency domain tools to design and study automatic linear control systems PREREQUISITE															
FALAE	QUISI	2. N	Ш													
COURS	COURSE OBJECTIVES															
1	To provide a clear view of operational characteristics of sensors for its use in control system															
2	To accustom with different industrial control system															
3	To impart knowledge of pneumatic and hydraulic control actions															
4	To acquire and apply knowledge of stability of control system															
COURS	COURSE OUTCOMES															
On the su	On the successful completion of the course, students will be able to															
CO1	Understand and apply the knowledge of different type of sensors in control system															
CO2	Develop analogy for spring-mass damping system with electrical systems, thermal system, flow system Apply															
CO3	Understand and apply the knowledge of different types of pneumatic and hydraulic control actions Understand															
CO4	Understand and apply the knowledge of stability of control system Understand															
MAPPIN	NG W	TH P	ROGI	RAMM	IE OU	TCOM	IES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCO)ME	S	
COS	APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS03															
CO1	S	-	L	-	-	-	-	L	-	-	-	М	Μ	-	-	-
CO2	-	S	Μ	L	Μ	L	-	-	-	-	М	S	-	Ν	Λ	-
CO3	S	M	L	-	-	-	- T	-	-	-	-	S	S	-	-	-
CO4	-	S	М	-	Μ	-	L	-	S	-	-	-	S	-	-	-
S- Strong	g; M-M	ledium	n; L-Lo	W												
							SYL	LABU	S							
Unit 1																

Introduction Architecture industrial automation system, development trends in industrial automation, classification of existing systems, and functionality of industrial automation system. Relay and contactor logic, AC and DC relays and their role for load control. Power and Auxiliary contactors and their usage for load control.

Unit 2

Industrial Measurement System Characteristics Sensors and control logic, control using potential free output sensors Control using PO, PC, NO, NC type output sensor, 2W(2wire), 3W(3 wire), 4W(4wire) and 4WC sensors, Linear potentiometer Timer hardware architecture, Controlling industrial system using

timers Controlling industrial system using counters .Temperature Measurement, Pressure, Force and Torque Sensors, Motion Sensing, Flow Measurement, Signal Conditioning, Data Acquisition Systems. **Unit 3**

Automatic Control Introduction, P-I-D Control, manual and auto PID Control Tuning, Feed forward Control Ratio Control, Time Delay Systems and Inverse Response Sy stems, Special Control Structures. Temperature controller hardware architecture.

Unit 4

PLC Introduction to Sequence Control, PLC, RLL (Relay Ladder Logic), Sequence Control. Scan Cycle, Simple RLL Programs, Sequence Control. More RLL Elements, RL L Syntax, A Structured Design Approach to Sequence, PLC Hardware Environment, Introduction To CNC Machines, Contour generation and Motion Control, Allen Bradley PLC and SIEMEN PLC.

Unit 5

Industrial Control Basics of hydraulics, Hydraulic components their functions and symbols Hydraulic actuators, Pumps and its operation, pump control, Hydraulic valves (Direction control, pressure and flow control), special valves, pressure gauges and switches, hydraulic logic circuits, Hydraulic Control System, Multiple pressure and speed operations, Industrial Hydraulic Circuit, Pneumatic systems and components Pneumatic Control Systems, compressor operation and control, air treatment.

Text books :

- 1. Butterworth-Heinemann ,Principles of Automatic control, , 2nd edition 1975
- 2. S N Verma Automatic Control Systems Khanna Publishers (2002)
- 3. Farid Golnaraghi, Benjamin C. Kuo, Automatic Control Systems, Wiley; Ninth edition (2014)

References:

1. Lingefeng Wang, Kay Chen Tan, "Modern Industrial Automation and Software Design" John Wiley & Sons Inc.

2. K. L.S. Sharma, "Overview of Industrial Process Automation", Elsevier

3. Kok Kiong "Drives and Control for Industrial Automation", Springer

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	e-Mail ID							
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in							
2.	N.P. GOPINATH	Assistant Professor GR-II	EEE / AVIT	gopinathnp@avit.ac.in							

17BMEC02			BIOTELEMETRY							Categor	y L	Т	Р	Credit	
									3	0	0	3			
	PREAMBLE To study the overall concept of a Biotelemetry system and the concept of signal transmission.														
PRER	EQUIS	ITE – I	NIL												
COUR	SE OB	JECTI	VES												
1	To study the basic concepts and the principles used in a Telemetry system.														
2	To study the building blocks used to make a electrical telemetry system.														
3	To study the basic components of transmitting and receiving techniques.														
4	To know about how optical fibers are used in signal transmission.														
5	To understand the real time application in biotelemetry.														
COUR	SE OU	TCOM	IES												
	success		•												
CO1. I	CO1. Discuss about the basic information about Telemetry system. Understand														
CO2. I	CO2. Describe the knowledge about design of Electrical Telemetry Systems. Understand														
CO3. I	CO3. Demonstrate the different types of modulation techniques. Apply														
CO4. <i>A</i>	CO4. Analyze the implementation of optical fibers in telemetry system. Analyze														
CO5. \	/alidate	the hea	althcare	system	using '	Teleme	try syst	em.					Eva	luate	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S ANE	PROC	GRAM	ME SPE	CIFIC O	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М									L		М	М		
CO2	М									L		М	S	М	
CO3	S		L	L		L			М	М		S	М	М	
CO4	S	М	L	L	М	М	L	М	М	S		S	М	М	S
CO5	S	S	М	L	М	S	М	М	S	S		S	S	S	S
S-Stro	ng; M-N	Aedium	n; L-Lov	W											

INTRODUCTION

Fundamental concepts – Significance, Principle, functional blocks of Telemetry and Telecontrol system- Methods of telemetry – Electrical, Pneumatic, Hydraulic and Optical Telemetry – State of the art-Telemetry standards.

ELECTRICAL TELEMETRY

Electrical Telemetry – Current Systems – Voltage Systems – Synchro Systems – Frequency systems – Position and Pulse systems – Example of a landline telemetry system.

RADIO TELEMETRY SYSTEM

Block diagram of a Radio Telemetry system – Transmitting and receiving techniques – AM, FM, PM, Multiplexing and demultiplexing – Transmitting and receiving techniques – Digital coding methods – Advantages of PCM, PWM, PM, FSK – Delta modulation – coding and decoding equipment – Example of a radiotelemetry system.

OPTICAL TELEMETRY SYSTEM

Optical fibers for signal transmission – Sources for fiber optic transmission – Optical detectors – trends in fiber– optic device development – Example of an optical telemetry System.

APPLICATION OF BIOTELEMETRY

Use of computers in distance mode of healthcare delivery, Web technology, Satellite communication systems; hypertext, voice & image transfer protocols, Medical image scanning, Data compression and Transfer, Capturing of medical signals, Analog to digital conversion, Video conferencing, Remote sensing, Rural primary setups, Referral and Super specialty centers, Societal medico legal aspects, Networking (local, national & global).

TEXT BOOKS

- 1. D.Patranabis, "Telemetry principles", Tata Mcgraw Hill Publishers.
- 2. Marilyn J. Field, "Telemedicine: A Guide to Assessing Telecommunications for Health Care", National Academic Press, 1996.

REFERENCE

1. Charles J. Amlaner, David W. Macdonald, "A Handbook on Biotelemetry and Radio Tracking", Pergamon Press; 1st Edition (January 1, 1980).

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in		
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in		

											Categor	y L	Т	Р	Credit	
17BM	CC03		B	BIOSEN	NSORS	AND	FRANS	SDUCE	ERS	_	CC	3	0	0	3	
used for	rse is c the de	etection	of an	analyte	. The re	elation	betwee	n senso	or conce		transduc biologica ced.					
PRERE	QUIS	I TE – 1	Nil													
COURS	SE OB.	JECTI	VES													
1 To use the basic concepts of transducers, electrodes and its classification.																
2	To discuss the various types of electrodes.															
3	To determine the recording of biological components.															
4	To employ the knowledge in electrochemical and optical biosensors.															
5	To out	line the	e variou	ıs biolo	gical co	mpone	nts usir	ng biose	ensors.							
COURS	SE OU	ТСОМ	IES													
On the s	success	ful con	pletion	of the	course,	student	s will t	be able	to							
CO1.	Descri	be the v	working	g princij	ples of t	ransdu	cers.						Unc	lerstand		
CO2.	Explai	n the va	arious t	ypes of	electro	des.							Unc	lerstand		
CO3.	Utilize	variou	s FET s	sensors	for reco	ording o	of biolo	gical co	mpone	nts.			App	oly		
CO4.	Disting	guish va	arious b	oiosensc	ors like	electro	chemica	al and o	ptical b	oiosensor	s.		Ana	Analyze		
CO5.	Analyz	the b	iologic	al comp	onents	using b	iosenso	ors in va	arious a	pplicatio	ns.		Ana	lyze		
MAPPI	NG W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	М	L		М		М			L			М				
CO2	М	L		М		М			L			М				
CO3	S	М	L	S		S	М	М	М			М	М			
CO4	S	S	L	S		S	М	М	S			М			М	
CO5	S	S	L	S		S	М	М	S			S	М	М	М	
S- Stron	g; M-N	/ledium	i; L-Lo	W				1								

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "**Principles of Measurement Systems**", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "**Principles of Applied Biomedical Instrumentation**", 3rd Edition, John Wiley Publications, 2008.

0001													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in									
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran@avit.ac.in									
3	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in									

1501/00/	610			HO							Categor	y L	Т	P (Credit
17BME(C12			HO	SPITA	L MAN	NAGEN	MENT		-	EC-PS	3	0	0	3
PREAMB To provide		nowle	edge of	plannir	ıg, desi	gning a	nd safe	ty mana	igemen	t in hosp	ital servic	ces.	1	l	
PREREQ	UISI	ГЕ – I	NIL												
COURSE	OBJ	ECTI	VES												
1 To obtain the knowledge about the basic planning and organization of hospitals.															
2 7	To study about the clinical and administrative services.														
3 7	To im	part ki	nowled	ge on d	esignin	g of hos	spital se	ervices.							
4 7	To stu	ıdy and	d analy:	ze the s	afety m	anagen	nent in	hospita	ls.						
5 7	To stu	ıdy and	d analy:	ze the in	nfectior	n contro	ol in hos	spitals.							
COURSE															
On the suc															
CO1. Sum	nmariz	the i	importa	ince of I	hospita	l in hea	lthcare	and pla	nning c	of hospita	l design.	τ	Inderst	and	
CO2. Exam	mine t	the vai	rious cl	inical se	ervices	needed	in the l	hospital				A	pply		
CO5. Outl	line th	e impl	lementa	tion of	various	s infecti	on con	trol tech	nniques	•		A	nalyze		
CO4. Reco	omme	nd the	suppor	rting se	rvices r	needed t	to build	the hos	spital a	nd safety	guideline	es. E	valuate	•	
CO3. Buil	ld the	idea al	bout the	e hospit	al servi	ces des	ign.					0	Create		
MAPPIN	G WI	TH P	ROGR	AMMI	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC C	OUTCO	MES		
COS PO	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 N	М	L						L				М	М	М	М
CO2	S	М	L	L			-	М	М			М		М	М
CO3	S	М	М	М	М	М	М	М	М			М	S	М	М
CO4	S	М	S	М	S	М	М	S	М	S	L	М	S	S	S
CO5	S	S	S	S	S	М	S	S	М	S	М	М	S	S	S
S- Strong;	M-M	edium	;L-Lov	N											

PLANNING AND ORGANIZATION OF THE HOSPITALS

Roles of hospital in healthcare – hospital planning and design-outpatient services the nursing unit – intensive care Unit – nursing services – effective hospital management – directing and leading – controlling – financial management.

CLINICAL AND ADMINISTRATIVE SERVICES

Radiology and imaging services – laboratory services – operation theatre suite pharmacy – central sterile supply department – hospital infection – materials management – evaluation of hospital services.

DESIGNING OF HOSPITAL SERVICES

Engineering department – maintenance management – clinical engineering electrical system – air conditioning system – water supply and sanitary system centralized medical gas system – communication system – solid waste management and transportation.

DESIGNING SUPPORT SERVICES AND SAFETY MANAGEMENT

Admitting department – medical records department – food service department laundry and linen service housekeeping – Volunteer department – safety in hospital fire safety – Alarm system – disaster management.

HOSPITAL INFECTION CONTROL

Importance of infection control – hand hygiene – aseptic techniques – isolation precautions – disinfection and Sterilization – clinical laboratory standards to infection control – health care workers safety.

TEXT BOOKS:

- 1. Kunders G D, "Biomechanics: Hospitals, facilities planning and management", Tata Mcgraw Hill, 2008.
- 2. Sakharkar B M, "**Principles of hospital administration and planning**", Jaypee Brothers Medical Publishers Pvt. Limited, 2nd Edition, 2009.

REFERENCE:

1. Sanjiv Singh, Sakthikumar Gupta, Sunil Kant, "Hospital infection control guidelines, principles and practice", Jaypee Brothers Medical Publishers Pvt Limited, 1st Edition, 2012.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in		
2	Mr. R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in		
3	Ms.S.Mythrehi	Assistant Professor (G-I)	BME	mythrehi@avit.ac.in		

17EC	SF12	м	FDIC	AT FI	ЕСТІ	RONIC	S	Cate	gory]	L	Т	Р	Cre	edit
TEC	SE12	IVI					3	EC((SE)		3	0	0	3	;
PREA	MBL	E										1			
The co	ourse i	s desig	gned to	make	the st	udent ac	cquire	conce	ptual l	knowled	ge of the	e physio	logical s	ystems	of the
humar	n body	and r	elate th	nem to	the pa	arametei	rs that	t have	clinica	al impor	tance. T	he relati	on betw	een elec	tronic
concep	ots and	l biolo	gical c	oncept	s is hi	ghlighte	d. Th	e princ	ciples of	of electr	onic inst	trumenta	tion that	are cur	rently
deploy	deployed in the clinical side are introduced.														
PRER	PREREQUISITE - Nil														
COUI	COURSE OBJECTIVES														
1	1 To learn the concept of Medical Sensors														
2	To understand human body and parameters														
3	To study the working of biomedical instruments														
4	To study the imaging techniques														
5	5 To understand the working of assist devices														
COUI	RSE O	UTCO	OMES												
On the	e succe	ssful c	omplet	ion of	the cou	irse, stu	dents	will be	able to	0					
C01.1	Explai	n the h	uman p	ohysiol	ogy.									Unders	stand
CO2.]	Illustra	te the	workin	g of bi	omedic	al equip	pment	s.						Apply	
CO3	Apply	Electro	onic Pri	inciple	s for re	cording	and N	Monito	ring Bi	io Signa	ls			Apply	
CO4.]	Disting	guish d	iagnos	tic equi	ipment	s from t	herap	eutic e	quipme	ents				Analyz	ze
CO5.1	Exami	ne the	interna	l organ	s throu	ıgh imag	ging							Analyz	ze
MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	OS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2											PSO3			
C01	М	М	-	-	М	-	-	-	-	-	_	М	-	-	-
CO2	S	S	М	-	М	-	-	М	-	-	-	М	S	-	-
CO3	S	Μ	М	-	Μ	-	-	М	-	-	-	М	М	М	-
CO4	S	S	S	-	Μ	-	-	Μ	-	-	-	М	М	М	М
CO5	S	S	S	-	Μ	-	-	Μ	-	-	-	М	-	-	М
S-Stro	S- Strong; M-Medium; L-Low													ı	

PHYSIOLOGY AND TRANSDUCERS:

Cell and its structure, Resting and Action Potential, Nervous system: Functional organization of the nervous system, Structure of nervous system, Neurons - Synapse, Transmitters and Neural Communication, Cardiovascular system, respiratory system, Basic components of a bio-medical system, Transducers - Ultrasonic transducers, Temperature measurements - Fiber optic temperature sensors.

ELECTRO – PHYSIOLOGICAL MEASUREMENTS:

Electrodes, Limb electrodes, Floating electrodes, pregelled disposable electrodes, Micro, needle and surface electrodes, Amplifiers, Preamplifiers, differential amplifiers, chopper amplifiers, Isolation amplifier, ECG, EEG, EMG, ERG, Lead systems and recording methods, Typical waveforms.

NON – ELECTRICAL PARAMETER MEASUREMENTS:

Measurement of blood pressure, Cardiac output, Heart rate, Heart sound, Pulmonary function measurements, Spirometer, Photo Plethysmography, Body Plethysmography, Blood Gas analyzers: pH of blood, Measurement of blood pCO2, pO2, finger-tip oxymeter, ESR, GSR measurements.

MEDICAL IMAGING AND DIAGNOSTICS:

Radio graphic and fluoroscopic techniques, Computer tomography, MRI, Ultrasonography, Endoscopy, Thermography, Different types of biotelemetry systems and patient monitoring, Introduction to Biometric systems.

ASSISTING AND THERAPEUTIC EQUIPMENTS:

Pacemakers, Defibrillators, Ventilators, Nerve and muscle stimulators, Diathermy, Heart -Lung machine, Lasers, Audio meters, Dialysers, Lithotripsy, Electro Surgery.

TEXT BOOKS:

- 1. R.S.Khandpur, Hand Book of Bio-Medical instrumentation, Tata McGraw Hill Publishing Co Ltd., 2003.
- 2. Leslie Cromwell, Fred J.Weibell, Erich A. Pfeiffer, Bio-Medical Instrumentation and Measurements, II edition, Pearson Education, 2002.

REFERENCE BOOKS:

- 1. Joseph J. Carr, John M. Brown, Introduction to Biomedical Equipment Technology, Fourth Edition, Pearson.
- 2. Shakti Chatterjee, Aubert Miller, Bio-Medical Instrumentation Systems, Cengage Learning, 2010.
- 3. C.Rajarao and S.K. Guha, Principles of Medical Electronics and Bio-medical Instrumentation, Universities press (India) Ltd, Orient Longman ltd, 2000

COU	COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID								
1	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in								
2	N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec. edu.in								

COU	RSE DESIGNERS							
S No Name of the Facult								

1701	10010		EDIC	AT TN <i>T</i>		DOCE	CONC			7616	Categor	y L	Т	P C	Credit
17BN	ICC10	IVI	EDICA	AL IMA	AGE P	RUCE	551ING	AND A	ANALY	(515	CC	3	0	0	3
To leas	MBLE rn the f ques for			-		lical in	nage ac	quisitic	on and	understa	nd how t	o apply	the in	nage pro	ocessing
PRER	EQUIS	ITE: 1'	7BMC	С08 - В	IOME	DICAI	SIGN	AL PR	OCES	SING					
COUR	RSE OB	JECTI	VES												
1	To lea	rn the i	mage f	undame	entals ar	nd math	ematic	al trans	forms n	ecessary	for imag	e proces	sing.		
2	To stu	dy the	various	image	enhance	ement t	echniqu	ues.							
3	To stu	ıdy abo	ut the v	arious s	segment	tation te	echniqu	es appl	ied to N	Iedical I	mages.				
4	To ga	in knov	vledge a	about th	e basic	concep	ts of in	nage co	mpressi	on proce	dures.				
5	To ap	ply vari	ous im	age rest	oration	proced	ures in	Medica	l image	es.					
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able	to				1		
CO1.	Summa	rize the	genera	l termir	nology (of digita	al imag	e proces	ssing.				Und	erstandi	ng
CO2.	Examin	e the ne	eed for	image t	ransfori	ns and	their ty	pes bot	h in spa	tial and	frequency	v domair	n. App	ly	
CO3.	Classify	differe	ent type	s of ima	age segi	mentati	on and	apply r	estoratio	on techni	ques.		Ana	lyze	
CO4.	Analyze	e the im	age coi	npressi	on mod	els and	image	compre	ssion te	chniques	8.		Ana	lyze	
CO5.	Illustrat	e vario	us meth	odologi	ies for i	mage s	egment	ation in	medica	al imagin	g.		Ana	lyze	
MAPP	PING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC C	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М			М							М	М		
CO2	S	S	М	М	S	М			S			S	М	М	
CO3	S	S	М	М	S	М			S			S	М	S	
CO4	S	S	М	М	S	М			S			S	М	S	
CO5	S	S	М	М	S	М		М	S			S	М	S	
S- Stro	ng; M-N	Medium	n; L-Lo	W							<u> </u>				

DIGITAL IMAGE FUNDAMENTALS

Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels – Color image fundamentals – RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms – DFT, DCT.

IMAGE ENHANCEMENT

Basic gray level transformation, Histogram processing, Smoothening by spatial filters – Sharpening by spatial filters, Smoothening- frequency domain filters, Sharpening - frequency domain filters, Color image Processing - color models – Pseudo color image processing – Color Image Transformation – Smoothening – Sharpening.

IMAGE SEGMENTATION AND OBJECT RECOGNITION

Edge detection- Marr Hidreth edge detector - Canny edge detector, Thresholding foundation – Basic global thresholding – Basic Adaptive thresholding, Region Based segmentation, Watershed segmentation algorithm, Patterns and pattern classes, Recognition based on decision theoretic methods – matching, Optimum statistical classifiers.

IMAGE COMPRESSION

Introduction – Principle of compression – Types of compression – Run length Encoding – Huffman Coding – Modified Huffman Coding – Modified READ – LZW – Arithmetic Coding – JPEG – Other State-of-the-Art Image Compression – Image Compression Standard File Formats.

IMAGE RESTORATION AND RECONSTRUCTION OF MEDICAL IMAGES

Image degradation models, Algebraic approach to restoration, inverse filtering, Least mean square filter, Image reconstruction from projections – Radon transforms - Filter back projection algorithm – Fourier reconstruction of MRI Images.

TEXT BOOKS:

Rafael C, Gonzalez and Richard E Woods, "Digital Image Processing", Pearson Education Asia, 3rd Edition, 2007.
 Anil K Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 2nd Edition, 1997.

REFERENCES:

1. William K Pratt, "Digital Image Processing", John Wiley, 4th Edition, 2007.

2. Albert Macouski, "Medical Imaging systems", Prentice Hall, New Jersey, 2nd Edition, 1997.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in							
2	Dr. D.Vinodkumar	Professor	BME	vinodkumar@vmkvec.edu.in							
3	Ms.Santhoshini Arulvallal	Assistant Professor (Gr-I)	BME	santhoshiniarulvallal@avit.ac.in							

1 7 DN	1 0 T 1 <i>C</i>			XX/ET A	DADI		CUNC		¥7		Categor	y L	Т	P C	Credit
1/ВМ	ISE16			WEA	KABI	LE TE	CHNC	DLUG	Ŷ	-	EC-SE	3	0	0	3
PREA This co		lkes the	e studen	ts to un	derstan	d the fu	Indame	ntals ar	id appli	cations o	f the wea	rable tec	chnolog	gy.	
PRER	EQUIS	ITE – I	NIL												
COUR	SE OB	JECTI	VES												
1	To u	ndersta	nd the f	fundam	entals o	of senso	rs and v	wearabl	e techno	ology.					
2	To ascertain the design and integration of the smart textiles.														
3	To understand the electronic textiles.														
4	T en	deavor	various	sensor	in spor	ts wear	able ap	plicatio	n.						
5	To u	ndersta	nd the o	cloud st	orage o	of weara	ble dev	vices.							
COUR	SE OU	тсом	IES												
	success		•												
CO7.	Discus	s the fu	Indame	ntals of	sensor	and we	arable	technol	ogy.		U	nderstan	d		
CO8.	Illustra	te the e	electron	ic texti	les and	its appl	ication	8.			A	pply			
CO9.	Analyz	the second	ensor fo	or differ	ent we	arable a	pplicat	ions.			A	nalyze			
CO10	.Compa	are the	various	data sto	orage of	f weara	ble syst	ems.			Ev	valuate			
CO11	.Design	of sma	art cloth	ning.							Cı	reate			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L							L			S	М		
CO2	S	М	L	L					М			S	S	М	
CO3	S	М	М	М	S	М	L		М			S	S	М	М
CO4	S	S	S	S	S	S	М	М	S	S	М	S	S	S	
CO5	S	S	S	S	S	S	М	М	S	S	S	S	S	S	М
S- Stro	ng; M-N	Aedium	i; L-Lov	W											

BASICS OF SENSORS AND WEARABLE TECHNOLOGY

Introduction to sensors – Sensor Physical Properties – Electric (Resistive, Capacitive and Inductive) – Piezoelectric – Optic – Photo elastic - Thermoelectric – Electrochemical.

Wearable computers – Wearable Electronics – Intelligent Clothing – Industry on wearable technology – Current Trends – Market Forecast.

SMART CLOTHING

 $Introduction-Design \ of \ Smart \ Cloths-2D \ Design \ for \ smart \ wearables-Textile \ Development-3D \ Design \ for \ smart \ wearables-Construction \ of \ smart \ wearables-Integration-Prototype \ Development.$

ELECTRONIC TEXTILES

Conductive Fibers for textiles – Conductive for Polymers textiles – Carbon Nanotubes yarns – Textile and Electronics Integration - Embroidered Antenna – Electronic textiles for Military Applications.

SENSOR FOR WEARABLE APPLICATIONS

Load and Pressure Measurement sensor – Sports Applications – Inertial Sensor – Sports Application – Optical Sensor – Sports Application – Angle & Displacement Sensor – Sports Application.

DATA STORAGE FOR WEARABLE TECHNOLOGY

Introduction – Storage in Consumer wearable - Cloud storage – Remote Cloud – Sensor Cloud – Cloudlet - Cloud storage Architecture – Confidential disk and Cloud storage with encryption – Two-layer confidential storage.

TEXT BOOKS:

- 1. Patrick F. Dunn, "Fundamentals of Sensors for Engineering and Science", CRC Press, Taylor & Francis.
- 2. Jane McCann, David Bryson, "Smart Clothes and Wearable Technology", CRC Press, Woodhead Publishing Ltd.

REFERENCES:

- 1. Daniel A. James, Nicola Petrone, "Sensors and Wearable Technologies in Sport: Technologies, Trends and Approaches for Implementation".
- 2. Marrington, Andrew, Kerr, Don, "Management Association, Information Resources Managing Security Issues and the Hidden Dangers of Wearable Technologies".
- 3. Tilak Dias, "Electronic Textiles: Smart Fabrics and Wearable Technology", Elsevier, Woodhead Publishing.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. M.Ravindiran	Professor & Head	BME	ravindiran@avit.ac.in								
2	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in								
3	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in								

1501		DI							4.0	Cate	gory	L	Т	Р	Credit
17BM	ICC82	BIC	JMED	ICAL	INST	KUME	NTA	FION L	AB	C	С	0	0	4	2
The cu								ncerned t ogical sig		ble the	students	to know	and ope	erate the	various
	QUISIT				8				5						
	SE OBJ														
1	Design	of am	plifiers	for bio	logical	signals									
2		0	2		io signa	ıls.									
3			of PH.												
4	1				blood p										
5				vanic sk	in resis	tance.									
	SE OU			6.1		. 1 .	'11 1	11 /							
								be able to nverting					Create		
	Record a	•				Ū,		nverting	mode.				Analyze		
	Measure					<u> </u>	5.						Evaluate		
	Measure			0									Evaluate		
	Design Filters for bio signals. Create														
	PING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S		М			S			S	М		
CO2	S	S	М	М	S	М			S			S	Μ	М	Μ
CO3	S	S	S	М		Μ			S			S			М
CO4	S	S	S	М		М			S			S			M
CO5	S	S	S	S		Μ			S			S	Μ	М	
S- Stro	ng; M-M	leaium	i; L-L0	N											
	ABUS Experim	nents													
	Blood		e meas	uremen	t using	sphygn	nomano	ometer							
2.	Design	of inst	rument	ation aı	nplifier										
3.	Measu														
4. 5.	Galvan Record														
5. 6.	Record	0		0											
7.	Record	-		-											
8.	Optical			•											
	Study of			•											
	. Study o RENCE		es of ele	ctrodes											
	ment La		ıal												
<u> </u>	SE DES														
S.No.	Nam	e of th	e Facul	ty	Ι	Designa	tion		De	epartme	nt		Ma	il ID	
1	Dr. N.	Babu]	Professo	or		В	ME			babu@	vmkvec.	edu.in	
2	Ms.B.I	Farhan	a Ansoo	or A	Assistan	t Profes	ssor (G	-I) B	ME			farhana	aansoor@	avit.ac.i	n

15			DIO					ACES	CINC	TAD	Ca	tegory	L	Т	Р	Credit
17	ECSE13		BIO	DINED		IMAG	FE PK	OCES	SING	LAB	EC	C(SE)	0	0	4	2
The p the fu medic	AMBLE ourpose o indamenta cal image RQUISI	al conce s.	epts of													
COU	RSE OB	JECTI	VES													
1 U	Jnderstan	d the in	nage fu	Indame	ntals ar	nd math	ematic	al trans	forms	necessar	y for im	age proc	essing.			
2 I	Describe	the var	rious in	nage er	hance	ment a	nd ima	ige rest	toratio	n techni	ques.					
3 A	Apply va	rious iı	nage se	egment	ation n	nethod	s and a	analysi	s in me	dical in	ages.					
4 I	llustrate t	he basi	c conce	epts of v	wavelet	ts and i	mage c	ompres	sion te	chniques	3.					
5 I	Explain t	he diffe	erent ty	vpes of	recons	tructio	on tech	niques	applie	d to var	ious me	dical In	nages.			
COU	RSE OU	TCOM	IES													
On th	e success	ful con	pletion	of the	course,	, studer	nts will	be able	e to							
proce	Illustrate essing, a cations						· 1			,		0	oply			
	Apply i	mage e	enhanc	ement	techni	ques.						Ap	oply			
CO3.	Examin	e Imag	ge segn	nentati	on and	l image	e comp	pression	n techr	niques.		Ap	oply			
	Outline are and		_	-	sing ta	asks w	vith a	high l	evel c	of profi	ciency	via Ai	nalyze			
	Devel cations/c			nalyze	Imag	ge pr	ocessii	ng al	gorithi	ms in	practi	cal A	nalyze			
MAP	PING W	TTH P	ROGR	AMM	E OUT	COM	ES AN	D PRO	GRAN	AME SF	PECIFI	C OUT	COMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	P	SO2	PSO3
CO1	S			L								М	S		-	-
CO2	S	М	L	L	М				М			М	М		-	-
CO3	S	М	L	L	М				М			М	М		-	-
CO4	S	S	М	М	S				S			S	-		S	-
CO5	S	S	М	М	S				S			S	-		М	М
S- Str	rong; M-N	Aedium	i; L-Lo	W												

LIST OF EXPERIMENTS

- 1. Basic operations on images
- 2. Gray level transformation and histogram processing
- 3. Image smoothening and image sharpening using suitable filters
- 4. Edge detection techniques
- 5. Histogram Processing and Basic Thresholding functions
- 6. Image segmentation using morphological operations
- 7. Image Linear Filtering and Transforms
- 8. Image Restoration techniques
- 9. Image compression techniques

REFERENCES:

- 1. Albert Macouski, "Medical Imaging systems", Prentice Hall, New Jersey, 2nd Edition, 1997.
- 2. Medical image processing lab manual.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
2	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17ECSE14	BIOMEDICAL SIGNAL PROCESSING LAB	Category	L	Т	Р	Credit
1/ECSE14	DIOMEDICAL SIGNAL FROCESSING LAD	EC(SE)	0	0	4	2

PREAMBLE

This laboratory introduces the different signal processing techniques used for analyzing Biomedical signals using MATLAB

PRERQUISITE – Nil															
COURSE OBJECTIVES															
1	signals.														
2	physiologic signals.														
3	of knowledge.														
4	signal processing, array signal processing etc.														
5 Contributing to regional and national biomedical research.															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Examine the most important bioelectrical measurement methods: The ECG, the EEG and the EMG, in relation to normal and pathological conditions.															
	CO2. Apply and evaluate different methods for signal processing of the ECG, the EEG and the EMG, with respect to time- and frequency domain analysis.														
	llustrate		<u> </u>			· · ·		2				Ap	oply		
CO4. system	Outline	bioelec	etricity	in the	heart	and in	the ce	entral a	and in	periphe	ral nerv	ous Ai	nalyze		
CO5. /	Analyze ctrical sig										ne origin	of A	nalyze		
MAPP	PING W	ITH P	ROGR	AMM	E OUT	COM	ES AN	D PRO	GRAN	AME SH	PECIFI	C OUT	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	L					М			S	S	М	-
CO2	S	S	М	L					М			S	S	М	-
CO3	S	М	L						М			М	М	-	-
CO4	S	S	S	М	S			М	S			S	-	-	-
CO5	CO5 S S S M M M S S M M M														
S- Stro	S- Strong; M-Medium; L-Low														
													-	-	-

LIST OF EXPERIMENTS

- 10. Representation of basic signals.
- 11. Convolution & Correlation
- 12. To write and execute programs for image arithmetic operations.
- 13. To understand various image noise models and to write programs for image restoration
- 14. Analysis of EEG waveform
- 15. Analysis of EMG Signal
- 16. Processing of bio-signals using adaptive filters
- 17. Image processing for contrast enhancement and sharpening the edges
- 18. Data Compressions of bio-signals (ECG, EEG, EMG etc.) using DCT and wavelet transforms.
- 19. To write and execute program for FFT & IFFT.

REFERENCES:

- 3. Kayvan Najarian, Robert Splinter, "Biomedical Signal and Image Processing", CRC Press, Second Edition, 2012.
- 4. Biomedical signal processing lab manual.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
2	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in

1 7 F	CSE15	5	DAT		QUISI	ΓΙΟΝ	0	Catego	ry	L	1	r I		Cred	it
1,1				L	AB]	EC (SI	E)	0	() 4	1	2	
The c	luce stu	quisitio dents	about											This cour ne applic	
	REQUI														
	RSE O														
$\frac{1}{2}$										ime para rious g					
$\frac{2}{3}$										e its pa		are			
4						is types			casur		Tamete	.13			
5						vare of v		s gauge	es						
COU	RSE O														
On th	e succe	ssful o	comple	tion of	the co	urse, st	udents	s will b	e able	to					
CO1.	Underst	and the	e worki	ng of G	auges									Underst	tand
CO2.	D2. Apply the knowledge of gauges to take measurements Apply										•				
CO3.	CO3. Analyze the pulse characteristicsAnalyze										ze				
	-			ious types of measurements Analyze											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO
CO1	S	S	М	L	М	-	-	-	М	-	-	-	Μ	-	-
CO2	S	M	L	-	-	- T	-	-	M	-	-	-	M	M	-
CO3	M S	<u>S</u>	S S	- M	- M	L	-	- M	M	-	-	- L	-	- M	- M
$\frac{CO4}{S Str}$	rong; M	~	~		IVI	-	-	IVI	S	-	-	L	-	IVI	IVI
1. 2. 3. 4. 5. 6. 7. 8. 9. REFI	. Gener . Gener . Measu . Conne . Measu . Measu	uring T suring 1 rating a rating a uring a ecting t uring t suring t ting Ev C E	Cempera Pressure a Single a Pulse Counter he Freq the Freq vents or	ature with S e with S Square Train (A Width rs to Me uency a juency Elapse	Strain G e Pulse A) Gene easure I and Peri and Peri d Time	auges	cy and ow Fre	Period quency	Signals	8	Generati	ng a Fini	te Puls	e Train	
COL		FOLO	NEDC												
COU S.No.	RSE D		NERS Facult			Designa	ation			Dept			Mai	il ID	
1	Mr.S.			-		Profess		r-II)	EC	_	se	elvam@			
	S.Kan							,	EC	Œ					
2					Assistant Professor				ECE kannan@vmkvec.edu.in						

17EESE	01		POWI	ER ELE	CTRO	NICS IN	N POWI	ER	Categ	ory	L	Т	Р	Credit
T/LESE					SYSTE	MS			SE	,	3	0	0	3
PREAMBLE														
The the fundamental ac/ac and dc/ac converter) is also	principl converte	es behi s. The	ind all ti importa	hese con ance of	verters. using pu	This c	ourse co	vers ch		cs of sen	niconduc	tor device	ces, ac/do	, dc/dc,
PREREQUISI	FE:NIL													
COURSE OBJ	ECTIVE	S												
1 To Stu	dy about	the bas	ic conce	pt of dif	ferent ty	pes of p	ower el	ectronic	s devices.					
2 To Stu	dy about	the cor	overters	used in l	R, RL ar	nd RLE	loads.							
3 To Stu	dy about	the vol	tage and	current	sources	inverter	s.							
4 To Un	derstand	he con	cept of s	static rea	ctive po	wer cor	npensati	on in FA	ACTS Tec	hnology.				
5 To Stu	dy about	the bas	ics of po	wer qua	lity.									
COURSE OUT	COMES													
On the succes	sful comp	letion	of the co	ourse, st	udents w	vill be a	ble to							
CO1: The prin to their	ciple ope application		the pow	ver semi	conduct	or devic	es and f	ind its ra	atings				Appl	у
CO2: Relate a			-		-			onverter	`S.				Appl	-
CO3: Analyze	-			-									Anal	·
CO4: Compare										6			Anal	,
CO5: Design Po power q	ower Elec		s devices	s in Rene	ewable f	energy C	Conversi	on and i	mitigation	S OI			Creat	e
MAPPING WI	TH PRO	GRAN	AME O	UTCON	/IES AN	D PRO	GRAM	ME SP	ECIFIC	OUTCO	MES			
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	-	S	L	-	М	-	М	S	-	-	-	-	М	-
CO2 S	-	М	-	-	М	-	М	S	-	-	-	S	L	-
CO3 M	L	S	М	L	М	L	М	S	-	-	-	S	М	-
CO4 M	-	S	L	-	М	-	М	S	-	-	-	L	М	-
CO5 M	-	-	L	-	-	-	L	S	L	L	-	L	М	-
S- Strong; M-M	edium; L	Low												

INTRODUCTION

Basic Concept of Power Electronics, Different types of Power Electronic Devices – Transistors and SCR, MOSFET, IGBT and GTO's.

Diodes,

AC TO DC CONVERTERS

Single Phase and three phase bridge rectifiers, half controlled and Fully Controlled Converters with R, RL, AND RLE loads. Free Wheeling Diodes, Dual Converter, Sequence Control of Converters – inverter operation, Input Harmonics and Out put Ripple, Smoothing Inductance – Power Factor Improvement effect of source impedance, Overlap, Inverter limit.

DC TO AC CONVERTERS

General Topology of single Phase and three phase voltage source and current source inverters- Need for feedback diodes in anti parallel with switches – Multi Quadrant Chopper viewed as a single phase inverter-Configuration of Single phase voltage source inverter: Half and Full bridge, Selection of Switching Frequency and Switching Device. Voltage Control and PWM strategies.

STATIC REACTIVE POWER COMPENSATION

Shunt Reactive Power Compensation – Fixed Capacitor Banks, Switched Capacitors, Static Reactor Compensator, Thyristor Controlled Shunt Reactors (TCR) – Thyristor Controlled Transformer - FACTS Technology-Applications of static thyristor

Controlled Shunt Compensators for load compensation ,Static Var Systems for Voltage Control, Power Factor Control and Harmonic Control of Converter Fed Systems.

POWER QUALITY

Power Quality – Terms and Definitions – Transients – Impulsive and Oscillatory Transients –Harmonic Distortion – Harmonic Indices – Total Harmonic Distortion – Total Demand Distortion- Locating Harmonic Sources Harmonic s from commercial and industrial Loads –Devices for Controlling Harmonics Passive and Active Filters -Harmonic Filter Design-

Total hours = 45

REFERENCES

	KEIVEED									
1. N.	. N.Mohan, T.M.Undeland and W.P.Robbins, Power Electronics : Converter, Applications and Design,									
Jo	hn Wiley and Sons , 1989.									
2. M.	H.Rashid, Power Electronics, Pr	rentice Hall of India, 1994.								
3. B.	K.Bose, Power Electronics and A	A.C. Drives, Prentice Hall, 198	36.							
4. Ro	ger C.Dugan , Mark .F. Mc Gra	naghan, Surya Santaso, H.Way	rne Beaty, "E	Electrical Power						
Sy	Systems Quality", Second Edition, Mc Graw Hill, 2002.									
5. T.J	. T.J.E. Miller, Static Reactive Power Compensation, John Wiley and Sons, Newyork, 1982.									
.19 7. And 2011. 8. Ro McGra	ohan Mathur.R., Rajiv.K.Varma, "T 199. Irzej M. Trzynadlowski, "Introduct ger C Dugan, Mark F F Mcgranagh w Hill, 2012.	ion to Modern Power Electronics"	, 2nd Edition, Wiley India	a Pvt Ltd, New Delhi,						
COUR	SE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID						

S.N	o. Name of the Faculty	Designation	Department	Mail ID
1	Mr.A.Balamurugan	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.i n
2.	Mrs.L.Chitra	Associate Professor	EEE/AVIT	chitra@ac.in

		INI	DUSTR	IAL PO	OWER	SYSTE	М		Catego	ory I	L T	Р	Cr	edit
7EESE02		AN	ALYS	IS AND	DESIG	N			SE	3	0	0	3	
PREAMBLE To :	study abo	out the i	ndustria	al power	system	analysis	and des	ign.						
PREREQUISI	re-nil													
COURSE OBJ	ECTIVE	S												
To stud	ly the ba	sic prin	ciples, o	construc	tion mo	tor starti	ng studi	es.						
2 To und	lerstand t	he pow	er facto	r correc	tion stuc	lies Ove	r Voltag	es-Swite	ching Sur	ge Analy	sis-Back-	to-Back S	witching.	
3 To stud	ly the Ha	rmonic	Source	s-Syster	n Respo	onse to H	Iarmoni	cs-Syste	m.					
To und	lerstand S	Sources	of Flic	ker-Flic	ker Ana	lysis-Fli	cker Cri	teria-Da	ta for Flic	ker anal	ysis			
5 To stud	ly impro	ving the	e Perfor	mance o	of the Gr	ounding	g Grids.			•				
COURSE OUT	• 1	0												
On the success	sful com	oletion	of the c	ourse, st	udents v	will be a	ble to							
CO1: Describe the	-	-						Limited	1				Understa	nd
CO2: Compare t	he studie	es of po	wer fact	or corre	ection Sv	vitching	Surge A	nalysis	-Back- to-	Back Sw	vitching.		Analyze	
CO3: identify th Aided Ana		nic anal	ysis of S	System	Respons	e to Har	monics-	System	Model for	r Compu	ter-		Analyze	
CO4: Measure t		r criteri	a-data f	or flick	er Analy	vsis.							Evaluate	
CO5: Design gro	ound grid	l calcula	ations-C	Compute	r-Aided	Analysi	is.						Create	
MAPPING WI	TH PRO	GRAN	IME O	UTCO	MES AI	ND PRO	OGRAM	IME SP	ECIFIC	OUTCO	MES			
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3
CO1 M	L	S	L	М	М	-	М	S	-	L	-	М	М	-
CO2 M		М		L	М	-	М	S	-	М	-	М	S	L
CO3 M	S	S	М	М	М	-	М	S	-	М	-	L	L	L
CO4 S		S	L	-	М	-	М	S	-	М	-	М	М	-
CO5 M	М	-	L	-		-		S	-	L	-	М	М	-
S- Strong; M-Me	edium; L	-Low												
MOTOR STA	DTINC	STI	DIES											

Introduction-Evaluation Criteria-Starting Methods-System Data-Voltage Drop Calculations-Calculation of Acceleration time-Motor Starting with Limited-Capacity Generators-Computer-Aided Analysis-Conclusions.

POWER FACTOR CORRECTION STUDIES

Introduction-System Description and Modeling-Acceptance Criteria-Frequency Scan Analysis-Voltage Magnification Analysis-Sustained Over voltages-Switching Surge Analysis-Back-to-Back Switching-Summary and Conclusions.

HARMONIC ANALYSIS

Harmonic Sources-System Response to Harmonics-System Model for Computer-Aided Analysis-Acceptance Criteria-Harmonic Filters-Harmonic Evaluation-Case Study-Summary and Conclusions.

FLICKER ANALYSIS

Sources of Flicker-Flicker Analysis-Flicker Criteria-Data for Flicker analysis- Case Study-Arc Furnace Load-Minimizing the Flicker Effects-Summary.

GROUND GRID ANALYSIS

Introduction-Acceptance Criteria-Ground Grid Calculations-Computer-Aided Analysis - Improving the Performance of the Grounding Grids-Conclusions.

Total Hours = 45

REFERENCES

1.Ramasamy Natarajan, "Computer-Aided Power System Analysis", Marcel Dekker Inc., 2002.

2. Power System Analysis and Design, Fifth Edition, SIJ. Duncan Glover ,MulukutlaS. Sarma, and Thomas. Over bye Publisher, Global Engineering: Christopher M. Shortt 2012,

3. Power System Analysis and Design, SI Edition, 6th Edition J. Duncan Glover, Thomas Over bye, Mulukutla S. Sarma

Published: © 2017 Print ISBN: 9781305636187

COURSE	L DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mr.A. Balamurugan	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in
2	Mr.S.Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

17	EESE0	3		AR	TIFICI AI	AL INT PPLICA		SENCE		Categ	ory	L	T	Р	Credit
					TO PO)WER S	SYSTE	MS		SE	,	3	0	0	3
PREAM	1BL														
	To Stuc	ly about	the Art	ificial In	telligend	ce applic	cation to	Power	Systems						
PRERE	QUISI	FE-NIL	,												
COURS	SE OBJ	ECTIV	ES												
1	To Un	derstand	about t	he Intro	duction of	of Neura	al netwo	rks.							
2	To Un	derstand	about t	he Appl	ication o	f Neura	l networ	ks to Pc	wer Sys	tem					
3	To stue	ly the in	troducti	on to fu	zzy logi	с.									
4	To und	ler stand	applica	tions to	power s	ystems.									
5	To stud	ly genet	ic algor	ithm and	l its app	lications	to powe	er syster	ns.						
COURS	E OUT	COME	S												
On the	e succes	sful com	pletion	of the c	ourse, st	udents v	vill be a	ble to							
CO1:De	scribe th	ne Basic	s of AN	N-Perce	ptron-D	elta lear	ning rul	e and Al	gorithm					Und	erstand
CO2: Re	elate the	applicat	tion of n	eural ne	tworks t	o power	system	problem	ns.					App	ly
CO3:An	alysis th	e variou	ıs types	of fuzzy	logic a	nd their	working	g proram	me for v	various ap	plication			Ana	lyze
CO4: Se	elect to d	levelop	fuzzy se	t theory	for varie	ous mod	el of po	wer syst	em cont	rol				Eva	luate
CO5: De	esign the	e basic i	dea gene	etic algo	rithm .									Crea	ate
MAPPI	NG WI	TH PRO	OGRAN	MME O	UTCON	MES AN	ND PRO	OGRAM	IME SP	ECIFIC	OUTCO	MES		1	1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S	L	-	М	-	М	S	-	-	М	М	L	-
CO2	S	М	М		-	М	-	М	S	-	-	-	М	L	-
CO3	M	M	S	M	-	M	-	M	S	-	-	M	M	L	-
CO4	M	M	S	L L	-	М	-	M	S S	-	-	-	L	M	-
CO5	М	S	-	L	-	-	-	-	3	-	-	-	L	М	-

S- Strong; M-Medium; L-Low

INTRODUCTION TO NEURAL NETWORKS

Basics of ANN-Perceptron-Delta learning rule –Back Propagation Algorithm-Multilayer Feed forward network-Memory models-Bi-directional associative memory-Hopfield network

APPLICATIONS TO POWER SYSTEM PROBLEMS

Application of Neural Networks to load forecasting, Contingency Analysis-VAR control, Economic Load Dispatch.

INTRODUCTION TO FUZZY LOGIC

Crispness-Vagueness-Fuzziness-Uncertainty-Fuzzy set theory Fuzzy sets-Fuzzy set operations-fuzzy measures-fuzzy relations-fuzzy function. Structure of fuzzy logic controller- fuzzification models-data base-rule base-inference engine defuzzification module. APPLICATIONS TO POWER SYSTEMS

Decision making in Power system Control through fuzzy set theory-Use of fuzzy set models of LP in Power systems scheduling problems-Fuzzy logic based power system stabilizer.

GENETIC ALGORITHM AND ITS APPLICATIONS TO POWER SYSTEMS

Introduction – Simple Genetic Algorithm – Reproduction, Crossover, Mutation, Advanced Operators in Genetic Search – Applications to voltage Control and Stability Studies.

TEXT BOOKS:

1. Laurence Fausett, "Fundamentals of Neural Networks", Prentiee Hall, Englewood Cliffs, N.J., 1992

2. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill Inc., 2000.

REFERENCES

- 5. James.A.Freeman and B.M.Skapura "Neural Networks, Algorithms Applications and Programming techniques"- Addison Wesley, 1990.
- 6. George Klir and Tina Folger, A., "Fuzzy sets, Uncertainty and Information", Prentice Hall of India Pvt.Ltd., 1993.
- 7. Zimmerman, H.J. "Fuzzy Set Theory and its Applications", Kluwer Academic Publishers, 1994.
- 8. IEEE tutorial on "Application of Neural Network to Power Systems", 1996
- 9. Loi Lei Lai, "Intelligent System Applications in Power Engineering", John Wiley and Sons Ltd., 1998
- 10. EthemAlpaydin, "Introduction to Machine learning (Adaptive Computation and Machine Learning series)', MIT Press, Second Edition, 2010.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.A.BALAMURUGAN	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in
2	Mr.S.PRAKASH	Assistant Professor (Gr- II)	EEE/AVIT	<u>sprakash@avit.ac.in</u>

17EE	SE03	M	ODELI	ING AN				ELEC	TRIC	AL	Categ	ory	L	P	Credit
					MA	CHIN	ES				SE		3 () 0	3
	AMBLI					a Mad	lalin a (7	ta of T	1	1				
10 un	derstan	a and Ia	ammari	ze the p	orincipi	e, Moc	lenng	Concep	ots of E	liectrica	II macm	nes			
	RSE O														
	To prov excited		-	e about	the fund	damen	tals of	magne	etic cire	cuits, en	ergy, fo	orce an	d torqu	e of mu	lti-
				state an tal com		mic sta	ate ope	ration	of DC	machin	e throug	gh mat	hemati	cal mod	eling
3 '	To prov	vide the	knowle	edge of	theory	of tran	sforma	ation of	f three	phase v	ariables	s to two	o phase	variab	es.
		-	-	state ar based r	-		_			-				using	
				state ar based r										es using	2
COU	RSE O	UTCO	MES												
				on of the						-					
CO1:	Unders	tand th	e variou	is electr	rical par	ramete	rs in m	athem	atical f	orm.				Unde	erstand
1	mathem	natical f	ormatio											Ana	alyze
	Relatio	nships		ent type										Unde	erstand
				machine					-		-			Cr	eate
CO5: condit		rmine	the perf	formanc	e of Sy	nchror	ious m	achine	s at sta	nd still	and run	ning		Eva	luate
MAP	PING	WITH	PROG	RAMM	IE OU	ГСОМ	IES A	ND PF	ROGR	AMME	E SPEC	IFIC (OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	2 PSO3
CO1	S	M	-	-	-	-	-	-	-	-	-	-	L	-	
CO2	S	S	-	М	-	-	-	-	-	-	-	-	S	-	
CO3	S	L	-	-	М	-	-	-	-	-	-	-	М	-	М
CO4	S	S	S	S	S	-	-	-	-	-	-	-	S	S	М
CO5	S	S	М	М	-	-	-	-	-	-	-		S	S	М
	ong; M	1	1	1	1	1	1	1	•						

PRINCIPLES OF ELECTROMAGNETIC ENERGY CONVERSION

Magnetic circuits, permanent magnet, stored magnetic energy, co-energy - force and torque in singly and doubly excited systems – machine windings and air gap mmf - winding inductances and voltage equations.

DC MACHINES

Elementary DC machine and analysis of steady state operation - Voltage and torque equations – dynamic characteristics of permanent magnet and shunt d.c. motors – Time domain block diagrams - solution of dynamic characteristic by Laplace transformation – digital computer simulation of permanent magnet and shunt D.C. machines.

REFERENCE FRAME

Historical background – phase transformation and commutator transformation – transformation of variables from stationary to arbitrary reference frame - variables observed from several frames of reference.

INDUCTION MACHINES

Three phase induction machine, equivalent circuit and analysis of steady state operation – free acceleration characteristics – voltage and torque equations in machine variables and arbitrary reference frame variables – analysis of dynamic performance for load torque variations – digital computer simulation.

SYNCHRONOUS MACHINES

Three phase synchronous machine and analysis of steady state operation - voltage and torque equations in machine variables and rotor reference frame variables (Park's equations) – analysis of dynamic performance for load torque variations – Generalized theory of rotating electrical machine and Krons primitive machine.

REFERENCES

1. Paul C.Krause, Oleg Wasyzczuk, Scott S, Sudhoff, "Analysis of Electric Machinery and Drive Systems", John

Wiley, Second Edition, 2010.

- 2. P S Bimbhra, "Generalized Theory of Electrical Machines", Khanna Publishers, 2008
- 3. A.E, Fitzgerald, Charles Kingsley, Jr, and Stephan D, Umanx, " Electric Machinery", Tata McGraw Hill, 5th Edition, 1992
- 4. R. Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, New Delhi, Prentice Hall of India, 2001

COURS	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in
2	Mr.S.Prakash	Assistant Professor (GrII)	EEE/AVIT	sprakash@avit.ac.in

17EESE0	95		TF	RANSIEN	ITS IN P	OWER S	YSTEM		Cate	jory	L	Т	Р	Credit
									SE	<u> </u>	3	0	0	3
PREAMBLE														
To review the													arge. Als	o, to study
propagation, ref		d refra	action o	f these :	surges o	n the ec	quipmer	nt their i	mpact on	the pow	er systen	n grid.		
PREREQUISITE-N	NIL													
COURSE OBJECT	IVES													
1 To stud	ly the gen	eratio	n of swi	tching t	ransient	s and th	eir cont	rolusing	g circuit –	theoreti	cal conce	ept.		
2 To stud	ly the mea	chanis	m of lig	hting str	okes an	d the pr	oductio	n of ligh	ting surge	es.				
3 To stud	ly analysis	s in tim	ne and f	requenc	y domai	n Z-trar	nsform.							
4 To stud	ly the Ins	ulatior	n coordi	nation a	is applie	d to tra	nsforme	er, substa	ations.					
5 To stud	ly simulati	ion of	electror	magneti	c transie	ents.								
COURSE OUTCO	MES													
On the success	sful comp	letion	of the c	ourse, s	tudents	will be a	able to							
CO1: Relate of v	51			5							R	emembe	r	
CO2: Determine		•	0			•	5				L	Inderstan	ld	
CO3: Correlate t	the insulat	tion c	oordina	tion as a	applied t	o transf	ormer,	substatio	ons.		A	nalyze		
CO4: Calculate c	of the com	nputat	ion of tr	ansient	s in conv	ersion (equipme	ent			Α	nalyze		
CO5: Design the	basic ide	a abou	ut simula	ation of	electror	nagneti	С.				C	reate		
MAPPING WITH	PROGRA	MME	OUTCO	MES AN	D PROG	RAMM	E SPECIF	IC OUTO	OMES					
COS PO1	PO2 F	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	М	S	L	М	М	-	М	S	-	-	-	L	S	L
CO2 L	М	М		М	М	-	М	S	-	-	-	М	S	L
CO3 M	L	S	Μ	М	М	-	Μ	S	-	-	-	S	S	L
CO4 M	М	S	L	-	М	-	Μ	S	-	-	-	L	М	L
CO5 S	М	-	L	-	-	-	-	S	-	-	-	Μ	L	М
S- Strong; M-Me	dium; L-Lo	OW												

INTRODUCTION AND LIGHTNING SURGES

Review of various types of power system transients – effect of transients on power systems- relevance of the computation of power system transients. Electrification of thunderclouds – lightning current stages

– lightning current parameters and their values – stroke to tower and midspan – induced lightning surges.

SWITCHING SURGES

Closing and reclosing of lines – load rejection – fault initiation – fault clearing – short line faults – Ferro Resonance – isolator switching surges – temporary over voltages – surges on an integrated systems – switching – harmonics.

COMPUTATION OF TRANSIENTS IN CONVERSION EQUIPMENT

Traveling wave method – Beweley's Lattice diagram – analysis in time and frequency domain – eigenvalue approach – Z-transform.

INSULATION CO ORDINATION

Over voltage protective devices – shielding wires, rods gaps, surge diverters, principles of insulation co-ordination – recent advancements in insulation co ordination – Design of EHV system – Insulation co ordination as applied to transformer, substations.

CASE STUDIES-SIMULATION OF ELECTROMAGNETIC TRANSIENTS

(i) Energisation of a single phase 0.95 pf load from a non ideal source and a realisticline representation.

(ii) Energisation of a single phase 15 mile long line from an ideal voltage source (equivalent-) – lumped and distributed parameter representation.

- (iii) Energisation of a 3 phase, 15 mile distributed parameter line connected to a transformer and RL load, (three phase closure simulations).
- (iv) Same as above but only one phase closed.
- (v) Energisation of a 120 mile transposed line from an ideal voltage source.(Adequate model needed)

Total Hours =45

REFERENCES

- 1. Allan Greenwood, "Electrical Transients in Power Systems", Willey Interscience, New York, 1971.
- 2. Klaus Ragaller, "Surges in High Voltage Networks", Plenum Press, New York, 1980.
- 3. Diesendorf, W., "Over Voltage on High Voltage Systems", Renselaer Bookstore, Troy New York, 1971.
- 4. Peterson, H.A., "Transient in Power Systems", Dover Publication, New York, 1963.
- 5. Rakosh das Begamudre, "Extra High Voltage AC Transmission Engineering", Wiley Eastern Ltd, New Delhi, 1990.
- C.S.Indulkar, DP Kothari, "Power System Transients" A Statistical approach, Prentice Hall 1996.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.A.Balamurugan	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in
2	Mrs.L.Chitra	Associate Professor	EEE/AVIT	chitra@avit.ac.in

17C	SEC29			TCP/	IP TE	CHNO	LOGY				Category	L	Т	Р	Credit
											EC	3	0	0	3
	ie a spe s requir	red to e	ensure 1	that all	system	is are i	nterpre	ting the	e start o	of the i	omeone i nformatio				-
PRERE	QUISI	ΓĒ							<u>, , , , , , , , , , , , , , , , , , , </u>						
COMF COURS	PUTER														
1				.		-		•	n and in of the In	.	t the TCI	P/IP Inter	met and	it also I	helps to
2	To Un	derstan	d the tr	ansport	layer p	rotocol	and its	charac	teristics	5					
3	To Wo	ork with	n client	server s	sockets	and de	velop re	elated a	pplicati	ons to c	ommunic	ate with	each oth	ner	
4	To Le	arn and	unders	tand IP	v6 and	wide ar	ea netv	vork tec	hnologi	ies					
COURS	E OUT	COMI	ES												
On the s	uccessfi	ul comp	oletion of	of the co	ourse, s	tudents	will be	e able to)						
CO1: E	xplain t	he over	view o	f the tra	nsport	layer pi	rotocols	5.					Underst	and	
CO2: In	npleme	nt clien	t servei	comm	unicatio	on using	g socke	t progra	mming	for var	ious appli	cations.	Underst	and	
CO3: A	nalyze	the per	forman	ce of ap	plicatio	on layer	protoc	ols, and	l types.				Apply		
CO4: Co	onstruct	routing	g and fo	orwardii	ng solut	tions fo	r Tunne	eling an	d Trans	lation T	echnique	s.	Analyze	e	
underly	ing swit	ching t	echniqu	ies.			Ũ				standing o		Analyze	;	
			0								CIFIC O				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1 CO2	S S	M M	- L	-	M M	-	-	-	-	-	-	M M	-	M M	M M
	S		L		L									M	M
CO3 CO4	S S	М -	L L	-	L M	-	-	-	-	-	-	M	-	M	M
C04 C05	S	M	L	-	M	-	-	_	_	-	-	M	-	M	M
			L-Low		141					l		111		141	141

SYLLABUS TRANSPORT LAYER PROTOCOLS

TCP & UDP datagram and its characteristics, RTP, Flow Control and Error Control Mechanisms, Silly Window Syndrome-Clark's and Nagle Algorithm -Congestion Control Mechanisms -Token Bucket and Leaky Bucket

SOCKET PROGRAMMING

Introduction to socket programming-Concurrent Processing in Client- Server Software-Byte ordering and address conversion functions –Socket Interface -System calls used with sockets -Iterative server and concurrent server-Multi protocol and Multi service server-TCP/UDP Client server programs –Thread Creation and Termination –TCP Echo Server using threads-Remote Procedure Call

APPLICATION LAYER PROTOCOLS

Client Server Model: DNS, TELNET, FTP -HTTP: Introduction, performance, caching and proxies–WWW-DHCP - DORA -Electronic Mail -SMTP, POP3 -PING, TRACE ROUTE.

NEXT GENERATION INTERNET PROTOCOL

Introduction to IPv6 –IPv6 advanced features –V4 and V6 headercomparison –V6 address types –Stateless auto configuration–IPv6 routing protocols –IPv4-V6 Tunnelling and Translation Techniques.

WAN TECHNOLOGIES

Electromagnetic Spectrum -DSL and Cable Technology -Packet Switching–HDLC, PPP, Frame Relay, ATM, MPLS, WIFI and WIMAX.

TEXT BOOKS

1. Douglas E. Comer, Internetworking with TCP/IP, Principles, protocols,

and architecture, Vol 1 5thEdition, Publication Date: July 10, 2005 ISBN-10:0131876716 | ISBN-13:9780131876712 2.Douglas E. Comer, Internetworking with TCP/IP principles, Volume III,

Client-Servesr Programming and Application, Publication Date: September 21, 2000 ISBN-10:0130320714 | ISBN-13:978-0130320711 | Edition1.

REFERENCES

1.Wendell Odom, Official Certification Guide, CCNP Route 642-902, CCIE, Pearson publication. 2.Behrouz A. Forouzan, Data Communications and Networking, 5thedition,July 1, 2012, ISBN-10:0073376221,ISBN-13:978-0073376226

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Jaichandran	AP (G-II)	CSE	rjaichandran@avit.ac.in
2	T.Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

17EES	SF 81		n	OWED	CVCTF	м ста	TT ATT	ON LAF	2 _ T		Catego	ory L	L T	Р	Credit
I/EES	9691		P	OWER	SISIE	IVI 511VI	ULAII	UN LAI) - I		SE	0	0	4	2
PREA		ourse	-				-		-	erience i ed for its		-		-	-
PREI	REQUI		· ·	is and	siniura		power	system	lequi		piaiiiii	ig, ope	ation a		iiuoi.
	RSE OI														
1				neters	and mo	deling	of trar	smissi	on lines	s and for	mation	of bus	admittar	nce m	atrix
	and imp	edance	e matrix	•											
				on of p	ower	flow u	ising g	auss se	eidel m	nethod, 1	Newton	Raphs	on met	hod a	and Fas
2	decoupl			rical fa	ult and	unaun	motri	al fault	opolyc	vio					
	To obta RSE O		-			unsyn	metric		anarys	518.					
	e succes			on of th	e cours	se, stuc	lents w	vill be a	ble to						
			-							er system	IS.			Cre	eate
CO2:	Design	the ad	mittanco	e and in	npedar	nce ma	trices of	of electi	rical sys	stems.				Cre	eate
	-				-				•	eering u	sing ga	uss sei	del		
	od, New	-			•		-	•	-	coming a	51118 84			Eva	luate
	-						1								
CO4:	Simula	te the	symme	etrical	tault a	nd uns	symme	trical fa	ault of	various	electric	cal pov	wer	Cre	eate
syster	ns.														
MAP	PING V	VITH	PROG	RAMN	AE OU	JTCO	MES A	ND PH	ROGR	AMME	SPECI	FIC O	UTCON	MES	
COS	PO1	PO2	PO3	PO4	PO5		PO7	PO8	PO9	PO10	PO11				D2 PSC
CO1	S	М	S	Μ	S	L	-	-	Μ	M	S	L	S	M	L
CO2	S	М	S	Μ	S	L	-	-	Μ	М	S	L	S	M	L
CO3	S	М	М	L	S	L	М	L	М	М	S	L	S	S	M
CO4	S	М	М	L	S	L	L	L	М	М	S	L	S	S	М
S- Str	ong; M-	Mediu	m; L-L	ow											
	2,					LIST	OF E	XPERI	MENT	rs –					
1.	Comp	utation	of pare	ameter	s and n										
2.		v							ices an	d solutio	on of net	tworks.			
3. 4.			ower fl ower fl		0				1						
<i>-</i> . 5.			ower fl		0		•		•						
6.		• •	fault ar		•		1								
7.	•		cal faul	t analy:	sis.										
Kefer	rence Bo	ooks													
	ratory R			ıal											
<u>COU</u> S. No	RSE DI		ERS he Facu	ıltv		Desig	nation		Den	artment			Mail II)	
1	Dr. R.			iity		0	essor		-	VMKVE	یر ۲	avoraia	in@vmk		hu in
			•	raby	۸ ~		Profess	or		VMKVEQ					
2			krishnap	naou									prabu@v		
3	Mr. S.	rrakas.	11		ASS1St	ant Pro	uessor (UI-II)	EEE	E/AVIT	1	spra	akashavit	ac.ın	

17	EESE82			POW	R SYSTER		ATION I	AR- II			Category	L	T	Р	Credit
.,	LLOLOL			10111							SE	0	0	4	2
PREA															
					wer syste			poratory	/.						
	SE OJEC		SE81-P0	ower sy	stem sim	iulation -	- I Lad								
1	То				0 5	analysis, S	Small si	gnal sta	bility a	inalysi	s, transien	t stabilit	y analy	sis, an	alysis c
2	То	0	bout th	0		oatch, Un	it comr	nitment	soluti	on me	thod, co o	rdinatio	n of ov	er curr	ent an
3				e conce	pt of ind	uction ma	otor sta	rting an	alysis.						
COURS	SE OUTC								<u> </u>						
On the	e success	sful com	pletion	of the	course ,s	tudents v	vill be a	ble to							
CO1: A	Analysis	he pow	er syste	em netv	vork									Analyz	ze
CO2: E	Develop	the ecor	nomic d	lispatch	i for any l	ine const	raints							Analyz	ze
CO3: A	Apply the	approp	oriate p	rotecti	on for pov	wer syste	m relay	S						Apply	
MAPP	ING WIT	H PROG	RAMM	E OUT(OMES AN	ND PROG	RAMME	SPECIF	IC OUT	COME	S				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PS02	PSO3
CO1	S	М	-	-	-	-	-	-	-	-		М	М	-	-
CO2	S	S	М	-	-	-	-	-	-	-	М	S	S	М	-
CO3	S	М	-	-	-	-	-	-	-	-		М	М	-	М
S-Stroi	ng,M-Me	edium, L	-Low						1						
1. 2. 3. 4. 5. 6.	Small Transi Econo Unit c Co-oro	ngency a signal st ent stab mic disp ommitm dination	ability a ability an bility an batch w hent: Pr of ove	analysis alysis c rith line riority-l r currei	rator shift s: SMIB al f Multi – flow con ist schem nt and dis	nd Multi i machine straints es and dy	machine configu ynamic	e config ration progran	uratior nming	ı					
7.		tion mot		•	•										
8.	5		ritching	surgeı	using EMT	IP.									
	ence Bo ratory Re		manua	al											
	SE DESI	GNERS													
COUR	1	of the f	aculty		Designat	ion		Den	artme	nt	Mail id				
COUR S.no	Name	or the r	acuity		2 00.g										
		Ramakri	-	abu	Associate		or		/ VMK		ramakrisl	nnaprab	u@vmk	vec.ed	u.in

PREAMBLE

The course provides practical knowledge of power Electronics devices and Characteristics for various devices.

PRERE	QUID	IL.					1	NIL							
COURS	SE OB.	JECTI	VES												
1	To s	imulat	e and c	lesign	of vari	ous ga	te firin	g circu	its.						
2					•	ntrodu of con	0		s like I	P- sim, N	Multisir	n, and h	elp ther	n to sim	ulate
3	To e	nable t	he stuc	lents to	study	& sim	ulate c	ircuits	using l	Matlab s	software	e and on	hardwa	are Mod	lules.
COURS	SE OU'	ГСОМ	IES												
On the s	successi	ful con	npletio	n of th	e cours	se, stud	ents w	ill be a	ble to						
CO1	Desi	gn and	Analy	se of v	arious	Power	contro	l conve	erter si	mulatio	n and to	ols.	Un	derstand	ł
CO2		the tecl	-	s, skills	s and n	nodern	engine	ering t	ools ne	ecessary	for eng	gineerin		alyze ar eate	nd
CO3	Ident	tify, fo	ormulat	te & so	lve eng	gineeri	ng prol	olems v	with sin	mulatior	n tool.		Ар	ply	
CO4	Simu	late th	e chara	acterist	ics of S	SCR, N	IOSFE	T, IGE	BT.				An	alyze	
CO5	Simu	ılate ga	te firin	ng circu	uits for	variou	s powe	er Appl	icatior	ıs			An	alyze	
MAPPI	NG W	ITH P	ROGI	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	М	L	М		М		L			L	L	М	L
CO2	L	S	М	L	S				М			М	М	S	
CO3	М	М	L		S	L	М				L	М	М	S	L
CO4	L	L	М		L				L	L	М		S	S	
CO5	S	S	М	L	S	Μ	L		М	L		М	S	S	L

SYLLABUS

STUDY EXPERIMENTS

1.Study of characteristics of SCR,TRIAC, DIAC

2.Study of Gate firing circuits

SIMULATION EXPERIMENTS

1. Characteristics of SCR, TRIAC, DIAC

2. Characteristics of power MOSFET, IGBT

3. Characteristics of UJT

- 4. Single Phase Half wave controlled converter with R,RL&RLE Load with/without FD
- 5.Single Phase Half controlled converter with R,RL&RLE Load with/without FD
- 6.Single Phase Full controlled converter with R,RL&RLE Load with/without FD
- 7. Three Phase semi controlled converter with R,RL&RLE Load
- 8. Three Phase full controlled converter with R,RL&RLE Load
- 9. Design and Modeling of UJT Triggering for Various Power Converters

TEXT BOOKS

1 Laboratory Reference manual - VMRFDU

000100		- · ·	_	
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in
2	Dr. K. BOOPATHY	Professor	EEE /AVIT	boopathyk@avit.ac.in

17EE	SE81	POWER ELECTRONICS SIMULATION LAB - II							Cate	egory		L	Т	Р	Credit
	5204	10	FOWER ELECTRONICS SIMULATION LAD - II							SE		0	0	4	2
PREAN	MBLE												l		
			•	ence on	the equ	uipment	for conv	erters,	inverter	s, chop	pers and	d simula	ation o	of close	d loop
		electrica													
			E83- Po	wer ele	ectronics	s simulat	tion lab-	1							
	SE OJEC		ian tha i		onairau	lt for oo	ntrolling	the end	od of D	Cand A	C Moto	r c			
1	1		•				ntrolling	· ·					throw	nhac	half 9 ful
2	2		lled rect			uit and	to analy	sis the	periori	nance d	n single	e pnase	, three	e phase	e half & ful
3	3	To sim	ulate vo	Itage ar	nd curre	nt comn	nutated o	choppe	r						
4	4	To desi	ign and	run the	simulat	ion mod	lels of inv	verter a	nd volta	age cont	roller				
5	5	To desi	ign the s	simulati	on circu	it for cy	cloconve	rter and	d to ana	lyse the	perfor	mance.			
COURS	SE OUTC	OMES													
On the	success	sful com	pletion	of the c	ourse ,s	tudents	will be a	ble to							
CO1: A	pply the	e approp	oriate te	chnique	e to con ⁻	trol the s	speed of	AC and	DC mo	tors.					Apply
CO2: A	nalyze t	he perfo	ormance	e of Cho	pper										Analyze
CO3: D	esign th	ie simula	ation cir	cuits fo	r analyz	ing the p	performa	nce of	power e	electron	ics cont	rollers			Create
Mappi	NG WIT	H PROG	RAMME	OUTCO	omes ai	ND PRO	GRAMME	E SPECI	FIC OUT	COMES					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PS01	PS0	2 PSO3
CO1	S	Μ	-	-	-	-	-	-	-	-		М	М	-	-
CO2	S	S	М	-	-	-	-	-	-	-	М	S	S	М	-
CO3	S	Μ	-	-	-	-	-	-	-	-		М	Μ	-	М
S-Stron	ng,M-Me	edium, L	-Low												
LIST O	F EXPER		5												
1.	Speed	l control	of DC S	hunt m	otor.										
2.						hree-ph	ase indu	ction m	otor.						
3.	•	ge comm													
4. 5.		nt comm urray – I													
5. 6.		Itage co													
7.		inverte													
8.		converte													
	ence Bo														
Labora	atory Re	eference	manua	I											
COURS	SE DESI	GNERS													
S.no	Name	e of the f	faculty		Desigr	Designation				Department		Mail id			
1	Mr.G	Ramakr	ishnapr	abu	Associ	iate Prof	fessor		EEE/VMKVEC ramakrishnaprabu@vn					u@vml	wec.edu.in
2	Mr.N	S.Gobin	ath		Assist	ant Prof	essor (Gr	· II)	EEE/AV	IT	gopi	nathnp	@avit	.ac.in	

17E	ESE	.06	NON	N CON	VENT					CES AN	D	Category	L	Т	Р	C	redit
						APPI	JICAI	TIONS)			SE	3	0	0		3
T fund	o stu amer		nd ap	plicatio						e to crisi arces in t				urces	and	unders	stand th
		-		TVES													
1					Sourc	es and	its typ	bes, sco	ope of R	enewable	e energ	gy					
2										olar ener			on me	thods			
3	Тот	unders	stand	about v	vind er	nergy s	ystem	& its	compon	ent, and	Analy	ze the se	lection	n fact	or &	outpu	t powe
4	Tos	study	about	the Ba	sics Bi	iomass	& geo	otherm	al energ	y and its	variou	is source	s				
5	Tos	study	differ	ent for	ns of r	non-co	nventi	onal er	nergy.								
		E OU'															
				-					will be a								
CO							0,		s & syst		1					Jnders	
CO										nt metho				b 1a	l	Jnders	tand
CO	3	energ	-		owiedg	e or s	torage	techno	ologies	from the	auton	omous r	enewa	ible	τ	Jnders	tand
CO									nponents							Analy	ze
CO						-			generati							App	ly
CO	6			the n nts in th			oility	to eng	gage in	lifelong	g lear	ming for	r fur	ther		Analy	ze
CO		Cond energ		-	ents to	asses	s the	perfor	mance	of solar	PV, v	vind, Ge	other	mal		Analy	ze
CO	8	Pursu	e furt						evelopm	ent of n	on-coi	nvention	al ene	rgy	Apply		
				1													
MA	PPIN	IG W	ITH	PROG	RAM	ME O	UTCO	MES		ROGRA	MME	SPECI	FIC C	OUTC	COM	IES	
COS			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	01	PSO2	PSO:
CO1		S	-	-	-	М	-	L	L	-	-	-	-	-		-	-
CO2		S	М	S	L	М	-	L	М	-	-	-	-	-	T	-	-
CO3		S	-	-	-	М	-	-	-	-	-	-	-	-		-	-
CO4		S	-	-	-	М	-	-	-	-	-	-	-	-		-	-
CO5		S	М	S	L	М	-	L	М	-	Μ	М	-	-		-	-
C06		S	-	-	-	М	-	L	L	-	-	-	-	-		-	-
CO7		S	-	S	-	М	-	М	М	-	-	М	-	-		-	-
CO8		S	-	S	-	М	-	М	М	-	-	L	-	-		-	-
S-St	rong	; M-N	lediu	m; L-L	ow												
	LAB																
INT	ROE	OUCT	ION	TO EN	ERG	Y SOU	URCE	S									

Renewable and non-renewable energy sources, energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements Global and National scenarios, Prospects of renewable energy sources.

SOLAR ENERGY

Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, flat plate collectors, concentrating collectors, Solar air heaters-types, solar driers, storage of solar energy-thermal storage, solar pond, solar water heaters, solar cooker, solar heating & cooling of buildings, photo voltaic - solar cells & its applications.

WIND ENERGY

Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.

BIOMASS AND GEOTHERMAL ENERGY

Biomass conversion technologies, Biogas generation plants, classification, advantages and disadvantage es, constructional details, site selection, Fuel properties of bio gas, utilization of biogas. geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. advantages, disadvantages and application of geothermal energy.

OTHER ALTERNATE ENERGY SOURCES

Energy from tides, basic principle of tidal power, Basics of Magneto Hydro Dynamic (MHD) Power Generation, Basic Fuel Cells construction and Operation, hydrogen as alternative fuel for vehicles.

Text Books

- 1. Non-conventional energy sources by G.D. Rai, Khanna Publishers.
- 2. Solar Energy: Fundamentals and Applications by H.P. Garg & Jai Prakash, Tata McGraw Hill.
- 3. Solar Energy: Principles of Thermal Collection and Storage by S, PSukhatme, Tata McGraw Hill.

Reference Books

- 1. Alternative Energy Sources by B.L. Singhal Tech Max Publication.
- 2. Non Conventional Energy Resources by S.Hasan Saeed and D.K.Sharma.
- 3. Fuel Cells by Bockris and Srinivasan; McGraw Hill.
- 4. Magneto Hydrodynamics by Kuliovsky and Lyubimov, Addison.
- 5. Solar Engineering of Thermal Processes by Duffic and Beckman, John Wiley

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. P. Loganathan	Assistant Professor	EEE	loganathan@vmkvec.edu.in
2	J.Suganthi	AP (Gr-II)	EEE	jsuganthi77@gmail.com

	SOLAR COLLECTORS AND THERMAL ENERGY CONVERSION	Category	L	Т	Р	С
17SACC05	Total Contact Hours – 45	SE	3	0	0	3
175/1000	Prerequisite – NIL					
	Co-requisite - NIL					

Preamble

To familiarize the students with principles of operation, structure, testing and installation of major types of solar collectors. To study fundamentals and application of solar thermal systems for heating, cooling, power genera other applications.

COURS	E OBJ	ECTIV	VES													
1		Und	Inderstand the fundamentals of solar flat plate collectors.													
2		Und	Understand the fundamentals of concentrating solar collectors													
3		Anal	lyse th	e perfo	ormano	ce of c	oncent	trating	solar o	collecto	ors					
4		The	basics	of sola	ar ther	mal te	chnolo	ogy for	proce	ss heat	ing ap	plication	ns			
5		The	fundar	nental	s of de	esign c	alculat	tions a	nd eco	nomic	s of sol	lar pow	er gener	ation.		
COURS	E OUT	COM	ES													
On succe	essful c	omple	tion o	f the c	ourse	, the st	tudent	s will	be abl	e to						
CO	1	Und	erstand	the so	cope o	f solar	therm	al ene	rgy in	India.				Understand		
CO	2	App	ly the	solar tl	nermal	l energ	gy conc	cepts fo	or real	time p	roblen	ns		Apply		
CO	3	Estir	Estimation of solar energy requirement for thermal applications												nate	
СО	4		-	differe ng sol				quipme	ent usi	ng con	centra	ting and	d non-	Create		
C0 :	5	Anal	Analyze the performance of designed solar thermal collectors												Analyze	
Mapping	with P	rogram	nme ou	itcome	s and	Progra	umme S	Specifi	ic Out	comes			I.			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	М	М	L	М						L		М				
CO2	М	М	L	М						М		М				
CO3	S	S	М	L	S				L			М				
CO4	S	S	S	М	S	М	М	М	M	М	L	М				
CO5	S	S	L	S	L				L	М						

UNIT - I INTRODUCTION

Scope of Solar Thermal Energy in India – Schematic of a Solar Thermal Power Plant- Solar atlas of India - Types of Solar Collectors – Introduction to basic thermodynamic cycles involved with thermal collectors-Carnot cycle - Rankine cycle.

UNIT - II

QUANTITATIVE TECHNIQUES

Fundamentals of solar collectors as devices to convert solar energy to heat. Non concentrating low temperature flat-plate and evacuated tube collectors. Design and structures of collectors for heating liquids and air. Optimal collector tilt and orientation. Collector performance - Useful energy gain, energy losses, efficiency. Use of selective coatings to enhance the collector efficiency.

9

UNIT - III SOLAR LIQUID AND AIR HEATING SYSTEM 9

Flat plate collector – Liquid and air heating - Evacuated tubular collectors - Overall heat loss coefficient, heat capacity effect - Thermal analysis. Design of solar water heating systems, with natural and pump circulation(Quantitative analysis). Solar dryers and applications. Thermal energy storage systems.

UNIT - IV SOLAR COOLING 9

Solar thermo-mechanical refrigeration system – Carnot refrigeration cycle, solar electric compression air conditioning, simple Rankine cycle air conditioning system. Absorption refrigeration – Thermodynamic analysis

UNIT - V

SOLAR THERMAL POWER PLANTS 9

Solar thermal electric power plants based on parabolic trough, solar central receiver, parabolic dish-Stirling engine. Concentrated solar power using Fresnel lenses. Fundamentals of design calculations and analysis of solar power plants. Economic analysis.

TEXTBOOK

1. Duffie, J. A. & W. A. Beckman., "Solar Engineering of Thermal Processes", 3rd edition, John Wiley & Sons, Inc., 2006.
 2. H.P.Garg, J.Prakash., "Solar energy fundamentals and applications", Tata McGraw Hill publishing Co. Ltd, 2006.

REFERENCES

1. Duffie, J. A. & W. A. Beckman., "Solar Engineering of Thermal Processes", 3rd edition, John Wiley & Sons, Inc., 2006.

2. H.P.Garg, J.Prakash., "Solar energy fundamentals and applications", Tata McGraw Hill publishing Co. Ltd, 2006.

COURSE DESIGNERS

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S.M.Santhi Rekha	AP	EEE	santhirekha.eee@avit.ac.in

203

9

		E	NERG	Y CO	NSER	VATIO	ON AN	D MA	NAGE	MENT		Catego	ry]	. ,	Г	P C
17SAC	C10	Tota	l Conta	act Ho	urs – 4	15						CC		3	0	0 3
175AC	.C10	Prere	equisit	e – No	n Con	ventio	nal En	ergy S	ources						I	
Preambl	e															
To enable	e the stu	dents	to acqu	uire the	e knov	vledge	of ene	ergy co	nserva	tion m	easure	s in ther	mal and	l elec	trica	l
COURS	E OBJI	ECTIV	/ES													
1		-	knowle in proe	-			nagem	ent and	d facili	itate ap	plicati	on of en	ergy co	onser	vatic	n
2	To ir	npart l	cnowle	edge of	n therr	nal an	d elect	rical u	tilities	for ev	aluatin	g energ	y savin	g pot	entia	l.
3	To le and c		e posit	ions o	fener	gy mar	nagem	ent in o	energy	intens	ive inc	lustries	using v	ariou	s mo	odel
4		nculcat olishme		wledge	and s	kills a	bout a	ssessin	g the e	energy	efficie	ncy of a	n entity	y/		
5 COURSI	segn	ients u	nder in			ation P	otenti	al and	Busine	ess opp	ortunit	ties acro	ss diffe	erent	user	
On succe				f the co	ourse,	the st	udent	s will l	be able	e to						
CO 1		intanc	e with	conse							ent, en	ergy pla	mning,	Ana	lyze	
CO 2	Recog manag			of ene	ergy e	fficien	t mac	hinery	syster	ns, ene	ergy lo	osses an	d their	Eval	uate	
CO 3	Ability and pr			nalysi	s tech	niques	and n	nethod	s & Er	nergy c	onserv	ation pl	anning	Unde	erstai	nd
CO 4		ate the		no eco	onomic	e feasi	ibility	of the	e energ	gy con	iservati	ion tech	inique	App	ly	
C0 5	Evalua distrib		-					lities	like fi	irnace,	boile	rs and	steam	Crea	ting	
CO6	Takeo efficie	-					-			ls to i	mprov	e the o	overall	Ana	lyze	
Mapping	with Pr	ogram	ime ou	tcome	s and l	Progra	mme S	Specifi	c Outc	omes			1			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	-	L	М	S	-	-	-	-	L	-	-	L	L		-	-
CO2	L	-	Μ	L	-	L	-	L	-	-	-	-	L		-	-
CO3	L	-	L	-	-	-	-	-	-	-	-	-	-		Μ	-
CO4	S	-	L	-	-	М	-	-	L	-	-	-	-		L	-
CO5	L	Μ	S	Μ		-	-	-	-	-	-	-	-		-	L
			L			Μ	1	1		1	1	L	1		Μ	1

S- Strong; M-Medium; L-Low

ENERGY CONSERVATION PRINCIPLES

Energy scenario, principles of energy conservation, resource availability, energy savings, current energy consumption in India, roles and responsibilities of energy managers in industries.

ELECTRICAL SYSTEMS

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors – Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in

ENERGY CONSERVATION IN THERMAL SYSTEMS

Energy conservation in thermal utilities like boilers, furnaces, pumps and fans, compressors, cogeneration - steam and gas turbines. Heat exchangers, lighting system, motors, belts and drives,

ENERGY CONSERVATION IN ELECTRICAL SYSTEMS

Potential areas for electrical energy conservation in various industries, conservation methods, energy management opportunities in electrical heating, lighting system, cable selection, energy efficient motors, factors involved in determination of motor efficiency, adjustable AC drives, variable speed drives, energy efficiency in electrical system

ENERGY MANAGEMENT

Organizational background desired for energy management persuasion, motivation, publicity role, tariff analysis, industrial energy management systems, energy monitoring, auditing and targeting, economics of various energy conservation schemes – energy policy and energy labeling.

ТЕХТВООК

- 1. Reay .D.A, "Industrial Energy Conservation", Pergamon Press, 1st edition, 2003.
- 2. White .L. C, "Industrial Energy Management and Utilization", Hemisphere Publishers, 2002.

REFERENCES

- 1. Beggs, Clive, "Energy Management, Supply and Conservation", Taylor and Francis, 2nd edition, 2009.
- 2. Smith .C.B, "Energy "Management Principles", Pergamon Press, 2006.
- 3. Hamies, "Energy Auditing and Conservation; Methods, Measurements, Management and Case study", Hemisphere, 2003.
- 4. Trivedi .P.R and Jolka .K.R, "Energy Management", Common Wealth Publication, 2002...

Sl No	Name of the Faculty	Designation	Department	Mail
1	Dr. K.Boopathy	Professor	EEE/AVIT	boopathyk@avit.ac.in
2	Mrs. V.Manjula	AP	EEE/VMKVEC	manjula@vmkvec.edu.in

17EESI	E07	CON	NCEP	TS OF	F GRE	EN B	UILD	ING				Catego	ory	L	Т	Р	С
TTEES	207	Tota	l Cont	act Ho	ours – 4	45						SE		3	0	0	3
		Prer	equisit	e – NI	L												
		Co-r	requisi	te - NI	L												
Preamble	e																
To have harnessing							-				•					ildin	g by
COURSE	E OBJ	ECTI	VES														
1		gree	n builc	lings.				-		•	-	rting kno	-			-	g
2		To u	nderst	and the	e appli	ication	s of pa	assive	and act	tive us	e of re	newable	energ	y sy	stem		
3		-		e the e ecycle			of wat	er, ma	erials	and w	aste th	rough th	ne susta	aina	ble c	once	pt of
COURSE	E OUT	COM	ES														
On succes	ssful c	omple	tion o	f the c	ourse,	, the st	tudent	ts will	be abl	e to							
CO	1				•	•		•			•	endly bu otprint)	ilding		Unde	erstar	nd
CO 2	2				-			leating g Envir		•		for			Rem	embe	er
CO 3	3				-		-	assive o g Envir	•		-	ailable fo	or		Rem	embo	er
CO 4	4			and det thods o					Enviro	nment	friendly	y materia	ls and		Aj	oply	
C0 5	5	To k build		out the	e innov	ative g	reen te	chnolog	gies me	ethods a	and case	e study o	f a		Unde	erstar	nd
Mapping	with P	rogran	nme ou	itcome	s and	Progra	mme	Specifi	c Outo	comes				1			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1]	PSO2	PS	603
CO1	S	S	L			S	S			L							
CO2	М		М		S	L	М		М	L							
CO3	М		М		S	L	М			L							
CO4	S		S		S	М	М	L		L	М			T			
CO5	S	М	S	S	S	М	S		М	L	L	М	1				

SYLLABUS				
UNIT - I	INTRODUCTION			9
Sustainable sites		• • •	-	n from USGBC –Concept of Vegetation & Pattern – Water
UNIT - II	PASSIVE AND ACT	IVE HEATING TEC	HNIQUES 9	
Dessicant coolin		earth sheltering, Bermi		rnal radiation cooling, Passive rs, earth – Air tunnels, Curved
UNIT - III	PASSIVE AND ACT	IVE COOLING CON	CEPTS	9
Dessicant coolin		earth sheltering, Bermi		rnal radiation cooling, Passive rs, earth – Air tunnels, Curved
UNIT - IV	REDUCE, RECYCLE AN	D REUSE		9
	ials. Recycling and Reus			ronment friendly materials, Bio
UNIT - V	INNOVATIVE GREEN T	ECHNOLOGIES AND CA	ASE STUDIES	9
	••	-		ts-Integrated Use of Landscape gs : Olympia Technology Park,
TEXTBOOK				
1.Sustainable des	ign manual, Vols 1& 2, 7	The energy and resource	e institute, New	Delhi.
REFERENCES				
 Ralph M .Le Sandra Men Lawson.B,B 	nan & Others – Climate bens – Passive Solar Arc dler, William Odell, The Ilding Materials, v Sustainable Developme	hitecture in Europe – 2 Guide Book Of Sustain Energy And	2, Architecture P able Design, Jol	ress, London 1983.
COURSE DESI	GNERS			
SI No	Name of the Faculty	Designation	Department	Mail ID

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	P.Poornima	AP(Gr-II)	EEE	poorni07p@gmail.com

		NUC	CLEA	R REA	АСТО	R TH	EORY	Z				Categor	y L	Т	Р	C
17EEF	E C34	Tota	l Cont	act Ho	urs – 4	45						EC-PS	3	0	0	3
		Prere	equisit	e – Ni	l											
Preamb	le															
The ultim engineerii				is to ha	ve dee	per unc	lerstan	ding of	the con	ntempor	ary and	the recent	researc	hes in r	nuclea	ır
COURS	E OBJ	ЕСТІ	VES													
1		To s	tudy th	ne Fun	damen	tal cor	ncepts	of Nuc	clear s	ystems.	To ana	lyse the N	Nuclear	data, 1	reacti	ion
1		rates		41 4	u dan ta			tion of	641000			a the de f	1			
2		-	rovide		udents	with (iescrip	ouon o	i the c	omputa	uonai m	nethods for	or nucl	ear eng	ginee	nng
					tical a	nd nur	nerica	l calcu	lations	s necess	ary in r	uclear sy	/stem r	esearch	n and	
3		deve	lopme	nt. To	under	stand t	he Co	re Con	npositi	on char	iges dur	ring Reac	tor ope	ration.		
COURS	E OUT	COM	ES													
On succ	essful c	omple	tion of	f the c	ourse,	, the st	udent	s will	be abl	e to						
CO	1	Rem	ember	the Fur	Idamen	tals co	ncepts	of Nucl	lear sys	stems				Rem	emb	er
CO	2	Anal	yse the	Nuclea	ar data,	, reactio	on rates	5.						An	alyse	è
CO	3	Knov	ving th	e comp	utatior	nal met	hods fo	or nucle	ar engi	neering	applicat	ions.		Eva	aluate	e
CO	4			about (arch an				merical	calcul	ations n	ecessary	in nuclea	r	Analy eva	yse a duate	
C0	5	Infor	mation	about	Core (Compos	sition c	hanges	during	g Reacto	r operati	on.		Rem	lemb	er
Mapping	g with P	rogran	nme ou	itcome	s and I	Progra	mme S	Specifi	c Outo	comes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	P	SO3
CO1	S	-	-	-	М	S	М	L	-	-	_	-	S	М		S
CO2	S	М	М	-	М	S	S	М	М	-	-	-	S	S		S
CO3	S	S	М	S	L	М	-	-	-	L	-	-	S	М		S
CO4	S	М	М	М	-	L	-	-	-	L	L	L	S	S		S
CO5	S	S	S	М	L	М	L	L	-	-	-	-	S	М		S

INTRODUCTION

Course overview - Fundamental concepts- Nuclear energetic -Radioactivity-Binary nuclear reactions, neutron nuclear reactions- Principles of nuclear reactors, nuclear power.

FUNDAMENTALS OF NUCLEAR SYSTEMS

Characteristics of the fission reaction, neutron moderation, practical fission fuels-Reactor power, fuel burn up, and fuel consumption-Neutron chain-reacting systems-Homogeneous and heterogeneous cores, reflectors, Reactor kinetics and dynamics, reactivity feedback- Core composition changes during reactor operation, nuclear system lifetime

MATHEMATICAL DESCRIPTION OF PHYSICAL PHENOMENA : NEUTRON AND MODELLING METHODS

General considerations about reactor physics, engineering requirements- Description of the neutron distribution: fluxes, currents, and sources-Nuclear data, cross sections, and reaction rates- Basic scheme of nuclear system modeling methods-Deterministic modeling of nuclear systems-Neutron balance (conservation) equations

NUCLEAR DATA AND CROSS SECTION PROCESSING

Cross-section data- Evaluated nuclear data files-Introduction to the data formats and procedures of the ENDF-6 system-NJOY nuclear data processing system, multigroup cross section libraries.

CORE COMPOSITION CHANGES DURING REACTOR OPERATION

Core composition changes-Nuclide production-destruction equations, adiabatic fuel depletion modelling Equilibrium fuel cycle-Solution of the nuclide production-destruction equations-Reactivity effects of fuel composition changes

TEXTBOOK

1. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001

2. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, 1976

REFERENCES

1. J.R.Lamarsh, Introduction to Nuclear Reactor Theory, Addison-Wesley Pub., 1966.

2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., 2001

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	P.Poornima	AP(Gr-II)	EEE	poornima@avit.ac.in
2	Mr.P.Loganathan	AP	EEE	loganathan@vmkvec.edu.in

		CON	VENTI	ONAL	AND A	LTERN	IATIVI	EENER	GY SYS	STEMS		Catego	ry l		Т	Р	C
17EE\$	SE09	Tota	l Cont	act Ho	ours – 4	45						SE		3	0	0	3
		Prer	equisit	e – NI	L												
		Co-n	requisi	te - NI	L												
Preamb	le																
This cou importan						orking	princi	ples of	conve	entiona	ll powe	er genera	ation an	ıd tl	he		
COURS	E OBJ	ЕСТГ	VES														
1		The	operati	ng prin	ciples a	and cor	nponer	nts of st	eam an	d nucle	ear pow	er plant.					
2		The	operati	ng prin	ciples a	and cor	nponer	ts of h	ydro, ga	as turbi	ne pow	er plants					
3		The	solar ar	nd wind	lenerg	y conv	ersion	systems	5.								
4		The	biomas	s, tidal	and ge	otherm	al pow	er plan	ts.								
5		The	operati	ng prin	ciples o	of hydr	ogen e	nergy, f	fuel cel	ls and l	MHD p	ower gen	eration				
COURS	E OUI	COM	ES														
On succ	essful c	omple	tion o	f the c	ourse,	, the st	tudent	s will	be abl	e to							
CO	1	Rem	ember	the Fur	Idamen	tals co	ncepts	of Stea	m and]	Nuclear	r Powei	Generat	tion		Rem	embe	er
CO	2	Und	erstand	d the p	erform	nance of	of hyd	ro, Ga	s turbi	ne plai	nts				Unde	rstar	nd
CO	3	Und	erstand	the c	oncept	of sol	ar and	wind	energy	conve	ersion s	system			Unde	erstar	nd
СО	4		e an id ration		ut Tid	al, Bic	mass	, Geoth	nermal	resour	ces an	d power			Unde	erstar	nd
C0	5		ign and fuel c			table ł	nydrog	en stor	age sy	stem t	o be us	ed along	B		Ap	ply	
Mapping	g with P	rogran	nme ou	itcome	s and	Progra	imme S	Specifi	c Outc	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	I	PSO2	PS	503
CO1	S	S	L			S	S			L							
CO2	М		М		S	L	М		М	L							
CO3	М		М		S	L	М			L				╞			
CO4	S		S		S	М	M	L		L	М						
		1	1	1		1	1	1				l	1				

UNIT - I	STEAM AND NUCLEA	R POWER GENERAT	TION	9
make circuit technologies	- Cooling towers-Turbine	governing, plant per supercritical and ultra	rformance enha a-supercritical st	Steam generating plants-Feed ncement techniques, advanced eam power plants, power plant hels.
UNIT - II	HYDRO, GAS TURBI	NE AND COMBINED	CYCLE PLANT	s 9
Performance	-	equipment. combined	d cycle power	nes - Gas turbine power plants - pants, integrated gasification
UNIT - III	SOLAR AND WIND	ENERGY		9
concentrating	collectors – Solar applicat Wind data and energy estin	ions – Fundamentals o	of photo voltaic	mal collectors – Flat plate and conversion – Solar cells – PV tems – Wind energy generators
UNIT - IV	BIOMASS, TIDAL AND	GEOTHERMAL ENERG	Y SOURCES)
gasifier, bioga	as plant, digesters, ethanol p	roduction, Bio-diesel p	production and e	conomics. Tidal energy – Wave
gasifier, bioga energy – Tec environmenta	as plant, digesters, ethanol p hnology options – Open an	roduction, Bio-diesel p d closed OTEC cycles	production and e	conomics. Tidal energy – Wave
gasifier, bioga energy – Tec environmenta UNIT - V Hydrogen, ge generation au developments	as plant, digesters, ethanol p hnology options – Open an l issues. HYDROGEN, FUEL CELI eneration, storage, transport nd economics. MHD pov s.	roduction, Bio-diesel p d closed OTEC cycles L AND MHD POWER and utilization and tr	production and e s. Geothermal en ransport. Fuel c	conomics. Tidal energy – Wave nergy sources, power plant and 9 ell technology – Types, power
gasifier, bioga energy – Tec environmenta UNIT - V Hydrogen, ge generation at developments TEXTBOOK "1. Rai .G.D,	As plant, digesters, ethanol p hnology options – Open an l issues. HYDROGEN, FUEL CELL eneration, storage, transport nd economics. MHD pov s. MHD pov s. MHD pov s. MHD pov s.	roduction, Bio-diesel p d closed OTEC cycles L AND MHD POWER and utilization and tr wer generation – Pr Sources'', 4th edition, I	production and e s. Geothermal en ransport. Fuel c inciple, classifi	conomics. Tidal energy – Wave nergy sources, power plant and 9 ell technology – Types, power cation, design problems and ers, New Delhi, 2000.
gasifier, bioga energy – Tec environmenta UNIT - V Hydrogen, ge generation at developments TEXTBOOK "1. Rai .G.D, 2. Godfrey Bo	As plant, digesters, ethanol p hnology options – Open an l issues. HYDROGEN, FUEL CELL eneration, storage, transport nd economics. MHD poves. S. K "Non Conventional Energy, Po byle, "Renewable Energy, Po	roduction, Bio-diesel p d closed OTEC cycles L AND MHD POWER and utilization and tr wer generation – Pr Sources'', 4th edition, I	production and e s. Geothermal en ransport. Fuel c inciple, classifi	conomics. Tidal energy – Wave nergy sources, power plant and 9 ell technology – Types, power cation, design problems and ers, New Delhi, 2000.
gasifier, bioga energy – Tech environmenta UNIT - V Hydrogen, ge generation at developments TEXTBOOK "1. Rai .G.D, 2. Godfrey Bo U.K., 2012. REFERENC 1. Sukhatme 2. Khartche 3. Chauhan 4. M.C, "En	As plant, digesters, ethanol p hnology options – Open an l issues. HYDROGEN, FUEL CELL eneration, storage, transport nd economics. MHD poves. S. K "Non Conventional Energy, Po byle, "Renewable Energy, Po	roduction, Bio-diesel p d closed OTEC cycles LAND MHD POWER and utilization and tr wer generation – Pr Sources", 4th edition, I ower for a Sustainable McGraw-Hill Publish y Systems", Taylor and c-Conventional Energy , Wiley-VCH, 2008.	broduction and e s. Geothermal en ransport. Fuel c inciple, classifi Khanna Publishe Future", Oxford ing Company Lt d Francis, Washi Resources", Ne	conomics. Tidal energy – Wave nergy sources, power plant and 9 ell technology – Types, power cation, design problems and ers, New Delhi, 2000. University Press, d., New Delhi, 1997. ington DC, 1998.
gasifier, bioga energy – Tec environmenta UNIT - V Hydrogen, ge generation at developments TEXTBOOK "1. Rai .G.D, 2. Godfrey Bo U.K., 2012. REFERENC 1. Sukhatme 2. Khartche 3. Chauhan 4. M.C, "En 5. Rajput .R	As plant, digesters, ethanol p hnology options – Open an l issues. HYDROGEN, FUEL CELL eneration, storage, transport nd economics. MHD poves. With the economics of the economics option of the economics of the economics with the economics of the economics of the economics option of the economics of the economics of the economics of the economics of the economics of the economics of the economics of the economics of the economics	roduction, Bio-diesel p d closed OTEC cycles LAND MHD POWER and utilization and tr wer generation – Pr Sources", 4th edition, I ower for a Sustainable McGraw-Hill Publish y Systems", Taylor and c-Conventional Energy , Wiley-VCH, 2008.	broduction and e s. Geothermal en ransport. Fuel c inciple, classifi Khanna Publishe Future", Oxford ing Company Lt d Francis, Washi Resources", Ne	ell technology – Types, power cation, design problems and ers, New Delhi, 2000. University Press, d., New Delhi, 1997. ington DC, 1998.
gasifier, bioga energy – Tec environmenta UNIT - V Hydrogen, ge generation at developments TEXTBOOK "1. Rai .G.D, 2. Godfrey Bo U.K., 2012. REFERENC 1. Sukhatme 2. Khartche 3. Chauhan 4. M.C, "En	As plant, digesters, ethanol p hnology options – Open an l issues. HYDROGEN, FUEL CELL eneration, storage, transport nd economics. MHD poves. With the economics of the economics option of the economics of the economics with the economics of the economics of the economics option of the economics of the economics of the economics of the economics of the economics of the economics of the economics of the economics of the economics	roduction, Bio-diesel p d closed OTEC cycles LAND MHD POWER and utilization and tr wer generation – Pr Sources", 4th edition, I ower for a Sustainable McGraw-Hill Publish y Systems", Taylor and c-Conventional Energy , Wiley-VCH, 2008.	broduction and e s. Geothermal en ransport. Fuel c inciple, classifi Khanna Publishe Future", Oxford ing Company Lt d Francis, Washi Resources", Ne	conomics. Tidal energy – Wave nergy sources, power plant and 9 ell technology – Types, power cation, design problems and ers, New Delhi, 2000. University Press, d., New Delhi, 1997. ington DC, 1998.

17SACC81	SOLAR ENERGY LABORATORY	Category	L	Т	Р	Credit
		SE	0	0	4	2

PREAMBLE

Solar energy is radiant light and heat from the Sun that is harnessed using a range of ever-evolving technologies such as *solar* heating, photovoltaics, *solar* thermal *energy*, *solar* architecture, molten salt *power* plants and artificial photosynthesis. This laboratory mainly deals with the solar PV part. The electrical parameters are mainly concentrated.

PREREQUISITE

Nil

COU	RSE O	BJEC'	TIVES	5											
1	To un	dersta	nd the l	oehavio	or of P	V Sola	r panel	l in dif	ferent c	ombina	tions				
2	To un	dersta	nd the j	power f	low w	ith diff	erent t	ypes o	f loads						
3	To un	dersta	nd the l	oehavio	or batte	ry con	nected	and g	rid com	nected s	system.				
COU	RSE O	UTCC	MES												
On the	e succe	ssful co	omplet	ion of t	he labo	oratory	cours	e, stude	ents wil	ll be ab	le to				
CO1.	Unders	tand th	e vario	ous cha	racteris	stics of	PV Pa	anels					Und	lerstand	
CO2.	Unders	tand P	ower f	low cal	lculatio	ons wit	h diffe	erent lo	ad				Und	lerstand	
CO3.	Explair	n Perfo	rmance	e of a P	V syste	em wit	h batte	eries					Und	lerstand	
CO4.	Unders	tand th	e grid	connec	ted per	formai	nce of	a PV s	ystem				Und	lerstand	
CO5.	Unders	tand th	e islan	ding ar	nd othe	r abno	rmal co	onditio	ons				Und	lerstand	
MAP	PING	WITH	PROG	GRAM	ME O	UTCC	MES	AND	PROG	RAMN	IE SPEC	CIFIC	OUTCON	MES	
COS	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2	PSC 3
CO1	S	S	S	М	L	-	М	-	М	-	-	-	S	М	-
CO2	S	S	S	М	L	-	М	-	М	-	-	-	S	М	-
CO3	S	S	S	М	L	-	М	-	М	-	-	-	S	М	-
CO4	S	S	S	М	L	-	М	-	М	-	-	-	S	М	-
CO5	S	S	S	М	L	-	М	-	М	-	-	-	S	М	-
S-Str	ong; M	-Mediu	ım; L-l	Low							1		ł	1	<u> </u>

- 1. I-V and P-V characteristics with series and parallel combination of modules.
- 2. Effect of variation in tilt angle and shading on PV module power.
- 3. Power flow calculations of standalone PV system of DC load with battery.
- 4. Power flow calculations of standalone PV system of AC load with battery.
- 5. Power flow calculations of standalone PV system of DC and AC load with battery
- 6. Charging and discharging characteristics of battery.
- 7. Interfacing of hardware using RS232 ports and suitable software.
- 8. Evaluation of Active, Reactive Power & Apparent Energy Flow between Grid-Tied Inverter, Grid & Load and Net Metering concept
- 9. Grid Synchronization of Solar PV Inverter and it Performance Analysis
- 10. Impact of Transmission Line Inductance on Voltage Quality at PCC.

References

1. Laboratory reference manual

S.No	Name of the Faculty	Designation	Department	Mail ID
1	V.Rattan Kumar	AP(II)	EEE	rattankumar@avit.ac.in

17SACC82	WIND ENERGY LAB	Category	L	Т	Р	Credit
		SE	0	0	4	2

PREAMBLE

A wind turbine turns energy in the wind into electricity using the aerodynamic force created by the rotor blades, which work similarly to an airplane wing or helicopter rotor blade. When the wind flows across the blade, the air pressure on one side of the blade decreases. The difference in air pressure across the two sides of the blade creates both lift and drag. The student will be able to understand basic operation of wind turbine with all parameters.

PREREQUISITE

Nil

COU	COURSE OBJECTIVES														
1	To un	derstar	nd the p	perform	nance c	curve o	f a win	d turbii	ne						
2	To do	power	analy	sis of a	wind t	urbine	•								
3	To un	derstar	nd the l	oehavio	or of wi	ind tur	bine co	ntroller	with r	espect to	o the loa	d(AC &	DC).		
COU	COURSE OUTCOMES														
On the successful completion of the laboratory course, students will be able to															
01.0	CO1.Understand various characteristics of wind turbine with respect to V, I & P Understand														
CO2.U	CO2.Understand the concept of cut in and cut off speed. Understand														
002.1		. 1.1	<u> </u>		<u> </u>	1 / 1	• •	•	6				TT 1	. 1	
CO3. (Unders	tand th	e perio	ormanc	e of wi	nd turt	oine at v	various	Ireque	ncies.			Und	erstand	L
CO4.1	Unders	tand th	e conc	ept of t	ip spee	ed ratio	•						Und	erstand	l
				~~					DOGE				maar		
												IFIC OU			1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
															03
CO1	S	S	S	М	L	-	М	-	М	-	-	-	S	М	-
CO2 S S S M L - M - M										-	S	М	-		
CO3	S	S S S M L - M - M					-	S	М	-					
CO4	S	S	S	М	L	-	М	-	М	-	-	-	S	М	-
S-Stro	ong; M	-Mediu	ım; L-I	Low		I				I		·	•		L

- 1. Evaluate the efficiency of charge controller used in the Wind Energy Training System (WETS).
- 2. Evaluate the cut-in speed of wind turbine experimentally.
- 3. Evaluate the Tip Speed ratio (TSR) at different wind speeds.
- 4. Draw the turbine Power versus wind speed curve.
- 5. Draw the curve between TSR and coefficient of power.
- 6. Draw the power curve of turbine with respect to the rotational speed of rotor at fix wind speeds.
- 7. Demonstrate the power analysis at turbine output (for high wind speeds).
- 8. Demonstrate the power analysis at different branches of wind turbine energy system (at high frequency) with AC load only.
- 9. Demonstrate the power analysis at different branches of wind turbine energy system (at high frequency) with AC load only.

10. Demonstrate the power analysis at different branches of wind turbine energy system (at high frequency) with DC load only.

References

2. Laboratory reference manual

S.No	Name of the Faculty	Designation	Department	Mail ID
1	V.Rattan Kumar	AP(II)	EEE	rattankumar@avit.ac.in

							~				Categ	ory L	, T	P	C	redit
17EES	E83	PC)WER	ELE	CTRO	NICS	SIMU	LATIO)N LA	AB -I	CC	3	0	0		3
PREAM The c and its ch	ourse					oractica	al knov	wledge	on the	e equipm	nent for	power	semi	cond	uctor	devices
PRERE	QUISI	TE					1	NIL								
COURS	SE OBJECTIVES															
1	To s	To simulate and design various gate firing circuits.														
2		To familiarize the students by introducing softwares like P- sim, Multisim, and help them to simulate and analyze different converters.														
3	To enable the students to study & simulate circuits using Matlab software and on hardware kits.															
COURS	SE OUTCOMES															
On the su	uccessi	ful con	npletio	n of the	e cours	e, stud	ents wi	ill be a	ble to							
CO1	Abili	ty to d	esign a	and cor	nduct si	imulati	on and	experi	ments.			Under	stand			
CO2		•		-	jues, sk g pract		d mode	ern eng	gineerir	ng tools		Analy	ze and	Crea	ate	
CO3		ty to ic lation.	lentify	, formu	ılate &	solve	engine	ering p	oroblen	ns with		unders	stand			
CO4	Abili	ty to si	imulate	e chara	cteristi	cs of S	CR, M	OSFE	T, IGB	T.		Analy	ze			
CO5				<u> </u>	iring c							Analy				
MAPPII COS	NG W	ITH P PO2	ROGI PO3	RAMM PO4			IES A PO7	ND PH PO8					OUTC 2 PSC		ES PSO2	PSO3
CO3	S	rU2	M N	r U4	ruj	L PO0	L PO/	100	109	1010	run	L	2 PSC S		M	PS05
CO1 CO2	S	М	111			Ľ	Ľ	L				M	<u> </u>		L	<u>S</u>
CO3	S	M	L					_					S		M	<u>S</u>
CO4	S	М				М							S		М	S
CO5	S	М				L							S		М	S
S- Strong	g; M-N	ledium	n; L-Lo)W												

STUDY EXPERIMENTS

1.Study of characteristics of SCR, TRIAC, DIAC

2.Study of Gate firing circuits

SIMULATION EXPERIMENTS

1. Characteristics of SCR, TRIAC, DIAC

- 2. Characteristics of power MOSFET, IGBT
- 3. Characteristics of UJT
- 4. Single Phase Half wave controlled converter with R,RL&RLE Load (for firing angles 30,60,90)with/without FD
- 5.Single Phase Half controlled converter with R,RL&RLE Load (for firing angles 30,60,90)with/without FD
- 6.Single Phase Full controlled converter with R,RL&RLE Load (for firing angles 30,60,90)with/without FD
- 7. Three Phase semi controlled converter with R,RL&RLE Load
- 8. Three Phase full controlled converter with R,RL&RLE Load

TEXT BOOKS

1 Laboratory Reference manual

COURS	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	e-Mail ID										
1	P. LOGANATHAN	Assistant Professor	EEE	loganathan@vmkvec.edu.in										

										(Category	L	Т	Р	Credi
17EE	SE84		POV	VER ELI	ECTRO	vics si	MULATI	ON LAB	- 11						t
											SE	0	0	4	2
PREAM	MBLE														
То р	rovide l	hands or	n exper	ience o	n the e	equipme	ent for co	onverte	rs, inver	ters, chop	pers and	simulatic	on of clo	sed loo	р
cont	trol for e	electrica	l drives	5											
PRERE	QUISIT	E : NIL													
COUR	SE OJEC														
	1	To des	ign the	simula	tion cir	cuit for	controll	ing the	speed o	f DC and A	AC Motors	8			
:	2		lesign the simulation circuit and to analysis the performance of single phase, three phase half & full trolled rectifier												
:	3	To sim	ulate v	oltagea	and cur	rent co	mmutat	ed chop	per						
	4	To des	lesign and run the simulation models of inverter and voltage controller												
ļ	5	To design the simulation circuit for cycloconverter and to analyse the performance.													
COURS	5 To design the simulation circuit for cycloconverter and to analyse the performance. COURSE OUTCOMES														
On the	succes	sful com	pletior	of the	course	,studer	nts will b	e able t	0						
CO1: A	pply the	e approp	oriate t	echniqu	ue to co	ontrol th	ne speed	d of AC a	and DC n	notors.			Ар	oly	
CO2: A	nalyze t	he perf	ormand	e of Ch	opper								Ana	alyze	
CO3: D	esign th	ne simul	ation ci	ircuits f	or anal	yzing th	e perfo	rmance	of powe	er electror	nics contro	ollers	Cre	eate	
MAPPI	NG WIT	H PROG	RAMM	e out(COMES	AND PF	Rogran	1ME SPE	ECIFIC O	UTCOMES	ò				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PS02	PSO 3
CO1	S	Μ	-	-	-	-	-	-	-	-		М	Μ	-	-
CO2	S	S	Μ	-	-	-	-	-	-	-	Μ	S	S	М	-
CO3	S	Μ	-	-	-	-	-	-	-	-		Μ	Μ	-	Μ
S-Stror	ng,M-M	edium, l	Low												
	FEXPER														
1.		control o		unt mot	or.										
2.						ee–phas	e inducti	on moto	r.						
3.		e comm													
4. 5.		nt commu urray – B													
5. 6.		tage con		nventen.											
7.		inverter.													
8.		onverter													
	ence Bo														
Labor	atory Re	eference	e manu	al											
OOK2F	E DESIG	NEK2													

S.no	Name of the faculty Designation		Department	Mail id
1	Mr.G.Ramakrishnaprabu	Associate Professor	EEE	ramakrishnaprabu@vmkvec.edu.in

17ATEC12	FUEL CELL TECHNOLOGY	Category	L	Т	Р	С
		EC(PS)	3	0	0	3

Preamble

Prerequisite

New energy sources being worked out for automotive engines to replace conventional methods of using liquid fuels. Fuel cells are one of the promising sources in the development of electric vehicles in the present scenario.

Nil Course Objectives

Course	Objectives
1	To impart knowledge of various Fuel cell Technology as an option for automotive energy source.
2	To describe the vehicle structure for a fuel cell based energy source.
3	To detail on the various hybrid electric technology.
4	To explain hybrid electric vehicles.

Course Outcomes:

Af	ter Su	ccessfi	l com	pletion	of thi	s cours	se, the	studen	ts will	be abl	e to:					
CO1.	Sum	marize	on the	variou	s mode	es of fu	el cell t	echnolo	ogy for	autom	otive.			Understand		
CO2.	Reco	ommen	d a suit	table st	ructure	e for a f	fuel cel	lvehicle	9.					Ар	ply	
CO3.	Арр	raise or	n techn	ology f	or deve	eloping	hybrid	power	ed vehi	cles.				Ар	ply	
CO4.	CO4. Appraise on the electric vehicle technology and its development. Mapping with Programme Outcomes and Programme Specific Outcomes											Ap	ply			
		1		Ĩ	0	1	1	1					1			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	М	М	М	Μ			-				-	S			
CO2	S	М	М	М	М			-				-	S			
CO3	S	S	S	М	М			-				-	S			
CO4	S	S	S	М	М			-				-	S			

S- Strong; M-Medium; L-Low

FUELCELL TECHNOLOGY

Structures, Operations and properties of Fuel cells – (Phosphoric Acid Fuel cell, Proton Exchange membrane Fuel cell, Direct Methanol fuel cell Alkaline Fuel Cells, Solid Oxide Fuel Cell, Molten Carbonate Fuel Cell) -Characteristics. Electrochemical energy conversion – Theoretical efficiency – Factors affecting electrochemical energy conversion-Helmholtz double layer model

FUEL CELL BASED VEHICLES STRUCTURE

PEMFC: Operating principle (membranes, electrodes and electrolysis, optimization of membrane and electrode assembly, impurities) – Technology development (single cell and stacks, composite plates) – Fuel processing – Modeling studies (membrane, electrode, membrane-electrode assembly, fuel cell, stack and system) – Technology development and applications. DMFC: Operating principle – Noble metal issue – Electro-oxidation of methanol (Catalysts, oxygen electroreduction, electrolyte, non catalytic aspects) - Methanol crossover.

HYBRID ELECTRIC TECHNOLOGY AND ELECTRIC DRIVETRAIN

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental impartance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

HYBRID ELECTRIC VEHICLES

Principles of Hybrid Electric Drivetrains, Architectures – Electrical distribution, Hybrid control Strategies – Parallel Hybrid, Series Hybrid - (Charge Sustaining, Charge Depleting), Practical Models – Toyota Prius, Honda Insight. Hybridization Effects. 42 V System for Traction Applications - Lightly Hybridized vehicles, Low –Voltage Storage System, Low – Voltage main system with High voltage bus for propulsion. Heavy Vehicles Hybrid Electric Heavy Duty Vehicles, Fuel cell Heavy duty vehicles.

HYBRID VEHICLE TECHNOLOGY

Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems. Energy Management Strategies in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

TEXT BOOK:

1. Basu .S, "Recent Trends in Fuel cell Science and Technology", Anamaya Publishers, New Delhi., 2007

2. Viswanathan, B. and Aulice Scibioh, M., "Fuel Cells Principles and Applications", Universities Press (India) Pvt. Ltd., Hyderabad, 2006

3. Hoogers, G., Edr. "Fuel Cell Technology Handbook", CRC Press, Washington D. C,2003

REFERENCES:

- 1. Larminie, J. and Dicks, A., "Fuel Cell Systems Explained" John Wiley & Sons, Ltd., New York, 2001.
- 2. Ali Emadi, Mehrdad Ehsani, John M. Muller, "Vehicular Electric Power Systems", Marcel Dekker, Inc., 2004

CourseDesigners:

<i>a</i>			N (2.11	26.01775
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	<u>saravanakumar@avit.ac.in</u>
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

		Category	L	Т	Р	C
17CVEC18	WIND ENGINEERING	EC	3	0	0	3

PREAMBLE

The course includes studies of sustainable development and energy sources. Basic mathematical and physical concepts will be covered. An introduction to prerequisites for wind power development including how a wind turbine works, planning for wind energy, environmental impact, location and economic aspects will be given. The phases of wind power projects is studied. Oral and written presentations in a scientific context will be discussed and practiced in the course. A site study visit to an operating wind farm is included.

PREI	REQU	ISITE													
			Nil												
COU	RSE O	BJEC	TIVE	S											
1	To le	arn abo	out the	forces	genera	ited on	structu	ires du	e to no	rmal wi	nd as we	ell as g	usts.		
2	To an	alyse t	he dyn	amic e	ffects	produc	ed due	to chin	nney,to	ower and	d silos				
3	To ur	Idersta	nd abo	ut the s	seismic	e design	n of va	rious s	tructur	es					
4	To an	alyses	the ap	plicatio	on in de	esign a	nd its i	mplem	entatio	ons					
5	To le	arn abo	out the	forces	genera	ted on	structu	ıres du	e to no	rmal wi	nd as we	ell as g	usts.		
•	RSE O														
				letion of	of the c	ourse.	studen	ts will	be able	e to					
			-							Istainabi	lity		Understa	und	
CO2.	Ident	tify and	ł expla	in a wi	nd pov	ver pro	ject's p	ohases					Apply		
CO3.	Identi	fy and	evalua	te facto	ors affe	ecting v	wind er	nergy d	levelop	ment			Apply		
CO4.	Analy	se the	siting c	conditio	ons for	wind p	power	develo	pment				Apply		
CO5.	Prese	nt an ii	ndividu	ial or g	roup p	roject	of wind	d powe	r.				Create		
MAP	PING	WITH	I PRO	GRAM	IME (OUTCO	OMES	AND	PROG	RAMN	IE SPE	CIFIC	COUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	P S O 3
CO1	L	S	S	S		L	S	L			L		S	М	S
CO2	L	S	S	S	L	М	S	L		L	L		S	М	S
CO3	S	S	S	S	L	М	L	L		L			М	S	S
CO4	L	S	L	S	L		S	L		L		L	М	S	S
CO5	S	S	S	S			S	М		L	L		S	S	S
S-Str	ong; M	-Medi	um; L-	Low	·		·	·			•	·			
	LABUS CODUC		N:Terr	minolo	gy – W	/ind Da	ata – G	ust fac	tor and	l its dete	rminatio	on - W	ind speed	variatio	on

INTRODUCTION : Terminology – Wind Data – Gust factor and its determination - Wind speed variation with height – Shape factor – Aspect ratio – Drag and lift.

EFFECT OF WIND ON STRUCTURES : Static effect – Dynamic effect – Interference effects (concept only) – Rigid structure – Aeroelastic structure (concept only)..

EFFECT ON TYPICAL STRUCTURES : Tail buildings – Low rise buildings – Roof and cladding – Chimneys, towers and bridges

APPLICATION TO DESIGN : Design forces on multistorey building, towers and roof trusses.

INTRODUCTION TO WIND TUNNEL: Types of models (Principles only) – Basic considerations – Examples of tests and their use.

TEXT BOOKS:

- 1. Peter Sachs, "Wind Forces in Engineering, Pergamon Press, New York, 1992.
- 2. Lawson T.V., Wind Effects on Buildings, Vols. I and II, Applied Science and Publishers, London, 1993.

REFERENCE BOOKS:

- 1. Devenport A.G., "Wind Loads on Structures", Division of Building Research, Ottowa, 1990.
- 2. Wind Force on Structures Course Notes, Building Technology Centre, Anna University, 1995

S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in						
2	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com						

1701	0.004	В	IOMI	EDICA	L INS	STRUI	MENT	CATIO	N &	Cat	tegory	L	Т	Р	Cr	edit
17BM	CC04			Μ	EASU	REMI	ENTS				CC	3	0	0		3
biomed implant	nriety o lical ins ted into	trumen a pat	tation. ient. T	These his cou	electro rse is	nic sys designe	tems carded to a	an be u cquire	sed in knowle	a physic	cian's of out the	fice, differ	a me ent c	dical la compon	es an an boratory ents of	, or be
PRER	EQUIS	ITE – I	NIL													
COUR	SE OB	JECTI	VES													
1	To kn	ow abo	ut bioe	lectric s	signals,	electro	des an	d its typ	es.							
2	To kn	ow the	various	s Bio po	otential	amplif	iers.									
3	To stu	dy abo	ut vario	ous Phy	siologi	cal mea	sureme	ents.								
4	To stu	dy the	recordi	ng of v	arious o	cardiac	signals	5.								
5	To stu	dy abo	ut clini	cal labo	oratory	instrun	nents ar	nd blood	l cell c	ounters.						
COUR	SE OU	TCOM	IES													
On the	success	ful con	npletion	n of the	course	, studer	nts will	be able	to							
CO1. E	xplain (the acq	uisition	of vari	ous bio	o signal	s using	various	s types	of Elect	rodes.		Une	derstand	1	
CO2. E	amine	the dif	ferent	blood ty	pes of	cell an	d usage	of clini	ical lab	oratory	instrume	ents.	Ap	ply		
CO5. U	Jse bio-	amplifi	ers in r	nedical	applica	ations.							Ap	ply		
CO3. R	lecord a	nd ana	lyze va	rious pl	nysiolo	gical si	gnals.						Ana	alyze		
CO4. C	Classify	various	s cardia	c funct	ion mea	asurem	ents.						Ana	alyze		
MAPP	ING W	TTH P	ROGE	RAMM	E OUI	COM	ES AN	D PRO	GRAN	IME SP	PECIFIC	COU	тсо	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO3
CO1	М	L	-			L	-					Μ	[
CO2	S	М	М	S		М		L	М			Μ	[М		
CO3	S	М	М	S		М	М	L	М			М	[М	М	
CO4	S	М	S	М		М	S	М	S			S		S	S	М
CO5	S	М	S	М		М	S	М	S			S		S	S	М
S- Stro	ong; M-	Mediu	ım; L-	Low		-	-	<u> </u>				-				

BIOELECTRIC SIGNALS AND ELECTRODES

Basic medical instrumentation system, Origin of Bioelectric Potential – Resting and action potential, Nernst equation, Goldman equation. Recording electrodes – Electrodes: Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artefacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Types of electrodes.

BIO AMPLIFIERS

Bio amplifier, Need for Bio amplifier, Operational amplifier characteristics, Different modes of operation of differential amplifier, Basic operational amplifier circuits – Inverting, Non inverting, differential amplifier, Instrumentation amplifier. Chopper amplifier, Isolation Amplifier.

BIO SIGNALS RECORDING

ECG- Anatomy and Electrical conducting system of heart, Genesis of ECG, Einthoven triangle, Lead system, Segments and intervals of ECG, Normal and abnormal ECG wave forms, ECG Machine, Recording set up of EMG and EEG. Heart sounds and PCG, ERG, EOG.

CARDIAC FUNCTION MEASUREMENTS

Blood pressure measurement – direct and indirect method, Respiration rate measurement, Measurement of heart rate and pulse rate, Plethysmography technique. Blood flow measurement – electromagnetic, ultrasonic. Cardiac output measurement – Indication dilution method and dye dilution method

CLINICAL LABORATORY INSTRUMENTS AND BLOOD CELL COUNTERS

Spectrophotometer, colorimeter, flame photometer, auto-analyser. Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

TEXT BOOKS:

- 1. Khandpur R.S, **"Hand-book of Biomedical Instrumentation"**, Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, **"Biomedical Instrumentation and Measurements"**, Prentice-Hall India, 2nd Edition, 1997.
- 3. Arumugam, M, "Biomedical Instrumentation", Anuradha publications, 2008.

REFERENCES:

- 1. John G. Webster, "Medical Instrumentation Application and Design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M "Introduction to Biomedical Equipment Technology", John Wiley and sons, New York, 4th Edition, 1997.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in

201								
17CSCC01 DATA STRUCTURES								
LE								
se aims at un								
ISITE								
OBJECTIVI								
emember and								
earn about tree								
inderstand abc								
earn about has								
earn and unde								
OUTCOMES								
cessful compl								
1 (1 1								
nember the bas								
n about tree st								
erstand about l								
rn about hashi								
in doodt nasin								
rn and underst								
G WITH PRO								
1 PO2 PO3								
M M								
M M								
M L								
M M								
M L								
M-Medium; L								
L								

Linear Structures

Abstract Data Types (ADT) – List ADT – array-based implementation – linked list implementation – cursor-based linked lists – doubly-linked lists – applications of lists –Stack ADT – Queue ADT – circular queue implementation – Applications of stacks and queues.

Tree Structures

Tree ADT – tree traversals – left child right sibling data structures for general trees and graphs.

Balanced Trees

AVL Trees - Splay Trees - B-Tree - heaps - binary heaps - applications of binary Heaps .

Hashing and Set

Hashing – Separate chaining – open addressing – rehashing – extendible hashing -Disjoint Set ADT – dynamic equivalence problem – smart union algorithms – path compression – applications of Set.

Graphs

Definitions – Topological sort – breadth-first traversal - shortest-path algorithms –minimum spanning tree – Prim's and Kruskal's algorithms – Depth-first traversal – bi-connectivity – Euler circuits – applications of graphs.

TEXT BOOKS:

1. Mark A. Weiss, "Data Structures and Algorithm Analysis in C (2nd Edition), Pearson Education. **REFERENCES:**

- 1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Pearson Education, First Edition Reprint.
- 2. R. F. Gilberg, B. A. Forouzan, "Data Structures", Second Edition, Thomson India, Edition

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. R. Jaichandran	Associate Professor	CSE	jaichandran@avit.ac.in
2.	Dr.V.Amirthalingam	Associate Professor	CSE	amirthalingam@vmkvec.edu.in

			DISASTER MITIGATION AND							Catego	ory	L	Т	Р	Credit
17CV	/EC07		DI		ER MI IANA			AND		EC		3	0	0	3
PREA	AMBL	Æ										<u> </u>			
	st built	struct	ures, a	nd Haz	ard As	sessme	ent pro	cedure	in Indi	the stude a. This c is reduce	ourse				
PREI	REQU	ISITE NII													
COU	DSF (CTIVE	'S											
			ind bas		ents in	Disas	ter Ma	nagem	ent						
1					•			U							
2									in Disa	ster Man	ageme	nt			
3	To Uı	ndersta	ind the	Challe	enges p	osed by	y Disas	sters							
4	To un	dersta	nd Imp	acts of	Disast	ters									
			OMES												
			1						be abl			·			
				•	-			•	-	Coastal a					
Disas	ters, A	tmosp	heric E	Disaster	rs, Geo	logical	, Mass	Move	ment a	nd Land	Disast	ers,	U	nderstan	d
Wind	and W	ater D	riven l	Disaste	ers.										
CO2.	Identi	fy the	potenti	al defie	ciencie	s of ex	isting l	buildin	gs for l	Earthqual	ke disa	ster	T		1
and su	uggest	suitab	le reme	edial m	easure	s.							U	nderstan	d
CO3.	Derive	the gu	ide lin	es for	the pre	cautior	nary me	easures	s and re	habilitati	ion				
		U	iquake				5							Apply	
			•			aginat	flooda	avala	na lan	d slides				Apply	
		-				-		•						Apply	-
CO5.	Under	stand	the effe	ects of	disaste	rs on b	ouilt str	uctures	s in Ind	18			U	nderstan	d
										GRAMM					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	- 	- T	L	-	-	-	-	-	-	-	-	L	-	-
CO2 CO3	M S	M	L	L M	-	M	-	- M	-	-	-	-	L M	- L	-
CO3	S S	M 	S S	IVI	- L	L -	-		-	-	-	-	M	L	-
	S L		د ا	- L		-	-	-	-		-	-	L		-
CO5						. –	. –	. –	. –						

INTRODUCTION: Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Natural and man-made hazards

RISK ASSESSMENT AND VULNERABILITY ANALYSIS: Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment; Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to

flood and earthquake hazards

DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management ; Disaster management cycle ;Response and Recovery ; Development, Prevention, Mitigation and Preparedness; Planning for relief

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management ;Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans.

TEXT BOOKS:

- 1. Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.
- 2. Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian Development Bank, Bangkok, 1991.
- 3. Chakrabarty, U. K. Industrial Disaster Management and Emergency Response, Asian Books Pvt. Ltd., New Delhi 2007.

REFERENCES:

- 1. Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com
2	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in

COUDSE DESIGNEDS

17CSCC04		COMD	Ітгр	лрсн	ITECT	TIDE		Cate	gory	L	Т	Р	Cred	lit
1/CSCC04		CONF	UIEN	АКСП	IIECI	UKE		С	С	3	0	0	3	
PREAMBLE														
This course is				•	-	-		-	-	-		-		
concerned with				-	-	-	-	-				-		
with digital lo	•		ional d	lesign o	of arithr	netic a	nd log	ic unit	that is c	capable	of per	forming	floating	point
arithmetic oper														
PREREQUI	SITE:	Nil												
COURSE O	BJEC	FIVES	5											
1 To learn	1 about	the des	ign of t	he proc	cessors.									
2 To learn	1 about	the dat	a transf	er.										
3 Underst	and the	e functio	onal un	its of a	compute	ers, bus	structu	ires and	address	ing mod	es.			
4 Apply t	he knov	wledge	of algo	rithms t	to solve	arithm	etic pro	blems.						
COURSE O	UTCO	MES												
On the succes	ssful co	omplet	ion of	the cou	ırse, stu	dents	will be	able to)					
CO1 Explain a	about c	ompute	r organ	ization	compon	ents.					Under	stand		
CO2 Compute	simple	e arithm	etic op	erations	s for fixe	ed-poin	t and fl	oating-	point		Apply			
addition, subtr	action,	multipl	ication	& divis	sion.									
CO3 Design c	ombina	tional a	and seq	uential	digital fı	unction	s.				Analy	vse		
CO4 Construc	t an ins	truction	n set ca	apable (of perfor	rming a	a specif	ied set o	of operat	ions.	Analy	ze		
CO5 Demonst	rate a r	nemory	system	n for a g	given set	of spe	cification	ons			Analy	ze		
CO6 Explain	pipelini	ng con	cepts								Under	stand		
MAPPING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPE	CIFI	C OUT	COMES	5
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	М	-	М	-	-	-	-	-	-	-	L	-	-	М
CO2 M	М	М	М	-	-	-	-	-	-	-	L	-	-	М
CO3 M	М	S	М	-	-	-	-	-	-	-	-	-	М	М
CO4 S	М	М		-	-	-	-	-	-	-	-	-	М	М
CO5 S	-	М	L	-	-	-	-	-	-	-	-	-	М	М
CO6 M	М	М	S	-	-	-	-	-	-	-	L	-	М	М
S- Strong; M-	Mediu	ım; L-I	LOW	1	11			I	I	1	1		1	1

INTRODUCTION

Computer Organization- Main memory – CPU operation – Interrupt concept – I/ O techniques – Bus concept – Computer performance factors – System performance measurement- High performance techniques – Comparison of Architecture and Organization – Study of Salient features and architectures of Advanced processors (80286, 80386, 80486, Pentium).

PROCESSOR DESIGN AND CONTROL UNIT

Goals – Design process –Data path organization – Main memory interface – Data path for single instructions- Floating point unit data path – Role of control unit – Reset sequence – Interrupt recognition and servicing – Abnormal situation handling – Hardwired control unit – Micro programmed control unit.

MEMORY DESIGN & MEMORY MANAGEMENT 229

Memory types – Functional and usage modes – Memory allocation- Multiple memory decoding – Memory hierarchy – Instruction pre fetch – Memory interleaving – Write buffer – Cache memory – Virtual memory – Associative memory. INTRA SYSTEM COMMUNICATION AND I/O

I/O controller & driver- Case study: Hard disk controller in IBM PC – I /O ports and bus concepts – Case study: Keyboard interface – Bus cycle – Asynchronous and Synchronous Transfer – Interrupt handling in PC – I/O techniques in PC – Case Study : RS 232 interface – Modern serial I/O interface – Bus arbitration techniques – Hard disk interface in PC.

ADVANCED ARCHITECTURE

Classification of parallelism – Multiple functional units – Pipelining – Vector computing – array processors –High performance architecture – RISC systems – Super scalar architecture – VLIW architecture – EPIC architecture – Multiprocessor systems – Cache coherence problem – Fault tolerance.

TEXT BOOKS:

1. William Stallings, "Computer Organization And Architecture – Designing For Performance", Sixth Edition, Pearson Education, 2007.

REFERENCES:

- 2. Govindarajulu, "Computer Architecture and Organization Design principles and applications", Tata McGraw Hill publications, New Delhi.
- 3. David A. Patterson And John L. Hennessy, "Computer Organization And Design: The Hardware/Software Interface", Fifth Edition, Morgan Kaufmann, 2013.
- 4. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata McGraw Hill, 1998.
- 5. A.K.Ray & K.M.Bhurchandi, "Advanced Microprocessors and peripherals- Architectures, Programming and Interfacing", McGraw-Hill Education (India), 2013 reprint.

COURS	COURSE DESIGNERS												
S. No.	Name of the faculty	Designation	Department	Mail Id									
1.	Mr. G. Seenivasan	Assistant. Professor	CSE	seenivasan@vmkvec.edu.in									
2.	Mrs. S.Leelavathy	Assistant. Professors (GII)	CSE	leelavathy@avit.ac.in									

17CSC	CSCC19 INTERNET OF THINGS Category L T												Т	P (Cred	it
										CC		3	0	0	3	
MBLE ly and u	ndersta	nd the t	echnolo	ogies inv	volved i	in Inter	net of T	hings (IoT) an	d apply th	nem prac	tically.				
EQUISI	ITE :N	IL														
SE OB.	JECTI	VES														
	lerstand	the bas	sic conc	epts of	IOT											
2. (dy the n	nethodo	ology of	TOT												
3. ·	velop IC	DT appl	ications	s using	Raspbe	rry PI										
l. '	velop IO	OT appl	ications	s using	Arduin	o and Ir	ntel Edi	son								
5.	ply clou	id conce	epts in	IOT												
SE OU'	тсом	ES														
successi	ful com	pletion	of the c	course, s	students	s will be	e able to	C								
Able to u	understa	und basi	ics in IC)T									U	nders	tand	
Able to u	understa	and Me	thodolc	ogy in I	TC								A	pply		
Able to	design	IOT and	olication	ns using	Rasph	erry							A	nalyz	e	
	-				-	-								•		
Able to c	lesign I	OT app	lication	is using	Aurdin	o and I	ntel Ed	ison					A	nalyz	ze	
Able to a	apply C	loud co	omputin	g in IO	Г								A	pply		
MAPP	PING W	/ITH P	ROGR	AMM	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC C	DUTCO	MES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	502	F
CO1	М	М	М	М	-	-	-	-	-	-	-	-	-]	М]
CO2	М	М	М	М	-	-	-	-	-	-	-	-	-]	М	
CO3	М	М	S	М	-	-	-	-	-	-	-	-	-]	М	
	S	М	М	М	-	-	-	-	-	-	-	-	-]	М	
CO4																

INTRODUCTION

Introduction-Characteristics-Physical design - Protocols - Logical design - Enabling technologies - IoT Levels - Domain Specific IoTs - IoT vs M2M.

IOT METHODOLOGY

IoT systems management – IoT Design Methodology – Specifications Integration and Application Development.

IOT WITH RASPBERRY

Bascis of Raspberry PI, Physical device - Raspberry Pi Interfaces - Programming - APIs / Packages - Web services

IOT WITH AURDINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino- Interfaces - Arduino IDE - Programming - APIs and Hacks

APPLICATIONS

Real time applications of IoT- Connecting IoT to cloud – Cloud Storage for Iot – Data Analytics for IoT – Software & Management Tools for IoT.

TEXT BOOKS

Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015.
 Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.

REFERENCES

1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE	rjaichandran@avit.ac.in
2.	Dr.M. Nithya	Professor	CSE	nithya@vmkv@edu.in

170	CSEC0	9		ЕТН	IICAL	HACH	KING			0	Category	, L	Т	P (Credit
											EC	3	0	0	3
	REAMBLE To analyze the basic concepts of security and hacking process														
To ana PRERE			concep	ots of se	ecurity	and ha	cking p	process							
f keki NIL	QUIS														
COUR	SE OB	JECTI	VES												
1	To understand Technical foundation of cracking and ethical hacking														
2	To identify Aspects of security, importance of data gathering, foot printing and system hacking														
3	To un	Iderstar	nd eval	uation o	of com	puter se	ecurity								
4	To understand Practical tasks will be used to re-enforce and apply theory to encourage an analytical and problem based approach to ethical hacking														
5	To discuss about security tools and its applications														
COUR	SE OU	TCOM	IES												
On the s		ful con	nlation	of the	course	studo	nto mil	l bo ob	a to						
			•			-									
CO1: I compro					es an ei	thical h	acker 1	requires	s to tak	e in orde	er to	Underst	and		
CO2: I			-		to car	y out a	n peneti	ration to	esting.			Underst	and		
CO3: (Criticall	ly analy	ze sec	urity te	chniqu	es used	l to pro	tect sys	stem an	d user d	ata.	Apply			
CO4: I	Demons	strate s	ystema	tic und	erstand	ing of t	-			ity at the		Apply			
of polic												Арріу			
CO5: 7		•			-							Apply			
										MME S					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		PSO1	PSO2	PSO3
CO1	M	M	-	-	-	-	S	-	-	-	M	M	-	M	M
CO2 CO3	M	M M	S	M	-	-	-	- T	-	-	L L	<u>M</u>	-	S M	M S
	M M	M S	M M		-	M M	-	L	-	- M	L -	- M	-	M	M
('())		5	IVI	-	-	IVI	-	-	-	141	_	TAT	1 -	141	1 111
CO4 CO5	M	М	-		S	М	-	L	-	-	М	М	-	S	S

SYLLABUS INTRODUCTION

Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

HÂCKING TECHNIQUES

Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems- Windows & Linux, Application Hacking, Footprinting, Scanning, and Enumeration. Implementing System Level Hacking- Hacking Windows & Linux.

WEB SECURITY

Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SQL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

WIRELESS NETWORK HACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler.

APPLICATIONS

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

TEXT BOOKS

1. Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: Network Security Secrets & Solutions", Seventh edition, McGraw-Hill Publisher, 2012.

2. Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, 2007.

3. Dafydd Stuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws" Wiley Publications, 2007.

4. Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmillan publishers India Ltd, 2006. **REFERENCES**

1. Hossein Bidgoli, "The Handbook of Information Security" John Wiley & Sons, Inc., 2005.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor(G-II)	CSE	rjaichandran@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

170	CSEC11	EC11 GREEN COMPUTING							(Category	L	Т	P	Credit	
	EC									EC	3	0	0	3	
	PREAMBLE														
	To acquire knowledge to adopt green computing practices and To learn about energy saving practices PREREQUISITE														
NIL															
COURS	SE OBJ	ECTIV	'ES												
1	To acquire knowledge to adopt green computing practices														
2	To minimize negative impacts on the environment														
3	To lea	rn abou	it energ	y savin	g practi	ces									
4	To lea	rn abou	ıt green	compli	ance. A	nd imp	lement	ation us	sing IT						
COURS	COURSE OUTCOMES														
0 1	in the successful completion of the course, students will be able to														
On the s	successf	ul comp	oletion of	of the c	ourse, s	tudents	will be	able to							
CO1: E	Explain (he sign	ificance	e knowl	edge to	adopt	green co	omputi	ng pract	tices		Underst	and		
CO2: I environ		nd deve	elop the	green	asset us	sed to n	ninimiz	e negat	ive imp	acts on t	he	Apply			
CO3: I	dentify					logies a	and infr	astructu	ure for			Apply			
	ing the											Аррту			
	Make us bon was		knowle	dge abo	out ener	gy savi	ng prac	tices ,th	ne impa	ct of e-w	aste	Apply			
			reen co	mplian	ce, imp	lementa	tion us	ing IT a	and deri	ive the ca	ase	Ancher			
study.	-			-	-			-				Analyze			
	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	S	-	-	-	М	-	-	-	-	-	-	-	S
CO2 CO3	S S	S M	M	-	L	-	S	S	-	М	-	М	-	- M	S M
CO3 CO4	S S	M S	М	-	-	М	S S	M	-	- M	-	- M	-	IVI	M
C04 C05	S	M	- M	-	-	- S	M	S	M		- M	S	-	-	M
	~				-	٢	141	-	141		141	U U			141
S Stion	- Strong; M-Medium; L-Low														

SYLLABUS FUNDAMENTALS

Green IT Fundamentals: Business, IT, and the Environment – Benefits of a Green Data Centre - Green Computing:Carbon Foot Print, Scoop on Power–GreenITStrategies: Drivers, Dimensions, and Goals – Environmentally Responsible Business: Policies, Practices, and Metrics.

GREEN ASSETS AND MODELING

Green Assets: Buildings, Data Centres, Networks, Devices, Computer and Earth Friendly peripherals, Greening Mobile devices – Green Business Process Management: Modelling, Optimization, and Collaboration – Green Enterprise Architecture – Environmental Intelligence – Green Supply Chains – Green Information Systems: Design and Development Models.

GRID FRAMEWORK

Virtualizing of IT Systems – Role of Electric Utilities, Telecommuting, Teleconferencing and Teleporting – Materials Recycling – Best Ways for Green PC – Green Data Center – Green Grid Framework. Optimizing Computer Power Management, Systems Seamless Sharing Across. Collaborating and Cloud Computing, Virtual Presence.

GREEN COMPLIANCE

Socio-Cultural Aspects of Green IT – Green Enterprise Transformation Roadmap – Green Compliance: Protocols, Standards, And Audits – Emergent Carbon Issues: Technologies and Future. Best Ways to Make Computer Greener.

GREEN INITIATIVES WITH IT and CASE STUDIES

Green Initiative Drivers and Benefits with IT - Resources and Offerings to Assist Green Initiatives. - Green Initiative Strategy with IT - Green Initiative Planning with IT - Green Initiative Implementation with IT - Green Initiative Assessment with IT. The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

TEXT BOOKS

1.Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental Intelligence□,CRC Press, June 2011 2.Carl Speshocky, —Empowering Green Initiatives with IT ||, John Wiley and Sons, 2010.

REFERÊNCES

1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: Steps for the Journey ||, Shoff/IBM rebook, 2011. 2. John Lamb, —The Greening of IT ||, Pearson Education, 2009.

3. Jason Harris, —Green Computing and Green IT- Best Practices on Regulations and Industry ||, Lulu.com, 2008.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Associate Professor	CSE	karthik@avit.ac.in
2	Mrs.T.Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

17ECCC0	4 SIGNALS AND SYSTEMS								Categor	y L	Т	P C	redit	
1/LCCC0	•		5161	ALS.		51511	21115			CC	3	0	0	3
PREAMB	LE													
Signals and	-				•				-	-				
science and			-					-						
behavior of			-		-	-					-	-	-	
signals by		-	-		-	-								-
signals and	-	and to	design	systen	ns to e	nnance	or rest	ore sig	gnais tha	t nave be	een degr	aded in	some w	ay.
PREREQU		IL												
COURSE	OBJEC	FIVES												
1 To	understa	nd the	various	s classi	ficatio	ns of C	ontinu	ous tin	ne and D	viscrete t	ime Sigi	nals and	l System	s.
	learn abo		1	2				1	0		,			
	-		-		-					-	-	-	e transfo	
			analysi	is and c	charact	erizati	on of tl	ne DT	system t	hrough I	Discrete	Fourie	r Transfo	orms
	Z Trans													
COURSE														
On the succ		-				Idents	will be	able to)				TT 1	1
CO1. Class		-	-	-		1	, • ,	·			• 1•		Underst	
	periodic ctively.												Appl	У
CO3. Find	•	onse of	a conti	nuous	time L	TI Sys	tem us	ing cor	nvolution	1.			Appl	у
CO4. Deter	mine the	time a	nd frec	Juency	domai	n chara	acterist	ics of a	discrete	time per	iodic an	d	Appl	у
aperio	dic sign	als usir	ng the p	propert	ies of I	OTFT,	DFT &	z Z-Tra	ansforms	s respect	ively.			-
CO5. Com	oute DFI	and II	OFT co	oefficie	nts of a	a given	discre	te time	e sequen	ce using	Fast		Appl	у
Four	er Trans	form al	gorith	ms.										
CO6. Appl	y and cha	aracteri	ze the	causali	ty and	stabili	ty of D	iscrete	LTI sys	tem usir	ıg Z-		Appl	у
	forms.													
		-											1	DCO2
COS PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 M	М	L	-	-	-	-	-	-	-	-	-	-	-	-
CO2 S	М	М	-	М	-	-	-	М	-	-	М	S	-	-
CO3 S	М	М	-	М	-	-	-	М	-	-	М	-	-	-
CO4 S	М	М	-	М	-	-	-	М	-	-	М	-	-	M
CO5 S	М	М	-	М	-	-	-	М	-	-	М	-	М	-
C06 S	S	М	-	М	-	-	-	М	-	-	М	S	М	M
	M-Mediu	<u> тт</u>					1		1				1	<u> </u>

CLASSIFICATION OF SIGNALS AND SYSTEMS

Continuous time signals, Discrete time signals, Unit step, Unit ramp, Unit impulse – Representation of signals in terms of unit impulse, Classification of continuous time signals & Discrete time signals-Continuous time systems-Discrete time systems- Classification of continuous time systems and Discrete time systems.

ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series analysis-Representation of Continuous time Periodic signals – Trigonometric and exponential-Spectral Properties of Periodic power signals - Properties of Continuous time Fourier series – Parseval's relation for power signals, Fourier transform analysis-Representation of Continuous time signals- Properties of Continuous time Fourier transform –Fourier transform of a Periodic function, Rayleigh's Energy theorem.

LTI CONTINUOUS TIME SYSTEM

Convolution Integral, Impulse response, Solution of Differential equation with initial conditions- Zero state response and Zero input response, Block diagram representation, Fourier methods for analysis, Laplace transform analysis.

ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS

Representation of sequences – Discrete Time Fourier Transform (DTFT) - Discrete Fourier Transform (DFT) and its properties –Fast Fourier Transform- FFT Algorithm, DIF & DIT-Z Transform-Inverse Z Transform, Unilateral Z-Transform

LTI DT SYSTEM

Convolution sum - Impulse response and properties of LTI systems - Difference equations - Z Transform analysis - System stability and causality - Frequency response - Block Diagram representation.

TEXT BOOKS:

- 4. Alan V.Oppenheim, Ronald W. Schafer, "Discrete time signal processing", Pearson education , 2nd edition, 2007.
- 5. John G. Proakis and Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", Pearson Education, 4thEdition, 2007.

REFERENCE BOOKS:

- 1. B.P. Lathi, "Linear Systems & Signals", Oxford Press, Second Edition, 2009.
- 2. Rodger E Ziemer, William H. Tranter, D. Ronald Fannin, "Signals and Systems continuous and Discrete", Pearson Education, 4th Edition, 2009.
- 3. Douglas K Linder, "Introduction to Signals and Systems", Mc-Graw Hill, 1st Edition, 1999.

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in				
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in				
3	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in				

17E(CCC15								Ca	tegory	L	T	Р	Credi	t
				COMN	VIUNI		JIN			CC	3	0	0	3	
	AMBLI														
													l Commu		
													k Receive		l,
				ommui	nication	n Tech	niques	, Noise	Analy	sis and I	Multip	lexing te	chniques		
PRE	REQUI	SITE -	- NIL												
COL															
	RSE O					f 1			- 4 :	4					
1 [To Unde	erstand	the ba	sic elei	ments (of anal	og con	nmunic	ation s	ystem					
2 '	To learn	the ha	sic cor	ncents 1	hind	the tra	nsmiss	ion and	l recen	tion of A	Angle	Modulat	ion		
										Systems	-				
										er transn			Theory		
										n variou					
	RSE O	-		450 01	Digital	Com	nunicu		cuito n	i vuiiou	5 merue				
	e succes			ion of t	he cou	rse. stu	idents [•]	will be	able to)					
	Interpre									<u> </u>		Unders	tand		
	Illustrat								odulate	ors.		Apply			
	Demod									,		rr J			
	Apply of							py, Mu	ıtual			Apply			
	informa							1				11.2			
CO4.	Demons	strate th	he conc	cept of	variou	s digita	al carri	er mod	ulation	and		Apply			
(letermii	ne their	error	probab	ility.	_									
CO5.	Analyze	the m	ajor cla	assifica	tions c	of sprea	ad spec	trum te	echniqu	ies		Analyz	e		
•															
MAP	PING	VITH	PROC	GRAM	ME O	UTCC	OMES	AND I	PROG	RAMM	E SPE	CIFIC	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS
															03
CO1	S	L	-	-	-	-	-	-	-	-	-	L	S	-	-
CO2	S	М	М	-	М	-	-	-	-	-	-	Μ	S	Μ	-
CO3	S	М	М	М	-	-	-	-	-	-	-	Μ	М	-	-
	CO4 S S M M M														
CO5 S M M M L L - M M															
S- Strong; M-Medium; L-Low															
	LABUS														
Anal	og Com	munic	ation S	System	IS										

Analog Communication Systems

Principles of Amplitude Modulation – AM Modulators- Double Side Band Suppressed Carrier Modulation, Single Side Band Modulation, Vestigial Side Band Modulation, AM Demodulators, AM transmitters-Low level & High level Transmitters, AM Receivers – TRF, Super Heterodyne Receiver, Double conversion AM receivers.

Angle Modulation: Transmission And Reception

Angle Modulation - FM and PM, Modulation Index, Frequency Modulators and Demodulators, Phase Modulators, FM transmitters- Direct & Indirect transmitters, Angle Modulation Vs Amplitude Modulation, FM Receivers, Frequency Vs Phase modulation.

Analog to Digital Transition Systems & Information Theory

Pulse Amplitude Modulation, Pulse Position Modulation, Pulse Code Modulation, Sampling Rate, DPCM, Delta Modulation, Time Division Multiplexing, Information Theory- Uncertainty, Information and entropy, source coding theorem, Discrete Memoryless channels, Mutual Information, Channel capacity, Channel coding theorem.

Digital Transmission

Pulse Transmission – Inter Symbol Interference, Eye pattern, Digital carrier Modulation-Binary Amplitude Shift Keying, Binary Frequency Shift Keying, Binary Phase Shift Keying, QPSK, bit and baud rate, BER Analysis

Spread Spectrum Modulation

Pseudo noise sequences, Direct sequence Spread Spectrum with coherent BPSK, Frequency hop spread spectrum modulation, Multiple Access Techniques – Wireless Communication, TDMA and FDMA

TEXT BOOK:

1. Simon Haykin and Michael Moher, "Communication systems" John Wiley & Sons, Fifth Edition, 2016

REFERENCE BOOKS:

1. Simon Haykin and Michael Moher, "An Introduction to Analog and Digital Communications", John Wiley & Sons, second Edition, 2006.

2. Martin S.Roden, "Analog and Digital Communication System", 3rd Edition, PHI, 2002

3. Wayne Tomasi, "Electronic Communication Systems: Fundamentals Through Advanced", Pearson Education, 2001.

4. B. Carlson, "Introduction to Communication systems", 3rd Edition, McGraw Hill, 1989

COUR	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in										
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in										
3	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in										

17ECCC17	FPGA SYSTEM DESIGN	Category	L	Т	Р	Credit
		СС	3	0	0	3

PREAMBLE

Field programmable devices are able to match the functional complexity of ASIC Devices such as PROM, PLDs (PLAs, PALs). PALs were widely used for glue logic and replaced SSI and MSI devices. Complex PLD s are hierarchical PLD s that connects smaller PLD s through a central programmable interconnect to enable the implementation of medium complexity digital circuits. Main feature of CPLDs are the wide decoding, but has a low register to logic ratio. CPLD s architecture is not scalable, due to the central switch used in connecting small PLD structures. Digital designs once built in custom silicon are increasingly implemented in field programmable gate arrays (FPGAs), but effective FPGA system design requires a understanding of new techniques developed for FPGAs. This course deals FPGA fabrics, introduces essential FPGA concepts, and compares multiple approaches to solving basic problems in programmable logic.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To analyze the design principle of synchronous and asynchronous circuits.									
2	To design complex programmable logic by analyzing the FPGA architecture.									
3										
4										
COU	COURSE OUTCOMES									
On th	e successful completion of the course, students will be able to									
CO1.	Analysis, Design and Optimisation of the sequential digital systems.	Understand								
CO2.	Illustrate the FPGA architecture- logic cell, I/O cell and interconnects	Analyze								
CO3.	Design Complex Programmable Logic Devices for specific applications	Analyze								
CO4.	CO4. Discriminate the functional operation of various components of FPGA logics Analyze									
CO5.	CO5. Design new logical design using VHDL programming Evaluate									

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	Р	PO10	P	PO12	PSO	PSO2	PS03
									0		С		1		
									9		1				
											1				
CO1	S	Μ	М	Μ	L	-	Μ	-	-	-	-	М	S	-	-
CO2	S	М	S	L	Μ	-	-	-	-	-	-	М	М	Μ	-
CO3	S	S	S	S	L	-	Μ	-	-	-	L	М	-	Μ	М
CO4	S	М	L	L	L	-	-	-	-	-	-	М	-	-	-
CO5	M	S	S	S	S	L	Μ	-	-	-	L	М	М	-	-
S-Str	S- Strong; M-Medium; L-Low														

Sequential Circuit Design using state machine approach

Synchronous and Asynchronous Sequential Circuit -Finite State Machine- Moore and Mealy, State Diagram, State table, State Assignment, Optimization of sequential circuit – State Minimization – Determination of state equivalence using an implication table,Races and Hazards.

Programmable Logic to ASICs

Programmable Read Only Memories (PROMs), Programmable Logic Arrays (PLAs), Programmable Array Logic (PALs), the Masked Gate Array ASIC, CPLDs and FPGAs.

Complex Programmable Logic Devices

CPLD Architectures, Function Blocks, I/O Blocks, Clock Drivers, Interconnect CPLD Technology and Programmable Elements.

FPGA Systems

Basic Concepts, Digital Design and FPGAs, FPGA-Based System, VLSI Technology-Manufacturing Processes, Transistor Characteristics, CMOS logic gates, Wires, Registers and RAM, Packages and Pads, FPGA Fabrics-FPGA Architectures, SRAM-Based FPGAs, Permanently Programmed FPGAs, Chip I/O, Circuit Design of FPGA Fabrics, Architecture of FPGA Fabrics

Hardware Description Language VHDL

Introduction to VHDL, structural, functional programming, Combinational Logic-Combinational Network Delay, Power and Energy Optimization, Arithmetic Logic, Logic Implementation for FPGAs, Physical Design for FPGAs, Sequential Machines-Sequential Design Styles, Rules for Clocking, Performance Analysis, Power Optimization.

TEXT BOOKS:

- 1. Charles H.Roth Jr, Larry L.Kinney "Fundamentals of Logic Design", Seventh edition, Cengage Learning 2014.
- 2. Jan M. Rabey, Anantha Chandrakasan and Borivoje Nikolic "Digital integrated circuits: A Design Perspective

(2nd Edition) ", Pearson 2009

REFERENCE BOOKS:

- 1. Wayne Wolf "FPGA Based System Design" Pearson Education, 2004.
- 2. Bob Zeidman, "Designing with FPGAs and CPLDs", Elsevier, CMP Books, 2002.
- 3. M. Morris Mano and Michael D. Ciletti, "Digital Design", PHI, fourth edition, 2008
- 4. R.F.Tinder: Engineering Digital Design, (2/e), Academic Press, 2000
- 5. Stephen Brown Zvonko Vranesic "Fundamentals of Digital Logic with VHDL Design" Tata McGraw-Hill Edition.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in
2	Dr. L. K. Hema	Professor	ECE	hemalk@avit.ac.in
3	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
4	Mr. S. Selvam	Assistant Professor (Gr-II)	ECE	Selvam@avit.ac.in

17ECEC02	PCB & PLC	Category	L	Т	Р	Credit
		EC(PS)	3	0	0	3
PREAMBLE						

Printed circuit boards are inarguably one of the most influential inventions of the 20th century. Nearly every piece of technology today uses at least one of these devices, and they have played roles in historically significant events like world war II and space travels. To gain an appreciation for PCB technology, let's look at several significant moments in the history of circuit boards.

A Programmable Logic Controller (PLC) is an industrial computer control system that continuously monitors the state of input devices and makes decisions based upon a custom program to control the state of output devices.

PREREQUISITE NIL															
COUF	RSE OI	BJECT	FIVES												
1	To U	ndersta	nd the	need f	or PCE	and e	lectron	ics cor	nponer	nts.					
2	To lea	arn PC	B layo	ut desig	gn flow	v and A	rtwork	k gener	ation.						
3	To obtain knowledge in Etching Soldering and Assembly techniques.														
4	To Understand the basic concept of PLC and basic programming.														
5	To Earn Knowledge to deploy PLC for varies applications like Timers, Program counters etc.														
COUF	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand															
CO2. Apply layout design rules and Artwork generations to prepare for PCB for Apply															
	any specific applications.														
	CO3. Interpret varies techniques used in Etching, Soldering process of PCB and Apply														
compo	onents A	Assemt	oling ru	les on	PCB.										
		p varie	s I/O n	nodule,	basic	PLC p	rogram	ming a	and des	sign vari	es types	Apply			
of mer	~														
	Design											Analy			
MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	М	М	-	М	-	-	-	М	-	-	М	-	М	-
CO3	S	М	М	-	М	-	-	-	Μ	-	-	М	-	М	М
CO4	S	М	М	-	М	-	-	-	Μ	-	-	М	-	М	-
CO5 S M M - M M M M S - M															
S- Stro	ong; M-	Mediu	m; L-I	LOW			•	•	•	•		-	-	-	

SYLLABUS

INTRODUCTION TO PCB: Connectivity in electronic equipment, Evaluation of PCB, Components of PCB, Classification of PCB, Manufacturing of Basic PCB, Challenges in modern PCB Design, PCB with Embedded Components, standards of PCB and useful standards, Basics of Electronic Components – Active and Passive components, Special types of diodes, linear integrated circuits, semiconductor memories, surface mount devices.

LAYOUT PLANNING AND ARTWORK DESIGN: Drawing and diagrams, General PCB Design considerations, Mechanical design considerations, electrical design considerations, Component placement rules, Fabrication and assembly considerations, environmental factors, cooling requirements and packaging density, layout design, Layout design checklist, useful standards. Basic approach to manual Artwork, General design guidelines for Artwork preparations, Automated Artwork generations.

ETCHING, SOLDERING AND ASSEMBLY TECHNIQUES: Etching solutions and chemistry, Etching arrangements, Etching parameters, equipments and techniques, Problems in etching, Theory of soldering, Soldering variables, Soldering materials, Soldering and brazing, soldering tools and other hand soldering tools,

PCB assembly process, Mass Soldering. Health and Safety aspects.

INTRODUCTION TO PLC: Programmable Logic Controllers (PLCs): Programmable Logic Controllers, Parts of a PLC, Principles of Operation, Modifying the Operation, PLCs versus Computers, PLC Size and Application. PLC Hardware Components - The I/O Section , I/O Modules and Specifications, The CPU, Memory Design and Types, Programming Devices, Recording and Retrieving Data, PLC workstations. Basics of PLC Programming-Processor Memory Organization, Program Scan, PLC Programming Languages and Instructions, Entering the Ladder Diagram, Modes of Operation.

APPLICATIONS OF PLC: Programming Timers-Mechanical Timing Relay and Instructions, Retentive Timer, Cascading Timers. Programming Counters - Counter Instructions and types, Incremental Encoder-Counter Applications, Combining Counter and Timer Functions, Program Control Instructions, PLC Installation Practices. Editing and Troubleshooting.

TEXT BOOKS:

- 1. Printed Circuit Boards: Design, Fabrication, Assembly and Testing by RS Khandpur, Tata McGraw Hill Education Pvt Ltd., New Delhi , 2018.
- 2. Frank D. Petruzella, "Programmable Logic Controllers", McGraw-Hill Companies, Third Edition, March 2004.

REFERENCE BOOKS:

1. Printed Circuit Boards: Design, Fabrication, and Assembly (McGraw-Hill Electronic Engineering-2006) by Raghbir Singh Khandpur

2.Ian G.Warnock, "Programmable Controller's Operation and Application", Prentice Hall International, UK, 1992.

3. Electronic Product Design Volume-I by S D Mehta, S Chand Publications

4. John W. Webb and Ronald A.Reis, "Programmable Logic Controllers – Principles and Applications", III Edition, Prentice Hall Inc., New Jersey, 1995.

COUF	COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Department	Mail ID										
1	Mr.G.SureshKumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in										
2	Mr G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in										
3	Mr.S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in										
4	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in										
5	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in										

17EC	FC04	DSP WITH FPGA	חפ	р <u>w</u> іт	'Н FD4	gory		Т	Р	Cr	edit				
17EC	LC04		03	1 **11		JA		EC	(PS)	3	3	0	0		3
blocks impler	s on F mentati	PGA. on. It	It pro- consi	vides 1	both th Ilgorith	ne fixe ims ar	ed poin nd tec	nt and	floatin	about i ng poin the op	t repres	entation	of da	ata useo	d foi
PRER	REQUI	SITE -	– Nil												
COUI	RSE O	BJEC	FIVES	5											
1	To pr	ogram	FPGA	device											
2	To program FPGA device.To discriminate floating point arithmetic for other arithmetic logic.														
3	To implement FIR and IIR filters using pipelining and parallel processing														
4	To design communication blocks using different types of FFT algorithms														
COUI	RSE O	UTCO	MES												
On the	e succe	ssful co	omplet	ion of t	the cou	rse, stu	idents	will be	able to	C					
CO1.]	Explor	e the de	esign f	low of	FPGA	and pr	ogram	ming la	anguag	je.				App	oly
CO2. (Compu	te sim	ple FP	GA log	ic usin	g floati	ing poi	int arith	nmetic,	MAC a	nd SOP	units		App	oly
CO3. proces	-	nent F	IR and	IIR Fil	lters us	ing dis	tribute	d arith	metic,	pipelini	ng and/o	or paralle	el	Арр	oly
	Examiı Thoma		lifferer	nt types	s of FF	T algoi	rithms	includi	ing Co	oley-Tul	key, Wii	nograd a	und	Ana	lyze
CO5.]	Design	comm	unicati	ion blo	cks for	modu	lation,	demod	ulatior	n, convo	lution co	odes		Ana	lyze
MAP	PING	WITH	PRO	GRAM	ME O	UTCC	OMES	AND I	PROG	RAMM	E SPE	CIFIC (OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PS O3
CO1	S	S	М	М	L	-	-	-	-	М	-	M	S	-	-
CO2	S	S	L	М	М	-	-	-	-	М	-	М	-	-	-
CO3	S	S	М	М	L	-	-	-	-	L	-	М	М	М	-
CO4	S	S	М	М	-	-	-	L	-	L	-	М	-	-	-
CO5	S	Μ	Μ	Μ	-	-	-	L	-	L	-	Μ	Μ	Μ	Μ

FPGA Technology

Introduction to FPGA, FPGA Design flow, Programming languages, programming technology

Basic Building Blocks

Number Representation, Binary adders, Binary dividers, Floating point arithmetic, MAC & SOP unit

Digital filter implementation

FIR filter - Theory and structure, Filter Design, Constant coefficient, FIR Design, IIR filter - IIR theory, Coefficient computation, Implementation detail, Fast IIR filter

Fourier Transform

DFT algorithms, Goertzel algorithm, Hartley transform, Winograd DFT, Blustein chirp-z transform, Rader algorithm, FFT algorithms, Cooley-tukey, Good thomas, Winograd FFT

Communication blocks

Error control codes, Linear block code, Convolution codes, Modulation and Demodulation, Adaptive filters, LMS, RLS, Decimator and Interpolator, High Decimation Rate filters.

TEXT BOOKS:

- 1. Uwe.Meyer-Baese, —Digital Signal Processing with Field Programmable Gate Arrays ||, Springer, Third edition, May 2007.
- 2. Keshab K. Parhi, –VLSI Digital Signal Processing systems, Design and implementation ||, Wiley, Inter Science, 1999.

REFERENCE BOOKS:

- 1. John G. Proakis, —Digital Communications, || Fourth Ed. McGraw Hill International Edition, 2000.
- 2. Michael John Sebastian Smith, Applications Specific Integrated Circuits //, Pearson Education, Ninth Indian reprint, 13th edition, 2004.
- 3. Sophocles J. Orfanidis, —Introduction to Signal Processing ||, Prentice Hall, 1996

	COURSE DESIGNERS													
S.No	Name of the	Designation	Department	Mail ID										
	Faculty													
1	Dr.T.Sheela	Assistant Professor	ECE	sheela@vmkvec.edu. in										
2	Mr.S.Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in										

17EC	'EC04		М	EME		SEN	SODS	1	C	ategor	y]	L	ΓΡ		Credits
1/EC	ECU		IVI	CINI2	AND	SEIN	SOLS)	Ε	C (PS)	3 (0 0		3
PREA															
U				0							anica	l Syst	em). Th	nis enab	les them to design,
analyz PREF	,				e ME	MS D	ased c	compo	onents	•					
COU															
	1														
1	Τοι	inders	stand	the co	ncept	s of b	asic N	1EMS	S struc	ctures.					
2	To learn about the various MEMS Sensors and its construction.														
3	To learn about the micro machining products.														
4	Τοι	inders	stand	the fu	nctior	ning o	f vario	ous of	otical	MEM	S Sen	sors.			
5															
-	5 To study the various applications of MEMS Sensors														
On the	e succ	essful	l com	pletio	n of tl	ne cou	irse, s	tuden	ts will	l be ab	le to				
CO1.	Unde	rstand	l the b	asic f	abrica	ation o	of ME	MS s	ystem	s.				U	nderstand
CO2.	Desig	n vari	ious N	/EMS	S sens	ors fo	r requ	ired a	pplica	ations.					Apply
CO3.A fabric		the	diffe	rent	micro	mach	ining	proc	ess i	n ME	EMS	senso	r		Apply
CO4.	Analy	ze the	e light	t sour	ce util	lizatio	n in N	ЛЕМЯ	S sens	ors.				1	Analyze
CO5.	Evalu	ate th	e vari	ous re	eal tin	ne app	licati	ons of	f MEN	AS Ser	nsors.			I	Evaluate
MAP	PING	WI	THP	ROGI	RAMI	ME O	UTC	OME	S AN	D PR	OGR	AMN	IE SPE	CIFIC (DUTCOMES
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	-	_	_	-
CO2	S	L	М	-	-	-	-	-	-	-	-	L	S	-	-
CO3	L	S	Μ	-	L	-	-	-	-	-	-	L	Μ	-	-
CO4	S	S	S	-	Μ	-	-	-	-	-	-	L	-	M	-
CO5 S S - M M M - - L - M M S - Strong; M - Medium; L - Low - - - L - M M															
S - St	rong;	M - I	Mediu	ım; L	– Lov	V									

INTRODUCTION

MEMS and Microsystems, Typical products of MEMS and Microsystem products, Micro sensors, Micro actuator, Evolution of Micro fabrication, Microsystems and Microelectronics, MEMS materials.

MICRO SENSORS AND MICROSYSTEMS

Micro sensors- Acoustic wave sensors, Biomedical Sensors and Biosensors, Optical Sensors, Pressure sensors, Micro actuation- Actuation using Thermal Forces, Piezoelectric Crystals, Electrostatic Forces, MEMS with Micro actuators- Micro grippers, Micro motors, Micro valves, Micro accelerometers.

PRINCIPLES OF MICROMACHINING

Introduction, Photolithography, Bulk Micromachining, Thin Film Deposition, Etching, surface Micromachining, LIGA

OPTICAL MEMS

Fundamental Principle of MOEMS Technology, Review Properties of Light, Light Modulators, Beam Spliotter, Micro lens, Micro mirrors, Digital Micro mirror Device (DMD),Light Detectors, Grating Light

Valve, Optical Switch.

REAL TIME UTILISATION OF MEMS SENSORS

Health Care, Micro fluid Dispenser, Micro needle, Micro pumps, Chem-Lab-On-A-Chip(CLOC), E-Nose, DNA sensors, Surface Acoustic Wave(SAW) Sensors.

TEXT BOOKS:

- 6. Tai Ran Hsu," MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002. Liu,"MEMS", Pearson education, 2000.
- 7. N. P. Mahalik, "MEMS", Tata McGraw hill, Sixth reprint, 2012.

REFERENCE BOOKS:

- 4. Stephen Santeria," Microsystems Design", Kluwer publishers, 2000.
- 5. Nadim Maluf," An introduction to Micro electro mechanical system design", ArtechHouse, 2000.
- 6. Mohamed Gad-el-Hak, editor," The MEMS Handbook", CRC press Baco Raton, 2000

COUR	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Dept	Mail ID
1	R. Karthikeyan	Assistant Professor (Gr- II)	ECE	rrmdkarthikeyan@avit.ac.in
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in

17ECEC2	ROBOTICS AND AUTOMATION	Category	L	Т	Р	Credit
0		EC(PS)	3	0	0	3

PREAMBLE

Robotics is the applied science of motion control for multi-axis manipulators and is a large subset of the field of "Mechatronics" (Mechanical, Electronic and Software engineering for product or systems development, particularly for motion control applications). Robotics, sensors, actuators and controller technologies are continuously improving and evolving synergistically. In the 20th century, engineers have mastered almost all forms of motion control and have proven that robots and machines can perform almost any job that is considered too heavy, too tiring, too boring or too dangerous and harmful for human beings. This course supports the students to design and develop multi-DOF manipulator and wheeled mobile robot.

PREREQUISITE - Nil

COURSE OBJECTIVES

000		2020													
1	To U	ndersta	nd the	actuato	ors use	d in ro	botic r	nanipu	lators	and indica	ate the	ir adva	ntages a	nd limit	ations.
2	To ap robc		forwa	rd kine	matic	model	of mu	lti-deg	ree of t	freedom t	o deve	elop ar	obot arn	n and w	heeled
3	To ap	ply a s	tatic fo	rce and	l dynai	mic m	odel of	two d	egrees	of freedo	m to c	levelop	robot ar	m	
4		ply a s fied kir				e for t	he gen	eratior	a cub	ic polyno	mial t	rajector	y for a jo	oint wit	n
5	To ap	ply and	d devel	op a pi	ogram	for po	oint-to-	point a	applica	tions					
COU	RSE O	UTCO	OMES												
On the	e succe	essful c	omplet	ion of	the cou	irse, st	udents	will b	e able	to					
			1			,				ator and w	vheele	d mobil	le	Unde	rstand
robot					·				•						
			e the	forwar	d kin	ematic	e mod	el of	multi	-degree	of fre	eedom	(DOF)	Ap	ply
	ulator		notio m	nodol	of two	and	thread	100000	offu	aadam ni		what a	ma and		
wheel		e kiner	natic f	nouer	or two	and	unree (legrees	s of In	eedom pl	anari	iodot al	in and		
	robot														
		t the st	atic for	ce and	dynan	nic mo	del of	two de	grees	of freedor	n plan	ar robo	t arm	Ap	ply
	Organ	ize a tr	ajector	y in jo	oint spa	ace usi	ing pol	lynomi	ial and	trigonom	netric	function	ns with	Ana	lyze
given	1			to of m		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	f fue a d	lam (D							
CO5	Exper	iment :	<u>nstrain</u> a offlir	<u>is of fi</u> ne robo	of prog	pram f	for poi	nt-to-r	oint a	anipulato		h as ni	ck and	Ang	lyze
place,			<i>a</i> 01111	10 1000	<i>p</i> r prog		or por	ni to p	onn u	ppiloution	15 540	n us pi	en una	7 1110	iryze
p	alletiz	ing, soı	ting an	d insp	ection	of wor	k-parts	8							
MAP	PING	WITH	PRO	GRAM	IME O	UTC	OMES	AND	PRO	GRAMM	E SPI	ECIFIC	COUTC	COMES	
COS	РО	PO2	PO3	РО	PO	PO	PO	PO	PO	PO10	PO	PO1	PSO	PSO	PSO
	1			4	5	6	7	8	9		11	2	1	2	3
CO1	S	-	-	-	-	-	-	-	М	-	-	М	-	-	-
CO2	S	М	Μ	-	-	-	-	-	Μ	-	-	М	М	М	-
CO3	S	М	Μ	-	-	-	-	-	Μ	-	-	М	-	-	-
CO4	S	М	Μ	-	М	-	-	-	Μ	-	-	М	М	-	-
CO5	S	Μ	М	-	М	-	-	-	М	-	-	М	-	М	Μ

S- Strong; M-Medium; L-Low

Introduction to Robotics. Mechanical structure: Robot Configuration - Robot Anatomy, Sub-systems/ Elements of Industrial Robot - Performance characteristics of industrial Robots. Mobile robot locomotion: Introduction, key issues for locomotion, wheeled locomotion-wheel design, geometry, stability, manoeuvrability and controllability. Applications - Progressive advancement in Robots – Point to point and continuous motion applications - Mobile manipulators and its applications.

Kinematic model: Forward Kinematics for two DOF manipulator – Algebraic method, Mechanical structure and notations, Coordinate frames, Description of objects in space, Transformation of vectors, Fundamental rotation matrices (principal axes and fixed angle rotation) Description of links and joints, Denavit-Hartenberg (DH) notation, Forward Kinematics for multi-Degrees of Freedom (DOF) manipulator. Inverse kinematics of two DOF planar manipulator - Manipulator workspace. Mobile Robot kinematics: kinematic model and constraints, Mobile robot workspace-motion control.

Static model: Differential relationship - Velocity analysis – Jacobian matrix – Determination of forces and equivalent torques for joints of two link planar robot arm. Dynamic model: Euler –Lagrangian formulation - Forward and inverse dynamic model for two DOF planar manipulator.

Trajectory planning: Definitions and planning tasks, Joint space techniques – Motion profiles – Cubic polynomial, Linear Segmented Parabolic Blends and cycloidal motion - Cartesian space techniques. Navigation: Graph search and potential field path planning - navigation architecture - offline and online planning.

Robot Programming- Manual Programming – Teach Pendant, Offline programming - VAL programming, Online Programming. Case Studies.

TEXTBOOKS

- 7. S.K.Saha, "Introduction to Robotics", Second Edition, McGraw Hill Education (India) Private Limited, 2014.
- 8. Roland Siegwart and Illah R.Nourbakhsh, "Introduction to Autonomous Mobile Robots", Prentice Hall of India (P) Ltd., 2005.
 - **REFERENCE BOOKS**
- 7. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, "Robotics: Modelling, Planning and Control", First Edition, Springer-Verlag London,2009
- 8. K.S. Fu, R.C Gonzalez and C.S. Lee, "Robotics- Control, Sensing, Vision and Intelligence", Tata McGraw-Hill Editions, 2008.
- 9. John J.Craig, "Introduction to Robotics, Mechanics and Control", Third Edition, Pearson Education, 2005.
- 10. Mark W.Spong, M.Vidyasagar, "Robot Dynamics and Control", Wiley India, 2009.
- 11. George A. Bekey, "Autonomous Robots From Biological Inspiration to Implementation and Control", MIT Press, 2005.
- 12. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementation", MIT Press, 2005.
- 13. Mikell P. Groover, Mitchell Weiss, Roger N.Nagel and Nicholas G. Odrey, "Industrial Robotics Technology, Programming and Applications" Tata McGraw-Hill, 2008.
- 14. Yoram Koren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.
- 15. P.A. Janakiraman, "Robotics and Image Processing", Tata McGraw-Hill, 1995.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in
2	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in

COURSE DESIGNERS

1 7 M	ECC03				NEER			Ca	itegoi	y]	L	Т	Р	Cr	edit
1/101	LCCUJ	,		MEC	HAN	ICS			CC		2	1	0		3
				basic	know	ledge	about	the b	ehavi	ourof	the boo	lies whi	ch are	under s	tatic
	quisite														
Cours	e Obje	ctive													
1	Fo expl	ain the	e basi	c laws	ofm	echan	ics an	d for	ces						
	Fo rela limensi		basi	c cor	ncepts	and	appli	catio	n of :	rigid t	odies	under	equilib	rium in	n two
3 7	Γo solv	e the	prob	lem	s rel	ated	to p	roper	ties o	f surfa	ces an	d solids	5		
4 T	°o solv	e pro	blem	s inv	olvin	g Fric	ction a	and R	igid b	ody dy	namic	s.			
5 7	To analy	ze the	e dyna	amics	of pa	rticles	prob	lems.							
Cours	e Outc	omes:	On t	he su	ccessf	ul co	mplet	ion o	f the c	course,	, stude	nts will	be abl	e to	
CO1.	Ident	ify the	e engi	neerir	ng pro	blems	s usin	g the	conce	pt of st	tatic			Unc	lerstand
$\frac{\text{CO1.}}{\text{CO2.}}$	-	ibriun		of rig	id bor	lies u	ndere	anilik	rium	in two	dimen	sion		Apr	lv
		-		-				-				f inertia	of	App	
CO3.	vario	us sec	tions.												-
CO4.		e frictio				• • •		-						App	-
CO5.		yze er ibriun	0	ering s	ystem	ıs usir	ng the	conce	ept of	dynam	nic			Ana	lyze
	ing wit			me O	utcon	nes ai	nd Pr	ogran	nme S	pecifi	c Outc	omes			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		М	L	-	-	L	-	-	-	-	-	I	L	-	
CO1	S				-	М	-	-	-	-	-	-	L	-	
	S S	s	М	Μ										1	
CO1		s M	M M	M M	_	М	-	-	-	-	-	-	L	-	
CO1 CO2	S				-	M L	-	-	-	-	-	-	L L	-	

S- Strong; M-Medium; L-Low

SYLLABUS

BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics - Lame's theorem. Parallelogram and triangular law of forces - Coplanar Forces - Resolution and Composition of forces - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility - Single equivalent force.

EQUILIBRIUM OF RIGID BODIES

Free body diagram - Types of supports and their reactions - requirements of stable equilibrium - Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem - Equilibrium of Rigid bodies in two dimension.

PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes - First moment of area - centroid of sections - Rectangle, circle, triangle from integration - T section, I section, Angle section, Hollow section by using standard formula - second and product moments of plane area - Rectangle, triangle, circle from integration - T section, I section, Angle section, Hollow section by using standard formula - Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia - Principle moments of inertia of plane areas - Mass moment of inertia.

FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force - Laws of Coloumb friction - simple contact friction - Rolling resistance - Belt friction. Translation and Rotation of Rigid Bodies - Velocity and acceleration - General Plane motion.

DYNAMICS OF PARTICLES

Displacement, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion - Newton's law - Work Energy equation of particles - Impulse and Momentum - Impact of elastic bodies.

Text Books Beer & Johnson, Vector Mechanics for Engineers. Vol. I Statics and Vol. II 1 Dynamics, McGraw Hill International Edition, 1995. 2 Kottiswaran N, Engineering Mechanics-Statics & Dynamics, Sri Balaji Publications, 2014. 3 Meriam, Engineering Mechanics, Vol. I Statics & Vol. II Dynamics 2/e, Wiley Intl., 1998. **Reference Books** Rajasekaran.S, and Sankara Subramanian G, "Engineering Mechanics", Vikas Publishing Co. 1 New Delhi. Irving H. Shames and G.Krishna Mohana Rao, Engineering Mechanics -2 Statics & Dynamics, 4th Edition, Prentice Hall of India Pvt. Ltd., 1997. K.L.Kumar, Engineering Mechanics III Edition, Tata McGraw Hill Publishing Co. 3 Ltd., 1998

Course De	esigners			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	N.Rajan	Assoc. Prof.	MECH/VMKVEC	rajan@vmkvec.edu.in
2	A Elanthiraiyan	AP-II	MECH/AVIT	aelanthirayan@avit.ac.in

170	VCC34		FLUI			NICS	AND		Cate	egory	L	Т	Р		Cred	it
				MA	CHIN	IERY			C	C	3	0	0		3	
Pream	nble															
The ai	im of th	e subj	ect is t	o pro	ovide	a fun	damer	ntal kr	nowled	dge in f	luid me	echanic	s and m	achiner	у.	
Prere	quisite :	NIL														
Cours	e Objec	tive														
1	To lear	n the f	undan	nenta	als in	Fluid	Mecha	anics								
2	To und	erstan	d the l	kinen	natic	s of th	e fluid	l flow.								
3	To und	erstan	d the f	fluid	flow	conce	pts									
4	To lear	n the v	workin	g prii	nciple	e, app	licatio	ns & c	lesign	of vari	ous hyd	draulic t	turbine	S.		
5	To learn	the we	orking	princ	iple, d	applica	tions d	&, desi	gn of v	parious l	hydrauli	ic pumps	5.			
Cours	e Outco	omes:	On the	e suc	cessf	ul con	npletio	on of t	the co	urse, s	tudent	s will be	e able t	0		
CO1.			the va plicatio			•				and ca	lculate	the hyc	drostati	c forces	and	Apply
CO2.	Distin	nguish		en va	ariou					rive the	contin	uity eq	uation f	for comp	oressible	Apply
CO3.			l the u roblen		nd lim	nitatio	ns of t	he Be	rnoull	i's equa	ation a	nd appl	y it to s	olve a va	ariety of	Apply
CO4.	Descr	ibe th	e conc	dition	und	er whi	ich the	e flow	in a ci	ircular j	oipe is l	laminar	or turb	ulent		Apply
CO5.			e majo in serio					pipe f	flow a	nd calc	ulate tl	ne flow	throug	h pipes		Apply
Марр	ing witl	h Prog	ramm	e Ou	tcom	nes an	d Prog	Iramm	ne Spe	cific O	utcome	es				
CO	PO 1	PO 2	PO 3	Р О 4	Р О 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS	03
CO1	S	М	M	L	M	L	-	-	-	-	-	L	L	М		L
CO2	S	М	M	L	L	L	-	-	-	-	-	M	L	М		L
CO3	S	М	М	L	L	L	-	-	-	-	-	L	L	М		L
CO4	S	S	S	M	L	L	-	L	-	-	L	M	L	L		L
CO5	М	М	M	L	L	М	-	-	-	-	L	M	L	L		L
S- Stro	ong; M-	Mediu	l Jm; L-l	.ow						I		<u> </u>	<u> </u>			

BASIC CONCEPTS AND PROPERTIES

Fluid – Definition - solid and fluid - Units and dimensions - Properties of fluids – Temperature - Viscosity -Compressibility - Vapour pressure - Capillary and surface tension - Fluid statics: concept of fluid static pressure -Pressure measurements by manometers and pressure gauges. Introduction to CFD, geophysical fluid dynamics. Velocity and density measurement methods.

FLUID KINEMATICS AND SIMILARITIES

Fluid Kinematics - Flow visualization - Lines of flow - Types of flow - Velocity field and acceleration - Continuity equation (one and three dimensional differential forms)- Equation of streamline - Stream function - Velocity potential function - Circulation - Flow net – Fluid dynamics - Equations of motion - Euler's equation along a streamline - Bernoulli's equation – Applications - Venturi meter - Orifice meter - Pitot tube - Dimensional analysis - Buckingham's π theorem- Applications - Similarity laws and models.

INCOMPRESSIBLE FLUID FLOW

Viscous flow - Navier-Stoke's equation - Shear stress - Pressure gradient relationship - Laminar flow between parallel plates - Laminar flow through circular tubes (Hagen poiseulle's) - Hydraulic and energy gradient - Flow through pipes - Darcy - Weisbagh's equation - Pipe roughness -Friction factor- Moody's diagram - Minor losses - Flow through pipes in series and in parallel - Power transmission - Boundary layer flows - Boundary layer thickness - Boundary layer separation - Drag and lift coefficients. Major losses-design aspect in application of drags and lift coefficients. Piping Engineering-Introduction and Applications.

HYDRAULIC TURBINES

Fluid machines: definition and classification - Exchange of energy - Euler's equation for turbo machines -Construction of velocity vector diagrams - Head and specific work - Components of energy transfer - Degree of reaction. Hydro turbines: definition and classifications - Pelton turbine - Francis turbine - propeller turbine - Kaplan turbine - Working principles - Velocity triangles - Work done - Specific speed - Efficiencies - Performance curve for turbines. Energy saving design requirements for turbine.

HYDRAULIC PUMPS

Pumps: definition and classifications - Centrifugal pump: classifications - Working principle- velocity triangles -Specific speed - Efficiency and performance curves - Reciprocating pump: classification - Working principle -Indicator diagram -Work saved by air vessels and performance curves - Cavitations in pumps - Rotary pumps-Applications.

Text Books

2

Pa.Suriya

ICALD	OOKS			
1	Bansal- R.K "Fluid M Delhi- 2005.	lechanics and Hydrauli	cs Machines"- (5 th edition) - Laxı	ni publications (P) Ltd- New
2	Modi.P.N. & Seth.S.N	1., a Textbook on Fluid	Mechanics, Standard Publishers	Ltd.
Refere	ence Books			
1	White- F.M "Fluid N	/lechanics"- Tata McGr	aw-Hill- 5 th Edition- New Delhi- 2	2003.
2	Ramamurtham. S- "Fl	uid Mechanics and Hyd	draulics & Fluid Machines"-Dhan	pat Rai & Sons, Delhi- 2003.
Course	e Designers			
S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	A.Fizoor Rahman	Assistant Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in

suriya@avit.ac.in

Civil / AVIT

Assistant Professor

17M	ECC16				STRIA MATI			Cate	gory	L	,	Г	Р	Cre	edit
1/101	LCCI	,	A		VIATI	UN		C	C	3		0	0		3
and dif		automa	-		-						tion. Fa	miliari	ization w	vith basi	c concepts
	1														
Cours	e Obje	ctive													
1 ′	To exp	lain the	e facto	ry aut	omatio	n and	integr	ation							
2	To Illus	strate a	about h	iydrau	lics an	d pne	umatic	es circu	iits						
3 '	To Des	ign the	e vario	us des	ign of	pneun	natic a	nd ele	ctro-pr	neumatio	c circui	ts			
4	To desi	gn abo	out PL	C and	its app	licatio	ons								
5	To illus	trate tl	he auto	omatio	n in tra	ansfer	mach	ines &	assem	bly.					
Cours	e Outc	omes:	On th	e suco	essful	comp	oletion	of the	e cour	se, stud	ents wi	ll be a	ble to		
CO1.	Expl	ain the	factor	y auto	matio	n, prod	duction	n syste	m and	integra	tion	1	Understa	ind	
		nologie							-1	. 1	<u> </u>		r 1 .	1	
CO2.	indu	strial a	pplicat	tions						its used			Understa	ind	
CO3.		lop th cation						natic ci	rcuits	for the g	given	4	Apply		
CO4.	Deve		LC for	-	-			applica	tions u	ising sta	andard	4	Apply		
CO5.	Cons		the au	tomat	ic trans	sfer m	achine	es & as	sembl	у		4	Apply		
Mapp				ne Ou	tcome	s and	Prog	amme	e Spec	ific Out	comes				
СО	РО	PO 2	PO 3	PO 4	PO 5	PO	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO 2	PSO
CO1	1 S	-	-	-	-	6 -	-	-	-	-	-	-	1 M	-	3
CO2	S	-	-	-	-	-	-	-	-	-	-	_	М	-	_
CO3	S	L	L	L	М	-	-	-	_	_	-	-	М	-	_
CO4	S	L	S	L	М	-	_	-	-	-	-	-	М	-	-
CO5	S	L	М	Μ	М	-	-	-	-	-	-	-	М	-	-
S- Stro	ong; M	-Medi	ium; I	-Low				_	_	_					

INTRODUCTION TO FACTORY AUTOMATION AND INTEGRATION

Basic concepts and scope of industrial automation, socio-economic considerations, modern developments in automation in manufacturing and its effect on global competitiveness.-Need and implications of automation in manufacturing- Different types of production systems and automation-Hard/fixed automation

INTRODUCTION TO HYRDAULICS AND PNEUMATICS

Basic elements of hydraulics and pneumatics, electro-pneumatic controls and devices, electro-pneumatic systems, fluid power control elements and standard graphical symbols for them, construction and performance of fluid power generators, hydraulic and pneumatic actuators, their design and control devices-Sequence operation of hydraulic and pneumatic actuators-Applications in manufacturing- Hydraulic & pneumatic valves for pressure, flow & direction control, servo valves and simple servo systems with mechanical feedback, solenoid-Different sensors for hydraulic pneumatic & electro-pneumatic systems

DESIGN OF PNEUMATIC AND ELECTRO-PNEUMATIC LOGIC CIRCUITS

Logic circuits to be designed for a given time displacement diagram or sequence of operation-Pneumatic safety and control circuits and their applications to clamping, traversing and releasing operations.

PROGRAMMABLE LOGIC CONTROLLERS (PLC)

PLC for design demonstration, programming and interface the hardware with software for modern manufacturing applications.

AUTOMATIC TRANSFER MACHINES & ASSEMBLY AUTOMATION

Classifications, analysis of automated transfer lines, without and with buffer storage, group technology and flexible manufacturing system- Types of assembly systems, assembly line balancing, performance and economics of assembly system.

Text Books

1 Esposito, A., 2000. *Fluid power with applications*. Upper Saddle River: Prentice-Hall International. 2 Majumdar, S.R., 1996. *Pneumatic systems: principles and maintenance*. Tata McGraw-Hill Education. Bolton, W., 2003. *Mechatronics: electronic control systems in mechanical and electrical engineering*. 3 Pearson Education. **Reference Books** Auslander, D.M. and Kempf, C.J., 1996. *Mechatronics: mechanical systems interfacing*. Prentice Hall. 1 Deppert, W. and Stoll, K., 1975. *Pneumatic Control*. Vogel. 2 3 Merritt, H.E., 1991. *Hydraulic control systems*. John Wiley & Sons. **Course Designers Department/Name** S.No **Faculty Name** Designation Email id of the College **M.SARAVANAN** ASST. PROF MECH./ AVIT 1 saravanan@avit.ac.in MECH/VMKVEC 2 S.NATARAJAN Assoc.Prof natarajans@vmkvec.edu.in

17MESI	F30					IERMA		Ca	ategor	y	L	т	Р		Credit
I / IVIES	200		POW	ER E	QUI	PMEN	ГS	i	EC(SE)		3	0	0		3
Preamb											·				
This cou Prerequ	urse pro	ovides	knowl	edge	of desi	ign and	anal	ysis of	the he	eat excl	hanger	S.			
	al Engine	eering	& Hea	nt and	Mass	trnasfe	r								
Course	Objecti	ve													
1 T	o provid	de the	know	ledge	of hea	it transf	fer eo	quipme	ent.						
2 T	o provid	de kno	wledg	e on c	lesign	and an	alysis	of th	e Shell	and tu	ibe hea	it exchan	ger		
3 E	nable to	o carry	out t	ne per	forma	ince of	heat	exchai	nger w	ith the	extend	led surfa	ces.		
4 T	o provid	de des	ign an	d anal	ysis of	fcoolin	g tov	/ers.							
Course	Outcon	nes: O	n the	succes	sful c	omplet	ion o	f the c	ourse	stude	nts wil	be able	to		
CO1.	Unde	rstand	the b	asics c	of the l	heat ex	chan	gers.					Under	stand	
CO2.	To un	dersta	ind the	e type:	sand	various	para	meter	s relate	ed heat	t excha	ngers.	Under	stand	
CO3.	To int	erpret	t the p	erforn	nance	ofheat	t exch	nanger					Under	stand	
CO4.	To syr	nthesis	s and c	develo	p the	Shell &	tube	heate	exchan	ger.			Apply		
CO5.	To de	sign ai	nd ana	ılyze tl	ne coo	ling to	wers						Analyz	ze	
Mappir	ng with	Progra	amme	Outco	omes a	and Pro	gram	nme Sp	oecific	Outco	nes		<u> </u>		
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO3
CO1	S	L		М			L						S	М	L
CO2	S	М											S	М	L
CO3	S	М					Μ						S	М	L
CO4	S	М		М			L						S	М	L
CO5	S	М		S	М		L						S	М	L
S- Stror	ng; M-N	lediur	n; L-Lo	W	1	1 1		1	1		L	1	1	<u>ı </u>	
SYLLAB	US FICATIO					-									

Introduction, Recuperation & Regeneration – Tubular heat exchangers: double pipe, shell & tube heat exchanger, Plate heat exchangers.

BASIC DESIGN METHODS OF HEAT EXCHANGER

Introduction, Basic equations in design, Overall heat transfer coefficient – LMTD method for heat exchanger analysis – parallel flow, counter flow, multi-pass, cross flow heat exchanger design calculations.

SHELL & TUBE HEAT EXCHANGERS

Tube layouts for exchangers, baffle Heat exchangers, calculation of shell and tube heat exchangers – shell side film coefficients, Shell side equivalent diameter, the true temperature difference in a 1-2 heat exchanger, shell side pressure drop, tube side pressure drop, Analysis of performance of 1-2 heat exchanger, and design calculation of shell & tube heat exchangers.

CONDENSATION OF SINGLE VAPORS AND EXTENDED SURFACES

Evaporators and Reboilers, Vaporizing processes, forced circulation vaporizing exchangers, natural circulation vaporizing exchangers, calculations of a reboiler.

Longitudinal fins, calculation of a double pipe fin efficiency curve, calculation of a double pipe finned exchanger.

DIRECT CONTACT HEAT EXCHANGER

Cooling towers, relation between wet bulb & dew point temperatures, classification of cooling towers, cooling tower internals, Heat balance, heat transfer by simultaneous diffusion and convection. Analysis of cooling tower requirements. Calculation of cooling tower performance.

Text Books

- **1** Process Heat Transfer D.Q. Kern, TMH.
- 2 Heat Exchanger Design A.P.Fraas and M.N. Ozisick. John Wiely & sons, New York.

Reference Books

1	W.F. Stoecker, Design	of Thermal Syst	tems - McGraw-Hill		
2	Bejan, G. Tsatsaronis,	M.J. Moran, The	rmal Design and Optimiz	zation – Wiley	
3	N.V. Suryanarayana, D	esign & Simulati	on of Thermal Systems -	- MGH.	
Cour	se Designers				
S.No	Faculty Name	Designation	Department/Name of the College	Email id	
1	Mr. N. Fedal Castro	Asst Prof - II	Mech / AVIT	fedal@avit.ac.in	
2	P SELLAMUTHU	Associate Professor	Mech / VMVK	sellamuthu@vmkvec.edu.in	

PREREOU COURSE (1 To 2 To 3 Th 4 To 5 To COURSE (LE the appl JISITE - N OBJECTI D unders D Identify ne Evalua D classify	IIL /ES / the cc ate the - the ro	of indu e Robo ontrollii latest i bot kin	otics an ng of R techno	obots a d Robo obots a	and en	e syste		EC(P:	-	3 dents ir	0 n industi	0 rial applica	3 tions
To study t PREREQU COURSE (1 To 2 To 3 Th 4 To 5 To COURSE (the appl JISITE - N OBJECTI D unders D Identify ne Evalua D classify	IIL /ES / the cc ate the - the ro	ie Robo ontrollii latest bot kin	otics an ng of R techno	d Robc obots a	ot drive and de	e syste		nowledg	je of stu	dents ir	n industi	rial applica	tions
PREREQU COURSE (1 To 2 To 3 Th 4 To 5 To COURSE (JISITE - N OBJECTI D unders D Identify ne Evalua D classify D justify	IIL /ES / the cc ate the - the ro	ie Robo ontrollii latest bot kin	otics an ng of R techno	d Robc obots a	ot drive and de	e syste		nowledg	je of stu	dents ir	n industi	rial applica	tions
COURSE (1 To 2 To 3 Th 4 To 5 To COURSE (OBJECTI o unders o Identify ne Evalua o classify o justify	VES tand th y the cc ate the the ro	ontrollii latest bot kin	ng of R	obots a	and de	-	m.						
1 To 2 To 3 Th 4 To 5 To	o unders o Identify ne Evalua o classify o justify	tand th y the co ate the y the rol	ontrollii latest bot kin	ng of R	obots a	and de	-	m.						
2 To 3 Th 4 To 5 To COURSE (o Identify ne Evalua o classify o justify	y the co ate the the rol	ontrollii latest bot kin	ng of R	obots a	and de	-	m.						
3 Th 4 To 5 To COURSE (ne Evalua o classify o justify a	ate the the ro	latest bot kin	techno			vices s							
4 To 5 To COURSE (o classify o justify	the ro	bot kin		logy of	conce		system	•					
5 To	o justify .			ematic		senso	rs usea	d in rol	botics.					
COURSE (Applica			s syste	m.								
			tion of	roboti	cs in in	dustry								
On tho su		IES												
	iccessful	compl	etion o	f the co	ourse, s	studen	ıts will	be ab	le to					
CO1.	Underst	and the	e basics	s of Rob	pot and	l its dr	ive sys	tem.				Und	derstand	
CO2.	To Ident	ify the	steps i	nvolve	d in cor	ntrollir	ng syst	em				Арр	oly	
CO3.	Demons	trate t	he vari	ious kir	nematio	cs syst	em use	ed in ro	obots.			Арр	oly	
CO4.	Demons	trate t	he vari	ious sei	nsors u	sed in	robots	S.				Арр	oly	
CO5 .	Apply th	ie robo	t in day	y to day	/ applic	ations	5					Арр	oly	
MAPPING	G WITH I	PROGR	AMME	OUTCO	OMES A	AND P	ROGR	AMME	SPECIF	IC OUT	COMES			
COS PC	D1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	^S M	М	L	М	М	М					S	М		М
CO2 S	^S M	М	S	М	М	М					S	М		S
CO3 S		S	S	М	М	М					S	S		S
CO4 S		M	M	S	M	M					S	S		S
CO5 S		S	S	S	S	S					S	S		S
S- Strong;		num; L	-LOW											
SYLLABUS	S													
INTRODU	JCTION													
Robot an	natomv-l	Definiti	on, lav	vofro	obotics	, Hist	orv ar	nd Ter	minolo	av of R	obotics	-Accura	cy and re	peatability

Robots – Different Applications.

END EFFECTORS AND ROBOT CONTROLS:

Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers-Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems-Robot controls-Point to point control, Continuous path control, Intelligent robot-Control system for robot joint-Control actions, Adaptive control.

ROBOT KINEMATICS:

Forward kinematics – Inverse kinematics – Differences: Forward kinematics and Reverse kinematics of manipulators with two and three degrees of freedom (In 2 dimensional), four degrees of freedom (In 3 dimensional) – Deviations and problems.

ROBOT SENSORS:

Sensor -principles and applications of the following types of sensors – Position of sensors (Piezo electric sensor, LVDT, Resolvers, Optical encoders, Pneumatic position sensors) – Range sensors (Triangulation principle, Structured, Lighting approach, Time of flight range finders, Laser range meters) – Proximity sensors (Inductive, Hall effect, Capacitive, Ultrasonic and Optical proximity sensors) – Touch sensors (Binary sensors, Analog sensors) – Wrist Sensors

– Compliance Sensors – Slip Sensors.

INDUSTRIAL APPLICATIONS :

Application of robots in machining - Welding - Assembly - Material handling - Loading and unloading - CIM - Hostile and remote environments.

TEXT BOOKS:

1	K.S. Fu, R.C. Gonzalez, C.S.G. Lee, "Robotics – Control Sensing, Vision and Intelligence", Tata McGraw-Hill Education.
2	Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, Industrial Robotics,

Technology programming and Applications, McGraw Hill, 2012

REFERENCES:

1 Kozyrey, Yu. "Industrial Robotics" MIR Publishers Moscow.

2 Richard D.Klafter, Thomas A. Chmielewski and Michael Negin, "Robotic Engineering-An Integrated Approach", Prentice Hall Inc, Englewoods Cliffs, NJ, USA

COURSE DESIGNERS

S. No.	Name of the Faculty	Name of the Faculty Designation		Mail ID
1	G.ANTONY CASMIR	Asst. Prof II	Mechanical, AVIT	antonycasmir@avit.ac.in
2	J.SANTHOSH	Assistant Professor	Mechanical/VM KVEC	santhosh@vmkvec.edu.in

17MEEC	1 2		ы	ידפווח	סועו כ	ΛΕΕΤν		Ca	tegor	у	L	т	Ρ		Credit
I / IVIEEU	513		INDUSTRIAL SAFETY			E	EC(PS)		3	0	0		3		
P reamble To familiari various law					-		lling a	nd ind	ustria	enviro	nment	includin	g the sa	fety aspe	cts and
Prerequisit						<u> </u>									
Course Obj	jective														
1 <i>To u</i>	nderst	tand o	about	safet	y man	agem	ent ar	ıd unc	lersta	nd all	the safe	ety aspe	ects tho	roughly.	
/	nderst rent ty					y proc	edure	es and	prece	aution	to be f	ollowed	during	the oper	ration of
3 To a		horoi	ughly	equip	ped w			nt kno	wledg	ge of h	andling	g the di <u>f</u>	ferent t	ypes of e	quipments
4	nalyze dents d					0		0	of exp	pertise.	for em	ergency	[,] situati	ons arisi	ng due to
5 <i>To a</i>	nalysi	s of t	he va	rious	laws i	regard	ling h	ealth	issues	s and s	afety o	f person	nals.		
Course Out	tcomes	s: On	the su	iccess	f <mark>ul co</mark> r	npleti	on of t	the co	urse, s	studen	ts will b	e able t	0		
CO1.	Explair	the s	safety	conce	pts ar	nd role	of saf	ety m	anage	ment.			Under	stand	
CO2.		nents			•					onal sat achiner	fety of ies used	d in	Under	stand	
CO3		,ariou	us safe	ety me	asures	s to be	unde	rtaken	with	respect	to indu	ustrial	Apply		
CO4.	Illustra	te the	e varic	ous str	ategie	s to pi	revent	accid	ents ai	nd imp	lementa	ation.	Analy	ze	
	Outline related									ie varic	ous laws	5	Analy	ze	
Mapping w	vith Pro	ogran	nme O	utcon	nes an	d Pro	gramn	ne Spe	ecific C	utcom	es				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO3	S	Μ	Μ	L	-	-	-	-	-	-	-	-	L	-	-
CO4	S	Μ	М	L	-	-	-	-	-	-	-	-	L	-	-
CO5	S	Μ	Μ	L	-	-	-	-	-	-	-	-	L	-	-
S- Strong; N	1-Mediu	um; L-	Low			-		-	-		<u>.</u>		•	I	
SYLLABUS															
UNIT I - SA	FETY N	IANA	GEME	NT											

Evaluation of modern safety concepts - Safety management functions – safety organization, safety department – safety committee, safety audit - performance measurements and motivation - employee participation in safety - safety and productivity.

UNIT II: OPERATIONAL SAFETY

Hot metal Operation - Boiler, pressure vessels - heat treatment shop - gas furnace operation – electroplating-hot bending pipes -Safety in welding and cutting. Cold-metal Operation – Safety in Machine shop - Cold bending and chamfering of pipes - metal cutting –shot blasting, grinding, painting - power press and other machines

UNIT III: SAFETY MEASURES

Layout design and material handling - Use of electricity - Management of toxic gases and chemicals - Industrial fires and prevention - Road safety - highway and urban safety – Safety of sewage disposal and cleaning - Control of environmental pollution - Managing emergencies in Industries - planning, security and risk assessments, on- site and off site. Control of major industrial hazards.

UNIT IV: ACCIDENT PREVENTION

Human side of safety - personal protective equipment - Causes and cost of accidents. Accident prevention programs -Specific hazard control strategies - HAZOP - Training and development of employees -First Aid- Fire fighting devices - Accident reporting,

Investigation.

UNIT V SAFETY, HEALTH, WELFARE & LAWS

Safety and health standards - Industrial hygiene - occupational diseases prevention – Welfare facilities - History of legislations related to Safety-pressure vessel act-Indian Boiler act - The environmental protection act - Electricity act - Explosive act.

Text I	Boo	lks										
1	Kı	rishnan N.V. "Safety Man	agement in Indu	ustry" Jaico Publishino	g House							
2	Handlin.W, "Industrial Hand Book", McGraw-Hill, 2000.											
Refer	erence Books											
1	Heinrich.H.W, "Industrial Accident Prevention", McGraw-Hill, 1980.											
2	Ru	denko.N, "Material Hand	ling Equipments	s", Mir Publishers, Mo	oscow, 1981.							
3	Lee	es.F.P, "Loss "Prevention	in Process Indu	stries", Butterworths,	, New Delhi, 1986.							
4	Ac	cident Prevention Manua	I for Industrial (Operations",N.S.C.Chi	icago, 1982							
Cours	se D	Designers										
S.No		Faculty Name	Designation	Department/Nam e of the College	Email id							
	1 S.DURAITHILAGAR ASSO.PROF MECH/VMKVEC duraithilagar@vmkvec.edu.in											
	2	C.Thygarajan	AP II	Mech/AVIT	Thygararajan@avit.ac.in							

17ATEC02	NEW GENERATION AND HYBRID VEHICLES	Category	L	Т	Р	C	
		EC	3	0	0	3	

Preamb	ole														
To teac	h the st	tudents	about	the ne	w gene	ration	and hyl	brid veł	nicles						
Prereq	uisite														
Nil															
Course	• Objec	tives													
1		b elucidate different modes of hybrid vehicles in current scenario.													
2	To desc	describe the different modes of power system for new generation vehicles .													
3	To und	understand the operation and control of modern vehicle.													
4	To deta	o detail the roads, highways and automated tracks for next generation automotive.													
5	To exp	Fo explain the advanced technology in braking systems, suspension, aerodynamics and safety.													
Course		utcomes:													
Afte	r Succ	Successful completion of this course, the students will be able to:													
	Discuss the various methods of developing hybrid vehicle technology available in the Understand														
CO1		present scenario.													
001	present scenario.														
CO2	. App	ly an ap	propri	ate pov	ver sys	tem foi	r a new	genera	ation ve	ehicle				Ap	oply
	Ann	ly a riak	at choic	o of co	urco of	- nowo	for a r	nodern	vohiel	0				٨٢	nhu
CO3		, ,				•									ply
CO4	. App	raise at	out th	e roads	s, highv	vays an	d autoi	mated	tracks f	or next	genera	ation a	utomotive	Ana	alyze
CO5	. Ana	lyze and	d apply	the ex	act me	thod br	aking,	suspen	sion an	d safet	у.			Ana	alyze
		Μ	[apping	g with]	Progra	mme (Dutcon	nes and	l Progr	amme	Specif	ic Outo	comes	<u> </u>	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М				-				-	S		
CO2	S	М	М	М				-				-	S		
CO3	S	М	М	М	М			-				-	S		
CO4	S	S	S	S	S			-				-	S		
CO5	S	S	S	S	S			-				-	S		

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION TO HYBRID ELECTRIC VEHICLES

History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.

HYBRID ELECTRIC DRIVE-TRAINS

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis

ELECTRIC PROPULSION UNIT

Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives

ENERGY STORAGE

Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Hybridization of different energy storage devices

SIZING THE DRIVE SYSTEM

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power, selecting the energy storage technology,

TEXT BOOK:

- 1. Bosch Hand Book, SAE Publication, 2010
- 2. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003

REFERENCES:

1. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

2. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	<u>saravanakumar@avit.ac.in</u>
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17ATEC04	SPECIAL TYPES OF VEHICLES	Category	L	Т	Р	C	
11112004		EC	3	0	0	3	

Preamble

This course reviews the fundamental concepts of earth moving equipments, power train concepts, sub systems of special types of vehicles, farm equipment, military and combat vehicles and special purpose vehicles for industrial applications.

Prereq	uisite
Nil	
Course	e Objectives
1	To detail the working of earth moving and constructional equipments
2	To describe power train concepts
3	To explain the sub systems of special types of vehicles
4	To describe the working of farm equipments, military and combat vehicles
5	To explain the working of special purpose vehicles for industrial applications
Course	e Outcomes:
After S	Successful completion of this course, the students will be able to:

After Successful completion of this course, the students will be able to:

CO1.	Desc	Describe the construction and working of earth moving and constructional equipments										ments	Understand		
CO2.		Appraise on the power trains applicable for for earth moving and constructional equipments.											Ap	Apply	
CO3.		Appraise on the function of all the sub-systems for earth moving and constructional equipments.										Ap	Apply		
CO4.	Арр	Appraise on the various farm equipments and military vehicles.									Ap	Apply			
CO5.	Арр	Appraise on the various specially designed vehicles for industrial applications.										Ap	Apply		
		Μ	lappin	g with I	Progra	mme	Outcon	nes and	l Progr	amme	Specifi	ic Outo	comes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М				-				-	S		
CO2	S	М	М	М				-				-	S		
CO3	S	S	S	М				-				-	S		
CO4	S	S	S	М				-				-	S		
CO5	S	S	S	Μ				-				-	S		

S- Strong; M-Medium; L-Low

Syllabus

CLASSIFICATION AND REQUIREMENTS OF OFF ROAD VEHICLES

Construction layout, capacity and applications. Power Plants, Chassis and Transmission, Multivalve vehicles.

EARTH MOVING MACHINES

Earthmovers like dumpers, loaders - single bucket, Multi bucket and rotary types- bulldozers, excavators, backhoe loaders, scrappers, drag and self powered types, Bush cutters, stumpers, tree dozer, rippers etc. – Power and capacity of earthmoving machines.

SCRAPPERS, GRADERS, SHOVELS AND DITCHERS

Scrappers, elevating graders, motor graders, self powered scrappers and graders, Power shovel, revolving and stripper shovels – drag lines – ditchers – capacity of shovels.

FARM EQUIPMENTS, MILITARY AND COMBAT VEHICLES

Power take off, special implements. Special features and constructional details of tankers, gun carriers and transport vehicles.

VEHICLE SYSTEMS, FEATURES

Brake system and actuation – OCDB and dry disc caliper brakes. Body hoist and bucket operational hydraulics. Hydro-pneumatic suspension cylinders. Power steering system. Kinematics for loader and bulldozer operational linkages. Safety features, safe warning system for dumper. Design aspects on dumper body, loader bucket and water tank of sprinkler.

TEXT BOOK:

- 1. Off the road wheeled and combined traction devices Ash gate Publishing Co.Lt.
- Satyanarayana. B., Construction planning and equipment, standard publishers and distributors, New Delhi.

REFERENCES:

- Abrosimov.K. Branberg.A and Katayer.K, Road making machinery, MIR Publishers, Moscow, 1971.
- 2. Bart H Vanderveen, Tanks and Transport vehicles, Frederic Warne and Co Ltd., London.
- 3. Nakra C.P., "Farm machines and equipments" Dhanparai Publishing company Pvt. Ltd.
- Robert L Peurifoy, "Construction, planning, equipment and methods" Tata McGraw Hill Publishing company Ltd.

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	<u>saravanakumar@avit.ac.in</u>
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17ATEC06	AUTOMOTIVE SAFETY	Category	L	Т	Р	С
		EC	3	0	0	3

Prear	nble
Safety	in automotive vehicles is most significant factor and has various sub-systems.
Prerec	micita
Nil	
	e Objectives
1	To describe on the parameters for designing a vehicle for safety.
2	To detail on the various concepts for designing devices for safety.
3	To detail on the design of components and systems for providing safety to the vehicle and passengers.
4	To describe on collision awareness and avoidance.
5	To detail on the systems for comfort and convenience system standards
Cours	a Outcomes:

....

Course Outcomes:

C .1 .

After Su	iccess	Iul col	npietic	on of u	ns cou	rse, m	e stude	sints wi	n de al	Jie to.					
CO1.	Expl	ain the	param	eters fo	or safet	y of a v	/ehicle.							Unde	rstand
CO2.	Desc	ribe or	n the co	oncepts	of des	igning	safety c	devices	for veh	icles.				Unde	rstand
CO3.	Reco	ommen	d appli	cable c	ompon	ents fo	or passe	enger ar	nd vehi	cle safe	ety.			Ар	ply
CO4.	Reco	ommen	d meth	ods for	avoida	ance of	collisic	on and o	devices	for pas	ssenger	safety.		Ар	ply
CO5.	Reco	ommen	d on sy	stems	for pas	senger	safety	and cor	nfort a	s per st	andard	ls.		Ар	ply
		Μ	lapping	g with]	Progra	mme (Dutcon	nes and	Progr	amme	Specifi	c Outco	mes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М				-				-	S		
CO2	S	М	М	М				-				-	S		
CO3	S	S	S	М	М			-				-	S		
CO4	S	S	S	М	М			-				-	S		
	S	S	S	М	М		1	1					S		

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Design of the body for safety, energy equation, engine location, deceleration of vehicle inside passenger compartment, deceleration on impact with stationary and movable obstacle, concept of crumble zone SAFETY CONCEPTS

Active safety: driving safety, conditional safety, perceptibility safety, operating safety, passive safety: exterior safety, interior safety, deformation behavior of vehicle body, speed and acceleration characteristics of passenger compartment on impact

SAFETY EQUIPMENTS

Seat belt, regulations, automatic seat belt tightener system, collapsible steering column, tiltable steering wheel, air bags, electronic system for activating air bags, bumper design for safety

COLLISION WARNING AND AVOIDANCE

Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system interactions

COMFORT AND CONVENIENCE SYSTEM

Steering and mirror adjustment, central locking system, Garage door opening system, tyre pressure control system, rain sensor system, environment information system

TEXT BOOK:

- 1. Bosch, "Automotive Handbook", 8th Edition, SAE publication, 2011.
- 2. Powloski. J., "Vehicle Body Engineering", Business books limited, London, 1969.

REFERENCES:

1. Ronald.K.Jurgen, "Automotive Electronics Handbook", Second Edition, McGraw-Hill Inc.,

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	<u>rajat@vmkvec.edu.in</u>
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	<u>saravanakumar@avit.ac.in</u>
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

											Category	y L	Т	P (Credit
17BN	1EC09		Ι	DESIG	N OF	MEDI	CAL I	DEVIC	CES		EC-PC		0	0	3
provide	ourse w	ndation	for the	practic	al appl	ication.	It incl	udes al	leleme		dical dev e device j				
PRER	EQUIS	ITE – I	NIL												
COUR	SE OB	JECTI	IVES												
1	To un	derstan	d the p	ost-mar	keting 1	requirer	nents as	ssociate	d with	medical of	devices.				
2	To un	derstan	d the ne	ecessar	y steps t	to take	an idea	to a pro	ototype.						
3	To fo	llow a c	letermi	nistic er	ngineeri	ng desi	gn proc	cess to c	create no	ew produ	icts.				
4	To ap	ply eng	ineerin	g theory	y to pra	ctice.									
5	To pe	rform r	isk asse	essment	and co	unterme	easure d	levelop	ment.						
COUR	SE OU	TCON	1ES												
On the	success	ful con	npletior	of the	course,	studen	ts will t	be able	to						
	. Discu			•				• 1						erstand	
CO13.	Utilizo techni		imental	design	princi	ples, m	achine	elemen	its, mar	ufacturi	ng and as	ssembly	App	ly	
CO14	. Analy	ze risk	manage	ement c	oncepts	into th	e qualit	ty mana	gement	system.			Ana	lyze	
CO15.		s the m	edical d	levice r	egulato	ry fram	ework	for any	given c	ountry b	ased upor	n device	Eval	luate	
CO16.	type. Create	e potent	ial regu	latory	oathway	٧.							Crea	ite	
		•	Ŭ		•		S AND) PRO(GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	1	PO12	PSO1	PSO2	PSO
CO1	M								M			M	S	S	M
CO2	S	М							M			M	S	S	M
CO3	S	M	М	L		М		L	M			S	M	M	S
CO4	S	S	M	M	М	S		M	S		М	S	M	S	S
CO5	S	S	S	M	M	S		M	S S		M	S	S	M	S
	ng· M-l					~			~			~	~		2

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO MEDICAL DEVICES AND MEDICAL DEVICE REGULATIONS

Medical Device Classification, Bioethics and Privacy, Biocompatibility and Sterilization Techniques, Design of Clinical Trials, Design Control & Regulatory Requirements.

INTRODUCTION TO SPECIFIC MEDICAL TECHNOLOGIES

Biopotential measurement (EMG, EOG, ECG, EEG), Medical Diagnostics (In-vitro diagnostics), Medical Diagnostics (Imaging), Minimally Invasive Devices, Surgical Tools and Implants.

MEDICAL DEVICES STANDARD AND INTELLECTUAL PROPERTY

Standard-ISO, IES, Intellectual Property - Patents, Copy rights, Trademarks, Trade secrets.

HARDWARE AND SOFTWARE DESIGN

Hardware design, Hardware risk analysis, Design and project merits, Design for six sigma, software design, software coding, software risk analysis, software metrics.

DESIGN TRANSFER AND MANUFACTURING

Transfer to manufacturing, hardware manufacturing, software manufacturing, configuration management, documents and deliverables.

TEXT BOOKS:

- 1. Richard Fries, "Reliable Design of Medical Devices", CRC Press, 2nd Edition, 2006.
- 2. Paul H. King, Richard C. Fries, Arthur T. Johnson, "Design of Biomedical Devices and Systems", Third Edition, ISBN 9781466569133.

REFERENCES:

- 1. John G. Webster (ed), "Medical Instrumentation: Application and Design", 2007.
- 2. Peter J. Ogrodnik, "Medical Device Design: Innovation from Concept to Market", Academic Press Inc; 1st Edition (2012), ISBN-10: 0123919428

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in
3	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

17ATEC18	ALTERNATIVE FUELS	Category	L	Т	Р	С
		EC(PS)	3	0	0	3

Preamble

Conventional fuels used in automotive are sourced from fossil fuels and in the current scenario, fossil fuels are depleting . Alternate fuels for use in internal combustion engines are increasing as a replacement of fossil fuels .

Prerequisite

Nil

Course	Objectives

1	To provide the biochemistry of alternate fuels for use in automotive engines.
2	To detail on the different methods of generation of alternate fuels from various bio resources.
3	To describe the composition and properties of bio-diesel for use in automotive engines.
4	To elucidate the different options available for production of new alternate fuels.

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	Sumi	marize	on the	bioche	emistry	of alte	ernate f	uels tha	at are u	sed in a	automo	otive eng	line.	Unde	rstand
CO2.			on the n engin		s meth	ods of	produc	tion of	alterna	te fuel	s for int	ernal		Unde	rstand
CO3.	Appr	aise or	n the co	omposi	tion an	d prop	erties c	of bio-d	iesel as	an alte	ernate f	uel.		Ар	ply
CO4.	Appr	aise or	n the va	arious c	ptions	for pro	oductio	n of ne	w alteri	nate fu	els.			Ap	ply
		Ν	lapping	g with]	Progra	mme	Outcon	nes and	l Progr	amme	Specifi	ic Outco	mes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	М		-	-	-		-		S		
CO2	S	М	М	М	М		-		-		-	-	S		
CO3	S	S	S	М	М		-	-	-		-		S		
CO4	S	S	S	М	М		-		-		-	-	S		
CO5	S	S	S	М	М		-	-	-		-	-	S		

S- Strong; M-Medium; L-Low

INTRODUCTION

Chemistry, Biochemistry, and Microbiology of Lignocellulosic Biomass, Biomass as an Energy Source: Traditional and Modern Views, Structural and Industrial Chemistry of Lignocellulosic Biomass, Lignocellulose as a chemical resource, Physical and chemical pretreatment of lignocellulosic biomass, Biological pretreatments, Acid hydrolysis to saccharify pretreated lignocellulosic biomass,

BIOCHEMISTRY

Cellulases: Biochemistry, Molecular Biology, and Biotechnology, Enzymology of cellulose degradation by cellulases, Cellulases in lignocellulosic feedstock processing, Molecular biology and biotechnology of cellulase production, Hemicellulases: New Horizons in Energy Biotechnology, A multiplicity of hemicellulases, Hemicellulases in the processing of lignocellulosic biomass, Lignin-Degrading Enzymes as Aids in Saccharification, Commercial Choices of Lignocellulosic Feedstocks for Bioethanol Production, Biotechnology and Platform Technologies for Lignocellulosic Ethanols

BIOCHEMICAL ENGINEERING

Biochemical Engineering and Bioprocess Management for Fuel Ethanol, Biomass Substrate Provision and Pretreatment, Wheat straw — new approaches to complete saccharification, Switchgrass, Corn stover, Softwoods, Sugarcane bagasse, Other large-scale agricultural and forestry, biomass feedstocks, Fermentation Media and the "Very High Gravity" Concept, Fermentation media for bioethanol production, Highly concentrated media developed for alcohol fermentations,

COMPOSITION OF BIO DIESEL

Vegetable oils and chemically processed biofuels, Biodiesel composition and production processes, Biodiesel economics, Energetics of biodiesel production and effects on greenhouse gas emissions, Issues of ecotoxicity and sustainability with expanding biodiesel production, Fischer-Tropsch Diesel: Chemical Biomass–to–Liquid Fuel Transformations

DEVELOPMENT OF ALTERNATE FUELS

Radical Options for the Development of Biofuels, Biodiesel from Microalgae and Microbes, Biohydrogen, The hydrogen economy and fuel cell technologies, Bioproduction of gases, Production of H₂ by photosynthetic organisms, Emergence of the hydrogen economy, Microbial Fuel Cells: Eliminating the Middlemen of Energy Carriers Biofuels as Products of Integrated Bioprocesses

TEXT BOOK:

- 1. David M. Mousdale, Biofuel-Biotechnology, Chemistry, and sustainable Development, 1st Ed., CRC Press Taylor & Francis Group, 2008
- 2. Joseph M Norbeck, Hydrogen fuel for surface transportation, Society of Automotive Engineers, 1996.

REFERENCES:

- 1. Ayhan Demirbas, Green Energy and Technology, Biofuels, Securing the Planet's Future Energy Needs, 1st edition, Springer, 2009.
- 2. James D. Halderman, James Linder. Automotive Fuel and Emission Control system, Prentice Hall, 2005.

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	<u>samuvelmichael@avit.ac.in</u>

7ECEC21ADVANCED ROBOTICSCategoryLTPCreditEC(PS)3003PREAMBLEAdvanced Robotics will explore in great depth areas relevant to not only industrial robotics service robots (i.e. robots outside a factory environment particularly mobile robots) and the application of technology to real world environments e.g. driverless vehicles, unmanned aerial vehicles and tele-robots. Stud will also master robot kinematics and dynamics.PREREQUISITE – NIL
service robots (i.e. robots outside a factory environment particularly mobile robots) and the application of technology to real world environments e.g. driverless vehicles, unmanned aerial vehicles and tele-robots. Stud will also master robot kinematics and dynamics.
COURSE OBJECTIVES 1 To gain knowledge in robotic elements 2 To explore the kinematics of serial and parallel robotics 3 To know the motion of robot in various coordinates and surfaces
COURSE OUTCOMES On the successful completion of the course, students will be able to
CO1. Illustrate the kinematics of parallel robotics Apply
CO2. Examine about the kinematics of serial robot such as the direct and inverse kinematic Apply problems
CO3. Discriminate various robotic elements like sensors and actuators Analyze
CO4. Investigate the motion of robot in various coordinates Analyze
CO5. Explore the motion of robot in several surfaces like flat surface, uneven terrain Analyze
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 P
CO1 S M M S -
CO2 S M - - - - - M - - CO2 S M - - - - M - -
CO3 S S - - - M M M CO4 S S S - - - M M M
CO4 S S S - - M - - M - M CO5 S S S S - - M - M - M
CO5 S S - - M M -

Elements of robots -- joints, links, actuators, and sensors

Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.

Kinematics of serial robots

Introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination, Inverse kinematics solution for the general 6R serial manipulator.

Kinematics of parallel robots

Degrees-of-freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loopclosure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed-from and numerical solution, Inverse kinematics of parallel manipulators and mechanisms, Direct kinematics of Gough-Stewart platform.

Motion planning and control

Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non-linear control of manipulators.

Modeling and analysis of wheeled mobile robots

Introduction and some well known wheeled mobile robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneven terrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three-wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.

Reference Books

- 1. Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2nd reprint, 2008.
- 2. Fu, K., Gonzalez, R. and Lee, C.S. G., Robotics: Control, Sensing, Vision and Intelligence McGraw-Hill, 1987.

COURSE DESIGNERS				
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in
2	N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
3	G.Murali	Assistant Professor	ECE	muraligvmkvec@vmkvec.edu.in

COURSE DESIGNERS

17M	ESE09	N	EW PR	אווסס	T DFV	/ELOPM	ENT	Ca	tegor	y	L	т	Ρ		Credit	
			_ • • F F					E	EC(SE)		3	0	0		3	
oroduct	urse int t develo nary skil	pmer	nt is a	a chall	lengin	g, rewa	rding	activ	/ity_th	at req	uires	•	tional (cooperat	products. Net ion and inte	
NIL																
Course	Objecti	ve														
1 T	o understand the concepts involved in new product process															
2 T	o learn I	how to	o integ	grate t	he cus	stomer a	and e	nd-co	nsume	er into	this pr	ocess.				
	o learn how to integrate the customer and end-consumer into this process. To learn and apply the concepts and tools necessary through case examples and assignments.															
4	o actual ntroduct				oduct	develop	men	t proc	ess by	concei	ving yo	our own r	new pro	duct or s	ervice and an	
5 T	o partic	ipate i	n grou	now dr		ions and w produ				ne acqu	uainteo	d with the	e impor	tance of t	eamwork and	
Course	Outcom	nes: O	n the	succes	sful co	ompletio	on of	the c	ourse	, stude	nts wil	l be able	to			
CO1.	Under desigr		the co	oncept	t of de	signing a	a nev	v proo	duct ar	nd impo	ortanc	e of	Under	rstand		
CO2.	produ	cts				eds and			_	-			Unde			
CO3.	Relate	e the n	narket	: dema	ind an	d prepai	re fo	r the l	aunch	of the	produ	ct	Undei	rstand		
CO4.	occuri	ring in	the d	esign s	stage	of new p			0	5	•		Apply			
CO5.	Identi paten				ments	, scope,	oper	ating	proce	dure ar	nd outl	ine for	Apply			
Mappir	ng with l	Progra	imme	Outco	omes a	and Prog	gram	me Sp	oecific	Outco	mes					
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO I 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO3	
CO1	S	L	S	М		М	Μ						S	L	L	
CO2		Μ	S	L		S	Μ						М			
CO3	S		S		М		Μ		L				M M			
CO4	S	Μ	S	S		Μ	_	L								
CO5	S	Μ	S	S				L							М	
S- Stror	ng; M-M	ediun	n; L-Lo	w	I	<u> </u>						1	1			

INTRODUCTION TO NEW PRODUCT DESIGN

Introduction to New Product Design – Importance – Objectives – The New Product Development Process Principles of Success - Factors influencing product design – Characteristics of a good product design

IDENTIFYING CUSTOMER NEEDS AND PRODUCT SPECIFICATIONS

Interpret raw data in terms of customers need, organize needs in hierarchy and establish the relative importance of needs, Establish target specifications, setting final specifications

CONCEPT AND PRODUCT DESIGN AND DEVELOPMENT

Concept and Idea generation -Activities of concept generation, clarifying problem, search both internally and externally, explore the output, Assessing need for industrial design, industrial design process, management, assessing quality of industrial design - Testing and forecasting

NEW PRODUCT LAUNCH AND MARKET ENTRY

Preparing a Launch Plan - Market Testing - Pricing, Packaging - Integrated Marketing - Customer and Channel Marketing - Innovation Marketing

INTELLECTUAL PROPERTY

Elements and outline, patenting procedures, claim procedure, Design for Environment: Impact, regulations from government, ISO system and IPR.

Text	Books
1	Otto K, and Wood K, "Product Design", Pearson Education, 2001.
2	Ulrich K. T, Eppinger S.D and Anita Goyal, "Product Design and Development", Tata McGraw Hill, 2009.
Refer	rence Books
1	New Products Management,9th ed., by Merle Crawford and Anthony DiBendetto
Cours	se Designers

S.No	Faculty Name	Designation	Department/Nam e of the College	Email id				
1	R.PRAVEEN	ASST. PROF – GR-II	Mech / AVIT	praveen@avit.ac.in				
2	M.SARAVANAN	ASST. PROF	Mech / VMKVEC	saravanan@vmkvec.edu.in				

17M	ESE22	Δ		ΙΟΤΙν	FINFC	OTRONI	cs	Cate	egory	L		T	Р		Credit
17141					C			EC	(SE)	3		0	0		3
Pream	nble	<u> </u>						1			<u> </u>	<u> </u>		<u> </u>	
	dy Instr cts for \			ers, Te	elemat	tics Syst	tems,	Powe	er train	ı, Electr	onic Cc	ntrol l	Jnits and	l Cockpit E	lectronics
Prerec	quisite	NIL													
Cours	e Objec	tive													
1	To Lear	n the	variou	ıs driv	er ass	istant s	syster	m in a	Vehic	le.					
2	To Lear	n the	Globa	l posit	tioning	g and n	aviga	ition s	ystem	•					
3	To know	wn the	e collis	sion w	arning	g and de	etect	ion sy	stem.						
4	To stud	y abo	ut the	adap	tive co	ontrol s	yster	n and	comfo	ort syste	ems in	autom	obiles		
5	To stud	y abo	ut the	secur	ity an	d smart	t carc	d syste	em.						
Cours	e Outco	mes:	On the	e succe	essful	comple	tion	of the	cours	e, stude	ents wi	ll be al	ole to		
CO1.	Knov	vn the	vehic	le mot	ion co	ntrol ar	nd sta	abiliza	tion sy	rstem.			Underst	and	
CO2.						and co							Underst	and	
CO3.	Knov	wn the	e vario	ous sa	afety s	system	s use	ed in v	vehicle	es.			Underst	and	
CO4.						e collisic							Underst	and	
CO5.	Appl syste		mport	ance o	of Driv	er assis	tance	e, secu	irity ar	nd warn	ing		Apply		
Марр	ing with	n Prog	ramm	e Outo	comes	and Pr	ograi	mme S	Specifi	c Outco	mes				
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	L	-	-
CO2	S	L	L	-	-	-	-	-	-	-	-	-	L	-	-
CO3	S	L	L	-	-	-	-	-	-	-	-	-	L	-	-
CO4	S	L	L	-	-	-	-	-	-	-	-	-	L	-	-
CO5	S	М	М	L	-	-	-	-	-	-	-	L	L	-	-
		Mediu													

DRIVER ASSISTANCE SYSTEMS

Driver information, driver perception, driver convenience, driver monitoring, general vehicle control, longitudinal and lateral control, collision avoidance and vehicle monitoring.

TELEMATICS

SECURITY SYSTEMS

Global positioning system, geographical information systems, navigation system, architecture, automotive vision system and road recognition.

COLLISION WARNING AND AVOIDANCE

Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions.

ADAPTIVE CONTROL SYSTEMS AND COMFORT SYSTEMS

Adaptive cruise control system, adaptive noise control, active suspension system, power steering, collapsible and tilt able steering column and power windows, Adaptive lighting system.

Antitheft technologies-mechanical, electromechanical and electronic immobilizers, alarm system, stolen vehicle tracking system, remote keyless entry, smart card system and number plate coding.

Text Books Ljubo Vlacic, Michel Parent and Fumio Harashima, "Intelligent Vehicle Technologies", Butterworth-Heinemann 1 publications, Oxford, 2001. 2 Robert Bosch, "Automotive Hand Book", 5th Edition, SAE, 2000. Ronald K Jurgen, "Navigation and Intelligent Transportation Systems – Progress in Technology", Automotive 3 Electronics Series, SAE, USA, 1998 **Reference Books** William B Riddens, "Understanding Automotive Electronics", 5th edition, Butter worth Heinemann Woburn, 1998. 1 2 Bechhold, "Understanding Automotive Electronics", SAE, 1998. 3 Allan W M B, "Automotive Computer Controlled Systems", Elsevier Butterworth-Heinemann, 2011. **Course Designers** Department/Na S.No Designation me of the Email id **Faculty Name** College ASST. PROF MECH./ AVIT saravanakumar@avit.ac.in 1 M. SARAVANA KUMAR GRII Assistant MECH / chandrasekar@vmkvec.edu.in 2 **R. CHANDRASEKAR** Professor VMKVEC

1534			IICR		D NA			Cate	egory	L		Т	Р	Cre	dit
17M	IESE2.	5	IVIA	i cini		J		EC	(SE)	3		0	0		3
Prear		prese	ent the	e basi	cs of 1	nicro a	nd na	ano m	achin	ing tecl	hnolog	v and i	its app	lications.	
	quisite	-								0	0	<u> </u>			
NIL															
	se Obj			- f	1	4.01.00		d.		1 1	1.1	of Mio	. Nor		
	To leaf Techno		out th	e iun	damer	ital as	wen	as adv	vanceo	1 Know	ledge		o nai	no machin	iing
2	To exp	lain th	ne bas	ic prir	nciples	s and n	necha	nism	of Tr	aditiona	al Mic	ro Nan	o mac	hining an	d its applications.
3 '	To illu	strate	the ba	sic pr	incipl	es and	appli	catior	ns of A	Advanc	ed Mi	cro Na	no Ma	chining.	
			ate the	e basi	c prin	ciples a	and a	pplica	tions	of diffe	erent A	Abrasiv	e base	ed Micro	Nano
	<u>Machin</u> To illus		the fu	ndam	ents o	f MEM	IS an	d its t	echni	ques.					
_				41.		.e.1		4.	£ 41					- 1 -1 4	
Cours							-				-			able to	
CO1.	Expla	in the	basic	need	of M	icro Na	ano N	lachir	ning ii	n differ	ent ind	lustries	5	Understa	nd
CO2.	Sumn	narize	the tr	aditio	nal M	licro N	ano N	Machi	ning	techniq	ues.			Understa	nd
CO3.	Demo Nano				erstanc	l differ	ent n	necha	nisms	in Adv	vanced	Micro		Apply	
CO4.	Utiliz	e the i	impor	tance	of Ab	rasives	in M	licro	Nano	Machi	ning.			Apply	
CO5.		•				in Micı				0				Apply	
CO6.						capabil			der to	diversi	fy and	impro	ve	Apply	
Mapp	oing wi	th Pr	ogran	nme (Outco	mes ai	nd Pr	ogra	mme	Specifi	ic Out	comes			
СО	PO1	PO	PO	PO		PO		PO		PO1	PO1		PSO		PSO
C01	S	2 L	3	4	5	6	7	8	9	0	1	2	1 S	2	3
CO1	S	L	_	_									S		
CO3	S	M	L	-									S		
CO4	S	М	L	-									S		
CO5	S	М	L	-									S		
CO6	S	S	S	S									S		
	ong; N				ow								<u> </u>		
- 54															

INTRODUCTION TO NANO MACHINING

Need-evolution- fundamentals and trends in micro and nano technologies-Consequences of the technology and society-challenges to manufacturing technology-evolution of precision in manufacturing, tooling and current scenario- Micro Nano materials, fabrication tools, requirements and applications.

TRADITIONAL NANO MACHINING

Theory of micromachining – Chip formation – Size effect in micromachining – Micro turning- Micro milling-Micro drilling-Micro machining tool design – Precision Grinding – Partial ductile mode grinding – Ultra precision grinding.

ADVANCED MICRO NANO MACHINING

Introduction-Classification- Mechanical Micromachining (AJM, USM)- Thermal Micromachining (EDM, LBM, EBM)-Electrochemical and Chemical Micromachining-Ion Beam Machining-Photochemical Etching

ABRASIVE BASED MICRO NANO MACHINING

Abrasive Flow Finishing (AFF)-Magnetic Abrasive Finishing (MAF)-Magnetorheological Finishing-Magnetorheological Abrasive Flow Finishing-Elastic Emission Machining (EEM) and Magnetic Float Polishing

MEMS

Introduction to MEMS, Definitions and classifications-History-applications-MEMS Market-Bulk Micromachining- Wet and Dry Etching-Surface Micromachining-Chemical-Vapor Deposition-Lithography-Wafer Bonding.

Text Books:

1	V.K.Jain, Introduction to Micromachining, Narosa publishing House, New Delhi.
2	Tai-Ran Hsu, "MEMS and Microsystems: Design and Manufacture," McGraw- Hill, 2008.
Reference Boo	ks:

1 J. Paulo Davim, Mark J. Jackson (2009) Nano and Micromachining, John Wiley & Sons.

2 V. K.	Jain (2012), Microm	nanufacturing Proce	esses, CRC Press.
---------	---------------------	---------------------	-------------------

3 Mohamed Gad-el-Hak (2010) MEMS Introduction and Fundamentals, CRC Press.

Course Designers

Sl.No	Faculty Name	Designation	Department/Name of the College	Email id
1	B.SELVA BABU	Assistant Professor	Mech / AVIT	selvababu@avit.ac.in
2	M SARAVANAN	Asst Prof	Mech /VMKVEC	saravananm@vmkvec.edu.in

17ATEC10	ALTERNATIVE ENERGY SOURCES FOR	Category	L	Т	Р	C
	AUTOMOBILES	EC(PS)	3	0	0	3

Preamble

Petroleum based fuels are the energy sources for almost all automotive vehicles. With fossil fuels expecting to get depleted, new and alternate sources of energy for automotive vehicles are on the search since decades. Many known forms of energy are being explored for use in automotive.

Prerequisite

Nil

Course Objectives

CU	disc Objectives
1	To brief the various available options as alternate energy sources for automotive vehicles.
	To detail on the use of alcohol based chemicals as an alternate source of energy for automotive vehicles.
3	To describe on the possibilities of using LPG, CNG, Hydrogen and Biogas as a form of alternate source of energy for automotive vehicles.
4	To explain on the methods of using vegetable oils as alternate fuel for automotive engines.
5	To describe on the modes of systems developed for using electrical energy and solar energy as an alternate energy source for automotive vehicles.

Course Outcomes:

After Successful completion of this course, the students will be able to:

	1		1			,								1	
CO1.		Summ	arize o	n the v	arious	alterna	ite ene	rgy sou	irces fo	or an au	Itomoti	ive vehic	cle	U	nderstand
CO2.		Recommend a suitable alcohol based chemical fuel as an alternate energy source for an automotive engine.													nderstand
CO3.		Appraise on the utility of gases as a possible source of energy for automotive engines.												Apply	
CO4.		Appraise on the exact method of generating alternate fuel from vegetable oils. Apply													
CO5.		Appraise on the different systems for developing an electric and a solar vehicle. Apply													
			Mapp	oing wi	th Pro	gramn	ne Out	comes	and P	rogran	ıme Sp	ecific O	utcome	es	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М				-				-	S		
CO2	S	М	М	М				-				-	S		
CO3	S	S	S	М	Μ	Μ		-				-	S		
CO4	S	S	S	М	Μ	М		-				-	S		
CO5	S	S	S	М	Μ	М		-				-	S		

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION
Estimation of petroleum reserve - Need for alternate fuel - Availability and properties of alternate fuels-
general use of alcohols - LPG - Hydrogen - Ammonia, CNG, and LNG - Vegetable oils and Biogas - Merits and
demerits of various alternate fuels.
ALCOHOLS
Properties as engine fuel, alcohols and gasoline blends, performance in SI engine. Methanol and gasoline blends Combustion characteristics in engines - emission characteristics.
CNG, LPG, HYDROGEN AND BIOGAS
Availability of CNG, properties, modification required to use in engines - performance and emission
characteristics of CNG using LPG in SI & CI engines. Performance and emission for LPG - Hydrogen –
Storage and handling, performance and safety aspects.
VEGETABLE OILS
Various vegetable oils for engines - Esterification - Performance in engines - Performance and emission
Characteristics
ELECTRIC AND SOLAR POWERED VEHICLES
Layout of an electric vehicle - Advantage and limitations - Specifications - System component.
Electronic control system - High energy and power density batteries - Hybrid vehicle - Solar
 TEXT BOOK:

- 1. K. K. Ramalingm, internal Combustion Engines, Scitech publications, Chennai, 2003.
- 2. MaheswarDayal, " Energy today & tomorrow ", I & B Horishr India, 1982

REFERENCES:

- 1. "Alcohols and motor fuels progess in technology", Series No. 19, SAE Publication USA 1980.
- 2. SAE Paper Nos. 840367, 841156, 841333, 841334.
- 3. "The properties and performance of modern alternate fuels " SAE Paper No.841210.

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	<u>saravanakumar@avit.ac.in</u>
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17ECC	C11			COMM	UNIC	ATIO	N		C	ategor	y I	L T	Р	Cree	lits
TIECC	CII	N	ETWO	ORKS						CC		3	0 ()	3
PREA To intro data cor PRER	oduce tl nmunic	he con cations	and its	s securi			etwork	s, in de	epth un	derstandi	ing of n	etwork	architectu	re of differ	ent layers of
COUF	RSE C	BJE	CTIV	'ES											
1	To u	ndersta	and the	physic	al laye	rs of la	yered r	nodels.							
2	To be	e expo	sed to e	error de	tection	/correc	ction &	mediu	m acce	ss contro	ls.				
3	To be	e famil	iar wit	h Interr	net Pro	tocols d	& curre	ent scer	ario						
4	To u	ndersta	and the	concep	ots of T	ranspo	rt & A	pplicati	on laye	ers.					
5				h Netw											
Cours	e Out	come	s												
On the	succe	essful	comp	oletion	of th	e coui	se, st	udents	s will	be able	to				
CO1. U	ndersta	nd the	basics	and wo	orking	of laye	red arc	hitectu	re					Underst	and
	oifferen	tiate d	lifferen	t error	contro	ol, Lin	k cont			ntrol an	d differ	ent LA	N	Appl	у
								opriate	routing	g mechan	ism.			Analy	ze
CO4. A	nalyze	the var	rious tr	ansport	t and a	oplicati	on lay	er proto	cols in	real time				Analy	
CO5. St	udy the	e funct	ioning	and me	thods	of data	and ne	twork	security	.				Underst	and
MAPH	PING	WIT	H PR	OGR	AMN	IE O	UTC	OMES	5 ANI) PRO	GRAM	IME S	SPECIF	IC OUTC	COMES
COS	PO	РО	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	PSO1	DSO2	
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1501	PSO2	PSO3
CO1	М	М	-	-	L	-	-	-	L	-	-	L	-	-	-
CO2	S	S	L	-	М	-	-	-	-	L	-	-	S	М	-
CO3	S	S	М	-	-	-	-	-	М	L	L	-	-	-	М
CO4	S	S	L	-	-	-	-	L	L	L	L	L	S	М	М
CO5	М	L	L	-	L	-	-	М	М	-	-	М	-	-	-
S-Stron	ng; M-N	Aediur	n; L-Lo	OW										<u> </u>	·
Syllabu															

Physical Layer.

Data Communications-Networks & its types-Standards-Networks models --Protocol layering-TCP / IP protocol suite-OSI model.

Digital to Digital conversion-Analog to Digital conversion-Transmission modes-Digital to Analog conversion- Analog to Analog conversion-Multiplexing-Spread spectrum-Guided and Unguided Transmission media-Switching-Circuit switched networks-Packet switching-Structure of Switch.

Data Link Layer.

Link layer addressing.

Error Detection & Correction: Block coding-Cyclic codes-Checksum-Forward error correction. Data link control: DLC services-Data link layer protocols-HDLC-PPP.

Medium Access Control: Random access-Controlled access-Channelization.

Wired LANS: Ethernet protocol-Standard Ethernet-Fast Ethernet & Gigabit Ethernet.

Wireless LANS: IEEE 802.11 project-WiMAX-Cellular Telephony-Satellite networks.

Connecting devices, Virtual LANS.

Network Layer.

Network layer services-Packet switching-Performance-IPv4 Addresses.

Internet Protocol, ICMPv4, Mobile IP.

Unicast Routing: Routing algorithms-Unicast routing protocols.

Multicast routing: Multicasting basis-Intra domain & Inter domain Multicast protocols, IGMP.

Next Generation IP: IPv6 Addressing-IPv6 protocol-ICMPv6 protocol-Transition from IPv4 to IPv6.

Transport & Application Layer

Transport layer protocols-User Datagram Protocol-Transmission Control Protocol-SCTP.

Client server programming-WWW & HTTP-FTP-Electronic mail-TELNET-SSH-DNS-SNMP-Compression- Multimedia Data & in the Internet- Real-Time Interactive protocol-P2P Networks-CHORD-PASTRY-KADEMLIA-BITTORNET.

Network & Internet Security

Quality of Service: Data flow characteristics-Flow control to improve QoS-Integrated services-Differentiated services.

Cryptography: Introduction-Confidentiality-Other aspects of Security.

Internet Security: Network layer security-Transport layer security-Application layer security-Firewalls.

TEXT BOOK:

8. Behrouz A. Foruzan, "Data communication and Networking", Tata McGraw-Hill, 2013.

REFERENCE BOOKS:

- 7. 1. Andrew S. Tannenbaum, "Computer Networks", Pearson Education, Fifth Edition, 2011.
- 8. James F. Kurose, Keith W. Ross, "Computer Networking- A Top -Down Approach Featuring the Internet", Fifth Edition, Pearson Education, 2009.
- 9. Larry L. Peterson, Bruse S. Davie, "Computer Networks: A System Approach", Fifth Edition, Morgan Kaufmann Publishers, 2011.
- 10. Nader. F. Mir, "Computer and Communication Networks", Pearson Prentice Hall Publishers, 2010.

		Course Design	ners	
S.No	Name of the Faculty	Designation	Department	e-Mail ID
1	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
2	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
3	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
4	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in

		Category	L	Т	Р	Credit
17AREC03	UNMANNED AIRCRAFT SYSTEMS	ELECTIVE	3	0	0	3

Preamble

This course is designed to develop hands on skills in operation of unmanned aerial vehicles which is the latest demand of present situation.

Prerequisite

NIL

Course Objectives

1	To provide information on Unmanned Aerial Vehicles (UAV) and its types.
2	To create interest in developing and operating UAV.
3	To model and additional features in unmanned vehicles.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define and label parts of unmanned aerial vehicles.	Remember
CO2.	Explain principle and operation of aerial vehicles.	Understand
CO3.	Demonstrate analytical skills to develop a new system.	Apply
CO4.	Categorise the system for highest reliability and performance.	Analyze
CO5.	Recommend modification in the system.	Evaluate
CO6.	Build a new vehicle with additional features.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

						0				0					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	L	L	L	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO2.	L	L	L	L	-	-	-	-	-	-	-	-	Μ	Μ	М
CO3.	S	Μ	L	L	L	Μ	-	-	S	-	-	-	М	М	М
CO4.	S	S	М	Μ	М	S	-	-	М	Μ	-	-	S	М	М
CO5.	S	S	S	S	S	S	-	-	S	S	S	S	S	S	S
CO6.	S	S	S	S	S	S	-	S	S	S	S	S	S	S	S
	1		1		1										

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION TO UNMANNED AIRCRAFT SYSTEMS

History of unmanned aerial vehicles- types- Introduction to Unmanned aircraft systems-Unmanned aerial vehicles – Micro aerial vehicles definitions, history, classification- applications-recent research and development in civil and defense applications – autonomous vehicles -future research in autonomous vehicles – design standards and regulatory aspects introduction to design and selection of systems.

9

9

9

ASPECTS OF UNMANNED AIRCRAFT SYSTEMS

Involvement of different aspects in the development of UAV-aerodynamic configurations -Aspects of airframe design- Stealth design, payload types, communication, navigations & guidance systems, control & stability, launch, recovery and support systems, reliability design.

MODELING AND CONTROL HELICOPTER MODEL

Modeling and control of small and miniature unmanned helicopters –single rotor helicopter design – coaxial rotor helicopter design - autonomous control of a mini quad-rotor vehicle using LQG controllers – linearization and identification of helicopter model.

UNMANNED AERIAL VEHICLE DESIGN MODELING & CONTROL 9

Development of autonomous quad tilt wing – advanced flight control systems for rotorcraft UAV and MAV – mathematical modeling and non- linear control of VTOL aerial vehicles.

DEPLOYMENT OF UAS/UAV SYSTEMS

9

Only application point of view of various UAS roles played in civil, defense applications -vision based

navigation company trails- certification of UAS/UAV/MAV systems.

TEXT BOOK:

1. Barnhart, Hottman, Marshall, Shappee, Introduction to Unmanned Aircraft Systems, CRC Press, Taylor and Francis Group

2. Kenzo Nonami, Farid Kendoul, Satoshi Suzuki, Wei Wang, Daisuke Nakazawa, Modeling and Control of Unmanned Small Scale Rotorcraft UAVs & MAVs, Springer, New York, 2010

3. Laurence R. Newcome, Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles, American Institute of Aeronautics and Astronautics, New York, 2004

REFERENCES:

1. Reg Austin, Unmanned Aircraft Systems, Wiley and Sons Ltd, 2010.

2. Elizabeth Bone, Christopher Bolkcom, Unmanned Aerial Vehicles, Novinka Books, United Kingdom 2004

3. Rogelio Lozano, Unmanned Aerial Vehicles Embedded Control, John Wiley & Sons, 2010

4. Pedro Castillo, Rogelio Lozano, Alejandro E. Dzul, *Modelling and Control of Mini-Flying Machines*, *Advances in Industrial Control (Aic)*, Springer-Verlag, London, 2005

Course Designers:

S.No	Name of the Faculty	Mail ID
1	M. Senthil kumar	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

17CSCC33	PROBLEM SOLVING USING	Category	L	Т	Р	Credit
	COMPUTER	CC	3	0	0	3

PREAMBLE

This course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques.

	7 1	U	U												
PRERC	DUISITE														
Nil															
COURS															
1.	To ur	idersta	nd the	basic o	concep	ts of p	roblem s	olving	methe	odology	/.				
2.	To stu	udy and	d apply	ı algori	thm de	esign.									
3.	To stu	udy and	d apply	/ progra	ammin	g and o	developii	ng skil	ls.						
4.	To ur	dersto	od, an	alyze a	nd eva	luate t	he probl	em.							
5.	То ар	ply, an	alyze,	evalua	te and	solve t	he probl	em by	using	progra	mming	concep	ots.		
COURS	SE OUT	COME	S												
On the	e succe	ssful co	omplet	ion of t	he cou	irse, st	udents v	vill be	able to	C					
CO1 . C	compre	hend t	the role	e of cor	nputin	g and i	use of pr	ogram	ming	concep	ts in		Unde	rstand	
	-			lutions	•	0	•	Ū	Ū	·					
						amenta	al mathe	matica	al prob	lems, n	nerging	ı	Apply	1	
sorting	,		•												
CO3. [Develo	p algor	rithms	for text	proce	ssing a	nd patte	ern sea	irching	J			Analy	ze	
	-	•					the prob			•			Evalu	ate	
-			ial part	s using	prope	r contr	ol struct	ures a	nd cor	mpose i	into an				
overal															
	-	•					is drawn		engine	ering c	ontexts	and	Apply	1	
		-	•		-	-	languag					MAEC			
	ING W					VIES AI	ND PROC	JRAIVI	IVIE SP	ECIFIC		IVIES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	-
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	-
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	-
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	-	-
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М	М	М
S-Stro	ong; M	-Mediu	ım; L-I	LOW		·	·	·	·	·			·	· · · ·	
SYLL	ABUS														
Introd	luction	to pro	oblem	solving	g with (compu	iters - Co	ompu	ting S	vstems	:				
		-				-		-		-				1 1	
Hardw	are an	a Softv	ware –	Engine	ering I	robler	n Solvin	g Met	nodolo	ogy: pro	oblem s	pecific	ation ai	nd analys	is, algorithm

design, flowchart, implementation, program testing and verification.

Algorithm Design: Fundamental algorithms:

Swapping of two variables – counting – summation of set of numbers – factorial – Fibonacci sequence – base conversion Factoring Techniques: smallest divisor of an integer – greatest common divisor – generating prime number – generating prime factor

Merging, Sorting and Searching Techniques:

Two way merge – sorting by selection sort – sorting by exchange – sorting by insertion – linear search – binary search Array techniques: Array order reversal – Statistical measurement - array counting - array Partitioning Text Processing and Pattern Searching: Key word search – text line editing –linear pattern search.

Programming Concepts:

Basics of programming -Constant, variable, keywords, data types - Operators, operator precedence, expressions - Control Structures: Selection structure- Repetition Structure.

Modular Programming and Functions:

User defined functions- Recursive functions Array Handling: 1-D, 2-D: declaration – initialization, Using arrays as function arguments- Strings Pointers: Basics of Pointers - Arrays and Pointers - Pointers and Functions - Structures and Union - File Handling.

TEXT BOOK:

1. R. G. Dromey, "How to solve it by Computer", Pearson Education India,2014 **REFERENCES:**

- 1. Maureen Sprankle, Jim Hubbard, "Problem Solving & Programming Concepts",
- 2. Prentice Hall, 2012
- 3. Jeri R. Hanly Elliot B. Koffman, "Problem Solving and Program Design in C", 7th Edition, Pearson, 2013
- 4. Delores M. Etter, "Engineering Problem Solving with C", Pearson, 4th Edition, 2013.
- 5. Donald E. Knuth, "Art of Computer Programming", Pearson Education, 2012.
- 6. Yashavant Kanetkar, "Let us C", 8th Edition, BPB Publications, 2007.

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in
2.	Mr.K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

17C	SCC08			CC)MPU'	TER N	ETW	ORKS			Category	L	Т	P C	Credit
170	00000			Ŭ							СС	3	0	0	3
PREA	MBLE														
-	•						-				tion and co	-			•
_		-				-				_	red function				-
	node in	•			or each	Tunctio	manty	for each	i layer.	. Trace	the flow of	morma	lion fro	m one n	lode lo
	EQUISI														
NIL	C														
COUR	SE OBJ	JECT	IVES												
1.	To prov	vide b	asic kn	lowledg	ge in ne	tworki	ng con	cepts.							
2.	To intro	oduce	and de	emonstr	ate var	ious br	idges, s	switche	s and E	Ethernet	s.				
3.	To intro	oduce	differe	ent metl	hodolog	gies in	routing								
4.	To lear	n abo	ut trans	smissio	n proto	cols an	d QOS	•							
5.	To prov	vide k	nowled	lge abo	ut diffe	erent ap	plication	on prot	ocols.						
COUR	SE OU	ГСОІ	MES												
On succe	essful co	omple	tion of	the cou	irse, stu	idents v	will be	able to							
CO1.Lea	arn the f	undan	nentals	of netv	vorks a	nd diff	erent ty	pes of	OSI La	yers.		Underst	and		
CO2.Lea	arn the d	iffere	nt Ethe	rnet, w	ireless	networ	ks, swi	tching a	and bri	dging c	oncepts	Underst	and		
	sign solu	itions	for con	nplex r	outing	method	ds and o	differen	t multi	cast rou	iting	Evaluat	e		
echniqu			(. . 1'			-1-6		••		1	- 1 (1				
	arn the c f service	-			protoc	ols for	transm	ission p	ourpose	e and sti	idy the	Underst	and		
	urn diffe				ation pr	otocols	s and it	s archit	ecture.			Underst	and		
MAPP	ING W	ITH	PROG	RAMN	1E OU	TCOM	IES AI	ND PR	OGRA	MME	SPECIFI	C OUTC	OMES		
COs	PO1 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO.
CO1	S	М	М	-	-	-	-		-	-	-		-	М	М
-CO2	S	М	М	-	-	-	-	-	-	-	-	-	-	М	М
CO3	S	М	S	М	-	-	-	-	-	-	-	-	-	М	М
CO4	S	М	М	-	-	-	-	-	-	-	-	-	-	М	М
CO5	S	М	М	-	-	-	-	-	-	-	-	-	-	М	М
S- Stro	ng; M-N	/lediu	m; L-L	ow	-		•	•				•	•		-

FUNDAMENTALS OF OSI LAYERS

Building a network – Requirements - Layering and protocols - Internet Architecture – Network software – Performance ; Link layer Services - Framing - Error Detection - Flow control.

MEDIA ACCESS & INTERNETWORKING

Media access control - Ethernet (802.3) - Wireless LANs – 802.11 – Bluetooth - Switching and bridging – Basic Internetworking (IP, CIDR, ARP, DHCP, ICMP).

ROUTING

Routing (RIP, OSPF, metrics) – Switch basics – Global Internet (Areas, BGP, IPv6) - Multicast – addresses – multicast routing (DVMRP, PIM).

TRANSPORT LAYER

Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission – TCP Congestion control - Congestion avoidance (DECbit, RED) – QoS – Application requirements.

APPLICATION LAYER

Traditional applications -Electronic Mail (SMTP, POP3, IMAP, MIME) - HTTP - Web Services - DNS - SNMP.

TEXT BOOKS:

- 1. Behrouz A. Foruzan, "Data communication and Networking", Seventh Edition, Tata McGraw-Hill, 2017.
- 2. Andrew S. Tannenbaum, David J. Wetherall "Computer Networks", Pearson Education, Eighth Edition, 2016.

REFERENCES:

- 1. William Stallings, "Data and Computer Communication", Eighth Edition, Pearson Education.
- 2. Knuth, D.E., "Computer Communication and Networks", Sixth Edition, McGrath-Hill, 2016.

COUR	COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	K. Karthik	Assistant Professor	CSE	karthik@avit.ac.in								
2	Mr.G.Seenivasan	Assistant Professor	CSE	seenivasan@vmkvec.edu.in								

17EEPI01	PROJECT WORK AND VIVA VOCE	Category	L	Т	Р	Cre dit
		PI	0	0	18	9

PREAMBLE

The project provides learners with the opportunity to explore a problem or issue of particular personal or professional interest and to address that problem or issue through focused study and applied research under the direction of a faculty member. The project demonstrates the learner's ability to synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems. This final project affirms learners' ability to think critically and creatively, to solve practical problems, to make reasoned and ethical decisions, and to communicate effectively.

PREREQUISITE –Nil

COURSE OBJECTIVES

1	To provide learners with the opportunity to apply the knowledge and skills acquired in their	
1	courses to a specific problem or issue.	

- 2 To allow learners to extend their academic experience into areas of personal interest, working with new ideas, issues, organizations, and individuals.
- To encourage learners to think critically and creatively about academic, professional, or social issues and to further develop their analytical and ethical leadership skills necessary to address and help solve these issues.
- 4 To provide learners with the opportunity to refine research skills and demonstrate their proficiency in written & oral communication skills.
- 5 To take on the challenges of teamwork, prepare a presentation in a professional manner, and document all aspects of design work.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply the knowledge and skills acquired in their courses to a specific problem or issue.

 Y

 CO2. Extend their academic experience into areas of personal interest, working with new ideas,

 Anal

 issues,organizations, and individuals.

Appl

CO3. Think critically and creatively about academic, professional, or social issues and to furtherdevelop their analytical and ethical leadership skills necessary to address and help solve these these issues.

CO4. Refine research skills and demonstrate their proficiency in written & oral communication Eval skills.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

															Р
CO'S	PO	DCO1	PS	S											
CO'S	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	O2	0
															3
CO1	S	L	L	М	М	-	-	-	М	М	-	М	М	М	-
CO2	Μ	Μ	Μ	Μ	L	-	-	-	Μ	L	-	Μ	М	Μ	Μ
CO3	S	S	М	М	-	-	-	L	-	L	S	М	S	S	-
CO4	C	М	М	М				-		T	М	М	C	S	

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. The project is a major component of our engineering curriculum: it is the culmination of the program of study enabling the learners to showcase the knowledge and the skills they have acquired during the previous four years, design a product/service of significance, and solve an open-ended problem in engineering.
- 2. Each student must register to the project course related to his or her program
- 3. Project course consists of one semester and would be allowed to register only during the final year of study.
- 4. Project may be initiated during the pre-final semester but will be assessed and credits transferred only during the last semester of study, upon completion of all other degree requirements. Generally the undergraduate project is a team based one.
- 5. Each team in the major course will consist of maximum of 5 learners.
- 6. Each project will be assigned a faculty, who will act as the supervisor.
- 7. The project shall be driven by realistic constraints like that related to economic, environmental, social, political, ethical, health & safety, manufacturability and sustainability.
- 8. Each group must document and implement a management structure. Group leadership roles must be clearly identified including who has responsibility for monitoring project deliverables and group coordination.
- 9. A group project may be interdisciplinary, with learners enrolled in different engineering degrees, or in Engineering plus other faculties such as Management, Medical and Health Sciences, Science and Humanities.
- 10. Each student team is expected to maintain a log book that would normally be used to serve as a record of the way in which the project progressed during the course of the session.
- 11. Salient points discussed at meetings with the supervisor (i.e., suggestions for further meetings, changes to experimental procedures) should be recorded by the student in order to provide a basis for subsequent work.
- 12. The logbook may be formally assessed;
- 13. The contribution of each individual team member will be clearly identified and the weightage of this component will be explicitly considered while assessing the work done.
- 14. A project report is to be submitted on the topic which will be evaluated during the final review.
- 15. Assessment components will be as spelt out in the regulations.
- 16. The department will announce a marking scheme for awarding marks for the different sections of the report.
- 17. The project report must possess substantial technical depth and require the learners to exercise analytical, evaluation and design skills at the appropriate level.

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.R.Devarajan	Professor	EEE	deverajan@vmkvec.edu.in								
2	Ms. L.Chitra	Asso. Prof.	EEE	chitra@avit.ac.in								

17	FEDIA	2		MIN		IFCT		Cate	gory	l	L	Т	Р	Cre	edit
17	EEPI(12		IVIIIN	I PRO	JECI		P	PI	()	0	6	3	3
						-			0				-	nto a w	orking
mode	i / prot	otype	invor	ving m	iuiti-dis	cipina		s and /	OF KHOV	viedge	and wor	rking in	at team	1.	
	REQU														
	RSE (1 • 1	/ . 1 •	• •		1 .						
$\frac{1}{2}$		-			el idea /		<u> </u>	-		nroiod	thouin		tontial		
Z	2 Apply the acquired knowledge to carry out a capstone project having substantial multidisciplinary component														
3	To u	nders	tand t	the ma	anager	nent te			implerr						
4									e a pre	sentati	on in a	profes	ssional	manne	er,
COU	RSE C				ects of	luesig	n worr	\							
					of the o	ourso	atudant	o will b	a abla t	0					
On the successful completion of the course, students will be able to															
CO1. Apply the knowledge and skills acquired in their courses to a specific problem or issue.ApplyCO2.Apply the acquired knowledge to carry out a capstone project having substantialApply											ply				
	.Apply discipl					je to ca	arry ou	it a cap	ostone	projec	t havin	g subs	tantial	Ap	ply
						rk, pre	pare a	present	ation in	a prof	essiona	l manne	er, and	Ana	lyze
docur	nent al	l aspe	cts of	desigr	n work										•
CO4.	Explai	in desi	ign thi	nking	practic	es and	their ap	oplication	ons					Cre	eate
MAP	PING	WIT	H PR	OGRA	MME	OUTO	COME	S AND	PROG	GRAM	ME SP	ECIFIC	COUT	COME	S
CO	PO	PO	PO	PO	PO5	PO	PO0	PO0	PO0	PO1	PO1	PO1	PSO	PSO	PSO
S CO	1	2	3	4		06	7	8	9	0	1	2	1	2	3
1	S	Μ	Μ	Μ	L	-	-	-	М	М	-	М	М	М	М
CO 2	S	L	L	М	М	-	-	-	М	М	-	М	М	М	-
CO 3	М	М	М	М	L	-	-	-	М	L	-	М	М	М	М
CO 4	S	S	Μ	М	-	-	-	L	-	L	S	М	S	М	-
S-Str	ong; N	1-Mec	lium; I	L-Low	1										

Norms

- Each student must register to the project course related to his or her program
- Mini Project course consists of one semester and would be allowed to register only during the final year of study.
- Minor design project identification, the objective and methodology and expected outcome of the proposed work.
- Presentation of the proposed work design, implementation and partial result
- > Presentation of complete project work with results and discussion Demonstration of project work
- > Minor Project Report

COURSE DESIGNERS

S.N 0	Name of the Faculty	Designation	Dept	Mail ID		
1	Dr.R.Devarajan	Professor	EEE	deverajan@vmkvec.edu.in		
2	Ms. L.Chitra	Asso. Prof.	EEE	chitra@avit.ac.in		

17CSPI07	LEARNING IT ESSENTIALS BY DOING	Category	L	Т	Р	Credit			
		PI	3	0	0	3			
PREAMRIE									

PREAMBLE

The proposed elective course exposes the non-CS/IT students to IT Essentials. The core modules of this Elective includes programming, Database and web Technology amongst other related topics. This course refers to the basic tools and technologies for the right type of website development and enable student to create simple web applications

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To le	arn abo	ut the e	essentia	ls of I	nforma	tion Te	echnolo	gy						
2	To ge	et an ide	ea abou	it the sc	ripting	langua	iges.								
3	To ge	et an ide	ea abou	it the in	nternet	protoco	ols								
COU	RSE OU	UTCON	MES												
On the	e succes	sful con	mpletio	on of the	e cours	e, stude	ents wi	ll be ab	ole to						
CO1 routin	Unders g	stand th	ie netw	vorking	g conce	ept int	ernet p	protoco	ols, net	work		Understa	nd		
CO2.	O2. Understand the fundamentals of web applications and its modeling Understand														
CO3. Understand and learn the scripting languages with design of web applications Understand															
CO4. Analyze the process of mobile communication and network technologies Analyze															
CO5.		imple i	nteract	ive app	olication	ns, data	abase a	pplicat	ions an	d multir	nedia	Analyze			
MAPI	PING V	VITH	PROG	RAMN	IE OU	TCOM	IES A	ND PR	OGRA	MME S	SPECI	FIC OUT	COMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
CO1	S	М	М	М	-	-	-	_	-	-	-	М	S	М	М
CO2	S	М	М	М	_	_	_	_	_	-	-	М	S	_	М
CO3	S	М	М	М	-	-	_	_	-	-	-	М	S	М	М
CO4	М	М	М	М	М	-	_	-	-	-	-	М	S	М	-
CO5	М	М	М	М	S	-	_	-	-		-	М	-	М	М

Fundamentals of Computer architecture

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

Operating system

Introduction – memory management schemes Process management Scheduling – threads. Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

RDBMS

 $\label{eq:constraint} \begin{array}{l} Data \ processing - the \ database \ technology - \ data \ models-ER \ modeling \ concept \ -notations \ - \ Extended \ ER \ features \ -Logical \ database \ design \ - \ normalization \ -SQL \ - \ DDL \ statements \ - \ DML \ statements \ - \ DCL \ statements \ - \ statements \ - \ statements \ statements \ - \ statements \ - \ statements \ - \ statements \ st$

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

Objected oriented concepts

Object oriented programming -UML Class Diagrams- relationship - Inheritance - Abstract classes - polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool - Application of OOC using Alice tool.

Client server computing

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI,1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in		
2.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in		

17CSPI0	4	B	USINE				E AND	ITS		Categor	y L	Т	Р	Credit
				APP	LICAT	IONS				PI	3	0	0	3
PREAMBL Business Int and present	elligence					•	• •		-				0	•
PREREQU	ISITE –	NIL												
COURSE ()BJECT	IVES												
1 To	Introduce	e studen	ts to va	rious bu	siness	intellig	ence co	ncepts						
2 To	learn the	concep	ts of dat	a integr	ation u	sed to c	levelop	intellig	ent syste	ms for d	ecision s	upport		
3 To	introduce	e visuali	zation t	ool for	prepare	the ent	terprise	reporti	ng					
4		lytical o	compon	ents an	d techn	ologies	used to	o create	dashboa	rds and s	corecard	ls, data/	text/Web	mining
	hods gain new	insight	s into oi	ganizat	tional o	peration	ns in in	plemen	itation of	systems	for Busi	iness Int	elligence	(BI)
COURSE (-	Ũ				•				•			0	
On the su			ion of th		a stude	ante wil	l be ab	a to						
On the su	cessiui e	ompieu			e, stud	Sints wit						Unde	erstand	
CO1. Learn		-							-					
CO2. Gaine formulate ar			-		-				-	-		Anal	yze	
CO3. Apply	Clusteri	ng, Asso	ociation	and Cla	assifica	tion tec	chnique	s for Da	ta Integr	ation		Appl	У	
CO4. Asses	s BI tool	s to solv	ve probl	ems, iss	sues, an	d trend	ls using	predict	ive analy	vsis		Appl	у	
CO5. Devel indicators for	op syster	ns to m	easure,	monito	r and p		-	-	-		formance	Appl	у	
MAPPING						S ANI) PRO	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	M	L	-	М	-	-	-	-	-	-	М	-	М	М
CO2 S	M	L	-	М	-	-	-	-	-	-	М	-	М	М
CO3 S	М	L	-	М	-	-	-	-	-	-	М	-	М	M
CO4 S	M	L	-	М	-	-	-	-	-	-	М	-	М	M
CO5 S	М	L	-	М	-	-	-	-	-	-	М	-	М	M
S- Strong; N	I-Mediu		w					<u> </u>						

SYLLABUS INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology – BI Roles & Responsibilities.

BASICS OF DATA INTEGRATION

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

BASICS OF ENTERPRISE REPORTING

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture– Enterprise Reporting using SSRS reporting service

BI ROAD AHEAD

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India, 2011

REFERENCES

1.Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.

2. David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.

3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in									
2.	Mrs. S. Leelavathy	Assistant Professor(G-II)	CSE	leelavathy@avit.edu.in									

1 7 F	EPI03									Categ	ory	L	Т	Р	Credit
1712	105			VIRTU	AL INS	TRUM	ENTAT	ION		PI		3	0	0	3
PREA	MBLE												•		
										uipped wi e functions					t-effectiv
PRER	EQUISI	TE-NIL	1												
COUR	SE OBJ	ECTIV	ES												
1	Revie	w backg	round in	formatio	on requi	ed for s	tudying	virtual i	nstrume	ntation.					
2	Study	the basi	c buildir	ng blocks	s of DA	Q in virt	ual instr	umentat	tion.						
3	Study	the varie	ous tech	niques o	f interfa	cing of o	external	instrum	ents of F	PC.					
4	Study	the varie	ous grap	hical pro	ogramm	ing envi	ronment	ts in virt	ual instr	umentation	ı				
5	Study	a few ap	plicatio	ns in vir	tual inst	rumenta	tion								
COUR	RSE OUT	ГСОМЕ	S												
On th	he succes	sful con	npletion	of the co	ourse, st	udents v	vill be a	ble to							
CO1: F	Review th	ne study	of signa	l time do	omain ar	nd AC/E	OC conv	erters.						Rememb	ver
CO2: 1	The conce	epts of o	peration	of virtu	al instru	mentatio	on and c	lassifica	tion.					Understa	ind
CO3:C	lassify a	nd desig	n of inte	rfacing of	of extern	al instru	uments							Evaluato	r
CO4: A	Apply the	concep	ts of gra	phical p	rogramn	ning.								Apply	
CO5: .	Analyze	the tool	ls and s	imple a	pplicatio	ons in s	ystems	for Fou	rier trai	nsform Po	wer spe	ctrum co	rrelation	Analyze	
window	wing and	filtering	tools.												
MAPP	PING W	TH PR	OGRAN	MME O	UTCON	MES AN	ND PRO	OGRAM	IME SP	ECIFIC C	DUTCO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	L	S	М	L	М	S	-	-	-	L	М	-
CO2	-	S	M	-	S	M	L	M	S	- -	- T	-	L	M	-
CO3 CO4	S S	 M	- S	- L	- S	M M	L L	M M	S S	L	L	-	M M	M S	-
	5	141	5		C	141		141	5	-	-	_	141	C	

S- Strong; M-Medium; L-Low REVIEW OF DIGITAL INSTRUMENTATION

Representation of analog signals in the digital domain - Review of quantization in amplitude and time axes, sample and hold, sampling theorem, ADC and DAC.

FUNDAMENTALS OF VIRTUAL INSTRUMENTATION

Concept of virtual instrumentation - PC based data acquisition - Typical on board DAQ card - Resolution and sampling frequency - Multiplexing of analog inputs - Single-ended and differential inputs - Different strategies for sampling of multi-channel analog inputs. Concept of universal DAQ card - Use of timer-counter and analog outputs on the universal DAQ card.

CLUSTER OF INSTRUMENTS IN VI SYSTEM

Interfacing of external instruments to a PC - RS232, RS 422, RS 485and USB standards - IEEE 488 standard - ISO-OSI model for serial bus - Introduction to bus protocols of MOD bus and CAN bus.

GRAPHICAL PROGRAMMING ENVIRONMENT IN VI

Concepts of graphical programming - Lab-view software - Concept of VIs and sub VI - Display types - Digital - Analog - Chart Oscilloscopic types - Loops - Case and sequence structures - Types of data - Arrays - Formulae nodes -Local and global variables String and file I/O.

ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI

Fourier transform - Power spectrum - Correlation - Windowing and filtering tools - Simple temperature indicator - ON/OFF controller -

P-I-D controller - CRO emulation - Simulation of a simple second order system - Generation of HTML page. TOTAL HOURS: 45

TEXT BOOKS

S. Gupta and J.P Gupta, 'PC Interfacing for Data Acquisition and Process Control', Instrument society of America, 1994.
 Peter W. Gofton, 'Understanding Serial Communications', Sybex International. 3. Robert H. Bishop, 'Learning with Lab-view', Prentice Hall, 2003.

REFERENCE BOOKS

1. Kevin James, 'PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control', Newness, 2000. 2. Gary W. Johnson, Richard Jennings, 'Lab-view Graphical Programming', McGraw Hill Professional Publishing, 2001.

COURS	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.A.Balamurugan	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in
2.	Mrs.D.Saranya	Assist Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in

17EEPI04

INTRODUCTION TO INDUSTRIAL INSTRUMENTATION

Category	L	Т	Р	Cre dit
PI	3	0	0	3

PREAMBLE

This course is designed to cover all aspects of industrial instrumentation, such as sensing a wide range of variables, the transmission and recording of the sensed signal, controllers for signal evaluation, and the control of the manufacturing process for a quality and uniform product. Instrumentation and process control involve a wide range of technologies and sciences, and they are used in an unprecedented number of applications. Examples range from the control of heating, cooling, and hot water systems in homes and offices to chemical and automotive instrumentation and process control. Today's technological evolution has made it possible to measure parameters deemed impossible only a few years ago. Improvements in accuracy, tighter control, and waste reduction have also been achieved

PRERE	QUISI 7EECC		easure	ments	and Ins	strume	ntation								
COURS				ments		strumer	itation								
1	Тор	rovide	funda	mental	backg	round i	n theor	ry of In	dustria	al Instru	mentati	ion syste	em		
2	moti		vibrat	-					-	-		and fam ure and		e with	
3	appli	cation	of di	fferent	vledge senso ation ar	rs /	transdı	ucers				ainties i oning ar			
4	To e	laborat	e diffe	rent ty	pes of	Level	& visc	osity n	neasure	ement					
5	To g	ive an	overvi	ew of t	he feat	ures as	ssociate	ed with	temp	erature	measur	ement ar	nd pyro	omete	rs
COURS	E OUI	ГСОМ	ES												
On the su	uccessf	ul com	pletion	n of the	e cours	e, stude	ents wi	ll be al	ole to						
CO1				ent type	es of lo	ad cell	and di	ifferen	t types	of torqu	ie	Underst	and		
CO2	Desc	Measurement. Onderstand Describe the principle, operation and different types of accelerometer Understand													
CO3		uate the	e meas	ureme	nt of Fl	ow and	d Leve	l for a	respect	ive		Analyze	è		
CO4	meas	uring t	echniq	ues	l opera							Underst	and		
CO5					for me		ment of	f high t	empera	ature and	d	Apply			
MAPPIN	NG WI	TH P	ROGR	AMM	E OU	TCOM	IES A	ND PR	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PS O2	PS O 3
CO1	L	L	L			L	L	М	S	М		L	L	М	S
CO2	М	L		L						L				L	L
CO3	S	S	S			L	М	М	М		S	L	S	S	
CO4	М	М		М		М		L	М	L	М	L	L	S	L
CO5	S	S	М	М		S	М	S	S	S	S	M	S	М	М
S- Strong	g; M-M	ledium	; L-Lo	W				1	1	1		ı			

MEASUREMENT OF FORCE, TORQUE

Different types of load cells - Hydraulic, Pneumatic, strain gauge- Magneto-elastic and Piezoelectric load cells - Different methods of torque measurement: - Strain gauge-Relative angular twist

MEASUREMENT OF ACCELERATION, VIBRATION

Accelerometers LVDT, Piezoelectric, Strain gauge and Variable reluctance type accelerometers -Mechanical type vibration instruments - Seismic instruments as accelerometer - Vibration sensor -Calibration of vibration pickups

FLOW MEASUREMENTS

Orifice plate different types of orifice plates, Difference between area flow and mass flow meters, Venturi tube — Flow nozzle - Principle and construction and details of Electromagnetic flow meter — Ultrasonic flow meters

LEVEL & VISCOSITY MEASUREMENT

Float gauges - Electrical types: Conductivity sensors, Boiler drum level measurement - Differential pressure method. Viscosity — Saybolt viscometer-Rota meter type viscometer

HIGH TEMPERATURE MEASUREMENTS & PRESSURE MEASUREMENT

Special techniques for measuring high temperature using thermocouple –Radiation fundamentals -Radiation methods of temperature measurement - Total radiation pyrometers -Optical pyrometers. Units of pressure - Manometers, different types, Elastic type pressure gauges Capacitive type pressure gauge. Case Study on application of above discussed measurement in Boiler, Furnace process.

TEXT BOOK

1. Patranabis, D. Principles of Industrial Instrumentation, 3rd Edition, Tata McGraw Hill, New Delhi, 2010. 2. Doebelin, E.O. and Manik, D.N., Measurement Systems Application and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007.

REFERENCES

GOLIDGE DEGLGVIEDG

1. Liptak, B.C., Instrumentation Engineers Handbook (Measurement), CRC Press, 2005.

2. Singh,S.K., Industrial Instrumentation and Control, 3rd edition, McGrawHill Education., New Delhi, 2015.

3. Jain, R.K., Mechanical and Industrial Measurements, 12th edition, Khanna Publishers, Delhi, 2011.

4. A. K. Sawhney, PuneetSawhney Course in Mechanical Measurements and Instrumentation and Control, Dhanpat Rai & Sons, New Delhi, 1997.

5. Lessons in Industrial Instrumentation 2/3, Volume 2 of Lessons in Industrial Instrumentation Series, Tony R. Kuphaldt, Samurai Media Limited, 2017, ISBN : 9888407090, 9789888407095

COURSI	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu .in
2	S. JENSIE ANITA	Assistant Professor	EEE / AVIT	jensiepresely@avit.ac.in

302

										Categ	gory	L	Т	Р	Cre	dit
17A	PEE01	P	PERSO	NALIT	Y SKI	LLS D	EVEL(OPME	NT - I	EI	-	2 VEEKS TRAINI NG	0	0	1	L
	MBLI															
To enh	nance h	olistic	develo	pment	of stuc	lents a	nd imp	rove th	eir em	ployabil	ity skill	s				
PRER	EQUI	SITE -	Nil													
COU	RSE O	BJEC	ΓIVES													
1	To in	nprove	aptituc	le, prol	olem so	olving	skills a	ind reas	soning	ability						
2	To co	ollectiv	ely sol	ve prol	olems i	n team	s & gr	oup								
3	To kr	now the	e conce	pt of Q	Quantit	ative a	nalysis									
4	To ha	ive a g	ood kn	owledg	ge in re	asonin	g									
5	To id	entify d	and sol	ving th	e Mat	hemati	cal Pu	zzles								
COU	RSE O	UTCO	MES													
On t	he succ	essful	comple	etion o	f the co	ourse, s	student	s will t	be able	to						
CO1.	Identif	y, form	ulate a	nd sol	ve aptit	tude pr	oblems	5						A	pply	7
CO2.	Apply	the kno	owledg	e of M	athema	atics, S	cience	and Er	gineer	ing in m	athema	tical pro	blems	Aj	oply	
CO3.	Use the	e Techr	niques	& skill	s.									A	oply	
CO4 .	Engage	e in Lif	e-Long	g Learn	ing.									A	oply	
MAPI	PING	WITH	PROG	RAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPE	CIFIC (OUTC	OME	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	I PS	02	PS O3
CO1	S	S										S		-	-	
CO2	S	S										S		-	-	
CO3 CO4	S S	S S										S S		-		
	ong; M											5			-	
5 540	<u>, 115, 111</u>	Wiedie	, 12 1	20 11												
SYLL	ABUS															
	BERS- and Pr		s of Nu	umbers	, LCM	, GCD	, Surds	s and ir	dices							
	HMET ntages,			, Area	and vo	lume										
-	NTITA and wo					endar a	und Clo	ocks								

REASONING-I

Mathematical operations, Coding and decoding, Blood relationship

PUZZLES-I

Classification type, Seating arrangements and Comparison types

TEXTBOOKS:

Agarwal.R.S - Quantitative Aptitude for Competitive Examinations, S.Chand Limited 2011

REFERENCES:

- 1. Abhijit Guha, Quantitative Aptitude for Competitive Examinations, Tata McGraw Hill, 3rd Edition, 2011
- 2. Edgar Thrope, Test Of Reasoning for Competitive Examinations, Tata McGraw Hill, 4th Edition, 2012

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the college	Mail ID
1	Dr. M.Vijayarakavan	Asso.Prof	VMKVEC	vijayarakavan@vmkvec.edu.in
2	Dr.A.K.Thamizhsudar	Asso.Prof. grade II	AVIT	thamizhsudar@avit.ac.in

	DEDSC	NALITY SK	ттс		Catego	ory	L	,	Т	Р	Credit
17APEE02		ELOPMENT			EE		2 WE		0	0	1
PREAMBLE: SM &	S										
Personality Skill De	velopment p	provides a pro	ofession	nal ap	proach	and m	akes the	e studer	its read	y for tl	he industry as
well as to make then	n to understa	and the entre	preneui	rial ap	proach	ı throug	gh vario	us actio	ons. It	also br	eaks down the
barriers between the	institute and	d industry by	anticip	pating	the tee	chnolog	gy upda	te.			
PREREQUISITE: N	ot Required										
COURSE OBJECTI	VES:										
1. To learn an	d practice the	e Soft skills.									
2. To assess the	ne importance	e of social skil	lls.								
3. To practice	SWOT analy	ysis for individ	dual and	l group).						
4. To build an	d enhance th	e self confider	nce								
5. To apply ar	nd observe va	rious persona	lity skill	ls for p	persona	lity dev	elopmen	t.			
COURSE OUTCOM	ES:	•	•			•	•				
After successful comp		course, studen	ts will t	be able	e to						
CO1: Unders	and the impo	ortance of Pers	sonality	related	d to the	workin	g enviro	nment.	U	Inderst	and
CO2: Inculca	te relevant in	terpersonal sk	tills for s	surviva	al.				A	pply	
CO3: Analyse	e various skil	ls of SWOT a	nalysis.						A	nalysii	ng
CO4: Applyin	ng assortmen	t of soft skills	for self	assess	ment f	or both	organisa	tionally	E	valuate	2
and soci	ally.										
CO5: Build se	lf esteem and	l relevant pers	sonality	skills a	accordi	ng to go	oal.		E	valuate	2
MAPPING W	TH PROG	RAMME O	UTCO	MES	AND	PROG	RAMN	1E SPI	ECIFIC	COUT	COMES
COS PO1 PO2	PO3 PO4	PO5 PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L			L	М	L	L		М	М
CO2 M	M L		L	М	М			L			М
CO3		M		М	М	L	L	М	М	S	М
CO4 M				L	М	L	L	М		S	М
CO5	L	M	S	М		S	M	S		М	М
S- Strong; M-Medi	um; L-Low	<u> </u>			1	<u> </u>	1	<u> </u>		<u> </u>	

- Importance of Personality and Skill Development.
- ✤ Interpersonal Vs Intrapersonal skill.
- Communication and barriers in Communication.
- SWOT analysis for identifying individual, group and organisation.
- ✤ Skills required to Win and influence people
- Seven essential habits of Effective people followed.
- Goal setting Individual skill to act in a group dynamics.
- Team Building
- Group Discussion
- Role Play
- Time management
- Corporate Etiquettes.
- Personality Grooming
- Body Language
- ✤ Career Guidance.
- Resume preparation
- Interview Skill
- Self Assessment

TEXT BOOK:

1. Sharma. P.C., Communication Skills and Personality Development, Nirali Prakashan Pub. Pune

REFERENCE BOOK:

1. Narula S. S, Personality Development and Communication Skills, Taxmann Publications Pvt Ltd

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id				
1.	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in				
2	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in				
3	Dr. V. Sheelamary	Associate Professor	Management Studiec	sheelamary@avit.ac.in				

1 7 FF	CEE01			N	/ATL	лв ті	2 A INI	NC			Cate	gory	L	Т	Р		redit
17121				1			VALUAL	NG			EI	E	0	0	4	2	
	AMBLE course in		es the	funda	mental	ls of M	latlab a	and to s	solve t	he vario	us type	es of p	power	r electi	ronic	circ	uits.
PREF	REQUI	SITE:	17EEC	CC06	Power	Elect	ronics.										
	RSE O																
1	To unde	erstand	the ba	asic of	Matlal	Э.											
2	To stud	y and f	amilia	rize th	e vario	ous typ	es too	ls boxe	s of M	atlab.							
3	To desi	gn pow	er ele	ctronic	e circui	ts usin	ıg simı	ulation	metho	d.							
	RSE O																
	e succes		-				tudents	s will b	e able	to				r 1		1	
CO1:	Describ	be the b	asic c	oncept	ts of M	atab.								Unders	stanc	1	
CO2:	Realize	the va	rious	types o	of tool	boxes	in Mat	lab.						Anal	yze		
	Design	U	0	-		•		•		onic circ	uits.			Crea	ate		
CO4:	Simula	te the v	arious	s types	ofpov	ver ele	ctronio	c circui	ts.					Crea	ate		
MAP	PING V	VITH	PRO	GRAN	IME (OUTC	OMES	S AND	PRO	GRAM	ME SP	ECI	FIC (OUTC	OM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012	PSO1	PS	02	PSO3
CO1	S	Μ	-	-	S	-	-	-	-	-	-		-	S		-	-
CO2	S	М	-	-	S	-	-	L	-	-	-		-	S	N	M	-
CO3	S	Μ	S	Μ	S	L	М	L	М	L	Μ		L	S	Ν	M	L
CO4	S	М	S	М	S	L	М	L	М	L	M		L	S	N	M	L
S-Str	ong; M	Mediu	m; L-	Low	•										•		
SYLI	LABUS																
	Introd ontrolle convert	d rectif								of gatin verters							

Applying Matlab on the content of published International Journals as a practice.

Reference Books: Reference Manual

COURS	E DESIGNERS			
S. No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Mr. P. Loganathan	Assistant Professor	EEE/VMKVEC	loganathan@vmkvec.edu.in
3	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

17EEEE02		EMBE INING) SYS'	TEMS	S AND	ROBO	TICS	0	Cate ry EEC	-	-	C 2	redit
PREAM To under robotics techr	stand t			-			-	-	implem			bedded		nd
COURS	E OBJ	ECTI	VES											
Тот	underst	tand the	e basic	c conce	epts of	embe	dded sys	tems an	nd robot	ics.				
To i	mplen	nent the	e conc	epts to	real w	orld a	pplicatio	ons.						
Тот	minimi	ze the	humar	ı error	throug	zh auto	omation.							
COURS														
On the su				n of th	e cour	se, stu	dents wi	ll be ab	le to					
CO1: Un			•									U	nderstand	1
CO2:Fan	niliariz	e the ir	nporta	nce of	the at	itomat	ion syste	em.				U	nderstand	1
CO3: Im	plemer	nt the c	oncept	ts to re	al wor	ld app	lications	5.				A	pply	
CO4:Ana	ılyze th	ne perfo	orman	ce of a	ny aut	omate	d embed	lded and	l roboti	cs based	1	А	nalyze	
systems													-	
MAPPIN	NG WI	TH PI	ROGE	RAMN	IE OU	JTCO							-	
C P OS O1	F O2	P O3	F O4	Р О5	60 06	07	P 08	P 09	Р 010	Р 011	P 012	P SO1	PS O2	P SO3
C S	P	-	I		-	-		-	-	-	-	М	-	М
C S	P	-	-	-	-	-		-	-	-	-	-	М	-
C S	S	Ν	I	Ν	-			-	-	-	-	М	S	-
C S O4	S	Ν	I	Ν	-	-		-	-	-	-	М	S	М
S- Strong	g; M-M	ledium	;L-Lo	W			•	•						

Syllabus

- Introduction to Embedded Systems and Robotics
- ➢ Working with ATmega328PU using embedded c
- Introduction to ARDUINO IDE and Installing Arduino and Drivers.
- > Overview of the Development Board.
- Specific Microcontroller Features and Memory Organization of (ATMega 328 PU)
- Interfacing with LED, LCD, Switch, Keypad, Buttons and Seven Segment display Interfacing
- ▶ Working with system peripheral like ADC, Timer, PWM and Interrupts.
- ➢ Working with Communication protocols like I2C, SPI and UART
- Interfacing with External peripherals like IR, ULTRASONIC, LDR, TEMPERATURE SENSOR, GPS, GSM, zigbee, RFID, Gas Sensor
- Robot controlled by mobile phones and DTMF technology
- Gesture Based Robot controlled by hand gestures using accelerometer sensor
- Swarm Robots that communicate using radio frequencies to work together
- Working in different Robots like Line Follower Robot, Obstacle Follower, Photo tropic Robot, Obstacle Avoide, Pit robot, Robot shuttler, Photo Detector, and White Tracker

REFERENCES

1. User Manual.

COURSE DESIGNERS

0001				
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.G.Ramakrishnaprabu	Associate	EEE/VMKVEC	ramakrishnaprabu@vmkvec.ed
	MI.O.Kamakiisimapiaou	Professor		u.in
2	Mr.S.Prakasah	Assistant	EEE/AVIT	sprakash@avit.ac.in
	Ivii.o.i iukubuli	Professor (Gr-II)		

PREAM To unde machine COURS 1 To	ABLE erstand es with SE OB o under	the batter the batter the batter the batter the batter bat	le shoo	icepts a ting m		niliariz			idantif		EEC	0	0		2
To unde machine	erstand es with SE OB o under	the batter the batter the batter the batter the batter bat	le shoo	ting m			ze the	principle	idantif						
machine COURS	es with SE OB	troub	le shoo	ting m			ze the	principle	. idantif						
	o under			•					e, identii	ied the	various	faults	ofelecti	ical	
1 To		rstand	the bas	•		_									
	o identi			ic cond	cepts o	felect	rical m	nachines	•						
2 То		ify the	variou	s faults	s of ele	ctrical	mach	ines.							
3 To	o devel	op the	suitabl	e diagi	nosis n	nethod	for re	pair the	electrica	l mach	nes.				
COURS															
On the s			_												
CO1: UI	ndersta	and the	e basic	concep	ots of e	lectric	al mac	chines ar	nd faults	•				nderstan	
CO2:Fai	miliari	ize the	trouble	e shoot	ing me	ethods.							U	nderstan	d
CO3: In	npleme	ent the	suitabl	e diag	nosis n	nethod	to sol	ve the is	sues.					Apply	
MAPPI	NG W	ITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGRA	MME	SPECI	FIC O	UTCO	MES	
COS F	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3
CO1	S	М	-	М	-	-	-	-	-	-	-	-	М	-	-
CO2	S	М	-	-	-	-	-	-	-	-	-	-	L	М	M
CO3	S	S	М	М	М	-	-	-	-	-	-	-	М	S	M
S- Stron	ıg; M-I	Mediu	m; L-L	ow	<u> </u>	<u> </u>	<u>I</u>	I			<u> </u>		<u> </u>		<u> </u>
							Sy	llabus							

Introduction about construction and principle operation of AC and DC machines, Faults in electrical machines, overview of on line and off line fault monitoring system, Importance of diagnosis systems, case study AC machine diagnosis system, DC machine diagnosis system with case studies.

REFERENCES

1. User Manual.

COURSE DESIGNERS

ŀ							
	S. No.	Name of the Faculty	Designation Department		Mail ID		
	1	Mr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.i n		
	2	Mr.S.Prakash	Assistant Professor	EEE/AVIT	sprakash@avit.ac.in		

-		50 <i>4</i>	P	ower P	lant con	trol and	d Instru	mentati	on	Catego	ry	L	Т	Р		Credit
ľ	7EEEEE	204								EE		3	0	0		3
PREAN	IBL										I	I	I			
		ms subj	ect to c	onstrain	ts engin											the most sheets and
PRERE	QUISIT	E - NI	L													
COURS	SE OBJE	ECTIVI	ES													
1	To prov	vide an o	overviev	w on po	wer gene	eration t	hrough	various r	nethods							
2	To educ	cate on t	he imp	ortant po	ower pla	nt meas	urement	s and de	vices.							
3	To educ	cate on l	basic Bo	oiler con	trol tech	niques.										
4	To educ	cate on a	advance	ed Boiler	control	techniq	ues.									
5	To educ	cate on t	he turb	ine cont	rol techr	iques.										
COURS	SE OUT	COME	5													
On the	e success	ful com	pletion	of the co	ourse, st	udents v	vill be a	ble to								
CO1: R	leview an	d Brief	survey	of meth	ods of p	ower ge	neration	their co	nstructio	on					Und	erstand
CO2: C	ompare tl	ne meas	uremen	ts in cur	rent tren	ds in in	strumen	tation po	wer pla	nt.					Ana	yze
	•	ie to ana	alysers i	n power	plants i	n chang	e contro	l strateg	ies when	n systems	are				Eval	uation
	pdate.															
	Construct							-	• 1						Crea	te
	esign the d their co		lea aboi	ut monit	oring dif	ferent p	aramete	rs like sj	peed, vil	bration of	turbines				Crea	te
MAPPI	NG WIT	TH PRO	OGRAN	AME O	UTCON	AES AN	ND PRO	GRAM	ME SP	ECIFIC	OUTCO	MES				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3
CO1	S	L	S	L	М	М	L	М	-	-	_	-	L		S	-
CO2	S	М	М		М	М	-	М	-	-	-	-	М		S	-
CO3	М	S	S	L	-	М	-	М	-	-	-	-	М		М	L
CO4	М	М	S	L	-	М	-	М	-	L	-	-	M		М	L
CO5	Μ	-	-	L	Μ	-	-	-	-	-	-	L	M		Μ	-

OVERVIEW OF POWER GENERATION

Brief survey of methods of power generation – Hydro, thermal, nuclear, solar and wind power – Importance of instrumentation in power generation – Thermal power plants – Block diagram – Details of boiler processes - UP&I diagram of boiler – Cogeneration.

MEASUREMENTS IN POWER PLANTS

Electrical measurements – Current, voltage, power, frequency, power factor etc. – Non electrical parameters – Flow of feed water, fuel, air and steam with correction factor for temperature – Steam pressure and steam temperature – Drum level measurement – Radiation detector – Smoke density measurement – Dust monitor.

ANALYSERS IN POWER PLANTS

Flue gas oxygen analyser – Analysis of impurities in feed water and steam – Dissolved oxygen analyser – Chromatography – pH meter – Fuel analyser – Pollution monitoring instruments.

CONTROL LOOPS IN BOILER

Combustion control – Air/fuel ratio control – Furnace draft control – Drum level control – Main steam and reheat steam temperature control – Super heater control – Air temperature – Deaerator control – Distributed control system in power plants – Interlocks in boiler operation.

TURBINE – MONITORING AND CONTROL

Speed, vibration, shell temperature monitoring and control – Steam pressure control – Lubricant oil temperature control – Cooling system.

TEXT BOOKS

- 1. Sam G. Dukelow, 'The Control of Boilers', Instrument Society of America, 1991.
- 2. P.K. Nag, 'Power Plant Engineering', Tata McGraw Hill, 2001.
- 3. El-Wakil M.M., "Power Plant Technology", 2nd Edition, Tata McGraw Hill, New Delhi, 2010.

REFERENCE BOOKS

1. S.M. Elonka and A.L. Kohal, 'Standard Boiler Operations', Tata McGraw Hill, New Delhi, 1994. R.K.Jain, 2. 2. 2. Mechanical and Industrial Measurements', Khanna Publishers, New Delhi, 1995.

3. Nag P.K., "Power Plant Engineering", 4th Edition, Tata-McGraw Hill Education, New Delhi, 2014.

- 4. Frederick T. Morse, "Power Plant Engineering", 3rd Edition, Litton Educational Publishing Inc, 1953.
- 5. R.K. Rajput, "A Text Book of Power Plant Engineering", 4th Edition, Laxmi Publications, 2013.
- 6. G.D. Rai, "Introduction to Power Plant Technology", 3rd Edition, Khanna Publishers, New Delhi, 2013.
- 7. G.R. Nagpal, "Power Plant Engineering", 16th Edition, Khanna Publishers, New Delhi, 2012.

COURSE DESIGNERS

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.A.Balamurugan	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in
2	Mrs.L.Chitra	Associate Professor	EEE/AVIT	chitra@avit.ac.in

17APEE03	NATIONAL CADET CORPS	Category	L	Т	Р	Credit
		EEC	0	0	4	2

PREAMBLE

The training curriculum of the NCC is primarily focused towards character building, inculcating leadership qualities and skill enhancement through structured academic syllabi, practical training and opportunity of exposure/interaction beyond a cadet's immediate environment and thereby enabling them for a brighter and progressive future.

PREREQUISITE - NIL

COURSE OBJECTIVES

L		
	1	To develop character, comradeship, discipline, secular outlook, spirit of adventure and the ideals of selfless
		service amongst the youth of the country.
	2	To create a human resource of organized, trained and motivated youth, to provide leadership in all walks of
		life and always available for the service of the nation.
ľ	3	

3 To provide a suitable environment to motivate the youth to take up a career in the Armed Forces.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explore the importance of NCC in nation building.

CO2. Develop an insight into the religion, cultural and tradition of India.

CO3. Acquaint themselves with the different types of leadership.

CO4. Analyses the need for social service for the development of a society.

CO5. Basic understanding of map sheets and map reading instruments and development of capability to use them to carry out simple map reading.

SYLLABUS

Aims and objectives of NCC, Organization, training and the NCC Song, Incentives.

Drill - Foot Drill, Arms Drill, Ceremonial Drill and Weapon Training

National Integration - Religions, culture, traditions and customs of India, National Integration: Importance and necessity, Freedom struggle and nationalist movements in India.

Personality Development and Leadership - Introduction to personality development, Self-awareness, Communication skills, Leadership traits, Time management.

Disaster Management and Civil Affairs - Civil defense organization and NDMA, Types of emergencies and natural disasters, Assistance during natural and other calamities: Floods, cyclones, earth quakes, and accidents.

Social Awareness and Community Development - Basics of social service and Its need, Rural development programmes, Contribution of youth towards social welfare, Civic responsibility, Causes and prevention of HIV AIDS.

Health and Hygiene - Structure and function of the human body, Hygiene and sanitation, Infectious and contagious diseases and its prevention.

Environment Awareness and Conservation - Natural resources- conservation and management, Water conservation and rain water harvesting

Armed Forces - Basic organization of Armed Forces, Organisation of the Army, Badges and Ranks. Map Reading-Introduction to types of maps and conventional signs. **Map Reading** -0 Scales and grid system, Topographical forms and technical terms Relief, contours and gradients, Cardinal points and types of North, Types of bearings and use of service protractor, Prismatic compass and its use and GPS.

Field Craft and Battle Craft - Judging distance, Description of ground, Recognition, description and indication of land marks and targets.

Introduction to Infantry Weapons and Equipment - Characteristics of 7.62mm SLR rifle, ammunition, fire power, Stripping, assembling and cleaning.

Military History - Biographies of renowned generals (Carriappa/Manekshaw), Indian Army war heroes.

Communication - Types of communication, Characteristics of wireless technology (mobile, Wi Fi, etc.)

TEXTBOOKS

- 1. Cadet Hand Book (Common Subjects), Published by DG NCC.
- 2. Cadet Hand Book (Specialized Subjects), Published by DG NCC.

REFERENCE BOOKS

- 1. Grooming Tomorrow's Leaders, Published by DG, NCC.
- 2. Youth in Action, Published by DG, NCC.
- 3. The Cadet, Annual Journal of the NCC.
- 4. Précis Issued by respective Service Headquarters on specialized subject available to PI Staff as reference material.

COU	COURSE DESIGNERS								
S.No	Name of the Facility	Designation	Department	Mail Id					
1.	Lt.S.Kannan	Assistant Professor /	ECE	nccofficer@vmkvec.ac.in					
		Lieutenant							
2.	Mr.S.Muthu Selven	Assistant Professor	CSE	muthuselven@avit.ac.in					

17APEE04	NATIONAL SERVICE SCHEME	Category	L	Т	Р	Credit	
		EEC	0	0	4	2	

PREAMBLE

The service curriculum of the NSS is primarily focused towards character building, inculcating social responsibilities and human values through structured academic syllabi, practical training and opportunity of exposure/interaction beyond a volunteer's thereby enabling them for a brighter and progressive future.

PRER	REQUISITE - NIL
COUI	RSE OBJECTIVES
1	To develop character, leadership, discipline and the ideals of selfless service amongst the youth of the country.
2	To create a human resource of organized, trained and motivated youth always available for the service of the
	nation.
3.	To practice national integration and social harmony
4.	To identify the needs and problems of the community and involve them in problem-solving
COUL	RSE OUTCOMES
On the	e successful completion of the course, students will be able to
CO1.	Improve the quality of educated manpower by fostering social responsibility.
CO2.	Develop an insight into the religion, cultural and tradition of India.
CO3.	Analyses the need of social service for the development of a society.

CO4. To utilize their knowledge in finding practical solutions to individual and community problems.

SYLLABUS

INTRODUCTION TO NATIONAL SERVICE SCHEME

History and its Objectives – Emblem, Flag, Motto, Song and badge-Organizational structure of N.S.S. at National, State, University and College Levels - Advisory committee and their functions with special reference to college principal, Programme officer, N.S.S. group leader and N.S.S. volunteers in the implementation.

NATIONAL INTEGRATION AND YOUTH LEADERSHIP

Need of National integration - Various obstacles in the way of National Integration; such as caste, religion, language and provisional problems etc. Concept of family –Human values- Meaning and role of leadership- Qualities of good leadership- Role of youth in nation building-National youth policy- Youth focused and Youth led organizations

HEALTH, HYGIENE AND SANITATION AND COMMUNITY MOBILISATION

Definition, need and scope of health education- Food and Nutrition-National health programme -

Healthy lifestyle- Home nursing- First aid

Mapping of Community stakeholders- Designing the message in the context of the problem and the culture of the community-Identifying methods of mobilization- Youth-adult partnership

NSS REGULAR ACTIVITIES

Introduction - NSS Regular activities - Day campus- Basics of adaptation of village/slums-Methodology of conducting survey- Financial pattern of the scheme- Schemes of GOI-Coordination with different agencies- Maintenance of the diary

NSS SPECIAL CAMPING

COUDCE DECLONEDO

Nature and its objectives- Selection of camp site and physical arrangement-Organization of N.S.S. camp through various committees and discipline in the camp -Activities to be undertaken during the N.S.S. camp -Use of the mass media in the N.S.S. activities- Collection and analysis of data- Preparation of Documentation and reports- Dissemination of documents and reports.

	RSE DESIGNERS			
S.No	Name of the Facility	Designation	Department	Mail Id
1.	Mr.S.KRISHNARAJ	Asst. Professor	Chemistry/VMKVEC	srajkrishna85@gmail.com
2.	Mr.C.THANGAVEL	Asso. Professor	Mechanical/VMKVEC	ceeteemech@gmail.com
3.	Dr.B. PRABASHEELA	Asso. Professor	Biotechnology/ AVIT	prabasheela@avit.ac.in

17A]	PEE05		TS AND GAMES INTER	Categ	ory	L	Т	Р	Credit
1771	LL05	C	OLLEGIATE LEVEL	CC		0	0	2	1
PREA	MBLE			k					
			viding Hi-Tech Sports facilities		and to	be the	top colleg	ge for	Sports in
			isciplines of science and engineer	ing.					
PRER	EQUISIT	E - NIL							
COUF	RSE OBJE	CTIVES							
1	Demons	trate an understa	nding of the principles and concep	ots related to a	variety	of physi	cal activit	ies	
2			e importance of physical activity t						
3			kills necessary to perform a variet		ctivities	S			
4	·		and rules in both individual and gr	-					
5	-	-	e physical and mental benefits of s	sports activities	•				
	RSE OUT								
		-	the course, students will be able						
	*		elate their social and physical env						
CO2.S	upport and	l encourage other	rs (towards a positive working env	vironment)					
CO3.D	Develop att	itudes and strateg	gies that enhance their relationship	with others					
CO4.S	how sensit	tivity to their own	and different cultures.						
		nsibility for their ommitment	own learning process and demons	strate engageme	nt with	the acti	ivity, show	ving	
LIST	OF EVEN	TS ORGANIZI	ED:						
Trainii	ng and Coa	aching for inter c	giate tournaments and open colleg ollegiate tournaments.	ge tournaments)					
			rtment tournament. erned sports and games.						
Enroln									
	RSE DESI	GNERS							
		GNERS The Faculty	Designation	Department		N	Iail ID		
COUR		the Faculty	Designation Director of Physical Education	Department Physical Ed			yaraman	@vmkv	vec.edu.i

17APEE06		SPORTS AND GAMES INTER UNIVERSITY	Y Category	L	Т	Р	Credit				
			LEVEL	CC	0	0	4	2			
PREA	MBLE			·							
			viding Hi-Tech Sports facilities to the lisciplines of science and engineering		to be the to	op colle	ege fo	r Sports in			
PRER	EQUISIT	TE - NIL									
COUR	RSE OBJI	ECTIVES									
1	Demons	strate an understa	nding of the principles and concepts	related to a varie	ty of physic	cal acti	vities				
2		Recall and understand the importance of physical activity to a healthy lifestyle									
3	- ·	Display acquired motor skills necessary to perform a variety of physical activities									
4	·	Apply tactics, strategies and rules in both individual and group situations									
5		Recognize and inspire the physical and mental benefits of sports activities.									
	RSE OUT										
			f the course, students will be able to								
	-		relate their social and physical enviro								
CO2.S	upport an	d encourage other	rs (towards a positive working enviro	nment)							
CO3.D	evelop at	titudes and strate	gies that enhance their relationship w	ith others							
CO4.S	how sensi	tivity to their ow	n and different cultures.								
		nsibility for their commitment	own learning process and demonstra	te engagement w	ith the acti	vity, sł	nowin	g			
LIST	OF EVEN	NTS ORGANIZI	ED:								
Trainir Condu	ng and Co cting Inter	aching for inter c class, inter-depa	tate & Open level Tournaments) ollegiate tournaments. artment tournament. erned sports and games.								
COUR	RSE DESI	GNERS									
S.No.	Name o	f the Faculty	Designation	Department	Μ	Iail ID					
1	Mr.N.Ja	yaraman	Director of Physical Education	Physical Educati	on ja .ii	•	an@v	mkvec.edu			
2	Mr.P.Na	aveen	Director of Physical Education	Physical Educati	on na	aveen@	øvmk [.]	vec.edu.in			
	1										

17APEE07		SPORTS AND GAMES ALL INDIA INTER UNIVERSITY LEVEL	Category	L	Т	Р	Credit				
			CC	0	0	6	3				
PREA	MBLE					•					
			viding Hi-Tech Sports facilities to isciplines of science and engineering		to be the t	op colleg	e for S	Sports in			
PRER	EQUISIT	E - NIL									
COUR	RSE OBJE	CTIVES									
1	Demons	trate an understa	nding of the principles and concept	s related to a varie	ty of phys	ical activi	ties				
2	Recall a	Recall and understand the importance of physical activity to a healthy lifestyle									
3	Display acquired motor skills necessary to perform a variety of physical activities										
4	Apply ta	Apply tactics, strategies and rules in both individual and group situations									
5	Recogni	ze and inspire the	e physical and mental benefits of sp	orts activities.							
COUR	SE OUT	COMES									
On tl	he success	ful completion of	f the course, students will be able to)							
CO1.R	espect the	mselves and corr	elate their social and physical envir	onment							
CO2.S	upport and	l encourage other	rs (towards a positive working envi	ronment)							
CO3.D	evelop att	itudes and strateg	gies that enhance their relationship	with others							
CO4.S	how sensit	tivity to their own	n and different cultures.								
		nsibility for the ommitment	ir own learning process and dea	monstrate engage	ment with	the acti	ivity,	showing			
LIST (OF EVEN	TS ORGANIZI	ED:								
Trainir Condu	ng and Coa	ching for inter co class, inter-depa	te & All India Inter University tour ollegiate tournaments. rtment tournament. erned sports and games.	naments & Nation	al level)						
COUR	RSE DESI	GNERS									
S.No.	Name of	the Faculty	Designation	Department	N	Aail ID					
1	Mr.N.Ja	yaraman	Director of Physical Education	Physical Educati	5	jayaraman@vmkvec.eo		cvec.edu			
2	Mr.P.Na	veen	Director of Physical Education	Physical Educati	on r	aveen@v	mkve	c.edu.in			