

Faculty of Engineering and Technology

REGULATIONS 2021

Programme:

B.E. – ELECTRICAL AND ELECTRONICS ENGINEERING

Full Time (4 Years)

CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM

(Semester I to VIII)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P011	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

-g-1.- d-=+

PROGRAMME SPECIFIC OUTCOMES (PSO)

Graduating Students of Electrical and Electronics Engineering programme will be able to:

SI. No.	Description
PSO 1	Apply science, mathematics and engineering through differential and integral calculus, complex variables to solve electrical engineering problems.
PSO 2	Demonstrate proficiency in use of software and hardware to be required to practice electrical engineering profession.
PSO 3	Provide socially acceptable technical solution with the knowledge of ethical and management principles for sustainable development.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

SI. No.	Description
PEO1	To impart the graduates to promote basic science and mathematical foundation, as also the principles and technology advancements made in electrical and electronics engineering and allied fields.
PEO2	To induce the graduates to design Electrical, Electronics and Computing systems those are innovative and socially acceptable.
PEO3	To motivate the graduates to exhibit professionalism, ethics, communication skills, team work and Application oriented research.

VINAYAKA MISSION'S RESEARCH FOUNDATION (DEEMED TO BE UNIVERSITY), SALEM

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CURRICULUM FOR REGULATION-2021

Credit Requirement for the Course Categories

SI. No.	Category of Courses	1	Types of Courses	Suggested Breakup of Credits (min-max)					
1.		Humanities and S Management Cou	ocial Sciences including Irses	9 – 12					
2.	A. Foundation	Basic Science Co	urses	18 – 25					
3.	Courses	Engineering Scier drawing, basics o etc.	nce courses including workshop, f electrical/mechanical/computer	18 – 24					
4.	B. Professional	Core Courses		48 – 54					
		Professional Elec	Professional Electives						
		Industry Designed Offered/ Industry	d / Industry Supported / Industry Sponsored Courses	6					
5.	C. Elective Courses		Innovation, Entrepreneurship, Skill Development etc.	6 – 9					
		Open Electives	Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things etc.	6 – 9					
		Project Work	8						
6	D. Courses for Presentation of	Mini Project	3						
0.	related to the	Seminar	1						
	specialization	Internship in Indu	stry or Elsewhere	3					
7.	**E. Mandatory Courses	Yoga and Meditation, Gender Equity and Law, Essence of Indian Traditional Knowledge, Indian Constitution, NCC / NSS / RRC / YRC / Student Clubs / Unnat Bharat Abhiyan / Swachh Bharat , Sports and Games		Zero Credit Course (Minimum 2 Courses to be Completed other than Yoga and Meditation)					
	Minimum Credits to be earned 160								
** Th	ne credits earned in catego	ory 'E' Courses will no	ot be counted in CGPA calculation for aw	varding of the degree.					

- p-1- d-=+

CURRICULUM

B.E - ELECTRICAL AND ELECTRONICS ENGINEERING

SEMESTER I TO VIII

-9-1- d-=+

B.E. – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VIII

	A. Foundation Courses											
	I	Humanities and Social Sciences	s including Mar	nagement C	ours	es –	Cred	its (9	-12)			
SL. NO	COURSE CODDE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	с	PREREQUISITE			
1.	34121H01	TECHNICAL ENGLISH	ENG	FC-HS	3	0	0	3	NIL			
2.	34121H04	BUSINESS ENGLISH	ENG	FC-HS	3	0	0	3	NIL			
3.	34121H81	ENGLISH LANGUAGE LAB	ENG	FC-HS	0	0	4	2	NIL			
4.	34121H02	TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL			
5.	34121H82	PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LAB	ENG	FC-HS	0	0	2	1	NIL			
6.	34121H83	UNIVERSAL HUMAN VALUES - UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL			
Basic Science Courses – Credits (18-25)												
1.	34121B01	ENGINEERING MATHEMATICS	MATH	FC-BS	2	1	0	3	NIL			
2.	34121B04	PHYSICAL SCIENCES	PHY & CHEM	FC-BS	4	0	0	4	NIL			
3.	34121B07	DIFFERENTIAL EQUATIONS AND TRANSFORMS	MATH	FC-BS	2	1	0	3	ENGINEERING MATHEMATICS			
4.	34121B05	SMART MATERIALS AND NANO TECHNOLOGY	PHY	FC-BS	3	0	0	3	PHYSICAL SCIENCES			
5.	34121B16	PARTIAL DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA	MATH	FC-BS	2	1	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS			
6.	34121B31	NUMERICAL METHODS	MATH	FC-BS	2	1	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS			
7.	34121B25	MATHEMATICAL AND STATISTICAL TOOL FOR RESEARCH	MATH	FC-BS	2	1	0	3	NIL			
8.	34121B30	NON-DESTRUCTIVE TESTING OF MATERIALS	PHY	FC-BS	3	0	0	3	NIL			
9.	34121B19	ENVIRONMENTAL SCIENCES	CHEM	FC-BS	3	0	0	3	NIL			
10.	34121B81	PHYSICAL SCIENCES LAB	PHY & CHEM	FC-BS	0	0	4	2	NIL			
Eng	gineering Sc	ience courses including Works	hop, Drawing, I	Basics of E	lectri	cal/N	lecha	inica	/Computer etc.,			
1	35021E01	FOUNDATIONS OF COMPUTING AND PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL			
2	34621E01	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC-ES	4	0	0	4	NIL			

3	35021E02	PYTHON PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL
4	34421E01	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECH	FC-ES	4	0	0	4	NIL
5	34421E81	ENGINEERING GRAPHICS AND DESIGN	MECH	FC-ES	0	0	6	3	NIL
6	35021E03	PROGRAMMING FOR PROBLEM SOLVING	CSE	FC-ES	3	0	0	3	NIL
7	34621E81	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB	EEE & ECE	FC-ES	0	0	4	2	NIL
8	34421E84	ENGINEERING SKILLS PRACTICALS LAB	CIVIL & MECH	FC-ES	0	0	4	2	NIL

	B.E. – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VIII											
	B. Professional Courses											
Core Courses – Credits (48-54)												
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Ρ	С	PREREQUISITE			
1.	34621C01	ELECTRIC CIRCUIT ANALYSIS (THEORY AND PRACTICALS)	EEE	сс	3	0	2	4	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING			
2.	34721C03	SEMICONDUCTOR DEVICES AND CIRCUITS	ECE	сс	3	0	0	3	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING			
3.	34621C02	ELECTRICAL MACHINES – I	EEE	сс	3	0	0	3	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING			
4.	34621C06	ELECTRICAL MACHINES – II	EEE	СС	3	0	0	3	ELECTRICAL MACHINES – I			
5.	34621C03	ELECTROMAGNETIC THEORY	EEE	CC	3	0	0	3	ENGINEERING MATHEMATICS			
6.	34621C04	MEASUREMENT AND INSTRUMENTATION (THEORY AND PRACTICALS)	EEE	сс	3	0	2	4	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING			
7.	34721C09	ANALOG AND DIGITAL CIRCUITS (THEORY AND PRACTICALS)	ECE	CC	3	0	2	4	SEMICONDUCTOR DEVICES AND CIRCUITS			
8.	34621C12	POWER ELECTRONICS AND DRIVES (THEORY AND PRACTICALS)	EEE	СС	3	0	2	4	SEMICONDUCTOR DEVICES AND CIRCUITS			
9.	34621C08	TRANSMISSION AND DISTRIBUTION	EEE	CC	3	0	0	3	ELECTROMAGNETIC THEORY			
10.	34621C05	CONTROL SYSTEMS	EEE	СС	3	0	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS			
11.	34621C13	POWER SYSTEM ANALYSIS	EEE	CC	3	0	0	3	TRANSMISSION & DISTRIBUTION			

12.	34721C18	MICROCONTROLLER BASED SYSTEM DESIGN AND EMBEDDED SYSTEM DESIGN (THEORY AND PRACTICALS)	ECE	СС	3	0	2	4	ANALOG AND DIGITAL CIRCUITS
13.	34621C07	POWER SYSTEM PROTECTION AND SWITCHGEAR	EEE	СС	3	0	0	3	ELECTRICAL MACHINES – I & ELECTRICAL MACHINES – II
14.	34721C82	SEMICONDUCTOR DEVICES AND CIRCUITS LAB	ECE	CC	0	0	4	2	NIL
15.	34621C81	ELECTRICAL MACHINES – I LAB	EEE	CC	0	0	4	2	NIL
16.	34621C82	ELECTRICAL MACHINES – II LAB	EEE	CC	0	0	4	2	NIL
17.	34621C83	CONTROL SYSTEMS LAB	EEE	CC	0	0	4	2	NIL
18.	34621C84	POWER SYSTEM SIMULATION LAB	EEE	CC	0	0	4	2	NIL

	B.E. – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VIII											
	C. Elective Courses											
Professional Elective - Credits(12)												
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	с	PREREQUISITE			
1.	34621P08	HIGH VOLTAGE ENGINEERING	EEE	EC-PS	3	0	0	3	NIL			
2.	34621P13	POWER SYSTEM OPERATION AND CONTROL	EEE	EC-PS	3	0	0	3	NIL			
3.	34621P11	POWER QUALITY AND FACTS	EEE	EC-PS	3	0	0	3	NIL			
4.	34621P14	SPECIAL ELECTRICAL MACHINES	EEE	EC-PS	3	0	0	3	NIL			
5.	34621P16	WIND ENERGY CONVERSION SYSTEMS	EEE	EC-PS	3	0	0	3	NIL			
6.	34621P05	ELECTRIC VEHICLES	EEE	EC-PS	3	0	0	3	NIL			
7.	34621P04	DISTRIBUTED GENERATION AND MICROGRIDS	EEE	EC-PS	3	0	0	3	NIL			
8.	34621P10	POWER CONVERTERS ANALYSIS AND DESIGN	EEE	EC-PS	3	0	0	3	NIL			
9.	34621P01	RENEWABLE ENERGY SOURCES	EEE	EC-PS	3	0	0	3	NIL			
10.	34621P07	ENERGY CONVERSION AND STORAGE TECHNOLOGIES	EEE	EC-PS	3	0	0	3	NIL			
11.	34621P12	POWER SYSTEM AND SMART GRID	EEE	EC-PS	3	0	0	3	NIL			
12.	34621P03	DIGITAL SIGNAL PROTECTION FOR POWER SYSTEMS	EEE	EC-PS	3	0	0	3	NIL			
13.	34621P02	DESIGN OF ELECTRICAL APPARATUS	EEE	EC-PS	3	0	0	3	NIL			

14.	34621P09	HVDC TRANSMISSION SYSTEMS	EEE	EC-PS	3	0	0	3	NIL
15.	34621P06	ENERGY AUDIT AND CONSERVATION	EEE	EC-PS	3	0	0	3	NIL
16.		Design of Photovoltaic System	EEE	EC-PS	3	0	0	3	NIL

	Industry Designed/ Industry Supported/ Industry Offered/ Industry Sponsored Courses – Credits (6)										
SL. NO	COURSE CODE	COURSE	OFFERING INDUSTRY	CATEGORY	L	т	Ρ	С	PREREQUISITE		
1.	34121107	BUSINESS INTELLIGENCE AND ITS APPLICATIONS	INFOSYS	EC-IE	3	0	0	3	NIL		
2.	35021101	LEARNING IT ESSENTIALS BY DOING	INFOSYS	EC-IE	3	0	0	3	NIL		
3.	34121 18	MATH MODELLING AND CONTROL SYSTEMS (THEORY AND PRACTICALS)	REYNLAB	EC-IE	2	0	2	3	NIL		
4.	34121112	ELECTRIC AND HYBRID ELECTRIC VEHICLES (THEORY AND PRACTICALS)	REYNLAB	EC-IE	2	0	2	3	NIL		

	Open Electives – Electives from Innovation, Entrepreneurship, Skill Development etc Credits (6-9)										
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	с	PREREQUISITE		
1.	34121004	INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL		
2.	34121006	NEW VENTURE PLANNING AND MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL		
3.	34121007	SOCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL		
4.	45121001	ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL		
5.	34121002	INTELLECTUAL PROPERTY RIGHTS	MANAG	OE - IE	3	0	0	3	NIL		
6.	34121005	LIFE SKILLS	MANAG	OE-IE	3	0	0	3	NIL		

	Open I	Electives – Electives from other	s from other Technical and /or Emergi		ing Courses - Credits (6-9)						
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	с	PREREQUISITE		
1.	35321003	PRINCIPLES OF BIOMEDICAL INSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL		
2.	35321001	BIOSENSORS AND TRANSDUCERS	BME	OE-EA	3	0	0	3	NIL		
3.	38121002	INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	NIL		
4.	38121001	FOOD AND NUTRITION TECHNOLOGY	BTE	OE-EA	3	0	0	3	NIL		
5.	34221001	DISASTER RISK MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL		
6.	34221002	MUNICIPAL SOLID WASTE MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL		
7.	35021002	FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE	CSE	OE-EA	3	0	0	3	NIL		
8.	35021003	INTRODUCTION TO INTERNET OF THINGS	CSE	OE-EA	3	0	0	3	NIL		
9.	35021001	CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL		
10.	34721001	DESIGN OF ELECTRONIC EQUIPMENT	ECE	OE-EA	3	0	0	3	NIL		
11.	34721002	INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET OF THINGS	ECE	OE-EA	3	0	0	3	NIL		
12.	34421001	3D PRINTING AND ITS APPLICATIONS	MECH	OE-EA	3	0	0	3	NIL		
13.	34421002	INDUSTRIAL ROBOTICS	MECH	OE-EA	3	0	0	3	NIL		
14.	36921001	BIOMOLECULES – STRUCTURE AND FUNCTION	PE	OE-EA	3	0	0	3	NIL		
15.	36921002	PHARMACOGENOMICS	PE	OE-EA	3	0	0	3	NIL		

	B.E. – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VIII									
		D. Courses for Presentation of	technical Sk	tills related t	o the	e spe	cializa	tion		
		Project work, Seminar and Inter	nship in Ind	ustry or else	whe	re Cr	edits -	(15)		
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE	
1.	34621R01	PROJECT WORK	EEE	PI-P	0	0	16	8	NIL	
2.	34621M81	MINI PROJECT	EEE	PI-M	0	0 6		3	NIL	
3.	34621581	SEMINAR	EEE	PI-S	0	0 0 2		1	NIL	
4.	34621T81	INTERNSHIP	EEE	PI-IT	3	Week	S	3	NIL	

	B.E. – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VIII												
	E.MANDATORY COURSES												
	MANDATORY COURSES (NO CREDITS) (NOT INCLUDED FOR CGPA CALCULATIONS)												
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	С	PREREQUISITE				
1.	34121Z81	YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL				
		ANY TWO OF T	HE FOLLOV	VING COUR	SES								
2.	34121Z82	GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL				
3.	34121Z83	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL				
4.	34121Z84	INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL				
5.	34121Z85	NCC/NSS/RRC/YRC/STUDENT CLUBS/UNNAT BHARAT ABHIYAN/ SWACHH BHARAT	GEN	AC	0	0	2	0	NIL				
6.	34121Z86	SPORTS AND GAMES	PHED	AC	0	0	2	0	NIL				

	B.E. – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VIII								
Profe	essional Electi	ve Courses relevant to chosen S	Specializatio	n / Branch C	redi	ts - (12)		
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
		SPECIALISATI	ON – ELECTRI	C VEHICLE					
1.	34621EV01	ARCHITECTURE OF ELECTRIC AND HYBRID ELECTRIC VEHICLE	EEE	EC-SE	3	0	0	3	NIL
2.	34621EV02	BATTERY MANAGEMENT SYSTEM	EEE	EC-SE	3	0	0	3	NIL
3.	34621EV03	MODERN DRIVES FOR ELECTRIC VEHICLE	EEE	EC-SE	3	0	0	3	NIL
4.	34621EV04	POWER CONVERTERS FOR ELECTRIC VEHICLE	EEE	EC-SE	3	0	0	3	NIL
5.	34621EV05	TESTING OF ELECTRIC AND HYBRID VEHICLE	EEE	EC-SE	3	0	0	3	NIL
6.	34621EV06	DESIGN OF HYBRID ELECTRIC VEHICLE	MECH	EC-SE	3	0	0	3	NIL
7.	34621EV07	CONTROL SYSTEMS FOR HYBRID ELECTRIC VEHICLE	EEE	EC-SE	3	0	0	3	NIL
8.	34621EV08	BRAKE SYSTEM OF EV AND HEV	EEE	EC-SE	3	0	0	3	NIL
9.	34621EV09	ENERGY STORAGE SIMULATION LAB	EEE	EC-SE	3	0	0	3	NIL
10.	34621EV10	ELECTRIC DRIVES LAB	EEE	EC-SE	0	0	4	2	NIL

		SPECIALISATION - SO	LAR AND AL	FERNATE EN	ERGY	(
1.	34621SAE01	NEW AND RENEWABLE ENERGY SOURCES AND ITS APPLICATIONS	EEE	EC-SE	3	0	0	3	NIL
2.	34621SAE02	SOLAR COLLECTORS AND THERMAL ENERGY CONVERSION	EEE	EC-SE	3	0	0	3	NIL
3.	34621SAE03	ENERGY CONSERVATION AND ENERGY EFFICIENCY	EEE	EC-SE	3	0	0	3	NIL
4.	34621SAE04	APPLICATIONS OF GREEN BUILDING TECHNOLOGIES	EEE	EC-SE	3	0	0	3	NIL
5.	34621SAE05	NUCLEAR REACTOR THEORY	EEE	EC-SE	3	0	0	3	NIL
6.	34621SAE06	CONVENTIONAL ENERGY TECHNOLOGIES	EEE	EC-SE	3	0	0	3	NIL
7.	34621SAE07	SOLAR ENERGY LAB	EEE	EC-SE	3	0	0	3	NIL
8.	34621SAE08	WIND ENERGY LAB	EEE	EC-SE	3	0	0	3	NIL
9.	34621SAE09	POWER ELECTRONICS SIMULATION LAB –I	EEE	EC-SE	0	0	4	2	NIL
10.	34621SAE10	POWER ELECTRONICS SIMULATION LAB -II	EEE	EC-SE	0	0	4	2	NIL

	HONORS AND MINOR DEGREE PROGRAMMES (18-20)								
		AUT	OMOTIVE SYSTE	MS					
1.		FUNDAMENTALS OF AUTOMOTIVE	EEE		3	0	0	3	NIL
2.		VEHICULAR NETWORKS AND COMMUNICATION	EEE		3	0	0	3	NIL
3.		E-MOBILITY BUSINESS AND POLICIES	EEE		3	0	0	3	NIL
4.		AUTOMOTIVE ELECTRONICS	EEE		3	0	0	3	NIL
5.		AUTOMOTIVE CONTROL SYSTEMS	EEE		4	0	0	4	NIL
6.		VEHICLE DYNAMICS AND CONTROL	EEE		4	0	0	4	NIL
		INDUST	RIAL AUTOMAT	ION					
1.		SENSORS & ACTUATORS	EEE		3	0	0	3	NIL
2.		PLC & ITS APPLICATIONS	EEE		3	0	0	3	NIL
3.		INDUSTRIAL AUTOMATION & CONTROL	EEE		3	0	0	3	NIL

4.	DIGITAL TWIN FOR PROCESS INDUSTRY	EEE	3	0	0	3	NIL
5.	INDUSTRIAL INTERNET OF THINGS	EEE	3	0	0	3	NIL
6.	MICRO-MECHANAICAL SYSTEMS	EEE	3	0	0	3	NIL
7.	PROCESS CONTROL DESIGN	EEE	3	0	0	3	NIL

TECHNICAL ENGLISH	Category	L	Т	Р	Credit
	FC - HS	3	0	0	3

PREAMBLE

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario.

PREREQUISITE: NIL

COURSE OBJECTIVES

1	To en	able stu	dents to	o devel	op LSR	W skill	s in En	glish. (I	Listenin	g, Speak	ing, Re	ading, and	Writing	.)	
2	To ma	ake ther	n beco	me effe	ctive co	ommun	icators								
3	To en	sure that	t learne	ers use	Electro	onic me	dia mat	erials fo	or devel	oping la	nguage				
4	To aid	l the stu	idents v	vith em	ployabi	ility ski	lls.								
5	To de	velop tł	ne stude	ents con	nmunic	ation sl	cills in f	formal a	and info	ormal situ	ations				
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	studen	ts will ł	be able t	to						
CO1. L	isten, r	ememb	er and r	respond	to othe	ers in di	fferent	scenari	0			Remembe	er		
CO2. 1	Underst	and an	d spea	k fluer	tly and	d corre	ctly wi	ith corr	ect pro	onunciati	on in	Understa	nd		
differen	nt situat	ion.													
CO3. T	'o make	the stu	dents e	xperts i	n profe	ssional	writing					Apply			
CO4 7	Fo make	e the stu	idents i	n profi	cient te	chnical	commu	inicator				Apply			
CO5 To	o make	the stud	lents re	cognize	e the ro	le of teo	chnical	writing	in their	careers	in	Analyze			
busines	s, techr	nical an	d scient			COME				ME ODE	CIEIC				
MAPP	ING W	TIHP	RUGR		LOUI	COME	25 AND	PROC	FRAM	VIE SPE	CIFIC	OUICON	VIES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				L	L	Μ	Μ	Μ		S		S	S		S
CO2							L			S		S	Μ		S
CO3				L				L				L	Μ	M	
CO4	L					Μ		L	Μ	S	L	S	S	M	S
CO5	Μ		L	S								S	Μ		S
S- Stro	ng; M-N	Medium	i; L-Lo	W											

- p-1- d-=+

SYLLABUS SELF INTRODUCTION

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English -Scientific Vocabulary (definition and meaning)– Technical Abbreviations and Acronyms -Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

STRESS

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homonyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks, New Norms) - Extempore.

SPEAKING SKILLS

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue- Interpersonal Skills.

READING SKILLS

English as language of Opportunity and Employability- Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming-Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation – Technical Jargons

TECHNICAL WRITING

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) – Informal and Formal letters – Application letter- Resume Writing- Difference among Bio data, Resume and Curriculum Vitae.

ТЕХТВООК

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

Course Designers:

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

	0	
S.No.	Name of the Faculty	Mail ID
1.	Dr. Jennifer G Joseph, Prof. and Head, H&S	jennifer@avit.ac.in
2	Dr.P.Saradha / Associate Professor - English	saradhap@vmkvec.edu.in

\$-1.- d-=+

3412	1H02				BUS	INESS	ENG	LISH			Categ	ory	L	T	P	Cre	dit
DDEA											HS	5	3	U	U	3	'
PREA Langua English and as	nge is on the in a telesco	ne of th ternation ope to v	ne most onal lan view the	valued guage p dream	posses blays a of the f	sions o vital roi future.	f men. le as a j	It acts propelle	as a rep er for th	oository o le advand	of wisdo cement	om. A of kn	Amon owled	g all ot dge in d	her la iffere	ngua nt fie	iges elds
PRER	EQUIS	ITE: N	IL														
COUR	SE OB	JECTI	VES														
1	To in	npart ar	nd enha	nce corj	porate c	commu	nication	1.									
2	To en	able le	arners t	o devel	op pres	entation	n skills										
3	To b	uild coi	nfidence	e in lea	mers to	use En	glish in	Busine	ess cont	ext							
4	To ma	ke ther	n exper	ts in pro	ofession	nal writ	ing										
5	To equ	uip stud	lents wi	th emp	loyabili	ty and j	job sea	rching s	kills								
COUR	SE OU	TCOM	IES														
On the	success	ful con	pletion	of the	course,	student	ts will t	be able t	0								
CO1. C	Commur	icate w	vith a ra	nge of t	formal a	and info	ormal c	ontext				Unde	erstar	nd			
CO2. 0	demonst	rate int	eraction	n skills	and cor	nsider h	ow own	n comm	unicati	on is adj	usted	Appl	y				
in diffe	erent sce	nario															
CO3. l	Jse strer	igthene	d oral a	nd writ	ten skil	ls in the	e busine	ess cont	ext			Appl	y				
CO4. C	Create in	terest i	n a topi	c by ex	ploring	though	ts and i	ideas				Appl	y				
CO5. H	Have be	tter per	forman	ce in th	e art of	commu	inicatio	on				Appl	y				
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUT	CON	AES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012	PSO1	PSC	02	PS O3
CO1	Μ		L		L	S	S		Μ	S			S	S			
CO2		Μ	S	Μ		Μ	Μ		L	S			S	М			
CO3	L	Μ				Μ		L		S	L	l	М		N	1	
CO4		L	Μ	Μ			L	Μ	Μ	S	L]	М	Μ			Μ
CO5		L		Μ		L	L			S			S	Μ	N	1	S
S- Stro	ng; M-N	Aedium	n; L-Lov	W													
						CTTT.	TADI	a									

SYLLABUS

Basics of Language and Listening Skills: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills

STRESS: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology) Jargons- Technical and Business

SPEAKING SKILLS AND READING SKILLS: Extempore, Listening to TED Talks and discussion on the topic heard, Speaking activities- pair and group designed by the faculty, Group Discussion-Types of Interviews, Watching Documentary Films and Responding to Questions, Reading Skills-Understanding Ideas and making Inferences— FAQs –

- p-1- d-=+

E - Mail Netiquette - Sample E – mails , Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions

CORPORATE COMMUNICATION: What is Corporate Communication? Types of Office communications - Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences

WRITING SKILLS Technical Articles – Written communication Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

ТЕХТВООК

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English – Writing, Reading and Speaking – Pickett and Lester, Harper and Row

Course Designers:

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Jennifer G Joseph	Professor & Head	English	jennifer@avit.ac.in
2	Dr. P. Saradha	Associate Professor	English	saradhap@vmkvec.edu.in

\$-1.- d-=+

			-	ENGL	ISH L	ANGU	AGE	LAB		0	ategor	y L	T	P	Cr	edit
PREA Englis practic	PREAMBLE English Language Laboratory provides technological support to students. It acts as a platform for learning, practicing and producing language skills through interactive lessons and communicative mode of teaching.															
PRER	PREREQUISITE: NIL															
COUI	COURSE OBJECTIVES															
1	To un	derstar	nd com	munica	ation n	uisance	es in th	e corpo	orate se	ector.						
2	2 To understand the role of mother tongue in second language learning and to avoid interference of mother tongue.															
3	To in	prove	the ora	al skills	of the	studen	ts con	nmunic	ate effe	ectively	through	n differen	t activi	ties		
4	To un	dersta	nd and	apply	the tele	phone	etique	tte								
5	Case	study t	o unde	erstand	the pra	ctical a	aspects	s of cor	nmunic	cation						
COUI	RSE O	UTCO	MES													
On the	succes	sful co	ompleti	ion of t	he cou	rse, stu	dents	will be	able to)						
CO1.	Give b	est per	formar	nce in g	roup d	iscussi	on and	l interv	iew			Understa	nd			
CO2.]	Best pe	rforma	nce in	the art	of con	versati	on and	l public	speaki	ng.		Apply				
CO3. (Give be	tter jo	b oppo	rtunitie	s in co	rporate	e comp	anies				Apply				
CO4. visual	Better experie	unders ence an	standin 1d grou	g of r	ities	s of E	nglish	langua	age thi	ough a	udio-	Apply				
CO5.	Speakii	ng skil	ls with	clarity	and c	onfide	nce wl	hich in	turn ei	nhances	their	Apply				
emplo	yability	SK111S		TD A M	MEO		MES		DOCI		E SDE4			MES		
							DO		NUG							DCC2
COS	POI	PO2	PO 3	PO4	POS	PO6	РО 7	PO8	PO9	POIO	1	PO12		PSC	D2	PSO3
CO1		S	М	S		L			S	S	М					М
CO2	М								М	S		М	М		$\neg \uparrow$	М
CO3	М									S		М				М
CO4	М									М			M		+	М
CO5	М			S						М			M			S
S- Stro	S- Strong; M-Medium; L-Low															

SYLLABUS

MODULE I: Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to songs, videos and understanding- (fill in the blanks) Telephone Conversation

MODULE II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

MODULE III: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group

- p-1- d-=+

wise, Individual. Role Play

MODULE IV: Telephone Etiquette, Dining Etiquette, Meeting Etiquette, Corporate Etiquette, Business Etiquette.

MODULE V: Case study of Etiquette in different scenario.

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Jennifer G Joseph,	Prof. and Head, H&S	English	jennifer@avit.ac.in
2	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in

- p-1- d-=+

TOTAL QUALITY	Category	L	Т	Р	Credit
MANAGEMENT	FC - HS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the Total Quality Management concepts.

2. To practice the TQM principles.

3. To apply the statistical process control

4. To analyze the various TQM tools

5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization	Apply
Environment.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	-
CO1	М	-	-	-	-	-	L	L	L	М	L	М	-	-	-	
CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М	
CO3	S	S	М	S	S	-	-	L	-	L	-	L	L	М	L	
CO4	L	М	S	L	М	-	L	-	L	М	L	М	-	-	-	
CO5	L	L	М	-	L	М	S	S	М	L	L	М	-	-	М	
S- Strong; M-Medium; L-Low																

\$-1.- d-=+

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TQM Principles and Barriers & Implementation –Leadership – Concepts-Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting -- Strategic Planning.

TQM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention-Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement : Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve-Control Charts for variables and attributes - **OC curve** - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA -Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

COURSE DESIGNERS:

- James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) - 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

_					
	S.No	Name of the	Designation	Department	Mail ID
		Faculty	8	I	

\$-1- d-=+

1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

-g-1.- d-=+

3412	1H82		PROF	FESSIC)NAL	COMN	IUNIC	CATIO	N ANI)	Catego	ry L	Т	Р	Cı	redit
0.112]	PERSC	DNALI	TY DE	EVELC	OPMEN	ΝT		HSS	0	0	2		1
То	develo	p stud	ents wi	th good	d prese	ntatior	and w	riting	skills (Professi	onally &	technic	cally).	Artic	ulate	and
en	unciate	words	and se	ntence	s clearl	y and	effectiv	vely. D	evelop	proper	listening	skills.	Unders	tand	diffe	rent
wr	iting te	chniqu	es and	styles	based o	on the o	commu	inicatio	on bein	g used.						
PRER	PREREQUISITE NIL															
NIL COURSE OBJECTIVES																
	CSE OI	BJEC		mionti	on and	norson	ality ol	zilla								
$\frac{1}{2}$	To in	prove	Aptitu	de skill	n anu	to im	anty si	alf_lea	rnina /	receard	hing ahil	ities pr	ecentat	ions	kille	87
2	techn	ical wr	iting	ue skin	is, train		proves	5011-1Ca	rinng /	research	inig aon	nies, pi	esentai	1011 5	KIIIS (x
3	To in	prove	studen	ts emp	lovabil	itv skil	lls.									
4	4 To develop professional with idealistic, practical and moral values.															
5	To pr	oduce	cover l	etters.	resume	s and	iob apr	olicatio	n strate	egies.						
COU	RSE O	UTCO	MES	,			11			0						
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to)						
CO1.	Improv	ve com	munica	ation ar	nd pers	onality	skills.				A	Apply				
CO2. 1	Demon	strate e	effectiv	e use o	of team	work s	kills ar	nd pres	entatio	n skills	to A	Apply				
compl	ete give	en task	s.													
CO3. 5	Speak v	vith cla	arity an	d conf	idence	thereb	y enha	ncing e	employ	ability s	kills A	Apply				
of the	student	s.														
CO4.]	Have ba	alanceo	d value	system	n that c	an be p	practice	ed for e	enhanc	ed	A	Apply				
profes	<u>sional l</u>	ite.	1	1	1			• ,	•, ,•			T 1 /	1			
CO5. 1	Improv			llary an	nd use		n appro	opriate	situatio			Understa			C	
MAPI			PRUG	FRAM.			WIES .		KUG		E SPEC			JIVIE	.	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	SO2	PSO3
COI	M	M	-	-	-	M	M	-	M	S M	-	-				
CO_2	IVI	-	-	-	-	-	- M	-	D C	IVI S	-	-				
CO_{4}	-	-	-	-	-	-	IVI	-	S .	3	-	-				
C04	S	-	-	-	-	-	-	-	- M	- S	-	- M				
S- Stro	ong: M.	Mediu	<u>-</u> im: L ₋ I	-0W	-	-	-		TAT	6	-	TAT	1			
SYLL	ABUS															

UNIT – I: COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication, Barriers and Filters in Listening Skill, Active and Passive listening, exposure to English language through various activities and maintaining a vocabulary dairy improving confidence in Language usage using activities,

UNIT – II: GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

-9-1- d-=+

UNIT – III. READING AND WRITING SKILLS: Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

UNIT IV. SPEAKING SKILLS AND ESSENCE OF SOFT SKILLS: Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation, Time management, Team work skills, Leadership skills, Adaptability and bettering oneself, Persuasion skills.

UNIT V TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

TEXTBOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria& Sons, New Delhi, Rep''nt 2007

REFERENCES

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India

3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C. and Krishna Mohan, Tata Mc Graw – Hill.

Course	Course Designers:						
COUR	SE DESIGNERS						
S.No.	Name of the Faculty	Mail ID					
1.	Dr. Jennifer G Joseph, Prof. and Head	jennifer@avit.ac.in					
2.	Dr. P.Saradha, Associate Professor	saradhap@vmkvec.edu.in					

- p-1- d-=+

Course Code	Course Title	Category	L	Т	Р	С
	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	FC - HS	3	0	0	3

Course Objectives:

1. Development of a holistic perspective based on self- exploration

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body-Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -.Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -.Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours : 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

2.Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

- p-1- d-=+

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

COU	RSE DESIGNERS			
S.NO	COURSE	DESIGNATION	NAME OF	MAIL ID
	INSTRUCTOR		THE	
			INSTITUTION	
1	Dr.S.P.Sangeetha	Vice	AVIT	sangeetha@avit.ac.in
		Principal(Academics)		
2	Dr.Jennifer G	HoD-H&S	AVIT	Jennifer@avit.a.cin
	Joseph			_

-g-1.-d-=+

ENGINEERING MATHEMATICS	Category	L	Т	Р	Credit
	FC-BS	2	1	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PREREQUISITE

NIL

COUR	COURSE OBJECTIVES														
1	To re	call the	e advan	iced ma	atrix kı	nowled	ge to E	Enginee	ering pi	roblems					
2	To eq	uip the	emselve	es fami	liar wi	th the f	functio	ns of s	everal	variable	s.				
3	To in	nprove	their a	bility in	n solvi	ng geo	metrica	al appli	cations	s of diffe	erential	calculus	problen	ns	
4	4 To examine knowledge in multiple integrals.														
5	5 To improve their ability in Vector calculus.														
COUR	COURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1. A	CO1. Apply the concept of orthogonal reduction to diagonalise the given matrix Apply														
CO2. Find the radius of curvature, circle of curvature and centre of curvature for a given curve.											Apply				
CO3. (finding	Classif statio	y the m nary po	naxima pints	and m	inima	for a gi	ven fu	nction	with se	everal va	riables,	through	by	Apply	
CO4. I	Find do	ouble in	ntegral	over g	eneral	areas a	nd trip	le integ	gral ov	er gener	al volun	nes		Apply	
CO5. <i>A</i>	Apply	Gauss]	Diverg	ence th	leorem	for eva	aluatin	g the s	urface	integral.				Apply	
MAPP	ING V	WITH	PROG	GRAM	ME O	UTCO	MES .	AND P	ROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2	PSO3
CO1	S	S	М					L				М			
CO2	S	S	М					L				Μ			
CO3	S	S	М					L				М			
CO4	S	S	Μ					L				Μ			
CO5	S	S	Μ					L				М			
S- Stro	ng; M-	Mediu	ım; L-I	LOW											

\$-1.- d-=+

SYLLABUS

MATRICES:

Characteristic equation- Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof).

DIFFERENTIAL CALCULUS&PARTIAL DERIVATIVES :

Curvature - Cartesian and Parametric Co-ordinates - Centre and radius of curvature - Circle of curvature.

Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method,

ORDINARY DIFFERENTIAL EQUATIONS:

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS:

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration(in both Cartesian and polar coordinates)-Change of order of integration

VECTOR CALCULUS:

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof),Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gauss divergence and Stoke's theorems (Statements only)

TEXT BOOKS:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi (2020).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

REFERENCES:

- 1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

(COURSE	DESIGNERS	_	_	
	S.No	Name of the Faculty	Designation	Department	Mail ID
	1	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics	bhuvaneswari@avit.ac.in
	2	Dr.G.Selvam	Associate Professor	Mathematics	selvam@vmkvec.edu.in

- p-1- d-=+

PHYSICAL SCIENCES -	Category	L	Т	Р	Credit
Part A: ENGINEERING PHYSICS	FC-BS	2	0	0	2

PREAMBLE

Engineering Physics is the study of advanced physics concepts and their applications in various technological and engineering domains. Understanding the concepts of laser, types of lasers, the propagation of light through fibers, applications of optical fibers in communication, production and applications of ultrasonics will help an engineer to analyze, design and to fabricate various conceptual based devices.

PRERI	PREREQUISITE : NIL														
COUR	SE OB	JECTI	VES												
1	To rec	call the	propert	ies of la	aser and	l to exp	lain pri	nciples	of laser	•					
2	To assess the applications of laser														
3	To detail the principles of fiber optics														
4	To study the applications of fiber optics														
5	5 To explain various techniques used in Non-destructive testing														
COUR	COURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1. Understand the principles laser, fiber optics and ultrasonics										Understand					
CO2.	Unders	stand th	e const	ruction	of lase	r, fiber o	optic ar	nd ultra	sonic ec	quipment	s		Underst	and	
CO3.	Demon device	nstrate s	the wo	rking o	of laser	, fiber	optic a	and ulti	rasonic	based c	omponer	nts and	Apply		
CO4.	Interpr	et the p	otentia	l applic	ations o	of laser,	fiber o	ptics an	nd ultras	sonics in	various	fields	Apply		
CO5.	Differe device	entiate s.	the wo	rking n	nodes o	of vario	ous type	es of la	aser, fił	per optic	and ult	rasonic	Analyze	;	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М									М	М		М
CO2	S		L									M	M		
CO3	S			M			M					M	M		
CO4	S	М		M	M	S	M					M	S		М
CO5	S	М	M									M	M		
S- Strot	Strong M Medium: L Low														

-9-1- d-=+

-P-1- d-=7

Unit: I

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram.

SYLLABUS

Unit: II

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

Unit: III

ULTRASONICS: Ultrasonic production: Magnetostriction and piezo electric methods – Determination of velocity of ultrasonic waves (acoustic grating) – Applications of ultrasonics

TEXT BOOKS

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

2. Palanisamy P. K., Engineering Physics, Scientific Publishers, 2011.

3. Avadhanulu M. N., Kshirsagar P. G., Arun Murthy T. V. S., A Textbook of Engineering Physics, S. Chand Publishing, 2018.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2012.

4. Srivastava S. K., Laser Systems and Applications 3rd Edition, New Age International (P) Ltd Publishers, 2019.

5. Ajoy Ghatak, Thyagarajan K., Introduction To Fiber Optics, Cambridge India, 2013.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in

9 hours

9 hours

9 hours

PHYSICAL SCIENCES PART-B	Category	L	Т	P	Credit
- ENGINEERING	FC-BS	2	0	0	2
CHEMISTRY					
(Common to all Branches)					

PREAMBLE

The objective of this course is to better understand the basic concepts of chemistry and its applications in diverse engineering domains. It also imparts knowledge on the properties of water and its treatment methods, Electrochemistry, corrosion and batteries, properties of fuel and combustion. This course also provides an idea to select the material for various engineering applications and their characterization.

PREREQUISITE

NIL

COU	COURSE OBJECTIVES														
1	To Pro	ovide th	ne know	vledge o	n water	treatm	ent.								
2	To exp	plain at	out the	import	ance of	electro	chemist	ry, mec	hanism	of diff	erent co	rrosion	and prin	nciple a	ind
	worki	ng of ba	atteries.					-					-	-	
3	3 To explain different types of fuel, properties and its important features.														
COU	RSE O	UTCO	MES	• •	-	•		-							
On the	e succes	ssful co	mpletic	on of the	e course	e, studei	nts will	be able	to unde	erstand					
CO1.	. Estimate the hardness of water Apply and Identify suitable water treatment methods. Apply														
CO2.	Describe terms involved in electrochemistry, the control methods of corrosion and Analyse														
	worki	ing of e	nergy s	storage of	levices.										
		-		-											
GOO	XX 1				1 0	•.		1.1	•			0.0 1	<u> </u>		
CO3.	Unde	rstand t	he qual	lity of fi	iels froi	m its pr	operties	s and th	e impor	tant fea	tures of	t fuels	Ana	lyse	
MADI	L DINC W	/ITH D		MME	OUTCO	MES A	ND PR		MMF S	PECIFI		COME			
COS	PO1	PO2		PO4	PO5	PO6	PO7		PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	-	M	S	M	-	-	-	M	M	M	M
	-														
CO2	S	S	L	L	-	S	S	S	-	-	-	S	М	L	М
CO3	S	Μ	Μ	L	L	L	М	м	-	-	-	S	-	Μ	Μ

S- Strong; M-Medium; L-Low

Syllabus UNIT – I: WATER TECHNOLOGY

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA. Boiler troubles - Treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning). External treatment – Ion exchange process, zeolite process – Domestic water treatment - desalination of brackish water – Reverse Osmosis and Electrodialysis.

\$-1- d-=+

9hrs

UNIT - II: ELECTROCHEMISTRY, CORROSION AND BATTERIES

Electrochemistry: Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - Galvanic cell-Electrochemical cell representation - EMF series and its significance. Corrosion – Definition causes and effects, Classification, Types of corrosion- dry corrosion, Wet corrosion, Factors influencing rate of corrosion, Corrosion control methods – Sacrificial anode method and impressed current cathodic method.

Batteries: Terminology- Daniel cell – Dry cell - Lead-acid accumulator- Nickel-Cadmium batteries, Lithium batteries: Li/SOCl2 cell - Li/I2 cell- Lithium ion batteries. Fuel cells: Hydrogen-oxygen fuel cell, Solid oxide fuel cell (SOFC)

UNIT – III FUELS AND COMBUSTION

Fuels: Introduction – classification of fuels – coal – analysis of coal (proximate and ultimate). Carbonization – manufacture of metallurgical coke (Otto Hoffmann method) – petroleum – manufacture of synthetic petrol (Bergius process). Knocking – octane number – cetane number – natural gas – compressed natural gas (CNG). Liquefied petroleum gases (LPG) – power alcohol and biodiesel. Combustion of fuels: Introduction – calorific value – higher and lower calorific values- theoretical calculation of calorific value – ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis (ORSAT Method).

TEXTBOOK

- 1. Engineering Chemistry by Jain and Jain, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, 2017
- 2. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.

REFERENCES

- 1. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane, 3rd Edition, McGraw Hill, 1980
- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 3. Physical Chemistry, by P. W. Atkins, Julio de Paula, 8th Edition, Oxford University press, 2007
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

Course Designers:

N	ame of the Faculty	Mail ID
D	r. A.R. Sasieekumar	sasieekhumar@vmkvec.edu.in
D	r. R. Nagalakshmi	nagalakshmi.chemistry@avit.ac.in

\$-1.- d-=+

9hrs

9hrs

DIFFERENTIAL EQUATIONS AND	Category	L	Т	Р	Credit
TRANSFORMS	FC-BS	2	1	0	3

PREAMBLE

A signal is said to be a continuous time signal if it is available at all instants of time. A real time naturally available signal is in the form of time domain. However, the analysis of a signal is far more convenient in the frequency domain. These are three important classes of transformation methods available for continuous time systems. They are Laplace Transform, Fourier series and Fourier Transform. Similarly, Z- transform plays an important role in analysis of linear discrete time signals. Transform techniques are very important tool in the analysis of signals. Also To expose the students to the basics of wavelet theory and to illustrate the use of wavelet processing in engineering fields.

PREREQUISITE

Engineering Mathematics

COUR	RSE O	BJEC	ΓIVES												
1	Learn	n to use	e Fourie	er serie	s to rep	oresent	period	lical ph	nysical	phenom	ena in e	ngineeri	ing anal	ysis	
2	To ur	ndersta	nd how	the Fo	ourier s	eries is	s exten	ded to	aperio	lic signa	als in the	e form F	ourier tr	ansform	l
3	3 To understand the properties of Z-Transform and associating the knowledge of properties of ROC in response to different operations on discrete signals.														
4	4 To learn Laplace transform and it Inverse methods to solve differential transforms and integral transforms														
5	5 To understand the terminology that are used in the wavelet's literature														
COUR	COURSE OUTCOMES														
	On the successful completion of the course, students will be able to														
CO1. Explain fundamental understanding of Fourier series and be able to give Fourier expansions of Apply a given function.										Apply					
CO2. I	Demon	strate]	Fourier	Trans	form as	s a tool	for so	lving in	ntegral	equation	ns				Apply
CO3. S	Solve d	lifferer	nce equ	ations	by usir	ng Z tra	nsform	n techn	iques.	•					Apply
CO4.	Under: functio	stand ons and	the condition th	ncept olicatio	of Lap n to so	lace ti lve ord	ransfor linary o	m and differer	l inver ntial eq	se Lapl uations.	ace trar	sform	of varic	ous	Apply
CO5.L	Underst bases, c	and h	now to ors and	o use series	the 1 expans	nodern ions.	n sign	al pro	ocessing	g tools	using	signal	spaces	,	Apply
MAPP	PING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC O	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	М			-	L				М			
CO2	S	M	S	M				L				М			
CO3	S	M	S	Μ				L				Μ			
CO4	S	M	S	M				L				М			
CO5	S	M	S	Μ				L				Μ			
S- Stro	ong; M	I-Medi	ium; L	-Low											

- p-1- d-=+

Syllabus

FOURIER SERIES:

Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

FOURIER TRANSFORMS:

Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS:

Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

LAPLACE TRANSFORMS:

Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems – Transform of periodic functions-Inverse Laplace transform – Convolution theorem – -Solution of linear ODE of second order with constant coefficients.

WAVELET TRANSFROMATION:

Classes of wavelets: Haar, Daubechies, bi-orthogonal. Continuous Wavelet Transform (CWT): CWT and its Properties, Discrete Wavelet Transform- Haar scaling function - Nested spaces - Wavelet function- Designing orthogonal wavelet systems: Daubechies – Coiflet - Symlet wavelet system coefficients- Signal decomposition using DWT.

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 2. K. P. Soman, K. I. Ramachandran, "Insight into Wavelets: From Theory to Practice", Third Edition, PHI (2004).

REFERENCES:

- 1. "Engineering mathematics I & II", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr. A. Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- **3.** R. M. Rao and Ajit S. Bopardikar, "Wavelet Transform, Introduction to theory and Applications", Addison-Wesley (1998).

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Departmen t	Mail ID
1	Dr. L. Tamilselvi	Professor	Mathematic s	ltamilselvi@avit.ac.in
2	Dr. M. Vijayarakavan	Associate Professor	Mathematic s	vijayarakavan@vmkvec.edu.in

-P-1- d-=+

		SMART MATERIALS AND	Category	L	Т	Р	С		
		NANOTECHNOLOGY							
		Total Contact Hours: 45							
		Prerequisite: Physical Sciences	FC-BS	3	0	0	3		
Pream	ıble:								
This s	yllabus e	enables the students to learn the applications of smart mat	erials and uses of vari	ous sm	art eng	gineer	ing		
device	s. The s	syllabus also discusses about the nanomaterials, the	ir unique properties	and a	pplica	tions	s in		
variou	ıs fields	•							
Cours	e Objec	tives:							
1	Gain tl	he knowledge about the concepts of smart systems and var	rious smart materials.						
2	Realize	e about the smart sensor materials which are used for Indu	strial Applications.						
3	Unders	stand about the Industrial application oriented Smart mater	rials'Actuators.						
4	To leas	rn the properties and classifications and importance of Nar	nomaterials						
5	Unders	stand the characteristic features of materials at nanoscale	and their potential app	lication	ıs				
COC	C								
COS	Cours	e Outcomes: On the successful completion of the course,	students will	*					
COl	Learn	the smart-properties of various functional materials		Learn					
CO2	unders	tand the applications of different smart materials as sensor	rs	Under	stand				
CO3	understand the applications of different smart materials as actuators Understand								
CO4	Gather	r knowledge on unique properties of nanomaterials		Learn					
CO5	Use of	Nanomaterials for industrial applications		Acqui	re				
CO6	Gain k	nowledge about nanomaterials in health care industry							

Mapping with Programme Outcomes and Programme Specific Outcomes

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	POS1	POS2	POS3
	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO1															
	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO2															
	S	М	S	S	-	-	-	-	-	-	-	S	-	-	-
CO3															
	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO4															
	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO5															
	S	М	М	S	М	-	-	-	-	-	-	S	-	-	-
CO6															

S – strong, M- Medium, L - Low

-9-1- d-=+

Syllabus

UNIT: I

Overview of Smart Materials: Introduction to Smart materials -piezoelectric materials - piezoelectricity magnetostriction materials - magnetostriction effect- shape memory alloys (SMA) - photoelastic materials photoelasticity.

UNIT: II

Smart material based sensors: Introduction to sensing technology - electric and magnetosrictive sensors - SMA based sensors - Infrared sensors - stress analysis by photoelastic sensors- Industrial Applications of smart sensors: Accelerometer and Biological DNA sensors.

UNIT: III

Smart Materials For Actuators: Introduction to smart actuators - piezoelectric actuators - magnetostrictive actuators - SMA based actuators - polymeric and carbon nanotubes based low power actuators -Industrial Applications: robotic artificial muscles, materials for bone substitutes and tissue replacement implants - smart polymeric materials for skin engineering

UNIT: IV

Materials in Nanoscale: Historical development of nanomaterials - Unit and dimensions - Classifications of nanomaterials - quantum dots, nanowires, ultra-thin films, nanoparticles, multilayered materials. Length Scales involved and effect on properties: mechanical, electronic, optical, magnetic and thermal properties.

UNIT: V

Selected Applications of Nanomaterials: Medical diagnostics - nanomedicine - targeted drug delivery -Biosensors; Information storage - nanocomputer - molecular switch - single electron transistors; design and fabrication of MEMS and NEMS devices.

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. Fundamental of Smart Materials, Editor: Mohsen Shahinpoor, RSC Publishers 2020
- 3. Charles P. Poole, Jr. and Frank J Ownes, "Introduction to Nanoscience and Nanotechnology", Wiley-Interscience Inc., Publication, 1st Edition, 2020.
- 4. Smart Material Systems And Mems Design And Development Methodologies by Vijay K Varadan, WILEY INDIA 2014.

REFERENCE BOOKS

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.
- 3. Nanotechnology, Second eition, M. A. Shah and K. A. Shah, Wiley Publishers 2019.
- 4. Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009.

COURSE DESIGNERS

	SE DESIGNERS					
S.No	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. B. DHANALAKSHMI	Asso. Professor	Physics	Dhanalakshmi.phy@avit.ac.in		
2	Dr G. SURESH	Asso. Professor	Physics	suresh.physics@avit.ac.in		
3	Dr. R. N. VISWANATH	Professor	Physics	rnviswanath@avit.ac.in		

\$-1.- d-=+

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours
AND LINEAR ALGEBRA FC- BS 2 1 0 3 PREAMBLE													
PREAMBLE													
FREAMBLE Impart knowledge about the subject of a single variable and multivariable. The focus of the course will be the study													
Impart knowledge about the subject of a single variable and multivariable. The focus of the course will be the study of the application of partial differential equations. The course also gives the opportunity to the learner to understand													
linear algebra and its application to engineering.													
PREREQUISITE Differential Equations and Transforms													
COURSE OBJECTIVES													
1 Familiarize themselves with the functions of a variety of variables.													
2 To familiar with applications of partial differential equations													
3 To have the knowledge of vector space & subspaces													
4 To have an idea of inner product spaces over the field of complex numbers													
5 Understand linear transformation and its properties													
COURSE OUTCOMES													
On the successful completion of the course, students will be able to													
CO1. Form the partial differential equations and find its solutions Apply													
CO2. Apply the partial differential equations in a vibration of strings; heat-passing a rod and two- dimensional heat conduction problems													
CO3. Understand the concept of vector space & subspace and to find the dimension of a vector Apply													
CO4. Understand inner product space concepts and apply the concept in various linear system													
related problems.													
CO5. Compute the linear transformations and find matrices of general linear transformations Apply													
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES													
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03													
CO1 S S M L L M													
CO2 S S M L L M													
CO3 S S M L L M													
CO4 S S M L L M													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
S- Strong; M-Medium; L-Low													

-9-1- d-=+

PARTIAL DIFFERENTIAL EQUATIONS:

Formation - Solutions of standard types f(p,q) = 0, Clairaut's form, f(z,p,q) = 0, f(p,x) = g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS:

Method of separation of variables – Solutions of one-dimensional wave equation and one-dimensional heat equation – Steady state solution of two-dimensional heat equation – Fourier series solutions in Cartesian coordinates

VECTOR SPACES:

Vectors in two-dimensional space and n dimensional space, subspaces and spanning sets properties of vector space, Linear combination of vectors, Linear independence and dependence of vectors, basis and dimension

INNER PRODUCT SPACES:

Inner product, norms - Gram Schmidt orthogonalization process - Adjoint of linear operations -Least square approximation

LINEAR TRANSFORMATION:

Linear transformations, linear operators, Properties of Linear Transformation, Algebra of Linear transformation, Matrix Representation of linear transformation, Linear map Associated with Linear Transformation

TEXT BOOKS:

1. Grewal, B.S., "Higher Engineering Mathematics", 35th Edition, Khanna Publishers, Delhi (2012).

2. Kennath M. Hoffman and Ray Kunze, "Linear Algebra", 2nd Edition, Pearson India Publishing, New Delhi, (2015).

REFERENCES:

- 1. Dr.A. Singaravelu, "Linear Algebra and Partial Differential Equations", Meenakshi Agencies, Chennai (2019).
- 2. Kreyszig, E., "Advanced Engineering Mathematics", (8th Edition), John Wiley and Sons, (Asia) Pvt. Ltd., Singapore (2012).
- 3. Dr.Gunadhar Paria, "Linear Algebra", New Central Book Agency (P) Ltd (2012).

COURSE DESIGNERS

1 Mrs.V.T.Lakshmi Associate Mathematics 1 Professor Iakshmivt@vmk	il ID
Associate	<u>kvec.edu.in</u>
2 Ms. S.Sarala Associate Professor Mathematics <u>sarala@avit.ac.in</u>	<u>n</u>

- p-1- - -===

				NU	MERIC	CAL M	етно	DS		Categ	gory	L	Т	Р	Credit
										FC-	BS	2	1	0	3
PREA	MBLE														
This co	ourse a	ims at	develo	ping th	e abilit	y to fo	rmulate	e an en	igineeri	ng probl	em in a	mathem	natical fo	rm appro	opriate for
subseq	t needs	mputat to knov	v suffic	ient nu	merical	metho	ds and t	ppropri technia	ate nun ues for	solving e	pproacn. engineer	An und ing probl	ler gradu lems such	ate of E	c or steady
state pi	oblems	, vibrat	ion or s	tability	probler	ns and	initial v	alue or	transie	nt proble	ms etc.	01			5
PRER	EQUIS	ITE													
1.Diffe	rential	Equatio	ons and	Transfo	orms										
COUR	SE OB	JECTI	VES												
1 To familiar with numerical solution of equations															
2	2 To be get exposed to finite differences and interpolation														
3	3 To be thorough with the numerical Differentiation and integration														
4	To find numerical solutions of ordinary differential equations														
5	5 To find numerical solutions of partial differential equations														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Solve the system of linear algebraic equations and single non linear equations arising in the field of															
Engineering. Apply															
CO2. <i>A</i>	Apply n	nethods	to find	intermo	ediate n	umeric	al value	e & poly	ynomial	of nume	rical dat	a.		Appl	Į
CO3 . <i>A</i>	Apply n	nethods	to find	integra	tion, de	rivative	es of on	e and ty	vo varia	able func	tions.			Appl	Į
CO4. S	Solve th	e initia	l value j	problen	ns using	g single	step an	d multi	step me	thods.				Appl	Į
CO5. S	Solve th	e bound	dary val	lue prob	olems u	sing fin	ite diffe	erence 1	nethods	5.				Appl	1
MAPP	'ING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	L			L					M			
CO2	S	S	M	L			L					М			
CO3	S	S	M	L			L					М			
CO4	S	S	M	М			L					М			
CO5	S	S	M	М			L					М			
S- Stro	ong; M-	Mediu	m; L-L	0W											
SYLL	ABUS														

-\$-1- d-=+

SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations – Fixed point iteration method – Newton Raphson method – Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel – Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both 1/3rd and 3/8th) rules. Romberg's rule, Two and Three point Gaussian quadrature formula. Double integrals using Trapezoidal and Simpson's rule.

INITIAL VALUE PROBLEMS OF ODE: Single Step Methods - Taylor Series, Euler and Modified Euler, Runge-Kutta method of fourth order -first and second order differential equations. Multistep Methods - Milne and Adam's-Bash forth predictor and corrector methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS:

Finite diference methods for solving second order two point linear boundary value problems – Finite diference techniques for the solution of two dimensional Laplace's and Poison's equations on rectangular domain - One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods - One dimensional wave equation by explicit method.

TEXT BOOKS:

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers (2015).
- 2. S.R.K. Iyengar, R.K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition (2012).
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2008).

REFERENCES:

- 1. Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3rd Edition, Tata Mc-Graw Hill. (New York) (2015).
- 2. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education (2010).

S.No	Name of the Faculty	Designation	Department	Mail ID				
1	Dr. S. Gayathri	Assistant Professor	Mathematics	gayathri@avit.ac.in				
2	Dr. M.Vijayarakavan	Associate Professor	Mathematics	vijayarakavan@vmkvec.edu.in				

- p-1- d-=+

MATHEMATICAL AND STATISTICAL	Category	L	Т	Р	Credit
TOOLS FOR RESEARCH	FC-BS	2	1	0	3

PREAMBLE: Optimization techniques helps in solving problems in different environments that need decisions like, replacement, Sequencing and Network problems. Probabilistic and statistical analysis is mostly used in varied applications in Engineering and Science. Statistical method introduces students to cognitive learning in statistics and develops skills on analyzing the data by using different tests

PRERI	PREREQUISITE - Nil														
COUR	SE OB	JECTI	VES												
1	To be progr	e thoro ammin	ough w 1g mod	ith line el	ar pro	gramm	ing pr	oblem	and fo	rmulate	a real v	world pi	roblem a	is a mat	hematical
2	Math	ematic	al mod	els for	analys	is of re	al prot	olems i	n Oper	ations R	esearch				
3	3 To acquire skills in handling techniques of PERT, CPM and sequencing model to perform operation among various alternatives.														
4	To ge statist	t the k ical dat	nowled a	ge on o	concept	s of rai	ndom v	variable	s and d	listributio	ons with	respect	to how t	hey are	applied to
5 To acquire knowledge of Testing of Hypothesis useful in making decision and test them by means of the measurements made on the sample.															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1,Formulate the Linear programming problem. Conceptualize the feasible region. Solve the Apply LPP with two variables using graphical method and by simplex method															
CO2. E	Be able	e to sol	lve sim	ple pro	blems	of repl	aceme	nt and	sequen	cing mo	odel			Appl	у
CO3. A	Able to	Solve	netwoi	k prob	lems u	sing Cl	PM, PI	ERT te	chniqu	es				Appl	у
CO4. Senginee	Select a pring pro	an app oblem	ropriate	e proba	bility d	listribut	ion to	determ	nine the	e probab	ility fun	ction fo	r solving	Appl	у
CO5. A	apply th	ne conce	epts of]	large/sn	nall san	ple tes	ts into 1	eal life	proble	ns				Appl	у
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	М	L			М				М			
CO2	S	S	L	М	L			М				М			
CO3	S	S	L	M	L			M				М			
CO4	S	S	M	M	L			M				M			
CO5	S	S	M	M	L			M				M			
S- Stro	ng; M-	Mediu	m; L-L	OW											

- p-1- d-=+

LINEAR MODELS: Mathematical Formulation of Linear programming problems- applications & limitations – Graphical method - Simplex method – Big M method

SEQUENCING AND REPLACEMENT MODELS: Scheduling – processing n jobs through two machines, processing n jobs through three machines, processing n jobs through m machines. Replacement Models: Replacement of Items due to deterioration with and without time value of Money, Group replacement policy.

NETWORK MODELS: Basic terminologies, constructing a project network, network computations in CPM and PERT.

PROBABILITY AND RANDOM VARIABLES: Probability concepts - Random variables - Discrete and continuous random variables - Expectation - Variance - Standard Distributions: Binomial, Poisson, Normal, Uniform and Exponential

TESTING OF HYPOTHESIS: Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) - Chi-square Tests for Goodness of fit - independence of attribute - Analysis of Variance

TEXT BOOKS:

- 1. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics", 11th extensively revised edition, S. Chand & Sons (2015).
- 2. Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).
- 3. H.A.Taha, "Operations Research: An Introduction", 7th Edition, Prentice Hall of India (2002).

REFERENCES:

- 1. Miller, "Probability and Statistics for Engineers", Freund-Hall, Prentice India Ltd. (2009).
- 2. Sundarasen.V, Ganapathy Subramaniyam, K.S, Ganesan.K. "Resource Management Techniques", A.R. Publications, Chennai (2013).
- 3. Premkumar Gupta, D.S. Hira, "Operations Research", S.Chand & company New Delhi.

COURS	E DESIGNERS			
S. No	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.V.T.Lakshmi	Associate Professor	Mathematics	lakshmivt@vmkvec.edu.in
2	Ms. S.Sarala	Associate Professor	Mathematics	sarala@avit.ac.in

\$-1.- d-=+

		NON-DESTRUCTIVE TESTING OF	Category	L	Т	Р	Credit				
		MATERIALS	FC-BS	3	0	0	3				
PREA	MBLE			1	1						
Nonde qualitie time in	estructive es of a ma product of	testing is a wide group of analysis/techniques used aterial without causing damage. The nondestructive evaluation, troubleshooting, and research.	d in science and in testing is highly	ndustries to valuable an	evaluate d can sav	the prope re both mo	rties and oney and				
PRER	EQUISI	ГЕ:									
COUR	RSE OBJ	ECTIVES									
1	1 To understand the principles of visual inspection										
2	To know	w about the procedure followed in liquid penetrant m	nethod								
3	To learn	n the magnetic particle testing									
4	To know	w about in radiographic testing									
5	To learn	n about ultrasonic testing									
COUR	RSE OUT	COMES									
On th	he success	sful completion of the course, students will be able to)								
CO1.	Choose	the NDT methods as per the conditions of the materi	als under study		Underst	and					
CO2.	Identify	the defects by visual inspection methods	y		Apply						
CO3. Locate the surface defects using LPT and Magnetic particle inspection Apply											
CO4.	Identify	the internal defects using X ray radiography and Ult	rasonic flaw detec	tor	Apply						
CO5. Inspect the defects using various techniques Analyze											

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S			М	М							М			
CO2	S			М	М							М		S	S
CO3	S	М	М	М	М							М		S	S
CO4	S	S	М	М	М							М		М	М
CO5	S	S	S	М	М							M		М	М

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT: I

9 hours

OVERVIEW OF NDT & VISUAL INSPECTION: Inspection of materials for defects and characterization - Non-Destructive versus Destructive Tests - different NDT methods and selection criteria for inspection - Visual Testing: Principle and conditions - Equipments and accessories: borescope, flexible fiber optic borescope, endoscopes or endoprobes, video imagescope - confocal laser scanning microscopy - optical coherence tomography - laser thermography. Visual inspection applied to construction materials

- p-1- d-=+

- p-1- d-=+

UNIT: II

LIQUID PENETRANT TESTING: Liquid penetrant testing: Introduction - Principle and equipments - test procedure cleaning methods - interpretation of test results - characteristics and types of penetrants - developers - safety precautions, advantages and limitations - High temperature penetrant testing - Low temperature penetrant testing - Industrial applications of LPT.

UNIT: III

MAGNETIC PARTICLE TESTING: Principle of magnetic particle testing - different methods to generate magnetic fields - magnetic particle testing equipment - magnetic particle testing procedures method of De-magnetization - advantages and limitations - codes and standard for MPI - magnetic particle test for welding, valves, crank shafts, etc.

UNIT: IV

RADIOGRAPHIC TESTING: X-ray radiography principle, equipment & methodology - Types of industrial radiation sources and application - Radiographic exposure factors and technique - Gama ray and X- ray equipment - Precautions against radiation hazards - applications of industrial radiography

UNIT: V

9 hours ULTRASONIC TESTING: Principle: Interaction of ultrasonic waves with matter - instrumentation - ultrasonic probes and types - ultrasonic testing methods and modes - data presentation: A-scan, B-scan and C-scan - advantages and limitations determination of thickness of samples and defects in welded products.

TEXT BOOKS

- 1. Jean-Paul Balayssac and Vincent Garnier, "Non-destructive Test and Evaluation of Civil Engineering Structures", ISTE Press Ltd - Elsevier Inc., 2017.
- 2. Prasad J, Nair C G K, Non-destructive Testing and Evaluation of Materials, Tata McGraw Hill Education Private Limited, 2011(Second Edition)
- 3. Carles J Hellier, Handbook of Nondestructive Evaluation, McGraw-Hill, 2013

REFERENCE BOOKS:

- 1. Nathan Ida and Norbert Meyendorf, "Handbook of Advanced Nondestructive Evaluation", Springer Int. Publishing Agency, 2019.
- 2. Baldev Raj, T.Jayakumar, M.Thavasimuthu, "Practical Non-Destructive Testing", Narosa Publishing House, 2009.
- 3. Evgency N. Barkanov and Ivan A. Parinov, "Non-destructive Testing and Repair of Pipelines, Springer Int. Publishing Agency, 2018.

COUR	SE DESIGNERS					
S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. B. Dhanalakshmi	Asso.Prof.	Physics	Dhanalakshmi.phy@avit.ac.in		
2	Dr G. Suresh	Asso. Professor	Physics	Suresh.physics@avit.ac.in		
3	Dr. R. N. Viswanath	Professor	Physics	rnviswanath@avit.ac.in		

9 hours

9 hours

9 hours

	ENVIRONMENTAL	Category	L	Т	Р	Credit						
	(Common to All Branches)	FC-BS	3	0	0	3						
Environmen atmospheric societal prob the various i environmenta	tal science is an <u>interdisciplinary field</u> <u>sciences.</u> Environmental studies deals lems and conserving the environment for ssues of environment and its managem al quality in every aspect.	that integrates physical, with the human relation or the future. Environmer nent for sustainable deve	chemic ns to th ntal eng lopmen	al, bid le env ineerin t by i	ologic ironm ng foc mprov	al, <u>and</u> ent and cuses on ving the						
PREREQUI	SITE NIL											
COURSE O	BJECTIVES											
1 To na	1 To inculcate the knowledge of significance of environmental studies and conservation of the natural resources.											
2 Te	To acquire knowledge of ecosystem, biodiversity, it's threats and the need for conservation											
3 To	To gain knowledge about environmental pollution, it's sources, effects and control measures											
4 To pr	To familiarize the legal provisions and the national and international concern for the protection of environment											
5 Te m	o be aware of the population on human h onitoring human health and environmen	nealth and environment, realth and environment, realth	ole of te	echnol	ogy ir	1						
COURSE O	UTCOMES											
On the succe	ssful completion of the course, students	will be able to										
CO1. Under resources	stand the importance of environmen	t and alternate energy	Under	stand								
CO2. Initiate ecosystem ar	e the awareness and recognize the social ad biodiversity conservation	responsibility in	Apply	, ,								
CO3. To dev solve the pro	elop technologies to analyse the air, wat blems	er and soil pollution and	Apply	,								
CO4. To eva regulations fo	CO4. To evaluate the social issues and apply suitable environmental regulations for a sustainable developmentEvaluate											
CO5. To identify and analyse the urban problems, population on human health and environment Analyse												

-9-1- d-=+

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
S	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	Μ	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	_
a a.		1.11	1•	тт											

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT -- I ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and overexploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems –Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

UNIT –II ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids-Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

UNIT –III ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management,-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style.

UNIT-IV SOCIAL ISSUES AND ENVIRONMENT

6 hrs

Sustainable Development- Water conservation – rain water harvesting, watershed management - Resettlement and rehabilitation of people, case studies –Climate change - Global warming - Acid rain - Ozone depletion- Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act- Pollution Control Board-central and state pollution control boards.

UNIT-V HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion –Family welfare programme - Environment & human health - Human rights – Value education –AIDS/HIV, Role of information technology in

-P-1- 2-=7

environment and human health.

TEXT BOOK

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

COURSE	COURSE DESIGNERS											
S.No.	Name of the Faculty	Mail ID										
1.	Dr. K. Sanghamitra	sanghamitra.chemistry@avit.ac.in										
2.	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in										

-F-1- d-=+

PHYSICAL SCIENCES LAB: PART A – REAL	Category	L	Т	Р	Credit
AND VIRTUAL LAB IN PHYSICS	FC-BS	0	0	2	1

PREAMBLE

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE

	INIL														
COUR	SE OB	JECTI	VES												
1	To im	part bas	sic skill	s in tak	ing read	ding wi	th preci	sion of	physics	s experin	nents				
2	To inc	culcate	the hab	it of ha	ndling e	equipme	ents app	propriat	ely						
3	To ga	in the k	nowled	ge of p	racticin	g exper	iments	through	n virtual	laborato	ory.				
4	4 To know the importance of units														
5 To obtain results with accuracy															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	CO1. Recognize the importance of units while performing the experiments, calculating the Understand physical parameters and obtaining results														
CO2.	D2. Operate the equipments with precision Apply														
CO3.	CO3. Practice to handle the equipments in a systematic manner Apply														
CO4.	CO4. Demonstrate the experiments through virtual laboratory Apply														
CO5.	Calcul	ate the	result w	ith acc	uracy								Analyze	e	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	S	S													
CO2	S	S	М	М	S				М			М	M		М
CO3	S														
CO4	S	S	М	М	S							S	M		М
CO5	S	S													
S- Strop	ng; M-N	Medium	i; L-Lov	W											
SYLL 1.	ABUS Young	r's modu	ulus of a	a bar - 1	Non-un	iform b	ending								

- 2. Rigidity modulus of a wire Torsional Pendulum
- 3. Viscosity of a liquid Poiseuille's method
- 4. Velocity of ultrasonic waves in liquids Ultrasonic Interferometer
- 5. Particle size determination using Laser
- Wavelength of spectral lines grating Spectrometer 6.
- Thickness of a wire Air wedge Method 7.

\$-1.- d-=+

- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A - Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka

Mission's Research Foundation (Deemed to be University), Salem.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in

-9-1- d-=+

				P	HYSIC	CAL S	CIENO	CES			Categ	orv	L	Т	Р	C	redit
		F	PART	B - EN	GINE	ERIN	G CHE	EMIST	RY L	AB							
				(C	ommo	n to Al	ll Bran	ches)			FC- I	BS	0	0	2		1
Engine helps study idea a our fas	eering the stu- gives c bout ha st grow	Chemi dents lear ba irdness ing lif	istry L to unde asic app s and it e style.	ab exp erstand plicatic ts disac	erimer the ap on orier lvantag	nts exp oplication nted kr ges. No	lains t ions of nowled ow-a-da	he bas Engir ge abo ays the	ics and neering ut elec practi	d essent Chemis trochem cal and	ials of stry. Th istry. W handlin	Engin le elec Vater t lg of e	tro ectro ech equi	ing Cl des, C nology pment	nemi ell a / stuo s are	stry. nd ba dy gi neec	It also atteries ves the led for
PREF	REQUI	SITE	TT														
COUI	RSE O	N BIEC	IL TIVES														
1	To in	part b	asic sk	, ills in (Chemi	stry so	that th	e stude	ent will	underst	and the	engin	eer	ing co	ncep	t.	
2	To inculcate the knowledge of water and electrochemistry.																
3	To lay foundation for practical applications of chemistry in engineering aspects.																
COURSE OUTCOMES																	
On the successful completion of the course, students will be able to																	
CO1.	CO1. Understand the basic skills for his/her future studies. Understand																
CO2 A	Analyze	the w	ater co	mpreh	ensive	y.	•					Apply	/				
CO3.	Apply 1	the pra	ictical I	cnowle	dge in	engine	ering a	spects				Apply	/				
MAP	PING V	WITH	PRO	GRAM	IME O	UTCO	DMES	AND	PROG	RAMM	IE SPE	CIFI	C 0	UTC	DMF	ËS	
COS	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO	l PS	502	PSO3
CO1	S	М	М	-	L	М	М	S	-	-	-	M	[-		-	-
CO2	S	M	М	-	L	М	М	L	-	-	-	M	[-		-	-
CO3	S	S	М	-	L	M	М	M	-	-	-	M	[
S- Stro	ong; M	-Medi	um; L-	Low													
 Determination of Hardness by EDTA method Estimation of Hydrochloric acid by conductometric method Acid Base titration by pH method Estimation of Ferrous ion by Potentiometric method Determination of Dissolved oxygen by Winkler's method Estimation of Sodium by Flame photometer Estimation of Copper from Copper Ore Solution Estimation of Iron by Spectrophotometer TEXT BOOK: Engineering Chemistry Lab Manual by VMU. 																	
S No	KSE DI Name	<u>tSIG</u>	NEKS - Facul	tv				Mai	1 ID								
				<i>L</i> y				Ivial	ULU ULU								
1.	Dr.R.	Nagal	akshmi	i				nag	alakshr	ni.chem	istry@a	avit.ac	.in				

-\$-1- d-=+

	2 A.	Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in	
--	------	-------------------	--------------------------------	--

-\$-1- d-=+

FOUNDATIONS OF COMPUTING AND	Category	L	Т	Р	Credit
PROGRAMMING(THEORY + PRACTICALS)	FC - ES	2	0	2	3

PREAMBLE

This course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and emphasizing principles programming languages. Studying the fundamentals database languages, commands and internet basics.

PRERQUISITE – Nil

COURSE OBJECTIVES

1	To provide basic knowledge of hardware components of computers and classifications.
2	To introduce and demonstrate various Operating System functions and software. Software application packages.
3	To study Principles of programming and applications of programming.
4	To learn about various Database Management Systems languages and commands used.
5	To learn basics of Internet and Web services.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. To understand the Basic knowledge on computer hardware and its functions.	Understand
CO2. To get knowledge of Fundamentals of various Operating System functions and soft	Understand
wares.	
CO3.To Understand the principles of programming and categories of programming	Apply
languages.	
CO4.To demonstrates Database Management Systems languages and their	Apply
classifications.	11 2
CO5.To understands and demonstrates the Internet Basics.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	S	М	-
CO2	S	M	М	-	M	-	-	-	-	-	-	М	S	М	М
CO3	S	S	S	-	M	-	-	-	-	-	-	-	S	-	М
CO4	S	S	S	-	S	-	-	-	-	-	-	-	S	М	М
CO5	S	М	М	-	М	-	-	-	-	-	-	S	S	М	М

S- Strong; M-Medium; L-Low

- p-1- d-=+

Introduction to computers:

Characteristics of computers, Classification of Digital Computer Systems: Microcomputers, Minicomputers, Mainframes, Supercomputers. Anatomy of Computer: Introduction, Functions & Components of a Computer, Central Processing Unit, Microprocessor, Storage units, Input and output Devices. How CPU and memory works. Program execution with illustrative examples.

Lab Component- PC Assembly,

Operating System Fundamentals:

Operating Systems: Introduction, Functions of an operating System, Classification of Operating Systems, System programs, Application programs, Utilities, The Unix Operating System, Basic Unix commands, Booting,

Lab Component-, Basic unix commands

Introduction to Principles of programming

Introduction to Programming , Programming Domain : Scientific Application , Business Applications, Artificial Intelligence, Systems Programming , Web Software Categories of Programming Languages: Machine Level Languages, Assembly Level Languages , High Level Languages , Problem solving using Algorithms and Flowcharts

Introduction to Database Management Systems

Database, DBMS, Why Database -File system vs DBMS, Database applications, Database users, Introduction to SQL, Data types, Classification of SQL-DDL with constraints, DML, DCL, TCL Lab Component Create: Table and column level constraints- Primary key, Foreign key, Null/ Not null, Unique, Default. Check, Alter, Drop, Insert, Update, Delete, Truncate, Select: using WHERE, AND, OR, IN, NOT IN

Internet Basics

Introduction, Features of Internet, Internet application, Services of Internet, Internet Service Providers, and Domain Name System.

Web Basics Introduction to web, web browsers, http/https, URL, HTML, CSS

Lab Component -HTML & CSS, web Browsing, Emails, Searching

TEXT BOOKS:

1. J. Glenn Brookshear,"Computer Science: An Overview", Addision-Wesley, Twelfth Edition, 2014 REFERENCES:

1. "Concepts of programming language" Concepts of Programming Languages Eleventh Edition GLOBAL Edition Robert W. Sebesta.

Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

\$-1.- d-=+

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

-9-1- d-=+

		BA	SICS	OF EI	ECTF	RICAL	AND	ELEC	TRON	NICS	Categ	gory	L	Т	Р	C	Credit
			A. 1	BASIC		CTRIC	CAL E	NGIN	EERIN	NG	FC- I	ES	2	0	0		2
PREA It is a discus engine	MBL prelim sed he	E inary c erein a gradua	ourse re pro tes.	which I jected	highlig to de	hts the liver e	basic xplana	concep tion of	ts and n basi	outline c electr	of Elect ical en	rical e gineer	engi ing	ineerin for l	ng. Tł begin	ne co ners	oncepts of all
PRER	REQUI	ISITE	– Nil														
COUI	COURSE OBJECTIVES																
1	1 To explain the basic laws used in Electrical circuits and various types of measuring instruments.																
2	2 To explain the different components and function of electrical dc and ac machines.																
3	3 To understand the fundamentals of safety procedures, Earthing and Power system.																
COUI	COURSE OUTCOMES																
On the successful completion of the course, students will be able to																	
CO1: 1	CO1: Explain the electrical quantities and basic laws of electrical engineering. Remember																
CO2: 1	Demor	nstrate	Ohm's	and F	araday	's Law	•						Ap	ply			
CO3: 1	Descri	be the	basic c	oncept	s of m	easurin	g instr	uments	5.				Un	dersta	nd		
CO4:	Expla	in the o	operati	on of e	lectrica	al macł	ninerie	s and it	ts appli	cations.			Un	dersta	nd		
CO5: 1	Explai	n the e	lectrica	al safet	y and p	protecti	ive dev	vices.					Un	dersta	nd		
CO6: of con	Compa ventio	are the nal and	variou l non-c	s types onvent	s electr tional s	ical po ources	wer ge	eneratio	on syste	ems by	applicat	tion	Ana	alyze			
MAP	PING	WITH	PRO	GRAN	IME C	OUTCO	OMES	AND	PROG	RAMN	AE SPE	CIFI	CC	DUTC	COMI	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 F	PSO1	PSC	02	PSO3
CO1	S	М	-	-	М	L	-	-	-	L	М	L		S	М		L
CO2	S	М	М	L	М	-	-	-	S	М	М	L		S	L		-
CO3	S	М	М	М	М	-	-	-	-	L	М	L		S	М		L
CO4 S M L M L - - L M L S L -										-							
CO5	S	М	L	-	М	S	-	-	-	L	L	L		-	-		-
CO6	S	М	-	-	М	L	S	L	-	L	L	L		М	L		М
S- Stro	ong: M	[-Medi	um: L-	Low													

-g-1- d-=+

SYLLABUS ELECTRICAL CIRCUITS AND MEASUREMENTS

Electrical quantities - Charge, Electric potential, current, power and Energy, Passive components (RLC)-Fundamental laws of electric circuits-steady solution of DC circuits - Introduction to AC circuits- Sinusoidal steady state analysis-Power and Power factor – Single phase and Three phase balanced circuits -Classification of Instruments-Operating Principles of indicating instruments.

ELECTRICAL MACHINES

Faraday's Law, Construction, Principle of operation, Basic Equation and Applications of DC & AC Generators and Motors - Single Phase Transformer, Single phase and Three phase Induction Motor.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Types of Generating stations, Transmission types & Distribution system (levels of voltage and power ratings)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical &Electronics Engineering", Second Edition, PHI Learning, 2007.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Dr. G. Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu. in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

COURSE DESIGNERS

		BA	ASICS	OF EL	ECTRI ENGI	ICAL A	AND EI ING	LECTI	RONIC	s c	ategory	L	T	e C	redit
			B. BA	SIC EI	LECTR	ONIC	S ENG	INEEF	RING]	FC- ES	2	0 0)	2
PREA The co engine transis etc. It o PRER	MBLE ourse a ering c tors. It crafts th	ims to oncepts enables e stude	impar s. The the stu nts to g	t funda course dent to et expe	amental begins design rtise in	know with small o moderr	ledge o classifi digital l n comm	on elec cation logics li unicatio	tronics of vario ke mul on syste	compor ous activ tiplexer, ems.	ents, di ve and j de-multi	gital log passive o plexer, e	ics and compone encoder, o	commur nts, dioc decoder c	nication les and circuits,
COUR	RSE OE	JECT	IVES												
1	1 To learn and identify various active and passive components and their working principles.														
2	2 To understand the number conversion systems and working Principles of logic gates.														
3	3 To learn the digital logic principles and realize adders, multiplexer, etc.,														
4	To understand the application-oriented concepts in the Various communication systems.														
COUR	URSE OUTCOMES														
On the	the successful completion of the course, students will be able to														
CO1.	CO1. Interpret working principle and application of various active and passive Understand														
CO2.	CO2. Construct the rectifier, Clipper, Clamper, regulator circuits and explore their														
operati	ions. Execut	e num	ber sv	stem c	onversi	ons ar	nd com	noute s	everal	digital	logic				
operati	ions.											Apply			
CO4.	Desigr data inp	1 adder ut.	s, Mul	tiplexer	, De-M	fultiple	xer, En	icoder,	Decode	er circuit	ts for	Apply			
CO5. applica system	Expose ation-or as.	e the iented g	workin gadgets	g prine like the	ciples e UHD	of mo , OLEE	dern t), HDR	echnolo and va	ogies in rious co	n devel ommunic	oping cation	Understa	nd		
MAPF	PING W	VITH P	ROGF	RAMM	E OUT	COM	ES ANI	D PRO	GRAM	ME SPI	ECIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	L	-	-	-	М	-	-
CO2	S	М	М	М	-	-	М	-	L	-	-	L	-	М	-
CO3	S	М	М	-	-	-	-	-	L	-	-	-	S	-	-
CO4	4 S M M M M - L - L M									-					
CO5	CO5 S M L L S - L														
S- Stro	ong; M-	Mediun	n; L-Lo	W											

-g-1.- d-=+

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors- Intrinsic Semiconductor, Extrinsic Semiconductor, Energy band diagram- Conductor, insulator, semiconductor, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers, Voltage Regulation- Simple wave shaping circuits- Clipper, Clamper. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Gray Code- Conversion from one to another – Logic Gates and its characteristics – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories.

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM ,PCM,DM– RADAR – Satellite Communication – Mobile Communication, Optical communication, Microwave communication. LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela,"Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in								
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in								
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in								
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in								

- p-1- d-=+

			PYTH	ION PI	ROGR	AMMI	NG		CATE	GORY	L	T	Р	CRE	DIT
			(THE	ORY +	PRAC	TICA	LS)		FC-	ES	2	0	2	-	3
PREA	MBLE														
The pu	irpose o	of this c	course	is to int	roduce	Python	, a rema	arkably	v power	ful dyna	mic pro	ogrammi	ng langu	lage to	write
code fo	or diffei	rent op	erating	system	is along	g with a	pplicati	on dor	nain. P	ython has	s evolve	ed on mo	ore popu	lar and	1
powerf	ful oper	sourc	e progr	ammin	g tool										
PRER NIL	PKEKQUISHTE NIL COURSE ODJECTIVES														
COUR	COURSE OBJECTIVES														
1	1 To provide basic knowledge on Python programming concepts. 2 The investment of														
2 To introduce different methods in list, string, tuple, dictionary and sets.															
3 To compute different programs using python control statements.															
4 To learn about different functions in python.															
5 To compute the exception handling functions, file concepts and CSV and JSON.															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Learn python statements, comments and indentation, tokens, input and output Understand															
method	methods using various example programs.														
CO2. A	Apply th	ne diffe	erent m	ethods	involve	ed in Li	st, Strin	<u>ig,</u> Tup	les and	Diction	ary.	Apply			
CO3. 1	Jesign s	solutio	ns for c	complex	x progr	ams usi	ng decis	sion m	akıng a	nd loopi	ng	Apply.			
statem	ents.	C				1 /1	4 1	.1 1	1 1 1		1	A 1			
CO4.A	tors	e runc	tion pro	ograms	with al	I the co	ncepts I	ike lar	nbda, d	lecorator	s and	Apply.			
genera	$\frac{1018}{7000000000000000000000000000000000000$	a tha a	voontic	n hand	ling pr	aroma	file.cor	noont r	rogrom	na and		Apply			
unders	tand the		ents of	CSV ar	nng pro M ISOI	v N	, me coi	licept p	nogran	is allu		Арріу			
MAPP	PING V	VITH	PROG	RAMN	IE OU	TCON	IES AN	D PR	OGRA	MME S	PECIF	IC OUT	COMF	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PSO3
	1.01	1.52					107	1.00		1010	1.011	1012	1.501	02	
CO1	S	М	М	М	M	-	-	-	-	-	-	-	М	М	М
CO2	S	М	М	М	M	-	-	-	-	-	-	-	S	М	М
CO3	M	S	S	S	M	-	-	-	-	-	-	-	M	М	М
CO4	S	S	S	S	M	-	-	-	-	-	-	-	S	S	М
CO5	CO5 S M M M - - - - - S M M														
S- Stro	S- Strong; M-Medium; L-Low														

-9-1- d-=+

1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-else-if-else-Nested if iterative control structures-while loop, for loop and range.

4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators. **5 EXCEPTION HANDLING**

Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

\$-1- d-=7

COUF	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Dr.V.Amirthalingam	Assistant Professor	CSE	amirthalingam@vmkvec.edu.in

-9-1- d-=+

			BASICS OF CIVIL AND MECHANICALENGINEERING									Т	Р	Credit	
	PART-A BASICS OF CIVIL ENGINEERING (Common to All Branches) FC-ES 2							2	0	0	2				
PREA	MBLE	2													
	Objective of this course is to provide an insight and inculcate the essentials of Civil Engineering discipline to the students of all branches of Engineering.														
PRER	REREQUISITE-NIL														
COUH	URSEOBJECTIVES														
1	To understand the basic concepts of surveying and apply in practical problems														
2	To study in detail different types of construction materials.														
3	To im	part ba	sic know	wledge	about b	ouilding	compo	nents.							
COU	RSE OU	UTCO	MES												
On t	he succ	essful c	complet	ion of t	he cour	se, stud	ents wi	ll be ab	le to						
CO1.A	An abilit	ty to ap	ply con	cepts of	f Surve	ying on	practic	al appli	cations	•				Apply	
CO2. 1	Explain	differe	nt types	s of buil	ldings, l	building	g compo	onents,	buildin	g materia	als and but	ilding		Remem	ber
constru	uction.	41		£	~ ~ ~ ~ * * *	of a hur	11:000		insting	of lood o				Lindaus	- and
CO3.E	expann	the esse		or comp	onents		lung a	nd appi						Undersi	land
MAPI	PING V	VITH	PROGE	KAMM	E OUI	COMI	£S ANI	D PRO	GRAM	IME SPI	ECIFIC (JUTCC	DMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	L	М	-	S	L	-	М	М	L	L	-	L	М	М	М
CO2	S	М	L	-	М	S	-	-	-	-	-	-	М	-	-
CO3	13 S M L S M S M S -														
S-Stro	S-Strong:M-Medium: L-Low														

SURVEYING

Objects-types-classification-principles-measurements of distances-angles-levelling-determination of areas- illustrative examples.

CIVIL ENGINEERING MATERIALS

Bricks -stones-sand -cement -concrete mix design and Quantity computation-steel sections.

BUILDING COMPONENTS AND STRUCTURES:

FOUNDATIONS: Types, Safe Bearing capacity of Soil-Requirement of good foundations.

SUPERSTRUCTURE: Brick Masonry–Stone Masonry–Beams–Columns–Lintels–Roofing–Flooring–Plastering– Mechanics – Internal and External Forces –Load Transformation Mechanism in Structural Elements– Stress – Strain – Elasticity – Types of Bridges and Dams – Basics of Interior Design and Landscaping–Water Supply–Sources and Quality of Water— Rain water harvesting—Introduction to highway and railway.

TEXTBOOKS:

- 1. Basic Civil and Mechanical Engineering, VMU, (2017). CompanyLtd., NewDelhi, 2009.
- 2. Basic Civil and Mechanical Engineering, M.Prabakaran, S.P.Sangeetha, Vemuri Lakshminarayana, Maruthi Publishers, 2017.
- 3. Reinforced Concrete Structures B.C.Punmia, Vol.1&2,-Laxmi Publications, Delhi, 2004.

REFERENCES:

- 1. Ramamrutham S., "Basic Civil En
- 2. Rangwala S.C and Dalal K.B, Bui

COUR	COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Dept/College	MailID								
1	S.Supriya	Assist.Professor	Civil/VMKVEC	jansupriyanair@gmail.com								
2	Mrs.Pa.Suriya	Asst.Professor	Civil/AVIT	suriya@avit.ac.in								

-g-1- d-=+

								Catego	rv	L	Т	P Credit					
			l l	BASICS F	5 OF MI ENGINE	ECHANIC EERING	AL -	FC (ES	5)	2	0	0	0 2				
Pream	ble								- /								
This co	This course provides a preliminary knowledge of the applications of mechanical engineering in our day to day life.																
Prerec	rerequisite-NIL																
Cours	ourseObjective																
1	1 To demonstrate the principles of casting and metal joining processes in manufacturing																
2		Understand the importance and uses of IC Engines, working principles of IC Engines															
3		Compre	ehend th	ne work	ing and	use of var	rious	power p	olants								
Cours	se Oi	itcomes	s: On tl	he succ	essful	completic	on of	f the cou	ırse. s	tudent	s will l	be able	to				
CO1.		Illustrat manufa	the the ap	oplicatio	on of ca	sting and 1	meta	l joining	proce	sses in		Apply					
CO2.		Demons	strate the	e opera	tion of	automotiv	e eng	gines and	d impo	ortant		Apply					
CO3.		Underst convent	anding	the con nd non-	structio convent	n and the tional pow	work ver ge	king prin eneration	ciple o	of		Unders	tand				
Маррі	ng wi	h Progra	amme O	utcomes	and Pro	ogramme S	specif	ic Outco	mes								
СО	PO1	PO2	PO3	PO4	PO5	PO6 F	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO 1	PSO2	PSO3		
CO1	S	М	S	L	М	-	-	-	-	-	-	-	-	-	_		
CO2	S	М	М	L	L	-	-	-	-	-	-	-	-	-	-		
CO3	S	М	М	L	L	-	-	-	-	-	-	-	-	-	-		
S-Stroi	S-Strong; M-Medium; L-Low																

-9-1- d-=+

BASIC MANUFACTURING PROCESSES

Casting process-Introduction, Principle, Advantages, casting defects Forging process-introduction, forging, rolling, drawing, extrusion Welding process- introduction, principle, types-Gas and arc welding

IC ENGINES

The Importance and uses of Engines-Definition, Classification-I C & E C Engines- two stroke engines - four stroke engines - various parts and functions of I C engines-working of two stroke petrol engine and diesel engine with line sketches - working of four stroke petrol and diesel engines with line sketches - Comparison between two stroke and four stroke engines -S I and C I engines.

POWER PLANT ENGINEERING

Classification of power plants- Working of power plant with line Sketches-Steam power plant-Hydro- electric power plant - Diesel power plant -Nuclear power plant- merits and demerits. Nonconventional energy power plants – solar- wind-tidal- geo thermal, with line sketches- merits & demerits of various non conventional power plants

Text l	Text Books											
1	Power plant Engineering, by G.R Nagpal											
2	Internal combustion Engines by Ganesan											
3	Workshop technology vol1, by S K Hajra Choudhury											
Refer	ence Books											
1	Production techno	ology, by P.C	Sharma									
2	Thermal Engineer	ring by R.S.K	hurumi									
3	Power plant Engi	neering, by R	.K Bansal									
Cours	se Designers											
Sl.No	Image: Second state Designatio Department/Name of the Image: Second state College Emailid											
1	R.MAHESH AP(G-II) MECH/AVIT mahesh@avit.ac.in											

\$-1.- d-=+

		EN	ENGINEERING GRAPHICS Category L T										Р	Cr	edit	
		A	ND DI	ESIGN					F	C- ES	0		0	6		3
Pream	ble											•	ľ	•		
Engine	Engineering Graphics is referred as language of engineers. An engineer needs to understand the															
physica	al geor	netry o	of any	object the	hrou	gh its	orthog	graphic	or pio	ctorial p	rojecti	ons. T	he ki	nowl	edg	e on
engine	ering g	graphic	es is e	ssential	in p	roposi	ng nev	v proč	luct th	rough d	rawing	s and	inter	rpret	ing	data
from ex	xisting	drawi	ngs. T	his cours	se de	eals wi	th orth	ograp	hic and	d pictoria	al proj	ection	s, sec	ction	al v	iews
and dev	and development of surfaces.															
Prereq	Prerequisite															
NIL																
Course	e Obje	ctive														
1	To in	nplem	ent the	orthogra	aphi	c proje	ections	of poi	ints, st	raight lir	nes, pla	ane su	rface	s and	l sol	ids.
2	To co	onstruc	et the c	orthograp	ohic	projec	tions c	of secti	oned s	olids an	d true	shape	of th	e sec	tior	ıs.
3	To de	evelop	latera	l surface	s of	the un	cut an	d cut s	olids.							
4	To di	aw the	e picto	rial proj	ectio	ons (iso	ometrio	c and p	oerspec	ctive) of	simple	e solid	s.			
5	To di	aw the	e ortho	graphic	view	vs fron	n the g	iven p	ictoria	l view.						
Course Outcomes: On the successful completion of the course, students will be able to																
COL	Exec	ute in	the f	orm of	draw	ving o	f the	orthog	raphic	project	ions o	f poir	nts,	App	oly	
COI.	straig	ght line	es, plai	ne surfac	es a	nd soli	ds.	_	_			_			-	
CO2	Dem	onstrat	te in	the form	n o	f drav	ving c	of the	ortho	graphic	projec	ctions	of	App	oly	
CO2.	sectio	oned so	olids a	nd true s	hape	e of the	e secti	ons.								
CO3.	Deve	lop lat	eral su	urfaces o	f the	solid	section	n and o	cut sec	tion of s	olids.			App	oly	
CO4.	Draw	the p	ictoria	l projecti	ions	(isom	etric ai	nd pers	spectiv	e) of sin	nple sc	olids.		App	oly	
CO5.	Draw	the of	rthogra	aphic vie	ws f	from th	ne give	en picto	orial vi	iew.				App	oly	
Маррі	ng wit	h Pro	gramr	ne Outc	ome	s and	Progr	amme	Speci	fic Out	comes		I			
					Р		3				PO1	PO1	PSC) P	50	PSO
CO	PO1	PO2	PO3	PO4	0	PO6	PO7	PO8	PO9	PO10	1	2	1		2	3
CO1																
CO2	S	S	L	S	L								L			
CO3	S	S	L	S	L								L			
CO4	S	М	L	S	S								L			
CO5	S	S	L	S	L								L			
S- Stro	S- Strong; M-Medium; L-Low															
	3/		/													

Syllabus

PLANE CURVES AND DIMENSIONING

Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Dimensioning. Projection of points.

PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference plane by change of position method.

SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to any one reference plane and perpendicular to the other – Obtaining true shape of section.

Development of lateral surfaces of simple and truncated solids like Prisms, pyramids, cylinders and cones.

ORTHOGRAPHIC VIEWS AND ISOMETRIC VIEWS – First angle projection – layout views – Representation of Three Dimensional objects -multiple views from pictorial views of objects.

- p-1- d-=+

Princip	Principles of isometric View – isometric scale – Principles of isometric projection – isometric scale –									
Isometr	ric projections of simple sol	ids and truncated	d solids – Prisms, pyr	amids, cylinders, cones.						
INTRO	DDUCTION TO AUTO C	AD								
Introdu	ction to Auto CAD- Basic i	introduction and	operational instruction	ons of various commands in						
AutoC	AD.									
Limit S	System- Tolerance, Limits, I	Deviation, Actua	l Deviation, Upper D	eviation, Lower Deviation,						
Allowa	nce.									
Prepara	ation of manual parts drawin	ng and assembled	d sectional views from	n orthographic part drawings,						
Text B	poks									
1	Natarajan K V, "Engineer	ring Graphics", '	Tata McGraw-Hill P	ublishing Company Ltd. New						
1	Delhi.									
2	K.Venugopal and V.Prab	hu Raja, "Engin	eering Graphics", N	ew Age International Private						
2	Limited.									
3	K.R.Gopalakrishna"Engin	eering Drawing'	' (Vol. I & II), Subha	s Publications, 2014.						
4	Bhatt-N.D"Machine Dra	wing"-Published	by R.C.Patel- Charts	star Book Stall- Anand-						
7	India- 2003									
Refere	nce Books									
1	N.D. Bhat and V.M. Panc	hal, Engineering	Graphics, Charotar P	Publishers 2013						
2	E. Finkelstein, "AutoCAI	O 2007 Bible", W	Viley Publishing Inc.,	2007						
3	R.K. Dhawan, "A text boo	ok of Engineering	g Drawing", S. Chand	l Publishers, Delhi,2010.						
4	DhananjayA.Jolhe, "Engin	neering Drawing	with an Introduction	to AutoCAD", Tata McGraw						
4	Hill Publishing Company	Limited, 2008.								
5	G.S. Phull and H.S.Sandh	u, "Engineering	Graphics", Wiley Pul	plications, 2014.						
Course	e Designers									
S.No	Faculty Name	Designation	Dept / College	Email id						
1	Dr. S. Venkatesan	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in						
2	Dr. N.Rajan	Professor	Mech / VMKVEC	<u>rajan@vmkvec.edu.in</u>						

Alternative NPTEL/SWAYAM Course:

S. No.	NPTEL Course Name	Instructor	Host Institute	Duriation
1.	Engineering Graphics and Design	Prof. Naresh Varma Datla,	IIT Delhi	12 weeks
		Prof. S. R. Kale		
2.	Engineering Drawing	Robi, P.S.	IIT Guwahati	12 weeks
3.	Engineering Drawing and Computer Graphics	Prof. Rajaram Lakkaraju	IIT Kharagpur	12 weeks

-g-1- - -===

PROGRAMMING FOR PROBLEM SOLVING	Category	L	Т	Р	Credit
	FC- ES	3	0	0	3

PREAMBLE

The course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques.

PREREQUISITE-NIL

COURSEOBJECTIVES															
1.	To gain basic knowledge about simple algorithms for arithmetic and logical problems.														
2.	To learn how to write a program, syntax and logical errors.														
3.	3. To understand how to decompose a problem into functions and synthesize a complete program.														
COURSEOUTCOMES															
On the successful completion of the course, students will be able to															
CO1: I	D1: Formulate simple algorithms for arithmetic and logical problems.														
CO2: 7	2: Test and execute the programs and correct syntax and logical errors Apply														
CO3: I	O3: Implement conditional branching, iteration and recursion. Apply														
CO4: I	CO4: Decompose a problem into functions and synthesize a complete program.														
CO5: U program	CO5: Use arrays, pointers, strings and structures to formulate algorithms and Apply programs														
MAPP	INGW	ITHPF	ROGRA	AMME	OUTC	OMES	ANDP	ROGR	AMM	ESPECI	FICOU	JTCOMES	5		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
S-Stror	S-Strong; M-Medium; L-Low														

- p-1- d-=+

UNIT – I: INTRODUCTION

Computer system: components of a computer system-computing environments-computer languages, creating and running programs, Algorithms, flowcharts- Introduction to C language: basic structure of programs, process of compiling and running program, -tokens, keywords, identifiers, constants, strings, special symbols, variables, data types-I/O statements

UNIT – II: OPERATORS, EXPRESSIONS AND CONTROL STRUCTURES

Operators and expressions: Operators- arithmetic- relational and logical- assignment operators- increment and decrement operators, bitwise and conditional operators-special operators- operator precedence and associativity- evaluation of expressions-type conversions in expressions- Control structures: Decision statements: if and switch statement- Loop control statements: while, for and do while loops- jump statements- break-continue-goto statements.

UNIT – III: ARRAYS AND FUNCTIONS

Arrays: One dimensional array-declaration and initialization of one dimensional arrays- two dimensional arraysinitialization and accessing- multidimensional arrays- Basic Algorithms: Searching- Basic Sorting Algorithms-Functions: User defined and built-in Functions- Parameter passing in functions-call by value-Passing arrays to functionscall by reference,-Recursion-Example programs, such as Finding Factorial, Fibonacci series

UNIT - IV: STRINGS AND POINTERS

Strings: Arrays of characters- variable length character strings-inputting character strings-character library functionsstring handling functions- Pointers: Pointer basics- pointer arithmetic-pointers to pointers-generic pointers-array of Pointers- functions returning pointers,-Dynamic memory allocation

UNIT – V: STRUCTURES AND FILE HANDLING

Structures and unions: Structure definition- initialization- accessing structures,-nested structures,-arrays of structures structures and functions- unions- typedef- enumerations.-File handling :command line arguments- File modes- basic file operations read,-write and append

TEXTBOOKS

1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill

REFERENCES

- 1. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 2. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.

Course Designers:											
S.No.	Name of the Faculty	Designation	Department	MailID							
1.	Mrs.R.Shobana	Assistant Professor	CSE	shobana@avit.ac.in							
2.	Mr.B.Sundaramurthy	Assistant Professor	CSE	sundaramurthy@vmkvec.edu.in							

\$-1.- d-=+

			BASI	SIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB									L	Т	Р	Credit	
			A. B	ASIC I	ELECI	RICA	L ENG	INEEF	RING	FC-	ES	0	0	2	1		
PREAMBLE It is a laboratory course which familiarizes the basic electrical wiring, measurement of electrical quantities and various types of earthing methods.																	
PRERQUISITE – NIL																	
COURSE OBJECTIVES																	
1 To learn the residential wiring and various types of electrical wiring.																	
2	2 To measure the various electrical quantities.																
3	To kı	now the	e necess	sity and	types of	of earth	ing and	measu	rement	of earth	resista	nce.					
COUR	SE OU	JTCON	MES														
On the	succes	sful con	mpletio	n of the	course	, studer	nts will	be able	to								
CO 1: 1	Implem	ent the	variou	s types	of elect	rical w	iring.					App	oly				
CO 2:]	2: Measure the fundamental parameters of AC circuits. Analyze																
CO 3:]	O 3: Measure the earth resistance of various electrical machineries. Apply																
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	D12	PSO1	PSO	2 PSO3	
CO1	S	М	L		S								L	М	L		
CO2	S	М	S	S					М				M	М	L		
CO3	L	S	L		S					L			L	М	L		
S- Stro	ng; M-	Mediur	n; L-Lo) W								-					
LIST OF EXPERIMENTS																	
 Residential house wiring using switches, fuse, indicator, lamp and energy meter. Fluorescent lamp wiring. Stair case wiring. Measurement of electrical quantities – voltage, current, power & power factor in RLC circuit. Measurement of energy using single phase energy meter. Types of wiring, Joints and Measurement of resistance to earth of an electrical equipment. REFERENCES Laboratory Reference Manual. 																	
COUR S No	SE DE	SIGN me of t	EKS the Feaulty Designation Department Ma								ail ID						
1	Dr. R	. Deva	rajan	uity	Profes	sor	Signati	UII		EEE/VI	MKVE		devar	ajan@y	mkvec	.edu.in	
2	Dr. G	. Rama	ıkrishna	prabu	Assoc	iate Pro	ofessor			EEE/VI	MKVE		ramakrishnaprabu@vmkvec .edu.in				
3	Ms. D	. Saran	ya		Assist	ant Pro	fessor ((Gr-II)		EEE/	AVIT		dsara	nya@a	vit.ac.iı	ı	
4	Mr. S.	Prakas	sh		Assist	ant Pro	fessor (Gr-II)		EEE/	AVIT	:	sprakash@avit.ac.in				

-\$-1- d-=+

		ENGINEERING SKILLS PRACTICES LAB PART B - BASIC ELECTRONICS ENGINEERINGCategoryFC- ES								C	ategory	L	ΤΙ	P C	redit		
										0	0 2	2	1				
PREAMBLE This course is to provide a practical knowledge in Basic Electronics Engineering. It starts with familiarization of electronic components and electronic equipments. It enables the students to construct and test simple electronic projects																	
PRERQUISITE – Nil																	
COURSE OBJECTIVES																	
1	1 To familiarize the electronic components, basic electronic equipments and soldering techniques.																
2	To study the characteristics of Diodes, BJT and FET.																
3	To un	derstan	d the pr	rinciples	s of var	ious dig	gital log	gic gates	s.								
4	To un	derstan	d the co	oncept c	of basic	modula	ation te	chnique	es								
COUR	SE OU	TCON	1ES														
On the successful completion of the course, students will be able to																	
CO1. F	CO1. Familiarize with the fundamentals of soldering techniques. Understand																
CO2. C	CO2. Construct experiments for PN and Zener diode characteristics also determine Apply																
CO3. 0	Constru	ct clipp	er and c	clamper	circuit	and ve	rify the	ir volta	ge level	S		Ap	ply				
CO4. (Constru	ct and j	ustify o	peration	n simpl	e voltag	ge regul	ator for	given	Zener die	ode	Ap	ply				
CO5. \	/erify tl	he truth	tables	and cha	racteris	tics of	logic ga	ates (Al	ND, OR	, NOT,		Ap	Apply				
	NAND,	NOR,	XOR).														
MAPP	ING W		ROGR				LS ANI		GRAM	ME SPE			DECI	Daoa	DGOO		
COS	POI	PO2	PO3	PO4	P05	PO6	PO/	PO8	P09	POIO	POIT	POIZ	PSOI	PSO2	PS03		
COI	S	M	-	-	-	-	-	-		-	-	-	M	-	-		
CO2	S	М	M	M	-	-	M	-	L	-	-	L	-	M	-		
CO3	S	М	M	-	-	-	-	-	L	-	-	-	S	-	-		
CO4	S	М	М	М	-	-	М	-	L	-	-	L	M	-	-		
CO5	S	М	-	-	-	-	-	-	L	L	-	L	S	-	L		
S- Stro	ng; M-l	Mediun	n; L-Lo	w								<u> </u>	<u>I</u>	1			

Syllabus

LIST OF EXPERIMENTS

1. Practicing of Soldering and Desoldering.

2. Characteristics of PN junction Diode and find the forward and reverse resistance

-g-1- - -==

3. Construct and Study simple clipper and clamper circuits

- 4. Characteristics of Zener diode and determine the break down voltage and diode resistance
- 5. Construct and Study simple voltage regulator using zener diode
- 6. Verification of Logic Gates.
- 7. Find the characteristics of AND ,NOR,NOT gate
- 8. Construct and Study simple voltage regulator using zener diode.

COURSE DESIGNERS

0001								
S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in				
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in				
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in				
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in				

-9-1- d-=+
]	ENGIN LA	EERII B PAI	NG SK 2TA- 1	TILLS BASIC	PRAC CIVII	TICE		Catego	ry	L	Т	Р	Credit
			L/1	EN Comm	GINE on toA	ERIN MI Bra	G nches)			FC- ES		0	0	2	1
PREA Engine ontrain and rei	MBL eering ningpr latede:	E SkillsP acticeto xercise	racticeis oMechar s.Also,it	sahands nical,C t willin	s- iviland duceth	lMecha ehabit	atronics ofselec	Engine	eringstu it tools,	idents.It	dealswi	ithfittin	g,carp	entry,	sheetmetal
PRER	REQU	ISITE	<u>iseAceu</u>												
	DSEO	DIEC	FIVES												
1 7	1 Tounderstandthebasicconceptsofbuildingcomponents.														
2 7	2 Toimpart basic knowledgeaboutPlumping and Carpentry works.														
COU	RSEO	UTCO	MES												
Onth	nesucc	essfulc	ompleti	onofth	ecours	e,stude	ntswill	beablet	0						
CO1.Preparethedifferenttypesoffitting and plumbing lines. Apply															
CO2.Preparethedifferenttypesofjointsusingwoodenmaterial												Apply			
MAPI	MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	S PS 2 O3
CO1	S	L	L	L	L	L	L	L	L	L	L	L	-	;	S -
CO2	S	S	S	L	L	L	L	L	L	L	L	L	L		- M
S-Stro	ng; M	-Mediu	ım; L-L	ow											
SYLL Buildi 1. Plumt 2. 3. 4. Carpe 5. 6. TEXT	 SYLLABUS Buildings: Studyofplumbingandcarpentrycomponentsofresidentialandindustrial buildings,Safetyaspects. Plumbing and Carpentry Works: Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in householdfittings. Preparationofplumbinglinesketchesforwatersupplyandsewageworks. Hands on Exercise on Demonstrationofplumbingrequirementsofhigh-risebuildings. CarpentryusingPowerToolsonly: Study of the joints in roofs, doors, windows and furniture. Hands-on-exercise:Woodwork,jointsbysawing,planningandcutting. 														
	COURSEDESIGNERS														
S.N	NO	Nam	eoftheF	aculty		Desig	nation	Na	meofth	e Colleg	ge		Ma D	ilI	
1	-	M.Sent	hilkuma	ar	1	Asst.Pr	ofessor	C	ivil/ VI	MKVEC	y s	enthilk	umar(a	vmk	vec.edu.in
2		Dr.D.S	.Vijayar	1	As	sst.Prof	essor	Civil	/AVIT		vij	ayan@	avit.ac	in.	

-\$-1.-d-=+

		EN	GINE	ERING	G SKI	LLS P	RACT	ICE	Cate	gory	L	Т	Р	Cred	it
			B. B	ASIC ENG	LAD MEC INEE	HANI RING	CAL				0	0	2	1	
Prea Work carpe tools,	mble shop ntry, plan	is a han foundry ning the	ds-on and w job and	training relding l its ex	g pract relate	tice to d exen	Mecha rcises.	mical Also,	Engine it will	eering induc	studer the	nts. It o habit	leals wi of selec	th fittin ting rig	g, ht
Prere	equis	te –NIL													
Cour	se Ol	ojective													
1	To p	erform t	he prac	ctice in	differ	ent typ	oes of fi	itting	process	ses.					
2	Тое	xecutive	joints	using	woode	n mate	erials.								
3	Тоа	pply in	lepth k	nowle	dge in	metal	ioining	proce	esses.						
	Тоб	To demonstrate the pattern using foundry processes													
4	100	lemonsu		patter	nusing	g lound		cesses							
Cour	se O	itcomes	: On th	ie succ	cessful	comp	letion o	of the	cours	e, stud	lents v	vill be	able to		
CO1.	Pe	Perform the different types of fitting using MS plate. Apply													
CO2.	Pr	Practice the different types of joints using wooden material Apply													
CO3.	D	emonstra	te the	differe	nt type	s of jo	ints in	metal	by Arc	e Weld	ling			Apply	r
CO4.	U	ilize the	differe	ent type	es of g	reen sa	and mo	uld						Apply	,
Man	ning	with Pro	aramı	ne Ou	tcome	s and	Progra	mme	Snecif	ïc Ou	tcome	2			
	Ping P(PO	PO	PO	PO	PO	PO	PO	PO	PO	, PO	PSO	PSO	
	1	PO2	3	4	5	6	7	8	9 	10	11	12	1	2	03
$\frac{CO1}{CO2}$		-		-	-	-	-	-	M	-	-	-		-	-
CO3	S	-	-	-	-	-	-	-	-	-	-	-	L	_	-
CO4	S	-	L	-	-	-	-	-	М	-	-	-	L	-	-
S- St	rong;	M-Med	lium; I	L-Low											
Svlla	bus														
т 161		FVPFD	IMFN'	гс											
	DF :#:			15											
Vee -	- Fitti	ng													
Prepa	aratio	n of a mo	ould for	r a sing	gle pie	ce patt	ern								
Prepa	ratio	n of a mo	ould for	r a spli	t piece	patter	n								
Half-	Lap . Tail	Ioint in (Ioint in (Carpen	try try											
Lap J	oint -	- Weldin	g	uy											
Butt.	Joint	– Weldir	ng												

-g-1- d-=+

Text Books												
1	BASIC MECHANICAL ENGINEERING, LAB MANUAL											
Reference Books												
1	K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai											
2	NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida											
Course	e Designers											
S.No	Faculty Name	Designation	Department / Name of the College	Email id								
1	V K Krishnan Associate Mech / VMKVEC vkkrishnan@vmkvec.edu.in Professor Professor VKKrishnan@vmkvec.edu.in VKKrishnan@vmkvec.edu.in											
2	Professor Mech / VMKVEC sduraithilagar@vmkvec.edu. S. Duraithilagar Associate Mech / VMKVEC sduraithilagar@vmkvec.edu. Professor in											

-9-1- d-=+

ELECTRIC CIRCUIT ANALYSIS	Category	L	Т	Р	Credit
(THEORY & PRACTICALS)	CC	3	0	2	4

Electric circuit theory is the fundamental theory upon which all branches of electrical engineering are built. Many areas of electrical engineering, such as power, electric machines, control, electronics, communications, and instrumentation, are based on electric circuit theory. Therefore, the basic electric circuit theory course is the most important course for an electrical engineering student, and always an excellent starting point for a beginner in electrical engineering education. Circuit theory is also valuable to students specializing in other branches of the engineering because circuits are a good model for the study of energy systems in general, and because of the applied mathematics, physics, and topology involved.

PREREQUISITE – BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OBJECTIVES

1	To understand the basic circuit parameter and formulate the mathematical model of circuits using basic laws.														
2	Gain kn	owledg	ge to so	lve DC	and A	C circ	uits usi	ing net	work th	neorems	•				
3	To unde	rstand	series a	and par	allel re	sonand	ce conc	cepts ar	nd anal	ysis of c	oupled	circuits.			
4	To study	prote	ction of	f balan	ced an	d unba	lanced	loads	and me	easurem	ent of p	ower an	d power	factor i	n three
	phase ci	rcuits.													
5	To Appl	y the k	nowled	lge of l	Digital	Comn	nunicat	ion cir	cuits ir	various	s fields.				
COURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to														
CO1. Describe the various circuit laws and sources Remember															
CO2. Apply Mesh, Nodal analysis to solve DC circuits Apply															
CO3. Analyze of AC and DC circuits using various network theorems Analyze															
CO4.	Discuss	the bas	sic con	cepts o	of Reso	nance	circuits	s and it	s comp	onents.	τ	Jndersta	nd		
CO5.	Explain	Couple	ed circ	uits wi	th help	of Ind	uctanc	e			ŀ	Apply			
MAI	PPING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	PROG	RAMM	E SPE(CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	L	М	L	-	М	S	Μ	Μ	-	-	-
CO2	S	S	М	S	L	-	-	-	-	-	-	-	-	-	-
CO3	S	М	-	S	S	-	М	-	М	L	L	М	-	-	-
CO4	CO4 M M M M S - M L L M														
CO5	CO5 M M M M S - M - M L L M														
S-St	S- Strong; M-Medium; L-Low														

-P-1- -===

THEORY

BASIC CIRCUIT CONCEPTS:

DC and AC circuits - R, L, and C elements phasor diagrams-impedance, admittance - real and reactive powerpower factor. Formation of matrix equations and analysis of complex circuits using mesh- current and nodal voltage methods.

NETWORK THEOREMS AND TRANSFORMATIONS:

Voltage – Current – Source transformation. Star - Delta transformation, Superposition theorem – Reciprocity theorem – Substitution theorem – Maximum Power Transfer theorem – Thevenin's theorem – Norton's theorem.

RESONANCE AND COUPLED CIRCUITS:

Series and parallel resonance – Bandwidth and Q factor. Inductively coupled circuits – self and mutual inductance - co-efficient of coupling - Dot convention.

TRANSIENT ANALYSIS:

Transient response – natural and forced response. Transients in RC, RL and RLC circuit with DC and sinusoidal excitation.

THREE PHASE POWER MEASUREMENT

Analysis of three phase three wire and four wire circuits with star and delta connected balanced and unbalanced loads- phasor diagram of voltages and currents. Measurement of power and power factor in three phase circuits by using single, two and three watt meter methods.

PRACTICAL

Verification of the thevenin's, norton's, super position, reciprocity and maximum power transfer theorem. The domian analysis of RL and RC transient circuits. Series and Parallel resonance circuits. Three phase power measurement circuit by two wattmeter method.

Text Book

- 1. Dr.S. Arumugam, Premkumar, Circuit Theory Khanna publishers, 1991
- 2. Sudhakar, A. and Shyam Mohan S.P., 'Circuits and Network Analysis and Synthesis', Tata McGraw-Hill Publishing C.Ltd., New Delhi, 2006.

Reference Books

- p-1- d-=+

1. Prof.T.NageswaraRao,"Electric circuit analysis" A.R.Publications.

2. Hyatt, W.H. Jr and Kemmerly, J.E., 'Engineering Circuits Analusis', McGraw-Hill International Editions, 2002.

3. Edminister, J.A., 'Theory and Problems of Electric Circuits', Schaum's outline series McGraw Hill Book Company, 5 th Edition, 2011.

S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. B. Parvathi Sangeetha	Assistant Professor	EEE	parvathi.eee@avit.ac.in									
2	Mr. P. Loganathan	AP	EEE/VMKVEC	loganathan@vmkvec.edu.in									

-9-1- d-=+

SEMICONDUCTOR DEVICES AND CIRCUITS	Category	L	Т	Р	Credit
	CC	3	0	0	3

This is an introduction course to semiconductor devices. The course begins with a discussion on how electron energy bands are formed in semiconductors. It examines the principles and operations of essential semiconductor devices used in today's electronics: diodes, light emitters, bipolar junction transistors and MOSFETs. It includes analysis of small signal model and large signal model of the devices which is the prerequisite for next level courses. This subject helps the students to design, model and develop amplifier circuits, Oscillator circuits, Tuned amplifiers and many other real time application circuits.

PREREQUISITE

Basics of Electrical and Electronics Engineering

COUR	COURSE OBJECTIVES								
1	To understand the small signal BJT/FET Models.								
2	Identify the frequency response of BJT and FET.								
3	Apply the basic concept and working of various types of feedback amplifiers and oscillators.								
4	4 To understand the working different types of large signal amplifiers.								
5	To learn about various types of tuned amplifiers								
COUR	COURSE OUTCOMES								
On the	successful completion of the course, students will be able to								
CO1. I voltage	Determine various factors for HWR, FWR and construct Clipper, Clamper and e regulator circuits	Apply							
CO2.D	etermine the characteristics and parameters of BJT and FET in various configuration	Apply							
CO3. I	CO3. Design the voltage divider bias for BJT, FET and justify stability factors. Apply								
CO4. Analyze various parameters of feedback amplifier (voltage series, voltage shunt, Analyze									
current series and current shunt) by using simulation tools.									
CO5.A	nalyze the efficiency of large signal amplifiers and bandwidth of tuned amplifier by	Analyze							
ι	using simulation tools.								

- p-1- d-=+

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	-	-	-	-	-	-	-	М	М	-	_
CO2	S	М	М	Μ	-	-	-	-	-	-	-	М	М	-	-
CO3	S	S	М	М	-	-	-	-	-	-	-	М	S	L	L
CO4	S	S	Μ	Μ	М	-	-	-	-	-	-	Μ	S	M	L
CO5	S	М	M	М	М	-	-	-	-	-	-	М	S	M	L
S-Str	S- Strong; M-Medium; L-Low														

SEMICONDUCTOR DIODE AND ITS APPLICATIONS

PN Junction Diode –, Zener Diode- Characteristics -equivalent circuits, Diode current Equation, Light-Emitting Diodes, Half-Wave Rectification, Full-Wave Rectification, Bridge Rectifier, Voltage regulator- Line and Load regulation, Clipper, Clamper, Voltage-Multiplier Circuits,

TRANSISTORS & SPECIAL DEVICES

Transistor: Construction, Transistor Operation and characteristics- CE, CB, CC Configuration -Characteristics of JFETs, Transfer Characteristics, Depletion-Type MOSFET, Enhancement-Type MOSFET. Special Devices: SCR, Shockley Diode, Diac, Triac, Unijunction Transistor, Phototransistors, MISFETs, MESFET.

BIASING CIRCUITS & SMALL SIGNAL ANALYSIS

BJT Biasing : Fixed Bias Configurations, Emitter Bias Configuration, Voltage Divider Bias - AC /DC Load line-Operating Point -, Hybrid Equivalent model, stability factor, Small Signal Analysis of CE Amplifier. FET Biasing : Fixed bias, Self bias and Voltage divider bias, FET amplifiers – small signal model and Configurations using multisim simulation tool.

FEEDBACK AMPLIFIERS

Concept of feedback – effects of negative feedback- Input impedance- output impedance, voltage gain, current gain, Types of feedback amplifier-Voltage and Current Series, Voltage and Current Shunt, Gain Bandwidth Product.

POWER AMPLIFIERS & TUNED AMPLIFIERS

Power Amplifier : Class A, Push –Pull Amplifier-Class B, Class C & D amplifiers, Amplifier Distortion, Amplifier Efficiency. Tuned amplifiers: Single tuned, Double tuned, Synchronous tuned amplifiers –Stability of Tuned Amplifiers using multisim simulation tool.

TEXT BOOKS:

1.Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill,4hEdition, 2015. 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11thEdition, 2013

REFERENCE BOOKS:

David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 5th Edition,2008.
 D.Roychoudhury and shailB.Jain, —Linear Integrated circuits||, 4th edition, New Age International Pvt.Ltd, 2014.

3. Thomas L. Floyd, "Electronic Devices", 9th edition, Pearson Education, 2011.

\$-1.- d-==

COUR	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1.	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in									
2.	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in									

-g-1.-d-=+

				ELEC	CTRIC	AL MA	ACHIN	ES – I		Ca	ategory	L	T	Р	Credit	;
											CC	3	0	0	3	
PREA	MBLE]														
Electr	ical Ma	achines	-I is c	concern	ed with	n the co	onstruc	tions, a	nalysis	of cha	racteristi	ics, test	ing and	application	ons of	
types	of mac	hines a	nd tran	sforme	rs. This	s cours	e aims	to enab	ole to w	ork pro	ofessiona	ally in t	he Elect	rical		
Engin	eering	Sector.														
Prerec	quisite:	Basics	of elec	trical &	& electr	onics o	enginee	ering.								
COUI	COURSE OBJECTIVE															
On the	On the successful completion of the course, students will be able to															
1	1 To understand the concepts of field energy, co energy, mechanical force and production of torque and															
	EMF.															
	To an	alyze t	he perf	ormano	ce chara	acterist	tics of d	lifferer	it types	of DC	Generat	or.				
3	3 To analyze the performance characteristics of different types of DC motors.															
4	4 To understand different types of Transformers, construction, working principle and their performance.															
5 To familiarize with the applications of DC machines and transformer.																
COURSE OUT COMES																
CO1:	CO1: learn the concepts and laws of electromagnetic induction in rotating machines Understand										rstand					
CO2:	study c	onstru	ction, c	haracte	ristics	and ap	plicatio	ons of I	OC gene	erators					Unde	rstand
CO3:	Explain	n the co	onstruc	tion. ch	aracter	istics a	ind app	lication	1 of DC	2 Moto	rs Under	stand			Analy	/se
CO4:	Clarify	the sta	arter an	d speed	l contro	ol meth	od of I	DC Mo	tors Ap	plv					Evalu	ate
CO5:	Illustra	te the o	constru	ction a	nd worl	cing of	Single	Phase	and Th	ree Ph	ase Tran	sforme	s Apply	/ & to	Evalu	ate
Analy	ze the t	testing	of DC	Machir	nes & T	ransfo	rmer	1 11000								
MAPI	PING V	VITH I	PROGR	AMM	E OUT	COME	EAND	PROG	RAMN	AE SPI	ECFIC O	UTCO	MES			
COS	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PO10	PO1	PO1	PSO	PSO	PSO3
	1	2	3	3	4	5	6	7	8	9		1	2	1	2	
CO1	S	L	L	L	-	-	L	-	L	-	L	L	-	S	L	-
CO2	CO2 S S L M - L L L L L L S M -															
CO3	М	S	L	М	L	L	-	-	L	-	L	L	L	S	M	-
CO4	S	М	М	L	L	М	L	-	М	-	М	L	М	S	L	-
CO5	S	М	М	L	L	М	L	L	L	L	L	М	М	S	L	L
S-STF	S-STRONG M-MEDIUM L-LOW															

Syllabus

BASIC CONCEPTS IN ROTATING MACHINES

Energy in Magnetic Systems-Field Energy and Co Energy-Determination of Mechanical Force- Singly and multiply excited systems -Laws of Electromagnetic induction - Torque and EMF production in rotating machines.

DC GENERATOR

Introduction – electric generator- Constructional features- Principle of operation of DC generator - EMF equation-circuit model - methods of excitation - Losses in DC generator –power stages –condition for maximum efficiency - armature reaction – compensating winding, Commutation - Operating Characteristics of DC generators - Parallel operation of DC generators - Applications of DC generators.

DC MOTORS

Principle of operation of DC motors - Back EMF - Torque Equation-Types of DC motors- characteristics of DC motors - Starting of DC motors: review of mechanical starter, electronic soft starters for DC motor with energy saving. Speed control: Field control, Armature control, voltage control– efficiency- Applications.

\$-1- d-==

TRANSFORMERS

Principle, construction and operation of single-phase transformers, equivalent circuit, phasordiagram, voltage regulation, losses and efficiency Testing - open circuit and short circuit tests polarity test, back-to-back test, separation of hysteresis and eddy current losses Three-phase transformer- construction, types of connection and their comparative features, Parallel operation of single-phase and three-phase transformers, Autotransformers – construction principle, applications and comparison with two winding transformer, Magnetizing current effect of nonlinear B-H curve of magnetic core material, harmonics in magnetization current Phase conversion - Scott connection, three-phase to six- phase conversion, Tap-changing transformers - No-load and on-load tap-changing of transformers, Three-winding transformers, Cooling of transformers.

TESTING OF DC MACHINES & TRANSFORMERS

Losses and efficiency –Condition for maximum efficiency - Testing of DC machines: Brake test, Swinburne's test, Retardation test, Hopkinson's test, Testing of transformer: polarity test, load test, Open circuit and short circuit test, Sumpner's test.

TOTAL : 45 PERIODS

TEXT / REFERENCES:

1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hil Education, 2013.

2. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons, 2007.

3. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004. 62 4. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

5. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.

6. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

	COURSE DESIGNERS												
S.N	Name of Faculty	Designation	Department	Mail.id									
0													
1	A.BALAMURUGAN	Associate .Professor	VMKVEC	balamurugan@vmkvec.edu.in									
2													

- p-1- - -===

				EI E4	OTDIC	'AT M		JES	п		Categ	gory	L	Т	Р	Cr	edit		
				ELE		AL ML	ACIIII	L9 –	11		C	с	3	0	0		3		
PRE	AMBLE																		
	In a m	odern	world	the ele	ctric m	otor es	speciall	y Alte	rnating	current	t motor	s and	Spe	cial ap	pplica	ations-	oriented		
moto	motors has played a leading role in the high productivity of modern industry, and it is therefore directly responsible for the																		
high standard of living being enjoyed throughout the industrialized world. Hence the course provides the knowledge about																			
the ba	asic study a	and per	rformar	nce anal	yzing t	echniqu	ues of A	AC ma	chines	and Spe	cial elec	etrical m	achi	ines.					
PRE	REQUISI	ГЕ: Е	lectrica	l Machi	ines – I														
COU	RSE OBJ	ECTI	VES																
1	To determ	ine the	e voltag	e regula	ation of	f an alte	ernator	from i	ts work	ing prin	ciples								
2	To descri	be the	e synch	ronous	motor	operat	ing pri	nciple	and a	nalyze	the syn	chronou	s m	notor v	withd	lifferer	ıt		
excitations.																			
3 To explain the working principle of single phase and three phase induction motor and determine their applications																			
	from their characteristics.																		
4 To employ the different starting and speed control methods of three phase induction motor.																			
5	5 To describe the construction and principle of operation of single phase induction motor and various machines which																		
	is involve	d in sp	ecial A	pplicati	ons.														
COU	RSE OUT	COM	ES																
On th	ne successf	ul com	pletion	of the o	course,	student	s will b	e able	to										
CO1:	Identify th	ne part	s and p	redeterr	nine the	e perfor	mance	of syn	chrono	us gener	rator by	varies t	ypes	s of		Dama			
volta	ge regulation	on met	hods.													Reme	mber		
CO2:	Explain th	e prin	ciple op	peration	and pe	erforma	nce cha	racter	istics of	f synchr	onous n	notor.				Unde	rstand		
CO3:	Analyze t	ne cha	racteris	tics of t	hree ph	ase ind	uction	motor	througl	n its equ	ivalent	circuit a	nd c	circle		Analı	170		
	diagram.															Anary	/Ze		
CO4:	Apply sui	table s	tarting	and spe	ed cont	rol met	hods to	enhai	nce the	perform	nance of	three pl	nase			Annl	7		
	induction	motor	s.													Appr	Ý		
CO5:	Evaluate t	he per	forman	ce of sp	ecial m	nachine	s and ca	an able	e to cho	ose the	suitable	starting	g me	thods		Evolu	unto		
	of single	phase i	inductio	on moto	r.												alt		
MAP	PPING WI	TH P	ROGR	AMME	OUT	COME	S AND	PRO	GRAN	1ME SI	PECIFI	C OUT	CO	MES		1			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSC	02	PSO3		
CO1	S	-	-	-	-	-	-	S	-	-	-	-		М		L	-		
CO2	S	М	-	M	-	-	-	M	-	-	-	-		М	A M -				

	60 (
61	1
-p-10	- 0-7
/	

Μ

М

Μ

-

-

-

-

-

-

-

-

-

-

М

Μ

Μ

S

S

М

М

S

-

-

-

Μ

М

L

-

-

L

-

L

L

-

-

-

-

-

М

CO3

CO4

CO5

S

S

S

S- Strong; M-Medium; L-Low

S

Μ

L

SYLLABUS SVNCHDONOUS CENE

SYNCHRONOUS GENERATOR

Construction - Armature Winding - Winding Factors - EMF Equation - Armature Reaction - Voltage Regulation - Predetermination of Regulation by Synchronous Impedance, MMF and Potier Methods - Power Flow Equations - Parallel Operations - Synchronization and Synchronizing Power - Synchronizing to Infinite Busbar - Slip Test.

SYNCHRONOUS MOTOR

Construction - Specific loading - output equation - main dimensions(D&L), Principle of Operation - Methods of Starting - Phasor Diagrams - Power Flow Equations - Effect of Varying Field Current and Load - V and Inverted V Curves - Synchronous Condenser - Hunting and Suppression Techniques.

THREE PHASE INDUCTION MOTOR

Construction - Specific loading - output equation - main dimensions (D&L) - Types - Principle of Operation - Equivalent Circuit - Phasor Diagram - Power across Air-gap, Torque and Power Output - Slip -Torque Characteristics - No-Load and Blocked Rotor Tests - Circle Diagram - Cogging and Crawling - Braking - Induction Generators- Applications

STARTING AND SPEED CONTROL OF THREE PHASE NDUCTION MOTOR

Need and necessity of starting and starters - types of starters - stator resistance and reactance starters, rotor resistance starter, auto transformer and star-delta starters – Need of speed control – Types - change of voltage - change of number of poles - change of frequency - cascade connection - slip power recovery scheme.

SINGLE PHASE INDUCTION MOTOR AND SPECIAL MACHINES

Construction of Single Phase Induction Motor - Double revolving field theory - Equivalent Circuit - Load Characteristics - Starting Methods of Single Phase Induction Motor - Variable Reluctance Motor - Stepper Motor - Hysteresis Motor - AC Series Motor - Repulsion Motor - Linear Induction Motor - Universal Motor- Servo Motor - Permanent Magnet DC and AC motors – Applications

TEXT BOOKS

- 1. Nagarath.I.J. and Kothari.D.P., "Electric Machines", T.M.H. Publishing CoLtd., New Delhi, 4th edition 2010.
- 2. M.G.Say, "Performance and Design of Alternating Current Machines", 3rd Edition, CBS Publisher.
- 3. B. L. Theraja, A. K. Theraja, "A Text Book of Electrical Technology", Volume II, S.Chand & Company Ltd, New Delhi, 2007.
- 3. Vincent Del Toro, 'Basic Electric Machines' Pearson India Education, 2016.

REFERENCES

- 1. Gupta., "Theory and Performance of Electrical Machines", Kataria and Sons, 14th edition 2009.
- 2. A. E. Fitzgerald, Charles Kingsley, Jr.Stephen D. Umans, "Electric Machinery", Sixth Edition, Tata McGraw Hill Publishing Company Ltd., 2002.
- 3. Raj put R.K, "Electric Machines", Lakshmi publication, fifth edition, reprinted at 2011.

COURSE DESIGNERS									
S. No.	Name of the Faculty	Designation	Department	Mail ID					
1.	Dr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in					
2.	Dr.R.Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in					
3.	Mr.S.Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in					

\$-1.- d-=+

				FLFC	TRO	MAG	VETIC	⁻ тнг	ORV			Catego	ry	L	Т	Р	C
												CC		3	0	0	3
Preamble	<u>)</u>																
To introdu	To introduce the fundamentals of electromagnetic fields, waves and their applications in Engineering.																
PREREC	PREREQUISITE : Engineering Mathematics																
COURSI	C OBJ	ECTIV	VES														
1		To c inter	onvey action	the ba s betw	sic phy een ch	ysical arged	concep particl	ots that es, wh	t lie be ether s	hind a station	ll elect ary or i	rical eng	gineerir n.	1g, 1	the		
2		To fa	o familiarize with the concepts of Magneto statics and their applications														
3		To understand Faraday's laws, Maxwell's equations, induced EMF and their applications.															
4	4 To learn the concept of Electromagnetic Fields, waves and wave propagation.																
5	5 To understand the concepts of field modeling and computation.																
COURSE	COURSE OUTCOMES																
On successful completion of the course, the students will be able to																	
СО	CO 1To determine the electric field intensity from the stationary charge distributions and to analyze the electric fields using electromagnetic laws with the associated boundary conditions.Underst									rstar	nd						
CO	2	To a	nalyse	time v	arying	g elect	ric and	l magn	etic fie	elds.				Remember			
CO	3	Com capa	pare tl citanco	he elec e and i	tric an nducta	id mag ince	netic ł	oounda	iry con	dition	s, calcı	late the		Remember			
CO	4	Sum med	marise ium.	e the el	ectric	magne	etic wa	ves an	d wav	e propa	agation	in diffe	rent	Apply			
C0 5	5	Com	pute F	ield M	odeling	g & Co	omputa	tion							Unde	rstar	ıd
Mapping	with P	rogran	nme ou	itcome	s and]	Progra	mme S	Specifi	c Outc	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	I	PSO2	PS	303
CO1	S	S	L	-	-	S	S	-	-	L	-	-	-		-		L
CO2	М	-	М	-	S	L	M	-	M	L	-	-	-		-		L
CO3	М	-	М	-	S	L	M	-	-	L	-	-	-		-		-
CO4	S	-	S	_	S	М	M	L	-	L	M	-	L		М		-
CO5	S	М	S	S	S	М	S	-	M	L	L	M	_		-		-

-\$-1- d-=+

ELECTROSTATICS

Introduction– Sources and effects of electromagnetic fields - Difference between field theory and circuit theory - Charge - Coulomb's law - Continuous charge distribution - Electric field intensity - Electric flux - Gauss's law and its Applications - Potential - Laplace and Poisson's equations -Electrostatic energy –Capacitance- boundary value problems

MAGNETOSTATICS

Current Density - Magnetic field - Magnetic flux - Magnetic flux density - Biot-Savart's law - Ampere's law - Torque - Force - Scalar and Vector Magnetic potential - Boundary value problem - Energy Density

ELECROMAGNETIC FIELDS

Faraday's law - Lenz's law - Self inductance - Mutual inductance - Co-efficient of coupling - Dot rule for coupled circuits - Series, Parallel - Inductance of solenoid, Toroid, Maxwell's equations (boundary conditions) - Displacement current - Eddy current.

ELECTROMAGNETIC WAVES

Introduction - Derivation of Wave Equation, Uniform Plane Waves - Conducting media - Plane waves in lossy dielectrics, Propagation in good conductors, Skin effect, Poynting theorem.

FIELD MODELLING AND COMPUTATION

Problem formulation - boundary conditions – solutions - analytical methods - variables separable methods - conformal transformation - method of images - numerical methods - finite difference method - finite element method - charge simulation method.

ТЕХТВООК

- 1. John D. Kraus, "Electromagnetics with application" McGraw Hill, 5th edition, 2011.
- 2. William Hayt, "Engineering Electromagnetics", McGraw Hill, New York, 7th edition, 2014.
- 3. Kraus and Fleish, Electromagnetics with Applications, McGraw Hill International Editions, Fifth Edition, 2008

REFERENCES

- 1. K. A. Gangadhar, P.M. Ramanathan, Electromagnetic Field Theory, Khanna Publishers, Sixteenth Edition, 2011.
- 2. M. N. O. Sadiku, "Elements of Electromagnetics", Oxford University Publication, 2014
- 3. A.Pramanik, "Electromagnetism Theory and applications", PHI Learning Pvt. Ltd, New Delhi, 2009.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	S.Prakash	AP(Gr-II)	EEE/AVIT	sprakash@avit.ac.in
2	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu

\$-1.- d-=+

MEASUREMENTS AND INSTRUMENTATION
(THEORY AND PRACTICALS)

Category	L	Т	Р	С
CC	3	0	2	4

Preamble

S

CO5

S

Μ

Μ

_

_

This course introduces principle of operation of basic analog and digital measuring instruments for measurement of current, voltage, power, energy etc. Measurement of resistance, inductance and capacitance by using bridge circuits will be discussed in detail and to develop skills in designing and conducting experiments related to applications of measuring instruments.

PRERE	QUISI	TE : F	Basics	of Ele	ctrica	l and	Electr	onics	Engin	eering	5				
COURS	E OBJ	ECTIV	VES												
1		To i	ntrodu	ce the	fundar	nentals	s of ele	ectrical	and e	lectron	ic instr	ruments			
2		To u	o understand the working principles of the electrical and electronic meters												
3		To U	To Understand the working principle of AC, DC bridges.												
4		To train the students in the measurement of displacement, resistance, inductance, torque and angle													
COURS	E OUT	COM	ES												
On succe	essful c	omple	tion of	f the co	ourse,	the st	udents	s will b	e able	to					
СО	1	Expl of m	Explain the functional elements, characteristics, standards and calibration Apply										ply		
CO	2	Desc	Describe the working of various electrical and electronic meters										Under	stand	
CO	3	Dete	ermine	unkno	wn va	lues us	sing br	idges.						Understand	
CO	4	Desc	cribe th	ne oper	ation	of stora	age and	d displ	ay dev	ices.				Understand	
C0	5	Expl	lain the	e work	ing of	variou	s trans	ducers	, ADC	and D	AC.			Apply	
Mapping	with P	rogram	nme ou	tcome	s and I	Program	mme S	pecific	c Outco	omes					
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	М	-	М	-	-	S	-	М	-	S	М	М
CO2	М	L	М	М	-	-	-	-	-	-	-	-	М	-	-
CO3	S	Μ	S	L	-	-	-	S	M	-	-	-	S	М	-
CO4	М	М	L	S	-	-	-	М	-	-	М	М	S	М	-

- p-1- d-=+

_

_

_

_

М

S

S

_

INTRODUCTION

Functional elements of an instrument - static and dynamic characteristics – errors in measurement - statistical evaluation of measurement data - standard and calibration

ELECTRICAL AND ELECTRONICS INSTRUMENTS

Principle and types analog and digital ammeters and voltmeters – single and three phase Wattmeters and Energy meter– instrument transformers – instruments for measurement of frequency and phase.

COMPARISON METHODS OF MEASUREMENTS

D.C & A.C potentiometers, D.C & A.C bridges, transformer ratio bridges, self-balancing bridges. Interference & screening – Multiple earth and earth loops – Electrostatic and electromagnetic interference – Grounding techniques

STORAGE AND DISPLAY DEVICES

Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger

TRANSDUCERS

Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers- Elements of data acquisition system – A/D, D/A converters – Smart sensors.

PRACTICE

Experiment on Transducer & AC Bridges, Calibration of Current Transformer, Instrumentation amplifiers, Calibration of Single phase Energy meter.

TEXTBOOK

- 1. A.K. Sawhney, Puneet Sawhney, 'A Course In Electrical And Electronic Measurements And Instrumentation ', Dhanpat Rai and Co,2012.
- 2. Doebelin E.O. and Manik D.N., Measurement Systems Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007.

REFERENCES

- 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2017.
- 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997.
- 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.
- 4. John P. Bentley, 'Principles of Measurement Systems', III Edition, Pearson Education, 2000.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	S. Jensie Anita	Q-la-d-	===	jensiepresley@avit.ac.in

2 Mr. P. Loganathan	AP	EEE/VMKVE C loganathan@vmkvec.edu.in	EE/VMKVE C loganathan@vmkvec.edu.in
---------------------	----	---	--

-9-1- d-=+

ANALOG AND DIGITAL CIRCUITS	Category	L	Т	Р	Credit
(Theory and Practicals)	CC	3	0	2	4

One of the most important reasons for the unprecedented growth of Digital Electronics and systems is the advent of integrated circuits(ICs).Developments in the IC technology have made it possible to fabricate complex digital circuits such as microprocessors, memories and FPGAs etc. This course provides various methods and techniques suitable for a variety of digital system design applications.

PREREQUISITE

Semiconductor Devices And Circuits

COURSE OBJECTIVES							
1	To understand the small signal BJT/FET Models						
2	2 To learn about various compound configurations of multivibrators						
3	To impart the design knowledge of various combinational logic circuits and sequential circuits						
4	To understand the basics of hardware descriptive language						
5	5 To design the various sequential logic circuits						
COUI	COURSE OUTCOMES						
On the	e successful completion of the course, students will be able to						
CO1. oscilla	Apply the basic concept and working of various types offeedback amplifiers and tors.	Apply					
CO2.]	Design different multivibrators & compound Configurations Circuits.	Apply					
CO3.	Apply the principles of Boolean algebra to manipulate and minimize logicexpressions	Apply					
CO4. D	CO4. Design various combinational logic circuits (adder, subtractor, multiplexer and coders, Analyze						
etc.,)							
CO5.I	Design various sequential circuits using flip flops (counters, shift registers, etc.,)	Analyze					

-g-1.- d-=+

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	М	-	-	-	-	-	-	-	-	М	М	-	_
CO2	S	M	М	М	-	-	-	-	-	-	-	М	М	L	-
CO3	S	M	М	М	Μ	-	-	-	-	-	-	М	S	M	-
CO4	S	S	М	Μ	-	-	-	-	-	-	-	М	S	M	-
CO5	S	S	М	S	-	-	-	-	-	-	-	М	S	M	L
a a.			•	-											

S- Strong; M-Medium; L-Low

SYLLABUS

OSCILLATOR CIRCUITS

Concept of feedback – effects of negative feedback-Barkhausen Criterion – Oscillator Circuits: Oscillator Principles – LC oscillators – Hartley oscillator, Colpitts Oscillator, Clapp Oscillator, RC Phase shift oscillators, Sweep oscillator-Wein Bridge Oscillator-Crystal oscillators - Demonstration With Relevant Experiments

COMPOUND CONFIGURATIONS AND MULTIVIBRATORS

Introduction, Cascade Connection, Cascode Connection, Darlington Connection, Differential Amplifier Circuit, CMRR, Schmitt Trigger. Multivirators- Astable – bistable – Monostable-- Demonstration With Relevant Experiments

BOOLEAN ALGEBRA, LOGIC GATES & GATE –LEVEL MINIMIZATION:

Introduction, Boolean Algebra, basic theorem & properties of Boolean Algebra, Boolean functions, canonical & standard forms, logical operations, logic gates, Integrated circuits, Map method-upto four variable Kmaps, Product of Sums (POS) & Sum of Products (SOP) simplification, don't care conditions, NAND & NOR implementations, Exclusive-OR Function, Hardware Description Language(HDL)- - Demonstration With Relevant Experiments

COMBINATIONAL LOGIC

Introduction, Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder,

Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Code Converters, Encoders, Decoders, Multiplexers-- Demonstration With Relevant Experiments

SYNCHRONOUS SEQUENTIAL LOGIC, REGISTER & COUNTERS

Sequential circuits, storage elements: latches, flip flops, Analysis of clocked sequential circuits, Moore and Mealy circuits ,state diagram, state reduction & Assignment, design procedure, shift registers, ripple counters, synchronous counters-- Demonstration With Relevant Experiments

Text Books:

- 1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill,4thEdition, 2015.
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11thEdition, 2013
- Morris Mano, "Digital Design (with an introduction to the verilog HDL)", Prentice-Hall of India.
 John F. Wakerly, "Digital Design Principles & Practices", 4th edition, Prentice-Hall,2005.

Reference Books:

1. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.

\$-1- d-=

2. D.Roy choudhury and shail B.Jain, -Linear Integrated circuits, 4th edition, New Age International Pvt.Ltd, 2014.

3. Thomas L. Floyd, "Electronic De Vranesic, "Fundamentals of Digital Logi , 2011. Stephen D. Brown, and Zvonko IcGraw Hill, June, 2007.

4. William Kleitz, "Digital Electronics: A Practical Approach with VHDL", Ninth Edition, Pearson, 2002.

COUR	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
2.	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in

-9-1- d-=+

POWER ELECTRONICSAND DRIVES	Category	L	Т	Р
(THEORY & PRACTICALS)	CC	3	0	2

Power electronics involves the study of electronic circuits intended to control the flow of electrical energy. It do processing and control of 'raw' electrical power from anelectrical source such as an AC mains supply, a bat photovoltaic array, or a windturbine into a form and quality suitable for a particular electrical load. It is an enablin with a very wide range of applications. Electric Drives, both ac and dc types, come in many shapes and arestandardized versions for general-purpose applications. Others are intended for specifictasks. In any case, moto selected to satisfy the dynamic requirements of themachines on which they are applied without exceeding temperature. To acquire the practical knowledge in power electronic devices and converters.

r	
PRERE	CQUISITE: SemiconductorDevices and Circuits
COURS	SEOBJECTIVES
1	Togetanoverviewofdifferenttypesofpowersemiconductordevices and their switching characteristics.
2	Tounderstandtheoperation, characteristics and performance parameters of controlled rectifiers.
3	Tostudytheoperation, switchingtechniques and basics topologies of DC-DC switching regulators.
4	TostudytheoperationofACvoltagecontroller and tolearn thedifferentmodulationtechniquesinverters.
5	To employ the solid states peed control techniques for DC drives for efficient control.
6	Toemploysolidstatespeedcontroltechniquesfor ACdrivesforproficientandlosslesscontrol.
7	To Analyze the performance of semiconductor devices and converters through experiments.

COURSEOUTCOMES

Onthesuccessful completionofthecourse, students will be able to

	CO1	:Defi	ne
--	-----	-------	----

Re semiconductorphysicstothepropertiesofrealpowersemiconductordevicesanddifferentiatefromlowpowerdevices. CO2: Implement rectifiers and inverters for the given application

CO3: Implement DC-DC converters and AC-AC converter for the given application

CO4: suitablemotordrive U Interpret theconceptsofanelectricaldrivesystemandchoosea fordifferentapplications&Explain the basics and advantages of electric drives.

CO5: Appraise the conventional speed control methods of AC motors withstartingandbrakingmethods. Ana CO6: Validate the proficient control of AC and DC drives by utilize the power electronic sconcepts. Eva

Å

C07: Analyze the performance of semiconductor devices and converters by conducting suitable

experiments.

MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMME SPECIFICOUTCOMES

											-	-		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC
CO1	S	M	S	M	S	L	M	-	L	L	S	М	L	S
CO2	S	S	S	M	М	L	M	-	L	М	S	М	М	S
CO3	S	S	S	M	М	L	M	-	L	L	S	М	М	S
CO4	S	S	S	S	S	M	M	-	M	L	S	М	L	Μ
CO5	S	S	S	M	S	М	М	-	L	M	S	М	L	S

Q-1- d-=+

CO6	S	S	S	S	S	M	M	-	M	M	S	M	L	S
C07	S	M	L	L	M	-	-	-	S	-	М	-	-	S
S-Stron	g;M-M	ledium;	L-Low-	-										

POWERSEMI-CONDUCTOR DEVICES

Overviewofswitchingdevices - Principles of operation, Characteristics, Protection and Gate dri ofPowerDiode,PowerTransistor,MOSFET,IGBT,SCR andTRIAC - Design of filters.

RECTIFIERS& CHOPPERS

Singlephaseandthreephase rectifiers - Dualconverters.BasicPrinciplesofChoppers-Stepdownandstepupchopper-Timeratiocontrolandcurrentlimitcontrol-Buck,Boost,Buck-Boostconverters.

INVERTERS & AC-ACCONVERTERS

Singlephaseandthreephase[120°&180° mode] Voltage Sourceinverters–Current SourceInverters - Regeneration i - PWMtechniques–SinglephaseandthreephaseACvoltagecontrollers –singlephaseandthreephasecycloconv Cycloconverter Control Scheme.

ELECTRICALDRIVES

General electric drive system - Classification and TypesofElectricalDrives –Factorsinfluencingtheselection drives– Torque-speed characteristics of motors- heating andcoolingcurves–classesofduty–Selection of motor p simpleproblems.

SOLIDSTATEDRIVES

Advantagesofsolidstatedrives–Speed control methods of DCmotorsusingrectifiersandchoppers–Speed controlofinductionmotorbyStator Voltage control, Voltage / Frequency control -Slippowerrecoverysystems.

PRACTICE

CharacteristicsofSCR, MOSFET and IGBT. ConverterfedDC MotorDrive.InverterfedInductionMotorDrive

TEXTBOOKS:

1. RashidM.H., "PowerElectronicsCircuits, Devices and Applications", PrenticeHallIndia, 3rdEdition, NewDelhi, 200-2. G.K. Dubey "Fundamental Electrical Drives" second edition 2002, Narosa Publications, Second edition, 2002.

REFERENCES:

- 1. Cyril.W.Lander,"PowerElectronics",McGraw HillInternational, ThirdEdition, 1993.
- 2. P.S.Bimbra"PowerElectronics", KhannaPublishers, thirdEdition2003.
- 3. PhilipT.Krein, "ElementsofPowerElectronics"OxfordUniversityPress,2004Edition.
- 4. N.K.De., P.K.Sen"ElectricDrives", PrenticeHall, Firstedition 1999.
- 5. Pillai, S.K., "A FirstcourseonElectricalDrives", WileyEasternLtd., New Delhi, 1982

COUR	SEDESIGNERS			
S.No.	Nameof the Faculty	Designation	Department	MailID
1	Dr. R. Sankarganesh	AssociateProfessor	EEE/VMKVEC	sankarganesh@vmkv
2	Mr.N.P.Gopinath	Assistant Professor(Gr-II)	EEE/AVIT	Gopinathnp@avit.ac.i

\$-1.- d-=+

TRANSMISSION & DISTRIBUTION

Category	L	Т	Р	С
CC	3	0	0	3

Preamble

It is concerned the function of different components used in Transmission and Distribution levels of power systems and modeling of the components, enrich with the fair knowledge in the recent trends in power Transmission and

PREREQUISITE: ELECTRO MAGNETIC THEORY

COURS	SE OB.	JECT	IVES												
1	To stu transn	ıdy the nissior	e structi 1	ure of e	lectric	power s	system	and to	develoj	o expres	sions for	the co	mputati	ion of	
2	To ob regula	To obtain the equivalent circuits for the transmission lines based on distance and to determine the voltage regulation and efficiency.													
3	To stu	To study different types of insulators and constructional features of HT & LT cables.													
4	To stu	idy the	e classi	fication	and fu	nctions	of maj	or com	ponent	s of subs	stations.				
5	To understand the structure of AC and HVDC Transmission systems and its various operating voltages.														
COURS	SE OUTCOMES														
On suc	essful completion of the course, the students will be able to														
CO 1	Explain the importance and the functioning of transmission line parameters. Understand														
CO 2	Model the transmission lines and analyse their performance Analyze														
CO 3	Expla	in the	knowle	edge of	line ins	sulators	and ur	dergro	und cab	oles.				Under	stand
CO 4	Descr	ibe the	e comp	onents o	of subs	tation a	nd grou	unding.						Under	stand
C0 5	Comp	are the	e HVD	C and A	AC syst	ems and	d analy	yse the	perform	nance of	AC dist	tributio	n	Anal	yze
Mappin	g with	Progra	mme o	utcome	s and P	rogram	me Sp	ecific C	Outcom	es			·		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	D1 S M L S L M L S								S						
CO2	S	Μ	S		S	L	-			-		L	S	S	L
CO3		Μ	Μ		-	L	M			-		М	L		L
CO4		M	-		-	М	-			-		L			М
CO5	S	M	М		-	М	M			-		L			М

-9-1- d-=+

TRANSMISSION LINE PARAMETERS

Structure of electrical power system: Parameters of single and three phase transmission lines with single and double circuits: Resistance, inductance and capacitance of solid, stranded and bundled conductors: Symmetrical and unsymmetrical spacing and transposition - Application of self and mutual GMD - Skin and Proximity effects - Interference with neighboring communication circuits, Simple diagrams of typical towers and conductors for 400, 220 and 110 kV operations

MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Classification of lines: Short line, medium line and long line - equivalent circuits, attenuation constant and phase constant, surge impedance, transmission efficiency and voltage regulation - Sag tension calculation: Factors affecting sag, Support at same level, Effect of ice and wind, Total length of conductor, Equivalent span, Support at different levels - Ferranti effect, Phenomena of corona and its losses.

LINE INSULATORS AND UNDERGROUND

Purpose and requirement of insulators – material for insulators – types of insulators – failure and testing of insulators – voltage distribution over a string of suspension insulators – string efficiency – equalization of potential across each unit – Corona and it's effect (problems in voltage distribution over a string of insulators)

Underground cables :- Advantages of cables - classification of cables - belted cable - oil filled cables - advantages and

SUBSTATION , GROUNDING SYSTEM AND DISTRIBUTION SYSTEM

Bus-bar arrangements – substation bus schemes – single bus, double bus with double breaker, double bus with single breaker, main and transfer bus, ring bus, breaker- and - a half with two main buses, double bus-bar bypass isolators. Importance of earthing in a substation. Qualitative treatment to neutral grounding and earthing practices in substations. Feeders, distributors and service mains. DC distributor – 2 - wire and 3 - wire, radial and ring main distribution. AC distribution - single phase and three phase 4 -wire distribution.

AC TRANSMISSION & HVDC TRANSMISSION

Typical layout of AC power supply scheme – influence of voltage on conductor materials – limits of line voltage – Kelvin's law – It's limitations – OH lines –line supports – various types of supports with their applications,

High voltage DC transmission – HVDC projects in INDIA and abroad – advantages and disadvantages of HVDC transmission – basics of protection of HVDC system.

TEXTBOOK

1. B.R.Gupta, 'Power System Analysis and Design', S.Chand, New Delhi, 2005.

2. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, 2004.

3. Veerappan.N and Krishnamurthi .S.R,' Power Systems Switch Gear and Protection', S.Chand Edition 2009.

4. Ravindranath, B and Chander, N, 'Power System Protection and Switchgear', Wiley Eastern Ltd., 1977

REFERENCES

1. Luces M.Fualkenberry ,Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 1996.

2. HadiSaadat, 'Power System Analysis,' Tata McGraw Hill Publishing Company', 2003.

3. V.K.Mehta, Rohit Mehta,' Principles of power system', S.Chand & Company Ltd, New Delhi, 2013.

4. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi.

5. Wadhwa, C.L., 'Electrical Power Systems', New Age International (P) Ltd., Publishers, 1995.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Jensie Anita S	P-1- d-	=7 E	jensiepresley@avit.ac.in
	/		·	

CONTROL SYSTEMS	Category	L	Т	Р	Credit
CONTROL STOTEMS	CC	3	0	0	3

This course shall introduce the analysis and regulation of the output behaviors of dynamical systems subject to input signals. The course focuses primarily on using Laplace and frequency-domain techniques. The course will be useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well as the feedback control of such systems. At the end of this course, one should possess in-depth knowledge of concepts from classical control theory, understand the concept of transfer function and use it for obtaining system response, analyze dynamic systems for their stability and performance, and design controllers (such as Proportional-Integral-Derivative) based on stability and performance requirements.

PREREQUISITE

Differential Equations and Transforms

COURSE OBJECTIVES															
1	Unde	erstand	the fe	edback	and fo	eed-for	ward c	control	; apply	represe	ntations	s of con	trol syst	tems.	
2	To fi MAT	nd tim TLAB.	e respo	onse of	given	contro	l syster	n mod	el, vari	ous con	trollers	design a	and sim	ulation	using
3	To understand the frequency domain analysis, use of frequency response methods for open loop and closed loop control systems.														
4	To analyze the stability of systems using various methods and to design compensators.														
5	To develop and analyze the state space models.														
COURS	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1	Find '	Transf	er func	tion of	f syster	ns.								Unders	stand
CO2	Find	the tin	ne resp	onse o	f giver	o contro	ol syste	em moo	del and	l to desig	gn a coi	ntroller.		Create	
CO3	Find	the fre	quency	/ respo	nse of	control	l syster	n mode	el using	g freque	ncy res	ponse p	lots.	Analyz	ze
CO4	Analy	yze the	stabili	ity of t	he con	trol sys	stem ar	nd desig	gn the	suitable	compe	nsators.		Create	
CO5	Apply	y state	space	technic	ques to	model	contro	ol syste	ms.					Evalua	te
MAPPIN	IG WI	TH P	ROGF	RAMM	IE OU	TCOM	IES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	М	-	-	-	-	-	М	М	S	М	-
CO2	S	Μ	-	Μ	S	-	-	Μ	-	-	-	Μ	S	М	S
CO3	S	M	-	M	S	-	-	-	-	-	-	M	S	M	-
CO4	S	M	-	M	S	-	M	-	-	-	M	M	S	M	S
CO5	S	M	-	Μ	S	L	L	-	Μ	-	Μ	Μ	S	Μ	-
S- Strong	;; M-M	ledium	i; L-Lo	W		S- Strong; M-Medium; L-Low									

- for- 1- ===

INTRODUCTION TO CONTROL SYSTEMS

Basic elements in control systems – classifications of control systems – Mechanical Translational and Mechanical Rotational Systems, Electrical analogy– Transfer function – Block diagram reduction techniques – Signal flow graphs.

TIME RESPONSE ANALYSIS

Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Effects of P, PI, PID modes of feedback control. Design and Simulation of time domain analysis using MATLAB.

FREQUENCY DOMAIN ANALYSIS

Frequency response analysis, Frequency domain specifications, Correlation between time and frequency responses, Bode Plot, Polar Plot, Constant M and N circles, Nichols chart, Design and Simulation of frequency domain analysis using MATLAB.

STABILITY ANALYSIS AND COMPENSATOR DESIGN

Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis, Introduction to Root-Locus Techniques, Guidelines for sketching root locus, Nyquist stability criterion. Cascade Lag compensation, cascade Lead compensation and cascade Lag-Lead compensation

STATE VARIABLE ANALYSIS, AND APPLICATION OF CONTROL SYSTEMS

Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, Equivalence between transfer function and state variable representations, Digital control design using state feedback. Synchros – AC servomotors- DC Servo motors.

TEXT BOOKS

K. Ogata, "Modern Control Engineering", 4th Edition, Pearson Education, New Delhi, 2003.
 I.J. Nagrath & M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.
 C.J.Chesmond. "Basic Control System Technology", Viva low priced student edition, 1998.
 R.C.Dorf and R.H.Bishop, "Modern Control Systems", Addison-Wesley, 1995 (MATLAB Reference).
 M. Gopal, "Control Systems: Principles and Design", 3rd Edition, McGraw, Hill, 2008
 Nise N.S, "Control Systems Engineering", 6th Edition, Wiley India, 2016.

REFERENCES

1. Benjamin C Kuo, "Automatic Control system", Prentice Hall of India Private Ltd., New Delhi, 2009.

2. R.C. Dorf and R.H. Bishop, "Modern Control Systems", 12th Edition, Prentice, Hall, 2010.

3. http://www.mathworks.com/access/helpdesk/help/toolbox/control/

4. Control Systems - N. K. Sinha, New Age International (P) Limited Publishers.

5. S.N.Sivanandam, S.N.Deepa, Control System Engineering using Mat Lab, 2nd Edition, Vikas Publishing, 2012.

COURS	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	e-mail id								
1	D.SARANYA	Assistant Professor	EEE / AVIT	dsaranya@avit.ac.in								
		(Gr-II)										
2	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in								

\$-1.- d-=+

		POWERSYSTEMANALYSIS										gory	L	Т	Р	Credit
											CC		3	0	0	3
PREAM	PREAMBLE To understand the necessity and to become familiar with the modeling of power system and components and to apply different methods to analyse power system for the purpose of system planning and operation.															
PRERE	QUISI	ГE: Tr	ansmis	sions a	nd Dist	tributio	ons									
COURS	EOBJI	ECTIV	ES													
1	To m	odel th	e powe	r systen	1 under	steady	state op	perating	conditi	ion.						
2	To st	udy the	power	flow m	odels a	nd appl	y effici	ent nun	nerical r	nethods	to solve	the p	owe	er flow	problem	
3	To model and analyse the power systems under abnormal(or)fault conditions.															
4	To m	odel &	analys	e the tra	nsient l	behavio	r of pov	wer sys	tem wh	en it is s	ubjected	to a f	aul	t.		
5	TothestudytheImportanceofstabilityanalysisinpowersystemplanningandoperation.															
COURSEOUTCOMES																
On the successful completion of the course, students will be able to																
CO1:Describe the modeling of power system and components. Understand											tand					
CO2:Solve an solution of Load flow problems. Apply																
CO3:Examine the various types of Symmetrical faults. Analyze																
CO4:Examine the various types of Unsymmetrical faults.Analyze												/ze				
CO5:Exp	plain the eration.	e impoi	rtance c	of stabil	ity anal	ysis in _J	power s	system j	olanning	g and					Underst	and
CO6:Cla	ssificat	ion of t	vpes of	stabilit	V.										Unders	tand
МАРРІ	NGWI	THPR	OGRA	MMEC	, DTCO	MESA	NDPR	OGRA	MMES	SPECIF	ICOUT	COM	ES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSO2	PSO3
CO1	S	S	L		S	L					L		_	S	S	M
CO2	S	S	M		S				L		S	M	[S	S	M
CO3	S	S	S		S	М	M		М		S			S	S	М
CO4	S	S	S		S	М	S		S		S			S	S	М
CO5	S	S	L		S						S	S			М	
CO6	S	L	L	L	S						S	M		S	М	
S-Strong	;;M-Me	dium;L	L-Low	1	<u>I</u>		<u>I</u>	1	I		1	1			I	

-9-1- d-=+

INTRODUCTION

Need for system planning and operational studies – basic components of a power system. Generator models -Transformer model- Transmission system model - load representation. Single line Diagram – per phase and per unit representation–change of base. Simple building algorithms for the formation of Y-Bus matrix and Z-Bus matrix.

POWERFLOWANALYSIS

Importance of power flow analysis in planning and operation of power systems -statement of power flow problem - classification of buses- development of power flow model in complex variables form and polar variables form- iterative solution using Gauss-Seidel method -Q-limit check for voltage controlled buses – algorithm and flow chart-iterative solution using Newton-Raphson method – algorithm and flow chart.

FAULTANALYSIS-BALANCED FAULTS

Importance of short circuit analysis - assumptions in fault analysis-analysis using Thevenin's theorem-Z-bus building algorithm- fault analysis using Z-bus - algorithm and flow chart- computations of short circuit capacity, post fault voltage and currents.

FAULT ANALYSIS–UNBALANCEDFAULTS

Introduction to symmetrical components – sequence impedances – sequence circuits of synchronous machinesequence networks – representation of single line to ground, line to line and double line to ground fault conditions. Unbalanced fault analysis - problem formulation – analysis using Z-bus impedance matrix–algorithm and flowchart.

STABILITYANALYSIS

Importance of stability analysis in power system planning and operation – classification of power system stability - angle and voltage stability- Single Machine Infinite Bus(SMIB) system: Development of swing equation - equal area criterion - determination of critical clearing angle and time –solution of swing equation by modifiedEulermethodandRunge-Kuttasecondordermethod.Algorithmandflowchart.

TEXT BOOKS

1. HadiSaadat, 'Power System Analysis', TataMcGrawHill PublishingCompany, NewDelhi, 2002.

2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Limited, New Delhi, Second Edition, 2003.

REFERENCES

1. P.Kundur, 'PowerSystem StabilityandControl, TataMcGrawHill, Publications, 1994.

- 2. JohnJ.Grainger and W.D.Stevenson Jr., 'Power System Analysis', McGrawHillInternationalBookCompany, 1994.
- 3. I.J.Nagrath and D.P.Kothari, 'Modern Power System Analysis', TataMcGraw-HillPublishingCompany, NewDelhi, 1990.
- 4. .K.NagasarkarandM.S.SukhijaOxfordUniversityPress,2007

COURSEDESIGNERS										
S.No.	NameoftheFaculty	Designation	Department	MailID						
1	Dr.V.MANJULA	AssistantProfessor	EEE/VMKVEC	manjula@vmkvec.edu.in						
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in						

\$-1.- d-=+

MICROCONTROLLER BASED SYSTEM	Category	L	Т	Р	Credit
DESIGN & EMBEDDED SYSTEM DESIGN	CC	3	0	2	4
(Theory & Practicals)					

Embedded systems course is continuous of the Microprocessor and Microcontrollers, is intended to Design, Implementation and Test of embedded applications. This includes system requirements specifications, architectural and detailed design, and implementation, focusing on real-time applications. Learning the concepts will be enforced by a Project to design and develop an embedded system based on a single-chip microcontroller and to know complete Operating Systems, RTOS

PREREQUISITE : Analog and Digital Circuits								
COUI	COURSE OBJECTIVES							
1	Explore the fundamentals of microcontroller based system design							
2	Organize the Arm Processor Embedded Firmware							
3	Acquire knowledge of I/O and RTOS role on microcontroller							
4	Perform various tasks in designing the Embedded System Design in RTOS							
5	5 Handle the development and debugging tools in Embedded Systems							
COURSE OUTCOMES								
On the	successful completion of the course, students will be able to							
CO1.]	Explain fundamentals of microcontroller based system design	Understand						
CO2.]	Discuss the Arm Processor Embedded Firmware	Understand						
CO3. Illustrate the I/O and RTOS role on microcontroller Analyze								
CO4. Examine the tasks in designing the Embedded System Design in RTOS Analyze								
CO5.]	Develop and debug tools in Embedded Systems	Analyze						

- p-1- d-=+

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	-	-	-	-	-	-	S	М	-
CO2	S	S	М	-	М	-	-	-	М	-	-	М	S	М	-
CO3	S	S	M	-	M	-	-	-	М	-	-	М	S	М	-
CO4	S	S	M	-	M	-	-	-	М	-	-	М	S	М	-
CO5	S	S	М	-	М	-	-	-	М	-	-	М	S	М	-
S- Stro	ong: M	[-Medi	um: L	-Low											

Syllabus

REVIEW OF 8051&TYPICAL EMBEDDED SYSTEM

Introduction to Embedded System. Architecture, 8051- CPU Block diagram, MemoryOrganization, Program memory, Data Memory, Interrupts Peripherals: Timers, Serial Port,I/O Port Programming: Addressing Modes, Instruction Set, Programming Timing Analysis Casestudy with reference to 8-bit 8051 Microcontroller.

Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces & Experiments

ARM PROCESSOR ORGANIZATION&EMBEDDED FIRMWARE

ARM9 Microcontroller Architecture-Block Diagram, Features, Memory Mapping MemoryController (MC)-External Bus Interface (EBI)-External Memory Interface-Interrupt Controller-System Timer (ST- Real Time Clock (RTC) Parallel Input/output Controller (PIO)Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, RealTime Clock, Watchdog Timer, Embedded Firmware Design Approaches and DevelopmentLanguages.

RTOS BASED EMBEDDED SYSTEM DESIGN

Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multi-tasking, Task Scheduling.

TASK COMMUNICATION

Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

DEVELOPMENT & DEBUGGING TOOLS FOR MICROCONTROLLER BASED EMBEDDED SYSTEMS

Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyser & Experiments

Text Books:

- 1. Intel Hand Book on "Embedded Microcontrollers", 1st Edition
- 2. Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. McKinlay, "The 8051Microcontroller and Embedded Systems using Assembly and C", 2e, PHI
- 3. ARM Company Ltd. "ARM Architecture Reference Manual– ARM DDI 0100E"
- 4. David Seal "ARM Architecture Reference Manual", 2001 Addison Wesley, England; Morgan Kaufmann Publishers
- 5.Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide -Designing and Optimizing System Software", 2006, Elsevier
- 6.Ayala, Kenneth J "8051 Microcontroller Architecture, Programming & Applications", 1st Edition, Penram International Publishing

\$-1- d-=+

COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in						
2	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in						

-9-1- d-=+

SWITCHGEAR CC 3 0 0 PREAMBLE The course aims to impart fundamental knowledge on various abnormal operating conditions in power system anddescribe the apparatus and system protection schemes, phenomena of current interruption and various switchgears. PREREQUISITE – Electrical Machines-I and Electrical Machines-II COURSE OBJECTIVES 1 To study about the Causesofabnormaloperatingconditions(faults,lightningand switchingsurges)of theapparatusandsystem. 2 To analyze the Characteristicsandfunctions ofrelays andprotection schemes. 3 To study about the Apparatusprotection,staticandnumericalrelays. 4										
PREAMBLE The course aims to impart fundamental knowledge on various abnormal operating conditions in power system anddescribe the apparatus and system protection schemes, phenomena of current interruption and various switchgears. PREREQUISITE – Electrical Machines-I and Electrical Machines-II COURSE OBJECTIVES 1 To study about the Causesofabnormaloperatingconditions(faults,lightningand switchingsurges)of theapparatusandsystem. 2 To analyze the Characteristicsandfunctions ofrelays andprotection schemes. 3 To study about the Apparatusprotection,staticandnumericalrelays.										
PREREQUISITE – Electrical Machines-I and Electrical Machines-II COURSE OBJECTIVES 1 To study about the Causesofabnormaloperatingconditions(faults,lightningand switchingsurges)of theapparatusandsystem. 2 To analyze the Characteristicsandfunctions ofrelays andprotection schemes. 3 To study about the Apparatusprotection,staticandnumericalrelays. 4 To realize the Functioningofcircuitbreaker.										
COURSE OBJECTIVES 1 To study about the Causesofabnormaloperatingconditions(faults,lightningand switchingsurges)of theapparatusandsystem. 2 To analyze the Characteristicsandfunctions of relays and protection schemes. 3 To study about the Apparatusprotection,staticandnumericalrelays. 4 To realize the Functioningofcircuitbreaker.										
1 To study about the Causesofabnormaloperatingconditions(faults,lightningand switchingsurges)of theapparatusandsystem. 2 To analyze the Characteristicsandfunctions of relays and protection schemes. 3 To study about the Apparatusprotection, staticandnumerical relays. 4 To realize the Functioning of circuit breaker.										
2 To analyze the Characteristicsandfunctions of relays and protection schemes. 3 To study about the Apparatus protection, static and numerical relays. 4 To realize the Functioning of circuit breaker.										
3 To study about the Apparatusprotection, staticandnumerical relays. To realize the Functioning of circuit breaker.										
To realize the Functioning of circuit breaker.										
4 To realize the Functioning of circuit breaker.										
COURSE OUTCOMES										
On the successful completion of the course, students will be able to										
CO1: findthecausesofabnormaloperating conditions f the apparatus and system. Apply										
CO2: understandandanalyze the Electromagnetic and StaticRelays. Analyze										
CO3: recommendthesuitable protection scheme for electrical apparatus. Apply										
CO4: studyaboutthestatic and numerical relays. Understand										
CO5: suggestsuitabilitycircuitbreaker. Apply										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES										
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03										
CO1 S S S M S L - - L S M -										
CO2 S S M S L L - - L L S M -										
CO3 S M S M S L - - - S M -										
CO4 S L M M S L L - - L L S M -										
CO5 S S S M S L - - L S M -										

-\$-1- d-=+

PROTECTION SCHEMES

Principles and need for protective schemes – nature and causes of faults – types of faults–Methods of Grounding – Zones of protection and essential qualities of protection – Protection scheme.

ELECTROMAGNETIC RELAYS

Operating principles of relays – the Universal relay – Torque equation – R-X diagram – Electromagnetic Relays – Over current, Directional, Distance, Differential, Negative sequence and Under frequency relays.

APPARATUS PROTECTION

Current transformers and Potential transformers and their applications in protection schemes – Protection of transformer, generator, motor, bus bars and transmission line.

STATIC RELAYS AND NUMERICAL PROTECTION

Static relays – Phase, Amplitude Comparators – Synthesis of various relays using Static comparators – Block diagram of Numerical relays – Over current protection, transformer differential protection, distant protection of transmission lines.

CIRCUIT BREAKERS

Physics of arcing phenomenon and arc interruption – DC and AC circuit breaking – re-striking voltage and recovery voltage – rate of rise of recovery voltage – resistance switching – current chopping – interruption of capacitive current – Types of circuit breakers – air blast, air break, oil, SF6, MCBs, MCCBs and vacuum circuit breakers – comparison of different circuit breakers – Rating and selection of Circuit breakers.

TEXT BOOKS:

- 1. SunilS.Rao, 'Switchgearand Protection', KhannaPublishers, NewDelhi, 2008.
- 2. B.RabindranathandN.Chander, 'PowerSystemProtectionandSwitchgear', NewAgeInternational(P)Ltd., F irstEdition 2011.
- 3. ArunIngole, 'SwitchGear and Protection' Pearson Education, 2017.

REFERENCE BOOKS:

\$-1.- d-=+

- 1. BadriRam, B.H.Vishwakarma, 'PowerSystemProtectionandSwitchgear', NewAgeInternationalPvt LtdPublishers, SecondEdition2011.
- 2. Y.G.PaithankarandS.R.Bhide, 'Fundamentalsofpowersystemprotection', SecondEdition, Prentice Hall ofIndiaPvt.Ltd., NewDelhi, 2010.
- 3. C.L.Wadhwa, 'ElectricalPowerSystems', 6thEdition, NewAgeInternational(P)Ltd.,2010
- 4. RavindraP.Singh, 'SwitchgearandPowerSystemProtection', PHILearningPrivateLtd., NewDelhi, 2009.
- 5. VKMetha,"PrinciplesofPowerSystems"S.Chand, 2005.
- 6. BhaveshBhalja, R.P. Maheshwari, NileshG. Chotani, 'Protection and Switchgear' Oxford University Press, 2011.

0001					
S.No	Name of the Faculty	Designation	Department	Mail ID	
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in	
2	Mr. R. Sathish	Assistant Professor	EEE/VMKVEC	sathsih@vmkvec.edu.in	
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in	
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in	

- p-1- - -===

SEMICONDUCTOR DEVICES AND	Category	L	Т	Р	Credit
CIRCUITS LAB	CC	0	0	4	2

The goal of this lab is to supplement the theory course Semiconductor Devices & Circuits. Students will gain experience by examining the characteristics of various semiconductor devices such as Diodes, BJTs & FETs. To improve ability of students to design the analog circuits with which services for many practical applications.

PREREQUISITE Nil

COU	COURSE OBJECTIVES							
1	To understand the characteristics of a Diodes							
2	To obtain the characteristics and parameters of transistors BJT/FET.							
3	To find the frequency response of feedback amplifiers.							
4	To study the performance of waveform generator and wave shaping circuits.							
COURSE OUTCOMES								
On the successful completion of the course, students will be able to								
CO1. 1	Experiment the characteristics of BJT's & FET's with various configurations	Apply						
CO2.]	Determine ripple factor for the half wave & full wave Rectifier circuits and test with simulation tools	Apply						
CO3. Determine the frequency of Feedback amplifiers and test with simulation tools Apply								
CO4. Classify the waveforms of Wave shaping circuits & Feedback amplifiers circuits and Analyze								
test wit	h simulation tools							
CO5.I	Determine the efficiency of Power & Tuned amplifiers	Evaluate						

-9-1- d-=+
MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	-	-	-	-	-	-	-	L	М	-	-
CO2	S	Μ	М	Μ	M-	-	-	-	L	-	L	L	М	-	-
CO3	S	S	М	Μ	М	-	-	-	L	-	L	L	S	L	L
CO4	S	S	М	Μ	М	-	-	-	L	-	L	L	S	М	L
CO5	S	Μ	М	Μ	-	-	-	-	L	-	-	L	S	М	L
~ ~			-	-											

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS

1. Plot the input and output characteristics of a BJT Configuration and to compute the h – parameters

a)Common Emitter, b) Common Base

2. Obtain the Drain characteristics and Transfer characteristics & find the Trans-conductance, Drain resistance and Amplification factor of JFET.

3. Simulation & Hardware realization of Half wave & Full wave Rectifier with, without Filter and determine the efficiency

4. Simulation & Hardware realization of Clipping & Clamping circuits for given reference Voltage levels.

5. Simulation & Hardware realization of Voltage Series Feedback amplifiers and its frequency analysis

6. Design and simulation of Power amplifiers and calculate the efficiency

7. Design and obtain frequency Response the characterization of Single Tuned amplifierCircuit.

8. Construct series voltage regulator and obtain load and line regulation characteristics

9. Construct shunt voltage regulator and obtain load and line regulation characteristics

10. Mini project.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
2	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in

- p-1- d-=+

		ELEC	CTRIC	CAL M	ACHI	NES-I	LAB		(Categor	y	L	Τ	P C	redit
									-	CC		0	0	4 2	
PREAM	IBLE									00		0	•	• -	
To acqu	ire kno	wledge	e on the	e work	ing of	various	SDC m	achine	s and T	Fransfor	me	ers.			
PREREQUISITE : Nil															
COURS	SE OBJ	ECTIV	/ES												
1 To obtain the performance and characteristics of Electrical machines.															
2 To	2 To gain knowledge about speed control techniques on DC Machines														
3 To	compu	ite the	efficier	ncy and	l regula	ation o	f a sing	gle-pha	se tran	sformer					
COURS	SE OUT	ГСОМ	ES												
On the s	success	ful con	npletio	n of th	e cours	e, stud	ents w	ill be a	ble to						
CO 1: Study the performance characteristics of different types of DC machines. Apply Understan d															
CO 2: Compute the efficiency and regulation of a single-phase transformer. Analyze															
CO 3. T	estino	of Trai	nsform	er for N	/Indelli	ing Ev:	aluate							Un Un	derstan
	coung		13101111		nouem		iluate							d	derstan
CO4: Te	esting of	of a DC	Mach	ine and	to mo	nitor t	he effic	ciency.	Evalua	ate				An	alvse
CO 5: E	xplain	the Tra	ansforn	ner cor	nectio	ns			2,010					An	alvse
MAPPI	NG WI	TH PR	OGRA	AMME	OUTO	COME	S AND	PRO	GRAM	ME SPE	EC	IFIC OUT	COMES		
COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P	PO12	PSO1	POS2	POS3
	1										C)			
											1				
											1				
CO1	S	L	М	-	-	-	-	-	S	L	L	L	S	Μ	-
CO2	S	L	M	-		L	L	-	S	L	L	M	S	M	-
CO3	S	L	M	-	-	L	L	-	S	L	L	M	S	M	L
CO4	S	L	M	L	L	L	L	-	S	L	L	L	S	M	L
CO5			M	-	-	-	-		S	L	L	L	S	M	-
S-STRC	ONG.M	-MED	IUM,L	-LOW		T TO				Ta					
						LIS	T OF E	EXPER	IMEN	TS					
1 7 1		DG 1													
1. Load	test on	DC sn	unt mo	otor.											
2. Load $3.$ Space	lest on	DU Se	C shup	olor. t moto	r										
4 Open	circuit	and lo	ed cha	racterio	tics of	DC of	nerato	r (Self	and Se	naratelu	F	voited)			
5 Load	test on	de cor	nnound	l gener	ator	DC gt	nerato		and be	paratery	L.	Actica).			
6. Load	test on	single	phase	transfc	rmer.										
7. Open	circuit	& Sho	ort circi	it test	on sing	gle pha	se tran	sforme	er.						
8. Swin	burne's	s test.				5 1									
9. Separ	ation o	of Loss	es in si	ngle pł	ase tra	nsforn	ner.								
10. Hop	kinson	's test.		C 1											
11. Sum	pner's	test on	1-pha	se tran	sforme	r.									
12. Stud	12. Study of three phase transformer connections.														
13. Study of DC Starters.															
Referen	ce Boo	ks													
Laborat	Laboratory Reference Manual														
							140		1						

-\$-l-d-=+

SNO	NAME OF THE FACULTY	DESIGNATION	D	Mail.id
			E	
			P	
			A	
			R	
			T	
			N	1
			E	
			N	
			Т	
1	A.BALAMURUGAN	ASSOCIATE – PROFESOR	V	balamurugan@vmkvec.edu.in
			N	1
			K	
			V	
			E	
			C	
2				

-g-1- d-=+

			EI	LECTR	ICAL	MAC	HINES	5 – II LA	B	C	ategory	L	Т	Р	Cr	edit
											CC	0	0	4		2
PREA	MBLE															
	The course provides basic knowledge about the AC machines and to provide opportunity to identify and															
analyze the various performance factors in different load and no-load conditions																
COUR	SE OB	JECTI	IVES													
1 T	To detern rmature	nine th resista	ne voltag ince, arr	ge regul nature 1	ation o eactan	f an alt ce, leak	ernator age rea	from tes actance a	st data and nd power	d analyz factor	ze the ef on regul	fect of v ation.	arious fa	ictors	such a	as
2 T	o form	late of	f two rea	iction n	nodel o	f salier	t pole	synchron	ous mach	nines fro	om test d	lata and	predeter	mine	the	
	oltage r	egulati	on using	g quadr	ature a	xis and	direct	axis reac	tance.							
3 T	o deter	mine th	ne perfoi factor.	mance	of sing	le phas	e and t	hree pha	se inducti Ferent loa	ion mot ding co	or from nditions.	test data	and ana	lyze t	he eff	<i>iect</i>
	r,	· F - ···	1:00		1	1		.1 1	6.1	1 .	1					
4 1	o emplo	by the o	different	t startin	g and s	peed c	ontrol r	nethods (of three p	hase in	duction	motor.				
5 T	o study	about	construe	ction an	d princ	ciple op	eration	of Linea	ar and Sy	nchrono	ous indu	ction mo	otor.			
COUR	SE OU		1ES	0.1			11	1 11								
On the	success	tul con	npletion	of the	course,	studen	ts will	be able to	0						D	
CO1:Pr	redetern	nine the	e regula	tion of .	Alterna	itor.									Reme	embe
															r	
CO2: A	Analyze	the Per	rforman	ce and j	plot the	charac	eteristic	s of Alte	rnator at	differer	nt load co	ondition	s.		Analy	ze
CO3:D	etermin	e the e	ffect of	excitati	on on a	irmatur	e curre	nt and po	ower facto	or of sv	nchrono	us motor	r		Under	rsta
		• • • • •		en en au			e eurre	ni unu pe		01 01 09					nd	
CO4: E	Evaluate	the per	rforman	ce of th	ree pha	ase ind	action 1	notor thr	ough the	load ch	aracteris	stics and	circle		Evolu	unto
diagran	n.														Lvaiu	all
CO5: A	Apply th	e suital	ble spee	d contro	ol meth	od for	any spo	ecifical a	pplication	ns.					Apply	y
MAPP	ING W	ITH P	ROGR	AMME	E OUT	COME	ES ANI	D PROG	RAMM	E SPEC	CIFIC O	UTCO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	02	PSO 3
CO1	S	S	-	-	-	М	-	-	-	-	L	-	L	L	,	-
CO2	S	M	L	-	L	M	-	-	-	-	М	-	L	N	1	-
CO3	S	М	L	S	L	М	-	-	-	-	M	-	L	N	1	-
CO4	S	L	M	S	L	M	-	-	-	-	L	-	L	N	1	-
CO5	S	М	S	-	-	-	-	-	-	-	L	-	-	N	1	-
S- Stro	S- Strong; M-Medium; L-Low															

-\$-1.-d-=+

SYLLA	BUS							
SU	No	LIST	OF EXPERIMEN	VTS				
	1 Regulation of 3-phase Alternator by EMF and MMF methods.							
	2 Regulation of 3-phase Alternator by ZPF and ASA method.							
	3 Slip test on 3-phase Alternator.							
	4 Load characteristics of 3-phase Alternator by bus bar loading							
	4	V and invert	ted V curve of Sync	hronous motors.				
		6 Load to	est on 3-phase Induc	ction motor				
		7 Load te	est on 1-phase Induc	tion motor.				
	8 No load and Blocked Rotor test on three phase induction motor.							
	Equivalent circuit and pre – determination of performance characteristics of single-phase Induction							
ļ	9 motor							
	10	Separation of	losses in three-phas	e induction motor.				
		11 0 1						
		11 Speed cont	trol of three phase if	iduction motor				
	12 Study of Servo	motor, PMDC & PMA	AC motor, Linear inc	luction motor and Synchronous Induction				
			motor.					
COURS	SE DESIGNERS							
S. No.	Name of the Faculty	Designation	Department	Mail ID				
1.	Dr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in				
2.	Mr.R.Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in				
3.	Mr.S.Prakash	Assistant Professor	EEE/AVIT	sprakash@avit.ac.in				

(Gr-II)

- p-1- d-=+

															
				CO	NTRO	L SYS	TEMS	5 LAB			Catego	ry L	Т	P (Credit
											0	4	2		
PREAM oscillosc and bea advanced	MBLE Control Systems simulation Lab consists of multiple workstations, each equipped with an cope, digital multi-meter, PID trainers, control system trainers and stand alone inverted-pendulum, ball eam control, magnetic-levitation trainers. This lab also covers the industrial implementation of ed control systems via different computer tools such as MATLAB and Simulink.														
PRERE	QUISI	TE				-									
COURS	E OBJ	ECTI	VES												
1	To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response														
2	To as	ssess tl	he syst	em per	formar	nce usi	ng time	e doma	in anal	ysis and	l method	ls for in	mprovi	ng it	
3	To as perfo	ssess tl ormanc	he syste e	em per	formar	ice usii	ng freq	uency	domaiı	n analys	is and te	chniqu	les for	mprovi	ng the
4	To design various controllers and compensators to improve system performance														
COURS	E OUT	ГСОМ	IES												
On the su	uccessf	ùl con	npletion	n of the	e cours	e, stud	ents w	ill be al	ble to						
CO1	How a con	to imp pensa	prove th tor for	ne syste a spec	em per ific apj	formar plicatic	nce by a	selectir	ng a su	itable co	ontroller	and/or	Un	derstand	1
CO2	Apply system	y vario m perf	ous tim òrman	e doma ce	ain and	freque	ency do	omain t	echniq	ues to a	ssess the	¢	Ap	ply	
CO3	Apply system	y vario ms, ele	ous con ectrical	trol str drives	ategies etc)	s to dif	ferent a	applica	tions(e	example	: Power		An	alyze	
CO4	Test s and a	system pplica	tions o	ollabili f state	ty and space 1	observ eprese	ability ntation	using s to var	state sp ious sy	oace repr vstems	resentati	on	An Cre	alyze ar ate	d
MAPPIN	NG WI	TH P	ROGE	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCC	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	M	S	-	-	-	M	L	-	L	S	M	S
CO2	S	S	L	М	S	-	-	L	Μ	L	М	-	S	М	-
CO3	S	S	S	М	S	-	L	-	М	L	-	М	S	М	S
CO4	S	S	-	М	S	L	-	-	М	L	-	М	S	M	М
S- Strong	Strong; M-Medium; L-Low														

LIST OF EXPERIMENTS

- 1. Transfer function of self and separately excited DC Generator.
- 2. Transfer function of Armature and Field controlled DC Motor.
- 3. Transfer function of AC Servomotor.

- for- 1- - - = 7

- 4. Frequency response of Lag, Lead & Lag Lead networks.
- 5. Characteristics of Synchronous transmitter and Receiver.
- 6. Transfer function of Ward Leonard method of speed control of DC motor.
- 7. Study of P, PI and PID Controllers (First Order).
- 8. Simulate DC Position Control system and obtain its step response
- 9. Analog and simulation of type -0 and type -1 systems
- 10. Stability analysis of Linear Systems
- 11. Simulation of first order systems using MATLAB/ SCILAB
- 12. Simulation of second order systems using MATLAB/ SCILAB

counsi				
S.No.	Name of the Faculty	Designation	Department	e-mail id
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
2.	D.SARANYA	Assistant Professor GR-II	EEE / AVIT	dsaranya@avit.ac.in

-g-1- d-=+

CC 0 0 4 2 PREAMBLE To acquire software development skills and experience in the usage of standard packages necessary for analysis and simulation of power system required for its planning, operation and control. PREREQUISITE:NIL COURSEOBJECTIVES 1 To study the power system planning and operational studies. 2 2 To study the Formation of bus admittance and impedance matrices and network solutions. 3 3 To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method. 4 To study the Economic Dispatch and State estimation. 5 5 To acquire experience in the usage of standard packages for the following analysis/simulation/control functions										
PREAMBLE To acquire software development skills and experience in the usage of standard packages necessary for analysis and simulation of power system required for its planning, operation and control. PREREQUISITE:NIL COURSEOBJECTIVES 1 To study the power system planning and operational studies. 2 To study the Formation of bus admittance and impedance matrices and network solutions. 3 To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method. 4 To study the Economic Dispatch and State estimation. 5 To acquire experience in the usage of standard packages for the following analysis/simulation/control functions.										
To acquire software development skills and experience in the usage of standard packages necessary for analysis and simulation of power system required for its planning, operation and control. PREREQUISITE:NIL COURSEOBJECTIVES 1 To study the power system planning and operational studies. 2 To study the Formation of bus admittance and impedance matrices and network solutions. 3 To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method. 4 To study the Economic Dispatch and State estimation. 5 To acquire experience in the usage of standard packages for the following analysis/simulation/control functions.										
PREREQUISITE:NIL COURSEOBJECTIVES 1 To study the power system planning and operational studies. 2 To study the Formation of bus admittance and impedance matrices and network solutions. 3 To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method. 4 To study the Economic Dispatch and State estimation. 5 To acquire experience in the usage of standard packages for the following analysis/simulation/control functions										
COURSEOBJECTIVES 1 To study the power system planning and operational studies. 2 To study the Formation of bus admittance and impedance matrices and network solutions. 3 To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method. 4 To study the Economic Dispatch and State estimation. 5 To acquire experience in the usage of standard packages for the following analysis/simulation/control functions										
COURSEOBJECTIVES 1 To study the power system planning and operational studies. 2 To study the Formation of bus admittance and impedance matrices and network solutions. 3 To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method. 4 To study the Economic Dispatch and State estimation. 5 To acquire experience in the usage of standard packages for the following analysis/simulation/control functions										
 Fo study the power system plaining and operational studies. To study the Formation of bus admittance and impedance matrices and network solutions. To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method. To study the Economic Dispatch and State estimation. To acquire experience in the usage of standard packages for the following analysis/simulation/control functions 										
 I o study the Formation of bus admittance and impedance matrices and network solutions. To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method. To study the Economic Dispatch and State estimation. To acquire experience in the usage of standard packages for the following analysis/simulation/control functions. 										
 To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method. To study the Economic Dispatch and State estimation. To acquire experience in the usage of standard packages for the following analysis/simulation/control functions 										
 4 To study the Economic Dispatch and State estimation. 5 To acquire experience in the usage of standard packages for the following analysis/simulation/control functions 										
5 To acquire experience in the usage of standard packages for the following analysis/simulation/control functions										
5 To acquire experience in the usage of standard packages for the following analysis/simulation/control functions										
COURSEOUTCOMES										
On the successful completion of the course, students will be able to										
CO1:Explainthepowersystemplanningandoperationalstudies Understand										
CO2:Explaintheprocedure of bus admittance and impedance matrices and network solutions.										
Understand										
CO3:Solve the Power flow problems using GS and NR method. Analyze										
CO4:Detect Symmetrical and Unsymmetrical fault. Analyze										
CO5:Describe the Economic dispatch and State estimation. Understand										
CO6:DesigntheElectromagnetictransientcircuits. Create										
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES										
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03										
CO1 S S S S M										
CO2 S S S - S - - M M - - S S M										
CO3 S S S S S M										
CO4 - S S M M S S M										
CO5 S S S S - S S M										
206 <u>S</u> - <u>S</u> - <u>S</u> - <u>-</u> - <u>-</u> <u>-</u> <u>-</u> <u>S</u> <u>S</u> <u>M</u>										
S-Strong;M-Medium;L-Low										

-9-1- d-=+

LISTOFEXPERIMENTS

- 1. Computation of Parameters and Modeling of Transmission Lines.
- 2. Formation of Network Matrices and Solution of Networks.
- 3. Power Flow Analysis Using Gauss-Seidel Method.
- 4. Power Flow Analysis Using Newton-Raphson Method.
- 5. Symmetric and unsymmetrical fault analysis.
- 6. Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System.
- 7. Load-Frequency Dynamics of Single and Two-Area Power Systems.
- 8. State estimation: Weighted least square estimation.
- 9. Economic Dispatch in Power Systems.
- 10. Electromagnetic Transients in Power Systems.

REFERENCEBOOKS

1. Laboratoryreferencemanual.

No.	NameoftheFaculty	Designation	Department	MailID
1	DR.V.MANJULA	AssistantProfessor	EEE/VMKVEC	manjula@vmkvec.edu.ir
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in
	·			

- p-1- d-=+

	Category	L	Т	Р	Credit
HIGH VOLTAGE ENGINEERING	EC –PS	3	0	0	3

PREAMBLE

The course provides to get a fair knowledge about the generation of high voltages and currents. An understanding of high voltage phenomena, and to present the basics of high voltage insulation design and techniques. The course comprehends the concept of solid, liquid and gaseous dielectrics. The itineraries produce the method on generation and measurement of high voltages and currents. It gains knowledge in testing of high voltage equipments and the basics of high voltage laboratory techniques.

PREREQUISITE NIL

COURS	E OBJECTIVES	
1	To understanding of high voltage technology and its applications, Insu protection of OH lines	lation design in general and
2	To Understand breakdown mechanisms in solids, liquids and gases	
3	Analyze transient over voltages and design protection .	
4	To analyze the stability of closed and open loop systems using various r compensators,	nethods and to design
5	To Apply diagnostic tests to examine the quality of insulation and apply testing data	y statistic approach to analyze
COURS	E OUTCOMES	
On the su	ccessful completion of the course, students will be able to	
CO1	Identify the causes and effects of over voltages and protection of power system against over voltages.	Understand
CO2	Classify the different breakdown mechanisms in Gases, liquids and solids.	Analyze
CO3	Describe the principle of generation of high DC, AC and impulse voltages.	Understand
CO4	Explain the various measurement techniques of high voltages and high currents.	Analyze
CO5	Scrutinize the Measurement of High AC , DC and Impulse Voltages and Currents	Analyze
CO6	Testing of high voltage electrical power apparatus	Apply

- p-1- d-=+

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	М		S	S		L	L	М	L	М	S	S
CO2	М	S	М	М	L		М	L			S	М	S	L	L
CO3	L	L	S			L			М				М	L	
CO4	L							М		L	L	М			
CO5	S		М		L			М			М	М			М
CO6	S	L	L	L	S	L	L	S	М	М	S	S	S	S	М

S- Strong; M-Medium; L-Low

SYLLABUS

OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION COORDINATION

High Voltage classification - Causes of over voltages and its effects on power system – Lightning, switching surges and temporary over voltages – protection against over voltages - Principles of insulation co-ordination.

ELECTRICAL BREAKDOWN IN GASES, SOLIDS AND LIQUIDS

Gaseous breakdown in uniform and non-uniform fields – Corona discharges – Vacuum breakdown – Conduction and breakdown in pure and commercial liquids – Breakdown mechanisms in solid and composite dielectrics.

GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS

Generation of High DC, AC, impulse voltages and currents – Tripping and control of impulse generators.

MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS

Measurement of High voltages and High currents – Digital techniques in high voltage measurement.

HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS

Testing of Insulator - Bushings - Isolators, Circuit breakers - Cables - Transformers -Surge Arresters - Tan Delta measurement - Partial Discharge measurement - Radio interference measurement - Case Studies.

TEXT BOOKS

1. M. S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, 1995.

2. Kuffel, E and Zaengl, W.S, 'High Voltage Engineering Fundamentals', Pergamon Press, Oxford , Londan, 1986

3. High voltage engineering, Farouk A M Rizk; Giao N Trinh, CRC Press, [2014] ©20 ©2014

REFERENCES

1. E. Kuffel, W. S. Zaengl and J.Kuffel, "High Voltage Engineering Fundamentals", 2nd Edition,

\$-1- d-==

Butterworth – Heinmann Publisher, 2000.

- 2. L. L. Alston, 'High Voltage Technology', 1st Edition, Oxford University Press, 1968.
- 3. T.J.Gallagher and A.J Pearmain, "High Voltage Measurement, Testing and Design", 2nd Edition, Wiley, New York, 2007.
- 4. C.L Wadwa, "High Voltage Engineering", 3rd Edition, New Age International, New Delhi, 2012.
- 5. R.D. Begamudre, "High Voltage Engineering (Problems and Solution)", 1st Edition, New Age International, New Delhi, 2010.

COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	e-Mail ID									
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in									
2	R. SATHISH	Assistant Professor	EEE / VMKVEC	sathish@vmkvec.edu.in									

- p-1- d-=+

		I	POWE	RSYST	EMOF	PERAT	IONA	NDCO	NTROL	Ca	tegory	L	Т	Р	Credit
											EC –PS	3	0	0	3
PREAM	BLE	2													
	l'o beco	me fan	niliar w	1th the	prepara	tory w	ork nec	essary f	form mee	eting the	e next da	y's pov	ver syste	em oper	ation and
	the vario	ous con	itrol act	tions to	be imp	lemente	ed on th	e systei	n to mee	et the m	inute-to-	minute	variatio	n of sys	tem load.
PREKE	QUISI														
	1 Have an overview of system load variation, reserve requirements, operation and control of power system														
1	Have an overview of system load variation, reserve requirements, operation and control of power system.														
2	Give an insight into the role of speed governing mechanism in load frequency control, concept of control area,														
	modeling and analysis of load frequency control loop.														
3	3 Give knowledge of excitation systems and the methods of voltage control.														
4	Study	the ec	onomic	e dispato	ch of ge	enerated	l power	•							
5	Provi	de adeo	quate k	nowledg	ge of th	e functi	ions of	energy	control c	enter, S	CADA s	system	and the	security	control.
COURS	COURSEOUTCOMES														
On the successful completion of the course, students will be able to															
CO1:Define the load curves and load duration curve. Understand															
CO2:Apply real power control, reactive power control to different cases Apply															
CO3:Exp	plain the	e techn	iques to	o contro	l power	flows,	freque	ncy and	voltage					Unde	rstand
CO4:Sol Convent	ve Econ ional an	nomic o nd mod	dispatch ern me	n, Unit o thods.	commit	ment pi	roblems	s at diffe	erent loa	ds using	5			Ар	ply
CO5:Det	fine con	nputer	control	of pow	er svste	m								Unde	rstand
CO6:Des	sign the	contro	llers to	mainta	in powe	er syste	m relial	bility						Cre	ate
MAPPI	MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	S			S								S	N	1 M
CO2		S	S										S	S	6 M
CO3	M M											S	N	1 M	
CO4	204 S S S - S S S M												M		
CO5					S					S				S	S
CO6				М	М								S		
S-Strong	;M-Me	dium;L	-Low												1

-g-1- d-=+

INTRODUCTION

System load – variation - load characteristics - load curves and load-duration curve (daily, weekly and annual) - load factor -

diversity factor. Importance of load forecasting and simplete chniques of forecasting. An overview of power system operation nand control and the role of computers in the implementation. (Qualitative treatment with block diagram).

REALPOWER-FREQUENCYCONTRÔL

Basics of speed governing mechanism and modeling - speed-load characteristics – load sharing between two synchronous machines in parallel. Control area concept LFC control of a single-area system. Static and dynamic analysis of uncontrolled and controlled cases. Integration of economic dispatch control with LFC. Two-area system – modeling – static analysis of uncontrolled case - tie line with frequency bias control of two-area system-state variable model.

REACTIVEPOWER-VOLTAGECONTROL

Basics of reactive power control. Excitation systems – modeling. Static and dynamic analysis - stability compensation - generation and absorption of reactive power. Relation between voltage, power and reactive power at a node - method of voltage control – tap changing transformer. System level control using generator voltage magnitude setting, tap setting of OLTC transformer and MVAR injection of switched capacitors to maintain acceptable voltage profile and to minimize transmission loss.

COMMITMENTANDECONOMICDISPATCH

Statement of economic dispatch problem – cost of generation – incremental cost curve - co-ordination equations without loss and with loss, solution by direct method and λ - iteration method. (No derivation of loss coefficients).Statement of Unit Commitment problem –constraints; spinning reserve, thermal unit constraints, hydro constraints, fuel constraints and other constraints. Solution methods -Priority-list methods –forward dynamic programming approach. Numerical problems only in priority-list method using full-load average production cost.

COMPUTERCONTROLOFPOWERSYSTEMS

Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions – system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions. Network topology – state estimation - security analysis and control. Various operating states (Normal, alert, emergency, in-extremis and restorative). State transition diagram showing various state transitions and control strategies.

TEXT BOOKS

 Allen.J.WoodandBruce F.Wollenberg, 'PowerGeneration,OperationandControl',JohnWiley& Sons,Inc., 2003.
 Chakrabarti&Halder, "PowerSystemAnalysis:OperationandControl",Pr enticeHallofIndia,2004Edition.

REFERENCEBOOKS

1. D.P.KothariandI.J.Nagrath, 'ModernPowerSystemAnalysis', ThirdEditi on, TataMcGrawHillPublishingCompanyLimited, NewDelhi, 2003. (For Chapters 1, 2&3)

2. L.L. Grigsby, 'TheElectric PowerEngineering, HandBook', CRCPress& IEEE Press, 2001.

3. HadiSaadat, "PowerSystemAnalysis", (Forthe chapters 1, 2, 3 and 4) 11 th Reprint 2007.

4. P.Kundur, 'Power SystemStabilityandControl' MCCrawHillPublisher, USA, 1994.

5. Olle.I.Elgerd, 'ElectricEnergySystemstheoryanintroduction' TataMcGrawHillPublishingCompanyLtd.New Delhi,SecondEdition2003.

0001													
S.No.	Name of the Faculty	Designation	Department										
				Mail ID									
1	Dr.V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in									
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in									

Q-1- d-=+

POWER QUALITY AND FACTS	EC PS	L 3	T 0	P	Credit
	LC-15	5	0	0	5

PREAMBLE

This course imparts knowledge about various electrical power quality issues and emphasis the need for PQ monitoring and measurement. To develop the knowledge in the area of FACTS controller using different techniques.

PREREQUISITE: Nil															
COURS	COURSEOBJECTIVES														
1	Desc	ribe th	e vario	ous pov	ver qua	lity iss	ues.								
2	Ident	ify the	root c	ause of	f power	r qualit	y prob	lems.							
3	Inter	pret the	e need	for PQ	monit	oring a	ind me	asurem	ent.						
4	To Study about working principle, Different modes of operation and application soft thyristors controlled series														
	capac	itor.													
5	To Study the different voltage source converters based FACTS controllers.														
COURSEOUTCOMES															
On the successful completion of the course, students will be able to															
CO1: Explain the various power quality problems. Understand															
CO2: Discuss the root cause of power quality problems. Understand															
CO3: Discuss the need for PQ monitoring and measurement. Understand															
CO4: De	CO4: Design and modeling of various FACTS Controllers Create														
CO5: Pre	edict the	e impac	t of FA	CTS co	ontrolle	rs on A	C trans	mission	system	l .				Analy	ze
MAPPIN	NGWI	THPRO	OGRA	MMEC	UTCO	MESA	NDPR	OGRA	MMES	PECIFI	COUT	COMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L									L				
CO2	M	L												L	
CO3	M	L			L					М	М	L		S	L
CO4	S M S S S M														
CO5	205 M S M M														
S-Strong	;M-Me	dium;L	-Low	1	1	1	1	1	1	I		1	1	1	

-9-1- d-=+

Introduction

Power quality-Impact of PQ on end users, Need for PQ monitoring, Various PQ Problems

Voltage disturbances

Voltagedips, overvoltages, shorts upply interruptions, voltage fluctuations and flicker-sources, effects, measurement and mitigation

Transients

Transientsystemmodel,examplesoftransientmodelsandtheirresponse,powersystemtransientmodel,typesandcauses of transients, lightning, other switching transients.

Voltage and Current Unbalance

Symmetrical components of currents and voltages, sources, effects, measurements and mitigation

Solving power quality problems using CPD

Power quality measuring equipment-Smartpowerqualityanalyzers,Introductiontocustompowerdevices(CPD)–STATCOM,DVR,UPQC.

THYRISTOR CONTROLLED SERIES CAPACITOR(TCSC)ANDAPPLICATIONS

Operation of the TCSC – Different modes of operation – Modeling of TCSC – Variable reactance model – Modeling for Power Flow and stability studies. Applications: Improvement of the system stability limit–Enhancement of system damping-SSR Mitigation.

VOL TAGESOURCECONVERTERBASEDFACTS CONTROLLERS

Static Synchronous Compensator (STATCOM) – Principle of operation – V-I Characteristics. Applications: Steady state power transfer-Enhancement of transient stability – Prevention of voltage instability. SSSC-operation of SSSC and the control of power flow –ModelingofSSSCinloadflowandtransientstabilitystudies.Applications:SSRMitigation-UPFCand IPFC.

TEXT BOOKS

- 1. SankaranC,"PowerQuality", CRCPress specialIndianedition2009.
- 2.K.R.Padiyar,"FACTSControllersinPowerTransmissionandDistribution",NewAgeInternational(P) Limited, Publishers, New Delhi, January2016.
- 3.R.MohanMathur,Rajiv K. Varma," Thyristor– Based Facts Controllers for ElectricalTransmissionSystems",IEEEpressandJohnWiley&Sons,January2011.

REFERENCE BOOKS

- 1. Roger.C.Dugan,MarkF.Mcgranaghan &H.WayneBeaty," Electrical power system Quality" McGraw-HillNewyorkSecondedition2003.
- 2. Math H.J.Bollen, « Understanding Power Quality Problems : Voltage Sags and Interruptions », IEEE Press, NewYork, 2000.
- 3.EwaldFuchs MohammadMasoum, "PowerQualityinPowerSystemsandElectricalMachines" 2ndEdition, AcademicPress, ISBN: 9780128007822, 2015.
- 4. NarainG.Hingorani, "UnderstandingFACTS-
- Concepts and Technology of Flexible ACT ransmission Systems", Standard Publishers Distributors, New Delhi, March 2011.

-D-1- - -==

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in								
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in								

-9-1- d-=+

SPECIAL ELECTRICAL MACHINES

PREAMBLE:

This courseaims to impart in students, a good understanding of fundamental p ofdifferent types of special machines. Thecourse includes constructional details, operating p motorcharacteristics,microprocessorbasedcontrollers and applications of various types of special machines.

PREREQUISITE:Nil

COURSEOBJECTIVES

1	Tounderstandtheconstruction, principle of operation, torque equation, driver circuits & application	onsof							
_	Synchronousreluctancemotors.								
2	Tostudytheconstruction, principle of operation, torque equation, driver circuits & applications of								
	Steppermotors.								
3	Tounderstandtheconstruction, principle of operation, torque equation, driver circuits & application ap	onsof							
5	Switchedreluctancemotors.								
4	To study the construction, principle of operation, to rque equation, driver circuits & applications of								
	Permanentmagnetsynchronousmotors.								
5	5 Tounderstandtheconstruction, principle of operation, torque equation, driver circuits & applications of								
Ũ	PermanentmagnetbrushlessDCmotors.								
COUR	SEOUTCOMES								
On the	successfulcompletionofthecourse, students will be able to								
CO1:Ir	nterpretthebasicconstructionandoperatingprincipleofSynchronousReluctanceMotor,	LIn							
SRM,S	teppermotor, PMSM and PMBLDCM otor								
CO2:P	redict								
themot	orcharacteristics, power input and torque development in Synchronous Reluctance	Un							
Motor,	SRM,Steppermotor,PMSM andPMBLDCMotor.								
CO3:1	llustrate								
thedriv	esystemsandcontrolschemesforSteppermotors,SRM,PMSMandPMBLDCMotor.	A							
CO4:D	eterminethe suitablespecialpurposemotorforthe specific application	A							
COS:E	xaminetheMicroprocessorbasedcontrolofSteppermotors,SRM,PMSMandPMBLDCMotor.	A							
CO6: 5	Summarize permanent magnet materials and magnetic characteristics.	Un							
MAPP	INGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES	5							

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC
CO1	М	L	-	-	-	-	-	-	-	-	М	-	-	-
CO2	М	L	-	L	-	-	-	-	-	-	М	-	-	L
CO3	S	M	М	M	М	-	L	-	М	L	S	-	-	S
CO4	S	М	М	L	-	-	-	-	-	-	М	L	-	M
CO5	М	L	-	M	S	-	L	-	М	-	S	L	-	S
C06	S	-	М	L	-	-	L	-	-	-	М	L	М	-
C Cture	C Street and Madimure I. I and													

S-Strong;M-Medium;L-Low

\$-1.- d-=+

SynchronousReluctanceMotors

Constructional features - Operating principles - Types - Axial and Radial flux motors - Reluctance torque-Torque equation-characteristics-Syncreldrivesystem-Phasordiagram-Applications.

Steppermotors

Constructional features - Principle of operation - Torque production in Variable Reluctance (VR) stepper motor -Hybrid motor - Multi stack configuration - Modes of excitations - Characteristics - Drive circuits - Closed loopcontrol-Microprocessorcontrolofsteppingmotors-Applications.

SwitchedReluctanceMotors

Constructional features - Principle of operation - Rotary andLinear SRMs - Torque equation- Modes of operation-Powerconverter circuits-Closedloopcontrol of SRM drive-Microprocessor control of SRM drive -Sensorless control of SRM drive-Characteristics-Applications.

PermanentMagnetBrushless DCMotors

Permanent magnet materials - Magnetic characteristics - Comparison between PMBLDC motor and Conventional DC motor - Constructionalfeatures-Principleofoperation– Classifications– Rotor position sensors - EMFandtorqueequations- - Controller for PMBLDC motor - - Mechanical and Electronic commutators - - Torque-speedcharacteristics-Magneticcircuitanalysis-SensorlesscontrolofBLDC motors-Applications.

PermanentMagnetSynchronous Motors

Evolution of Synchronous Motor - Constructional features- Principleof operation- EMF and Torque equations-Armature reaction EMF-Sinewave motor with practical windings-Phasor diagram-Torque/speed characteristics -Power controllers - Comparison of Permanent magnet excitation and Electromagnetic excitation -Microprocessor based control of PMSM - Applications.

TEXTBOOKS:

1. BimalK.Bose, "ModernPowerElectronics andACDrives", PrenticeHall, NewDelhi, 2005.

2. Gopal K.Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House Pvt.Ltd., New Delhi, Secondedition, 2015.

REFERENCEBOOKS:

- 1. R.Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, Prentice Hallof India, 2009.
- 2. T.J.E.Miller,"BrushlessPermanentMagnetandReluctanceDCMotorDrives", ClarendonOxfordPress, 1989.
- 3. T.Kenjo, "SteppingMotorsandtheirMicroprocessorControls", ClarendonOxfordPress, 1994.
- 4. K.Venkataratnam, "SpecialElectricalMachines", UniversityPress(India)Pvt.Ltd., 2009.
- 5. E. G. Janardanan, "Special Electrical Machines", PHI Learning Private Limited, ISBN: 978-81-203-4880-6,Delhi,2014.

COUR	COURSEDESIGNERS												
S.No.	NameoftheFaculty	Designation	Department	MailID									
1	Dr. R.Sankarganesh	AssociateProfessor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in									
2	Dr.K.Boopathy	Professor	EEE/AVIT	boopathyk@avit.ac.in									
		6 1	1										

P-1- d-=+

		WIN	D ENI	ERGY	CONV	CA	ATEG(DRY	\mathbf{L}	Т	Р	C				
		SYS	ГEMS						EC-P	S	3	0	0	3		
PREAMBLE																
To understand and familiarize the principle ,concepts of wind energy conversion systems.																
PRER	EQUI	JISITE	:Nil													
COUF	RSE O	BJECT	IVE													
1.		To und	erstand	d the c	omponei	nts, va	rious t	theories	and dy	nami	cs of w	vind ene	ergy co	onver	sion	
		system	S		-											
2.		To stuc	ly the v	various	s types o	f wind	turbi	nes.								
3.		To stuc	ly aboı	it the f	ixed spe	ed sys	tems i	n wind	energy	conve	ention					
4.		To stuc	ly abou	it the v	variable	speed s	systen	ns in wi	ind ener	rgy co	nventi	on				
5. To introduction the grid connected control and monitoring sytems.																
COURSE OUTCOMES																
On the successful completion of the course, students will be able to Understand																
CO1: Realize the basics of wind energy conversion systems												nd				
$\frac{1}{CO2}$	Compr	ehend y	various	types	of wind	turbin	es in	energy	conver	sion s	vstems			Ana	lusis	
$\frac{CO2.}{CO2.}$	indorg	tond the		tiona	of voriou		$\frac{1}{2}$	ootrioo	l machi	norios	used t	for five	4	Ano		
cos.t			e opera	uions (or variou	is type	s of el	lectrica	macm	neries	useu		u	Alla	19818	
speed	Syster	115. 4 - 41			-14	.1	<u> </u>		1.1	. 1	4			A	1	
CO4:Illustrate the generation of electrical power from Variable speed system. Analysis																
CO5:Acquire knowledge on grid connected wind farm and design a standalone wind Create																
energy conversion system.																
Mapp	lng Wi	ith programme outcomes and programme specific outcomes														
COS	FUI	FO2	103	r04	105	100	7	r0a	F09	0	1	FOI2	1501	r.	302	1505
CO1	S	M	-	-	М	S	S	M	-	-	L	-	M	-		M
CO2	S	S	-	-	М	S	S	M	-	-	L	-	L	-		L
CO3	S	S	L	-	S	S	S	M	-	-	M	-	M	L		L
CO4	S	М	L	М	S	S	Μ	М	-	-	M	-	М	-		-
CO5	S	М	L	М	S	S	М	L	L	-	M	-	М	-		М
S-STF	RONG	,M-MI	EDIUN	,L-LO	ÓW											-
SYLL	ABUS	5														
INTR	ODU	CTION	1										9			
Comp	onents	s of WE	ECS-W	ECS s	chemes-	Power	obtai	ned fro	m wind	l-simp	le moi	nentum	theor	y-Pov	wer	
coeffi	cient-S	Sabinin	's theo	ry-Ae	odynam	ics of	Wind	turbine	;							
WIN	D TU	RBINE	S										9			
HAW	T-VA	WT-Po	wer de	evelope	ed-Thrus	t-Effic	iency	-Rotor	selectio	on-Rot	or des	ign con	sidera	tions-	Tip :	speed
ratio-l	No. of	Blades	-Blade	profil	e-Power	Regul	ation-	yaw co	ntrol-P	itch ar	igle co	ontrol-s	tall co	ntrol-	Sche	emes
for ma	aximui	n powe	er extra	iction.									_			
FIXE	ED SP	EED S	YSTE	MS			•			~1 •			_ 9		2	
Gener	ating S	System	s- Con	stant s	peed cor	istant 1	reque	ncy sys	stems -(Choice	e of Ge	enerator	s-Dec	ıdıng	facto	ors-
Synch	ronou	s Gener	rator-S	quirre	Cage Ir		on Ger	nerator-	Model	ot W	ind Sp	eed- M	odel w	/ind t	urbin	ie
rotor -	Drive	e Train	model	-Gener	ator mo	del for	Stead	ly state	and Tra	ansien	t stabi	lity ana	lysis.			
VARIABLE SPEED SYSTEMS 9																
Need of variable speed systems-Power-wind speed characteristics-Variable speed constant frequency																
systems synchronous generator- DFIG- PMSG - variable speed generators modeling - variable speed																
		INECT	SCHEM	CS. MNTT	01 8-14	олит	UDIN	IC EV	TEM	2			n			
Wind	intera	nneoti			$\mathbf{OL} \otimes \mathbb{N}$		OKIN	la SI	yoltaga	J rida t	hroug	h (I VD	ע T) דיייי	mn ro	te	
limita	tione	and sur	on req		ano, PAC	ces for	frequ	iency a	nd volt		ntrol	u (L V N current	nracti	пр та сес эт	nd in	ductry
trende	wind	interco	nnecti	on imp	ac ⁺					f	ance o	of the pr	Wer c	vster	i incl	ludina
limitations, and supply of ancillary services for frequency and voltage control, current practices and industry trends wind interconnection impact an atom doubted and doubted																

modeling issue- WECS in various

-g-1- d-=+-

Total Hours = 45

REFERENCES

- 1. L.L.Freris "Wind Energy conversion Systems", Prentice Hall, 1990
- 2. S.N.Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford University Press, 2010.
- 3. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.
- 4. E.W.Golding "The generation of Electricity by wind power", Redwood burn Ltd., Trowbridge, 1976.
- 5. N. Jenkins," Wind Energy Technology" John Wiley & Sons, 1997
- 6. S.Heir "Grid Integration of WECS", Wiley 1998.

S.No	Name of the faculty	Designation	Department	Mail-id									
1	Mr.A.BALAMURUGAN	ASSOCIATE PROFESSOR	EEE	balamurugan@vmkvec.edu.in									

-9-1- d-=+

				EL	ECTR	RIC VI	EHICI	(Category	' L	Т	Р	Cı	redit		
											EC- PS	3	0	0		3
PRE This	AMBLE course in	troduc	es the f	fundam	ental o	concep	ts, prir	nciples, a	analysis	and des	sign of h	ybrid,	electr	ic v	vehicles	5.
PRE	REQUIS	SITE:	Basic	Electri	cal &	Electro	onics E	Ingineer	ing.							
COU	COURSE OBJECTIVES															
1	1 To understand the basic concepts and dynamics of electric vehicles.															
2	2 To familiarize and design of battery backup.															
3	3 To analyze the characteristics of different types of DC & AC Motors.															
4	To unde	rstand	differe	nt type	s of po	ower tra	ansmis	sion cor	nfigurati	on, clut	ch and b	oraking	<u>g</u> .			
5	To study	y abou	t hybrid	electr	ic vehi	cles.										
COU	COURSE OUTCOMES															
On th	ne succes	sful co	ompletio	on of th	$\frac{1}{1}$	se, stu	$\frac{dents}{1}$	will be a	ble to					TT	1 4	1
	CO1: Describe the basic concepts of electric vehicles. Understand															
CO2: Design the propulsion system for electric vehicles. Evaluate																
CO3: Explain the construction, characteristics and application of batteries. Analyze																
CO4	CO4: Elucidate performance characteristics of DC&AC electrical machines. Analyze											e				
CO5	Design	the dri	ve train	mode	l for el	ectric	vehicle	es.]	Evaluat	te
CO6	: Describ	e abou	t the va	rious t	ypes a	nd con	figurat	tion of h	ybrid ele	ectric vo	ehicle.				Apply	
MAI	PPING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND PH	ROGRA	MME	SPECI	FIC O	UTC	ON	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC)1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	-		-	-
CO2	S	М	S	L	М	-	L	M	-	-	-	-	-		-	-
CO3	S	-	-	-	М	-	-	-	-	-	-	-	-		-	-
CO4	S	-	-	-	М	-	-	-	-	-	-	-	-		-	-
CO5	S	М	S	L	М	-	L	М	-	М	М	-	-		-	-
CO6	S	-	-	-	М	-	L	L	-	-	-	-	-		-	-
S- St	rong; M-	Mediu	m; L-L	ow	Į	Į		1			· · · · · ·		1			

-\$-1.- d-=+

ELECTRIC VEHICLES

Introduction, Components, vehicle mechanics – Roadway fundamentals, vehicle kinetics, Dynamics of vehicle motion - Propulsion System Design.

BATTERY

Basics – Types, Parameters – Capacity, Discharge rate, State of charge, state of Discharge, Depth of Discharge, Technical characteristics, Battery pack Design, Properties of Batteries.

DC & AC ELECTRICAL MACHINES

Motor and Engine rating, Requirements, DC machines, Three phase A/c machines, Induction machines, permanent magnet machines, switched reluctance machines.

ELECTRIC VEHICLE DRIVE TRAIN

Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motor sizing. Types – series, parallel and series, parallel configuration – Design – Drive train, sizing of components.

HYBRID ELECTRIC VEHICLES

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

TEXT BOOKS:

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press,
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

REFERENCE BOOKS:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals", CRC Press, 2010.
- 2. Sandeep Dhameja, "*Electric Vehicle Battery Systems*", Newnes, 2000 .http://nptel.ac.in/courses/108103009

COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in								
2	Mr. V.Rattankumar	Assistant	EEE	rattankumar@avit.ac.in								
		Professor										

\$-1.- d-=+

			DISTRIBUTED GENERATION AND Category										ry 1	L	Т	Р	C
					M	ICRO	GRII	DS				EC- PS	5	3	0	0	3
Preamble	e																
To introdu	ace the	fundar	nentals	s of Dis	stribute	ed Gen	eration	and Ir	npleme	entation	n in Mi	crogrid.					
PREREC	QUISIT	ГЕ : N	ïl														
COURSI	E OBJ	ЕСТГ	VES														
1		To il	To illustrate the concept of distributed generation														
2		To a	analyze the impact of grid integration														
3		To st	o study concept of Microgrid and its configuration														
COURSI	E OUT	COM	OMES														
On succe	cessful completion of the course, the students will be able to																
CO	1	Stud	y the r	need fo	or DG'	s and y	variou	s types							Unde	erstar	nd
CO	2	Und	erstand	d the c	oncept	s and	impact	ts in G	rid Inte	ergrati	on				Unde	erstar	nd
CO	3	Und	erstand	ding of	f the m	icrogr	id type	es and	config	uratior	ıs				Unde	erstar	nd
СО	4	Anal conr	lyze th nected	e vario operat	ous typ ion	bes of o	control	l in mi	cro gri	d in is	landed	and grid	1		Ana	alyze	;
Mapping	with P	rogran	nme ou	itcome	s and	Progra	imme S	Specifi	c Out	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1]	PSO2	PS	603
CO1	S	S	L	-		S	S	-		L	-	-	-		-		М
CO2	М	-	M	-	S	L	M	-	М	L	-	-	-		-		-
CO3	М	-	М	-	S	L	M	-		L	-	-	L		М		-
CO4	S	-	S	-	S	М	М	L	-	L	М	-	-		-		L
CO5	S	М	S S S M S - M L L M - L -														

UNIT - I	INTRODUCTION	9								
Conventional por resources: review	Conventional power generation: advantages and disadvantages, Energy crises, Nonconventional energy (NCE) resources: review of Solar PV, Wind Energy systems, Fuel Cells, micro-turbines, biomass, and tidal sources.									
UNIT - II	DISTRIBUTED GENERATIONS (DG)	9								

-9-1-- d-=+

Concept of distributed generations, topologies, selection of sources, regulatory standards/ framework, Standards for interconnecting Distributed resources to electric power systems: IEEE 1547. DG installation classes, security issues in DG implementations. Energy storage elements: Batteries, ultra-capacitors, flywheels. Captive power plants												
UNIT - III	IMPACT OF GRID IN	TEGRATION		9								
Requirement grid abnorm power syster	Requirements for grid interconnection, limits on operational parameters,: voltage, frequency, THD, response to grid abnormal operating conditions, islanding issues. Impact of grid integration with NCE sources on existing power system: reliability, stability and power quality issues.											
UNIT - IVINTRODUCTION TO MICROGRID9												
Concept and definition of microgrid, microgrid drivers and benefits, review of sources of microgrids, typical structure and configuration of a microgrid, AC and DC microgrids, Power Electronics interfaces in DC and AC microgrids												
UNIT - VCONTROL AND OPERATION OF MICROGRID9												
Modes of op control, pro- microgrid co economics, I TEXTBOO 1. "Voltag and Rez 2. "Power 2006. 3. "Solar F REFERENC 1. "Wind H 2. "Bioma 3. "Banaw	beration and control of micro tection issues, anti-islanding ommunication infrastructure, ntroduction to smart microgric K e Source Converters in Power a Iravani, IEEE John Wiley F Switching Converters: Medi Photo Voltaics", Chetan Singh CES Energy Explained, theory desi ass Regenerable Energy", D. I	ogrid: grid connected a g schemes: passive, a Power quality issues ds. r Systems: Modeling, C Publications. um and High Power", 1 n Solanki, PHI learning ign and applications," J D. Hall and R. P. Grow	and islanded mo active and com in microgrids, r Control and App Dorin Neacsu, C Pvt. Ltd., New U.F. Manwell, J.C er, John Wiley, J	code, Active and reactive power munication based techniques, regulatory standards, Microgrid lications", Amirnaser Yezdani, CRC Press, Taylor & Francis, Delhi,2009 G. McGowan Wiley publication New York, 1987.								
 "Renewable Energy Resources" John Twidell and Tony Weir, Tyalor and Francis Publications, Second edition COURSE DESIGNERS 												
Sl No Name of the Faculty Designation Department Mail ID												
1	S.Prakash	AP(Gr-II)	EEE	sprakash@avit.ac.in								
2												

-9-1- d-=+

			Pow	er Con	verter	s Anal	lysis ai	ıd De	sign		Category	L	T	P C	redit
							-		0		EC-PS	3	0	0	3
PREA	PREAMBLE														
To Gi	ve an	Introd	uction	to The	e Rece	nt Dev	velopm	ents i	n The	e Pow	er Electroni	ics Con	verters.	This (Course
Introdu	uces th	ne Adv	vanced	Power	Conv	erters	Such a	ıs Isol	ated I	Dc-Dc	Converter,	Reactiv	ve Eler	nents. I	t Also
Deals	with T	he Syn	chrono	ous Rec	tifiers	and Ca	ascadeo	l Boos	st Con	verter	s.				
PRER Nil	QUIS	ITE													
COUF	URSE OBJECTIVES														
1	Acquire a basic understanding of various power converter modules used to build a power electronics system and acquire the ability to select and design suitable circuit.														
2	To in	To impart knowledge on the design of different components for Power converter Systems.													
3	To lea	To learn the switching losses of various triggering techniques													
4	To understand the designing concept of various types of chopper and rectifier														
5	5 To impart knowledge on the design of closed-loop compensators for DC-DC Converter														
COUR	COURSE OUTCOMES														
On the	succes	sful cor	npletio	n of the	course,	, studen	ts will	be able	e to						
1. Selet the Swit	ct Powe	er Semi	conduc	tor Swi	tches fo	or Powe	er Electi	ronic c	onvert	ers and	l calculate Lo	osses in	Ren	nember	
2. App	ly the n	eed and	d worki	ng of ar	n Isolate	ed DC-	DC Coi	nverter	for rea	al-time	application.		App	ly	
3. Impl	lement	the Des	sign Rea	active c	ompone	ents for	Power	Electr	onic C	onverte	ers.		Ana	lysis	
4. Deve	elop a N	Model t	he DC-	DC Coi	nverter	Using s	state Sp	ace Te	chniqu	le.			Imp	lement	
5. Mod	lelling o	of Desig	gn com	pensato	r for D	C-DC C	Convert	ers.					App	ly	
MAPI	APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
CO2	S	S	S	М	М	-	-	-	-	-	-	М	S	M	M
CO3	S	S	S	М	М	-	_	-	-	-	-	М	S	М	M
CO4	S	М	M	L	L	_	_	-	-	-	-	L	S	М	-
CO5	S	S	M	М	М	-	-	-	-	-	-	L	S	M	M

S- Strong; M-Medium; L-Low Syllabus

-9-1- d-=+

TRIGGERING LOSS CALCULATION

Survey of devices: Diode, Thyristor, BJT, IGBT, MOSFET and TRIAC-Realization of Semiconductor switch for one quadrant operation, Current bidirectional operation, Voltage bidirectional operation,

four quadrant operation- Thermal Design of Power Switching Devices-Estimation of loss in switch: Conduction Loss Switching Loss -Blocking Loss- Transistor Switching with Clamped Inductive Load.

ISOLATED CHOPPER CONVERTER

Need for Isolated Converters-Operation and Derivation of Voltage equation: Forward Converter-Fly back converter Push pull converter-Half Bridge and Full Bridge Converter.

DESIGN OF REACTIVE ELEMENTS IN POWER ELECTRONIC SYSTEMS:

Introduction-Design of Inductor: Material Constraint-Design Relationships-Design Steps-Design of Transformer: Design Equations-Design Steps-Different Types of Capacitors for Power Electronics Applications-Related problems on design of Inductor and Transformer and Evaluation of loss in capacitor

DC-DC CONVERTER DYNAMICS

Small Signal Analysis of Converter-State Space Averaging Technique-Steps involved in state space averagingDerivation of Transfer function of Ideal buck, boost converter using state space averaging- Converter Non Idealities.

COMPENSATOR DESIGN AND CURRENT MODE CONTROL

Closed loop requirements-Compensator structure-Design of compensator-Introduction of Current Mode Control Block diagram of Current Mode Control-Advantages of Current Mode control

TEXT BOOKS:

- Ned Mohan, Undeland and Robbin, "Power Electronics: converters, Application and 1. design" John Wiley and sons.Inc,New York,2002.
- 2. Rashid M.H., " Power Electronics Circuits, Devices and Applications ", Prentice Hall India, New Delhi, 2010.

	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Departme	Mail ID									
			nt										
1	Dr.K.Boopathy	Associate Professor	EEE/AVIT	boopathyk@avit.ac.in									
2	Dr. R. Devarajan	Professor	EEE/ VMKVEC	devarajan@vmkvec.edu.in									
4													

\$-1.- d-=+

			RENEWABLE ENERGY SOURCES												Т	Р	С
			Г		MADI		LINU	1 500		,		EC- PS	3	3	0	0	3
Preambl	e																
To introd pollute tl	uce the he envi	e funda ronme	imenta nt.	ls of P	V & V	VIND	and ot	her ene	ergy so	ources	and uti	lizing the	e resou	rces	that	leas	t
PREREC	QUISIT	ГЕ : N	il														
COURS	JRSE OBJECTIVES																
1		Awa	Awareness about renewable Energy Sources and technologies.														
2		Ade	Adequate inputs on a variety of issues in harnessing renewable														
3		Reco	Recognize current and possible future role of renewable energy sources.														
COURS	E OUT	COM	OMES														
On succe	essful c	omple	ompletion of the course, the students will be able to														
СО	1	Develop awareness about renewable energy sources and technologies Apply															
СО	2	Reca energ	ll to ge gy	et adequ	iate inp	outs on	a varie	ty of is	sues in	harnes	sing rei	newable		F	Reme	embe	er
СО	3	Mate appli	the the sications	various s	renew	able en	ergy re	esource	s and te	echnolo	gies an	d their		F	Reme	embe	er
СО	4	Orga	nize ar	nd und	erstand	basics	about	biomas	s energ	уy					Ap	ply	
СО	5	Inter	view to	acquii	e knov	vledge	about s	olar en	ergy						Ap	ply	
Mapping	with P	rogran	nme oi	itcome	s and	Progra	imme S	Specifi	c Out	comes			·				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PS	502	PS	03
CO1	S	S	L	-	-	S	S	-		L	-	-	-		-		-
CO2	М	-	М	-	S	L	М	-	М	L	-	-	-		-		-
CO3	М	-	М	-	S	L	М	-	-	L	-	-	-		-		-
CO4	S	-	S	-	S	М	М	L	-	L	М	-	-		-		-
CO5	S	М	S S S M S - M L L M -														

RENEWABLE ENERGY SOURCES

\$-1- d-=+

Environmental consequences of fossil fuel use, Importance of renewable sources of energy, Sustainable Design and development, Types of RE sources, Limitations of RE sources.

WIND ENERGY

Power in the Wind – Types of Wind Power Plants(WPPs)–Components of WPPs-Working of WPPs- Grid integration issues of WPPs.

SOLAR PV AND SOLAR SYSTEM

Solar Radiation, Radiation Measurement, Solar Thermal Power Plant, Central Receiver Power Plants- Solar Photovoltaic systems : Basic Principle of SPV conversion – Types of PV Systems- Types of Solar Cells, Photovoltaic cell concepts: Cell, module, array ,PV Module I-V Characteristics, Efficiency & Quality of the Cell, series and parallel connections, Applications.

BIO MASS ENERGY

Introduction-Bio mass resources –Energy from Bio mass: conversion processes- Biomass Cogeneration-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geothermal Electricity. Mini/micro hydro power: Classification of hydropower schemes, Classification of water turbine.

OTHER ENERGY SOURCES

Tidal Energy: Energy from the tides, Barrage and Non Barrage Tidal power systems. Wave Energy: Energy from waves, wave power devices. Ocean Thermal Energy Conversion (OTEC)- Hydrogen Production and Storage- Fuel cell :Principle of working- various types – construction and applications. Energy Storage System-Hybrid Energy Systems.

TEXTBOOK

- 1. Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHI Learning Pvt.Ltd, New Delhi, 2011.
- 2. D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", PHI Learning Pvt.Ltd, New Delhi, 2013.

REFERENCES

- 1. A.K.Mukerjee and Nivedita Thakur," Photovoltaic Systems: Analysis and Design", PHI Learning Private Limited, New Delhi, 2011 Arvind Krishnan & Others Climate Responsive Architecture, Tata Mcgraw Hill New Delhi 2001.
- 2. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 3. Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited, Delhi, 2015
- 4. Chetan Singh Solanki, "Solar Photovoltaics : Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2011.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	K.S.Kavitha Kumari	Assistant Professor	EEE	kavitha.eee@avit.ac.in

- p-1- d-=+

2	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
---	------------	---------------------	------------	-----------------------

-9-1- d-=+

		EN	NERG	Y CON	IVERS	SION A	AND S	STOR	AGE		Category	L	Т	P	Credit
				ſ	ГЕСНІ	NOLO	GIES				EC-PS	3	0	0	3
PREA The air	PREAMBLE The aim of the course is to understand the basics of energy conservation techniques, energy storages in														
indust	industries and the associated economical benefits.														
PRER	PRERQUISITE NIL														
COUF	COURSE OBJECTIVES														
1	1 To provide knowledge on the fundamentals of magnetic circuits, energy, force, and torque of single and multi excited systems.														
2	2 To provide knowledge on the transformation of energy from solar and wind.														
3	To in	npart kr	nowledg	ge on Tl	hermal	and Sol	ar Phot	ovolta	ic syste	ems					
4	4 To understand the concept of Magnetic, Electric, and Chemical Energy Storage systems and their applications														
5	5 To gain knowledge on energy storage in electric.														
COUF	COURSE OUTCOMES														
On the	succes	sful cor	npletio	n of the	course	, studen	ts will	be able	e to						
1. Dep	pict the	choice	and rat	ting of e	electrica	al mach	inery fo	or selec	cted ap	plicatio	ons		Re	membe	er
2. De system	sign an	d deve	lop a su	iitable h	lydroge	n storaş	ge syste	m to b	e used	along	with a fuel c	ell	Ap	ply	
3. Imp	olement	the cho	emical	energy	storage	process	s for rea	ıl-time	applic	ation			Im	plemer	nt
4. An	alysis a	nd desi	gn the	battery	rating f	or vario	ous appl	lication	1				An	alysis	
5. Sel	ect the	best po	wer rat	ing and	perform	nance f	or ener	gy stor	age ap	plicatio	on		Ap	ply	
МАРІ	MADDING WITH DDOCDAMME OUTCOMES AND DDOCDAMME SDECIEIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSC	2 PSO3
CO1	M	S	M	-	М	-	-	-	-	-	_	M	S	M	-
CO2	S	S	S	М	М	_	_	-	-	-	-	М	S	M	М
CO3	М	S	S	М	М	-	-	-	-	-	-	М	S	M	М
CO4	S	М	М	L	L	-	-	-	-	-	-	L	S	Μ	-
CO5	М	S	М	М	М	-	-	-	-	-	-	L	S	Μ	М
S- Stro	S- Strong; M-Medium; L-Low														

-9-1- d-=+

ELECTROMECHANICAL ENERGY ALTERATION

Review of magnetic circuits-Principles of Electromechanical Energy - Conversion, General expression of stored magnetic energy, co-energy and force/torque, example using single and doubly -excited system.

ANALYSIS OF WIND AND PV SYSTEMS

Stand alone operation: Fixed and variable speed wind energy conversion systems (WECS), solar system - Grid connection Issues -Grid integrated SCIG and PMSG based WECS-Grid Integrated solar system.

CHEMICAL ENERGY STORAGE SYSTEMS

Introduction about fuel cells – design and principles of operation of a fuel cell – classification of fuel cells, conversion efficiency of fuel cells. Types of electrodes, work output and emf of fuel cell,

Applications of fuel cells. Introduction about Hydrogen energy – hydrogen production – electrolysis, thermo chemical methods. Battery - Types of Batteries - Equivalent Electrical Circuit - Battery Charging - Charge Regulators - Battery Management

MAGNETIC AND ELECTRIC ENERGY STORAGE SYSTEMS

Superconducting Magnet Energy Storage (SMES) systems; capacitor and batteries: comparison and application; super capacitor: Electrochemical Double Layer Capacitor (EDLC), principle of working, structure, performance and application

ADVANCED BATTERIES FOR EV APPLICATIONS

Ultracapacitors: Features- Basic Principles of Ultracapacitors - Performance of Ultracapacitors – Mathematical model, Fuel cells: Operating Principles – Characteristics - Polarization loss - fuel cells Technologies - Comparison of fuel cells, Hybridization of Energy Storage systems.

TEXTBOOK

- 1. S.P.Sukatme, 'Solar Energy Principles of thermal collection and storage,' Second edition, McGraw Hill,2007.
- 2. Mukund R. Patel, 'Wind and Solar Power Systems: Design, Analysis, and Operation, Second Edition, CRC Press, 2009

REFERENCES

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.K.Boopathy	Associate Professor	EEE/AVIT	boopathyk@avit.ac.in
2	Dr. R. Sankarganesh.in	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu

\$-1- d-=+

		POWER SYSTEM AND SMART GRID								Categor	ry	L	Т	Р	С		
										EC- PS		3	0	0	3		
Preamble																	
To enable the students acquire knowledge on power system planning and fault condition, smart grid, different options of architectural design, renewable energy sources and storage integration with smart grid.																	
PREREQUISITE : Nil																	
COURSE OBJECTIVES																	
1	1 To model the power system under steady state operating condition.																
2		To n	To model and carry out short circuit studies on power system.														
3	3 To understand the basic concepts, components and architecture of smart grid																
COURSE OUTCOMES																	
On successful completion of the course, the students will be able to																	
CO	CO 1 Construct a power system model under steady state operating condition										Apply						
CO 2Experiment with the various fault and carry out short circuit studies on power systemAj									pply	pply							
CO	3	Defi	Define the smart grids components and architecture												Remember		
CO 4		Find	Find the various renewable energy sources to reduce pollution												Remember		
C0	5	List	List the role of batteries and energy storages												Analyze		
Mapping with Programme outcomes and Programme Specific Outcomes																	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PS	O3
CO1	S	-	М	М	L	-	-	М	М	L	-	L	-		-		-
CO2	L	S	L	М	S	-	-	M	M	L	-	-	-		М		-
CO3	S	-	S	S	S	-	-	M	M	L	-	М	-		-		-
CO4	S	S	М	-	S	-	-	М	М	L	-	-	-		-		L
CO5	S	-	S	Μ	S	М	-	S	M	L	-	-	_		-		-

POWER SYSTEM

Need for system planning and operational studies - Power scenario in India - Power system components -

-9-1- d-==

Representation - Single line diagram - per unit quantities - p.u. impedance diagram - p.u. reactance diagram - Network graph, Bus incidence matrix, Primitive parameters, Bus admittance matrix from primitive parameters.

FAULT ANALYSIS

Assumptions in short circuit analysis - Symmetrical short circuit analysis using Thevenin's theorem - Analysis of unsymmetrical faults at generator terminals: LG, LL and LLG - unsymmetrical fault occurring at any point in a power system

INTRODUCTION TO SMART GRID

Today's Gird Versus Smart Grid, Rationale for Smart Grid, Computational Intelligence, Power System Enhancement, Communication and Standards, Environment and Economics, Shareholders Roles and Function, Architecture, Functions of Components

DISTRIBUTED GENERATION

Solar Energy, PV Systems, Wind turbine Systems, Biomass, Small and Micro Hydro Power, Fuel Cell, Geothermal heat pumps.

ENERGY STORAGE

Batteries, Flow Batteries, Fuel Cell and hydrogen electrolytes, Flywheel, Super conduction magnetic energy storage systems, super capacitors, Simulation and case studies.

TEXTBOOK

- 1. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Second Edition, 2008.
- 2. James Momoh, "Smart Grid: Fundamentals of design and analysis", John Wiley & sons Inc, IEEE press 2012.

REFERENCES

- 1. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
- 2. Fereidoon P. Sioshansi, "Smart Grid: Integrating Renewable, Distributed & Efficient Energy", Academic Press, 2012.
- 3. Qi Huang, Shi Jing "Innovative Testing and Measurement Solutions for Smart Grid", John Wiley & Sons Inc, 2015.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	K.S.Kavitha Kumari	Assistant Professor (Gr-II)	EEE/AVIT	kavitha.eee@avit.ac.in
2	A.Balamurugan	Assistant Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in

- p-1- d-=+

		DIGITAL SIGNAL PROTECTION FOR POWER								RC	Category	/ L	Т	• Ci	redit
					51	SIE	WIS				EC- PS	3	0 ()	3
PREAMBLE The technology of power system protection has evolved a lot since the era of electromechanical and solid-recorded by Current Transformers (CT) and Voltage Transformers (VT), by using digital signal processing techniques. Thus, the requirement of learning this subject has changed significantly over a period of time and in fact, this subject addresses this need in a comprehensive manner.															
PREREQUISITE: Nil															
COURSE OBJECTIVES															
1 Study of numerical relays.															
2 Dev	2 Developing mathematical approach towards protection														
3 Study of algorithms for numerical protection.															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1: Learn the importance of Digital Relays												Understand			
CO2: Apply Mathematical approach towards protection Apply												T			
CO3: Learn to develop various Protection algorithms Understand												und			
CO4: Simulate protection for abnormalities in virtual environment Analyze												e			
CO5: Demonstrate primitive relays at contingency state Evaluate															
MAPPIN	IG V	VITH	PROG	RAM	ME O	UTCO	MES .	AND PI	ROGRA	MME	SPECI	FIC O	UTCO	MES	
COS PO	D1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	-	L	-
CO2	S	М	S	L	М	-	L	М	-	-	-	-	M	-	М
CO3	S	-	-	-	М	-	-	-	-	-	-	-	-	М	S
CO4	S	-	-	-	М	-	-	-	-	-	-	-	М	-	-
CO5	S	М	S	L	М	-	L	М	-	М	М	-	-	-	L
CO6	S	-	-	-	М	-	L	L	-	-	-	-	-	L	-
S- Strong; M-Medium; L-Low															
SVI I AD															
SILLADUS															

-\$-1- d-=+

Unit-1

DIGITAL RELAYS

Evolution of digital relays from electromechanical relays, Performance and operational characteristics of digital protection, Evolution of digital relays from electromechanical relays, Performance and operational characteristics of digital protection

Unit-2

SIGNAL PROCESSING

Curve fitting and smoothing, Least squares method, Fourier analysis, Fourier series and Fourier transform, Walsh function analysis

Unit-3

SIGNAL CONDITIONING

Basic elements of digital protection, Signal conditioning: transducers, surge protection, analog filtering, analog multiplexers, Conversion subsystem: the sampling theorem, signal aliasing, Error, sample and hold circuits, multiplexers, analog to digital conversion, Digital filtering concepts, The digital relay as a unit consisting of hardware and software

Unit-4

ALGORITHMS FOR RELAY OPERATIONS

Sinusoidal wave based algorithms, ample and first derivative (Mann and Morrison) algorithm. Fourier and Walsh based algorithms, Fourier Algorithm: Full cycle window algorithm, fractional cycle window algorithm, Walsh function based algorithm, Least Squares based algorithms. Differential equation based algorithms, Traveling Wave based Techniques.

Unit-5

DIGITAL PROTECTION OF POWER SYSTEMS

Digital Differential Protection of Transformers, Digital Line Differential Protection, Recent Advances in Digital Protection of Power Systems.

TEXT BOOKS:

- 1. Gerhard Zeigler, "Numerical Distance Protection", Siemens Publicis Corporate Publishing, 2006
- 2. S.R.Bhide "Digital Power System Protection" PHI Learning Pvt.Ltd.2014

REFERENCE BOOKS:

1. A.G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", Wiley/Research studies Press,

- p-1- d-=+
2009

2. A.T. Johns and S. K. Salman, "Digital Protection of Power Systems", IEEE Press, 1999

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Sathish	Assistant	EEE	sathish@vmkvec.edu.in
		Professor		
2	Mr. V.Rattankumar	Assistant	EEE	rattankumar@avit.ac.in
		Professor		

-\$-1- d-=+

			DFS		FFI	CTD			DATI	S	Catego	ory L	Т	P C	Credit
			DES		T ELI				NATU	5	EC- PS	3	0	0	3
PREAM This cour transform by step pr	PREAMBLE. This course offers the preliminary instructions and techniques to design the main dimensions and other major part of the transformer and DC and AC rotating machines. The course also provides the students with an ability to understand the step by step procedure for the complete design of electrical machines.														
PRERE	QUISI	TE NI	L												
COURS	E OBJ	ECTI	VES												
1	To st	tudy m	mf cal	culatio	n and t	herma	l rating	g of var	ious ty	pes of e	electrical	machi	nes.		
2	To de	esign /	Armatu	ire and	field s	ystems	s for D	.C. mao	chines.						
3	To de	To design Core, yoke, windings and cooling systems of transformers.													
4	Desig	Design of stator and rotor of induction machines and synchronous machines													
5	To de	To design stator and rotor of synchronous machines													
COURS	EOUTCOMES														
On the su	ne successful completion of the course, students will be able to														
CO1	Unde	rstand	basics	ofdes	ign co	nsidera	tions f	or rota	ting an	d static	electrica	ıl mach	ines	Under	stand
CO2	Desig	gn arm	ature a	nd fiel	d of D	C macl	nines.							Create	e
CO3	Desig	gn sing	g and th	nree ph	ase tra	nsform	er.							Create	e
CO4	Desig	gn state	or and	rotor o	f induc	tion m	otor.							Create	e
CO5	Desig	gn and	analyz	ze sync	hronou	ıs macl	nines.							Analy	ze
MAPPI	NGWI	THPR	ROGR	AMM	EOUT	COMI	ESANI	DPRO	GRAN	IMESP	ECIFIC	COUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S S M L - - - - M S I												M	-	
CO2	S S S - - - - - M M S M S														
CO3	S	S	S	S	-	-	-	-	-	-	М	М	S	M	-
CO4	S	S S S S L - M M M S M S													
CO5	S	S	S	S	L	L	L	-	-	-	-	М	S	M	-
S-Strong	;M-Me	edium;	L-Low	7											

-9-1- d-=+

ELECTRICAL MACHINES DESIGN

Major considerations in Electrical Machine Design-Concept of magnetic circuit – MMF calculation for various types of electrical machines -Flux leakage – Leakage in Armature-Design of lap winding and wave winding-thermal rating: continuous, short time and intermittent short time rating of electrical machines

DC MACHINES

Construction - Output Equations – Main Dimensions – Choice of specific loadings – Choice of number of poles – Armature design – Design of commutator and brushes – Losses and efficiency calculation

TRANSFORMERS

Construction details –Output rating of single and three phase transformers – Overall dimensions – design of core, Yoke and winding for core and shell type transformers – Estimation of No load current – Temperature rise in Transformers – Design of Tank and cooling tubes of Transformers– Losses and efficiency calculation

INDUCTION MOTORS

Construction details- Output equation of Induction motor – Main dimensions – choice of specific loadings — Length of air gap- Rules for selecting rotor slots of squirrel cage machine- Design of squirrel cage rotor and wound rotor –Magnetic leakage calculations – Operating characteristics : Magnetizing current - Short circuit current – Circle diagram.

SYNCHRONOUS MACHINES

Constructional details-Output equations – choice of specific loadings – Design of salient pole machines – Short circuit ratio – Armature design – Estimation of air gap length – Design of rotor –Design of damper winding – Design of field winding – Design of turbo alternators

TEXTBOOKS

- 1. Sen, S.K., 'Principles of Electrical Machine Designs with Computer Programmes', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, Second Edition, 2009.
- 2. Sawhney, A.K., 'A Course in Electrical Machine Design', Dhanpat Rai& Sons, New Delhi, Fifth Edition, 1984.

REFERENCES

- 1. M V Deshpande 'Design and Testing of Electrical Machines' PHI learning Pvt Lt, 2011.
- 2. A.Shanmugasundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data Book', New Age International Pvt. Ltd., Reprint 2007.

COURS	EDESIGNERS			
S.No.	NameoftheFaculty	Designation	Department	e-mailid
1	D.SARANYA	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
2	G.RAMAKRISHNA PRABU	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in

\$-1.- d-=+

			н	VDC '	TRAN	ISMIS	SION	SVST	EMS		Catego	ry L	T P	Cre	edit
				VDC				5151			EC-PS	3	0 0		3
PREA This co harmor improv	PREAMBLE: This course aims to develop the skills in the area of HVDC power transmission with the analysis of HVDC converters, harmonics and design of filters. This course also helps the students to learn Reactive power control, Power factor improvements of the system, HVDC cables and simulation														
PRER	EQUIS	SITE :	NIL												
COU	RSE OE	BJECT	IVES												
	Reco	gnize tl	he signi	ificanc	e and	necess	sity of I	HVDC	system	n					
2	Desci	ribe the	e power	conve	erters a	and ha	rmonic	filters	used in	n HVDO	C system				
3	Deter syster	mine t m	he requ	uireme	ent of a	approp	oriate c	ontrol	strateg	gies and	stability	v techr	niques us	sed for I	IVDC
4	Illust	rate sui	table co	ontroll	er for	HVDO	C conv	erter to	obtair	desired	l output				
5	Ident	ify the	applica	tion of	f HVD	C syst	tem wi	th prac	tical ex	amples					
6	6 Explain HVDC Cables and simulation of systems														
COU	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1	Explair	the sig	gnificar	nce an	d nece	ssity o	f HVD	C syst	em					Unde	rstand
CO2	Discuss	s the po	ower co	nverte	ers and	harmo	onic fil	ters us	ed in H	IVDC s	ystem			Unde	erstand
CO3	Explain	the re	quirem	ent of	appro	priate	contro	l strate	gies ar	nd stabil	lity techr	niques	used for	Unde	rstand
CO4	Design	suitabl	e contr	oller f	or HV	DC co	nverte	r to ob	tain de	sired ou	tput			Ap	oply
CO5:	Explair	n the ap	plicatio	on of H	HVDC	syster	n with	practio	cal exa	mples				Ap	oply
CO6	Explain	n HVD	C Cable	es and	simula	ation o	of syste	ms						A	pply
MAPI	PING V	VITH I	PROG	RAMI	ME O	UTCC	OMES	AND 1	PROG	RAMM	IE SPEC	CIFIC	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO1	PSO2	PSO3
CO1	М	L	-	-	-	L	-		-	-	-	-	-	-	-
CO2	L	L	-	Μ	-	L	-	М	-	М	L	М	-	М	-
CO3	S	М	-	-	-	М	М	-	-	-	М	М	-	М	-
CO4	S	S	М	-	М	L	L	S	-	S	S	-	L	S	-
CO5	М	М	L	Μ	S	S	М	L	-	S	S	-	-	S	L
CO6	М	L	-	-	S	L	-	S	-	S	S	S	-	М	-
S- Stro	ong; M-	Mediur	n; L-Lo	ow											

- p-1- - -===

INTRODUCTION

Development of HVDC technology-Significance of DC transmission-Overview and organization of HVDC systems-Review of the HVDC system reliability-HVDC characteristics and economic aspects

POWER CONVERSION AND HARMONICS

Power conversion - Thyristor, Phase converter, Phase full bridge converter, Pulse converter- Harmonics in HVDC and removal-Determination of resulting harmonic impedance-Active power filter

CONTROL OF HVDC CONVERTER AND SYSTEM

Converter control for an HVDC system-Commutation failure- HVDC control and design - HVDC control functions- Reactive power and voltage stability- Interactions between AC and DC systems

TRENDS FOR HVDC APPLICATIONS

Wind Farm Technology- Modern Voltage Source Converter (VSC)- 800 kV HVDC System- Practical examples of an HVDC system

HVDC CABLES AND SIMULATION OF HVDC SYSTEMS

Introduction of DC cables – Basic physical phenomenon arising in DC insulation – Practical dielectrics – Dielectric stress consideration – Economics of DC cables compared with AC cables. Introduction to system simulation – Philosophy and tools – HVDC system simulation – Modeling of HVDC systems for digital dynamic simulation

TEXT BOOK

- 1. Chan-Ki Kim, "HVDC Transmission Power Conversion Applications in Power Systems", John Wiley & Sons Pvt. Ltd., 2009.
- 2. K.R.Padiyar, "HVDC Power Transmission Systems", New Age International (P) Ltd., New Delhi, 2002.

REFERENCE BOOKS

- 1. P. Kundur, "Power System Stability and Control", McGraw-Hill, 1993
- 2. J.Arrillaga, "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
- 3. Erich Uhlmann, "Power Transmission by Direct Current", BS Publications, 2004.
- 4. V.K.Sood, "HVDC and FACTS controllers Applications of Static Converters in Power System", Kluwer Academic Publishers, 2004.
- 5. Dragan Jovcic, Khaled Ahmed, "High Voltage Direct Current Transmission: Converters, Systems and DC Grids", John Wiley & Sons, Ltd, ISBN:9781118846667, 2015.
- 6. Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", New Age Interantional (P) Ltd., New Delhi, 1990

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Mrs.P.Poornima	AP(Gr-II)	EEE/AVIT	poornima@avit.ac.in

-F-1- d-=+

ENERCY AUDIT AND CONSERVATION	Category	L	Т	Р	C
ENERGY AUDIT AND CONSERVATION	EC- PS	3	0	0	3

Preamble

CO24

CO25

S

S

М

S

-

М

In the modern world conservation of energy play a major role. As per the statistics 70% of the energy is lost in transmission and energy theft. Hence more emphasis is needed on energy conversation and for that energy audit has to be done. Energy audit gives the scope of various methods and tools to be followed for energy conservation.

PREREQ	UISITE	: NIL													
COURSE	OBJEC	3JECTIVES													
1	To und	erstan	d the b	basics	of elec	trical	energy	and e	nergy	conser	vation				
2	To ana	lyze th	ne elec	trical a	and the	ermal p	perform	nance	of an e	electric	al syst	em			
3	To und	Fo understand the financial impact of energy management													
4	To app	To apply the role of energy monitoring in energy management													
5	To und	Γο understand various aspects of energy audit.													
COURSE	ουτο	DUTCOMES													
On succes	sful com	l completion of the course, the students will be able to													
C01	Apply therma	Apply the knowledge of the subject to calculate the efficiency of various thermal utilities. Remember													-
CO2	Design consum	suitab ption	ole ene	ergy m organi	onitori zation	ng sys	stem to	analy	ze and	optim	ize the	energy	Und	erstand	k
CO3	Improv recover	the the try and	therma co-ge	l effic	iency on	by des	igning	suitab	ole syst	ems fo	or heat		A	pply	
CO4	Use the control	e energ to sav	gy aud ve ener	it meth gy exp	nods le penditu	earnt to ure	o identi	fy the	areas	deservi	ing tig	hter	A	pply	
CO5	Carry out the cost- benefit analysis of various investment alternatives for meeting the energy needs of the organization.														
Mapping v	vith Prog	ramm	e outco	omes a	and Pro	ogrami	me Spe	ecific (Outcor	nes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

-\$-1- d-=+

-

-

_

_

_

_

_

_

-

_

М

М

М

М

S

_

L

_

_

-

_

_

CO26	M	L	M	S	-	-	-	-	-	-	-	-	М	М	М
CO27	S	S	-	М	-	-	-	-	-	-	-	-	М	М	М
CO28	S	M	S	М	М	-	-	-	-	-	М	М	S	М	М
C. Character															

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Commercial and Non-commercial energy-Primary energy resources-Commercial energy production-Final energy consumption-Indian energy scenario-Sectoral energy consumption(domestic, industrial and other sectors)-Energy needs of growing economy- energy intensity, long term energy scenario, energy pricing, energy security, energy conservation and its impotance, energy strategy for the future, Energy Conservation Act 2001 and its features.

ELECTRIC AND THERMAL PERFORMANCE

Electricity basics - Direct Current and Alternative Currents, electricity tariff, Thermal Basics-fuels, thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation, steam, moist air and humidity and heat transfer. calculation of heat loss - heat gain, estimation of annual heating & cooling loads, factors that influence thermal performance, analysis of existing buildings setting up an energy management programme and use management - electricity saving techniques

ENERGY MANAGEMENT AND FINANCIAL ANALYSIS

Definition, energy audit, need, types of energy audit. Energy management (audit) approach-understanding energy costs, Bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel and energy substitution, energy audit instruments and metering Investment-need, appraisal and criteria, financial analysis techniques simple payback period, return on investment, net present value, internal rate of return, cash flows

MONITORING OF ENERGY

Defining monitoring & targeting, elements of monitoring & targeting, data and information-analysis, techniques - energy consumption, production, cumulative sum of differences (CUSUM). Energy Management Information Systems (EMIS)

ENERGY EFFICIENCY

Energy efficiency in thermal utilities like boilers, furnaces, pumps and fans, compressors, cogeneration (steam and gas turbines), heat exchangers, lighting system, Motors belts and drives, refrigeration system. Heat recovery from ventilation, air co-generation of heat and electricity, heat recovery and bottoming cycles

TEXTBOOK

1.W. F. Kenny, Energy Conservation In Process Industry.

2. Amlan Chakrabarti, Energy Engineering and Management, Prentice hall India 2011

3.CB Smith, Energy Management Principles, Pergamon Press, New York

REFERENCES

\$-1- d-=+

1.Hand outs New Delhi, Bureau of energy efficiency

2.W. C. Turner, John Wiley and sons, Energy Management Hand Book.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	V.RATTAN KUMAR	AP(II)	EEE	rattankumar@avit.ac.in

-9-1- d-=+

												Catego	ry L	Т	Р	С
				De	sign o	f Phot	ovolta	ic Sys	tem			EC(PS) 3	0	0	3
Preamb	le															
It is a dea Electrica	sign or l chara	iented cterist	course ics and	e aimeo l interc	l at ph connec	otovol tions.	taic sy	stem c	lesign.	The co	urse beş	gins by c	liscussii	ng abou	it the	PV c
PRERE	QUISI	TE:N	Nil													
COURS	E OBJ	IECTI	VES													
1		Тос	liscuss	about	the PV	/ cell e	electric	al cha	racteri	stics and	d interc	onnectio	ons.			
2		Тое	estimat	e the in	nsolati	on and	l PV si	zing o	f PV s	ystem d	esign.					
3		То е	explain about Maximum power point tracking in solar PV system.													
4		Тос	o discuss the various PV applications related to peltier refrigeration, water pumping.													
5		Тое	xplain	about	the gr	id con	nection	1 syste	m.							
COURS	E OU	ΓΟΝ	IES													
On succ	essful	compl	etion (of the o	course	, the s	tuden	ts will	be ab	le to						
CO	1	Des	cribe tl	ne func	lamen	tal con	cepts o	of ener	gy fro	m the su	un and s	solar PV		Unde	erstar	d
CO	2	Des	ign a s	olar PV	/ syste	m								Cr	eate	
CO	3	App	ly the	MPPT	algori	thms f	for sola	ar PV.						Ap	ply	
CO	4	Dest	ign a b	attery	interfa	ce sys	tem for	r PV p	owere	d water	pumpir	ng syster	n.	Cr	eate	
СО	5	Ana	lyze th	e grid	integra	ation o	of solar	· PV w	ith and	l withou	it batter	y storag	e.	Ana	alyze	
Mapping	; with I	Program	mme o	utcom	es and	Progra	amme	Specif	ic Out	comes						
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PS	30
CO1	S	2 M	L	-	M	S S	7 S	-	y J		-	-	S	2 S	3	-
CO2	S	S	S	S	S	L	M	L	M	L	-	_	L	M	+	-
CO3	S	M	M	L	L	L	M	-	-	L	-	_	L	M	+	-
CO4	S	S	S	S	S	M	M	L	M	L	M	-	М	M		-

-9-1- d-=+

CO5	S	М	М	L	S	М	S	-	М	L	L	М	-	L	М
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

PV Cell

Historical Perspective, PV cell characteristics and equivalent circuit, model of PV cell, cell efficiency, effect of temperature, fill factor. Series and parallel connection of identical and non-identical cells, protecting cell in series and parallel, interconnecting modules.

Energy from sun

Insolation and irradiance, solar geometry, insolation and energy on horizontal plate, sunrise and sunset hour angles. Incident energy estimation: energy on a tilted flat plate, energy plots in octave, atmospheric effects, airmass, Sizing PV: sizing PV applications without batteries, Batteries, battery selection, PV system design.

Maximum Power Point tracking

MPPT concept, DC-DC converters, MPPT algorithms-Impedance control methods.

PV Battery Interfaces

Direct PV- Battery connection, charge controller, battery charger, batteries in series and parallel. Peltier Cooling: peltier device, peltier element, thermal aspects. PV and Water Pumping: water pumping principle, hydraulic energy and power, total dynamic head, centrifugal pumps, reciprocating pump.

PV grid Interface

Grid connection principles, PV to Grid Topologies, 3phase d-q controlled grid connection- AC to DC transformation, DC to AC transformation, complete 3 phase grid connection. SVPWM-discrete and analog implementation, application of integrated magnetics.

TEXTBOOK

- 1. Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHI Learning Pvt.Ltd, New Delhi, 2011.
- 2. D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", PHI Learning Pvt.Ltd, New Delhi, 2013.

REFERENCES

- 1. A.K.Mukerjee and Nivedita Thakur," Photovoltaic Systems: Analysis and Design", PHI Learning Private Limited, New Delhi, 2011 Arvind Krishnan & Others Climate Responsive Architecture, Tata Mcgraw Hill New Delhi 2001.
- 2. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 3. Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited, Delhi, 2015
- 4. Chetan Singh Solanki, "Solar Photovoltaics : Fundamentals, Technologies and Applications", PHI

Learning Private Limited, New Delhi, 2011.

- 5. Chenming, H. and White, R.M., Solar Cells from B to Advanced Systems, McGraw Hill Book Co, 1983.
- 6. Ruschenbach, HS, Solar Cell Array Design Hand Varmostrand, Reinhold, NY, 1980 Proceedings of IEEE Photovoltaics Specialists Conferences, Solar Energy Journal.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Dr. L. Chitra	Professor	EEE/AVIT	chitra@avit.ac.in

-g-1- - -=+

			BUSINESS INTELLIGENCE AND ITS								Categor	y L	Т	Р	Credit
					APP	LICAT	IONS				EC- IE	3	0	0	3
PREA	MBLE									ļ				ļ ļ	
Busine	ss Intell	igence	(BI) re	efers to	the too	ls, tech	nologie	es, appl	ications	and pra	ctices us	ed to co	llect, in	tegrate, a	inalyze,
and pre	esent an	organiz	zation's	raw da	ta in or	der to c	reate in	sightful	and ac	tionable	business	informa	tion in I	Jata mini	ng.
PRER	EQUIS	TE – 1	NIL												
COUR	SE OB	JECTI	VES												
1	To Int	roduce	student	ts to vai	rious bu	siness	intellige	ence co	ncepts						
2	2 To learn the concepts of data integration used to develop intelligent systems for decision support														
3	3 To introduce visualization tool for prepare the enterprise reporting														
4	To lea	rn anal	ytical c	ompon	ents and	d techn	ologies	used to	create	dashboa	rds and s	corecard	ls, data/1	text/Web	mining
1	To gai	ds n new	insights	s into or	ganizat	tional o	peration	ns in im	plemen	tation of	svstems	for Busi	ness Int	elligence	e (BI)
		TCON			0		1		1		5			0	
	Our successful completion of the course students will be able to														
On the successful completion of the course, students will be able to															
CO1. Learn about the concepts of OLTP and OLAP for BI infrastructure development															
CO2. Gained an understanding of how business professionals can use analytics techniques to formulate and solve relevant problems and how they use analytics to support decision making															
CO3. A	Apply Cl	lusterin	ıg, Assc	ociation	and Cl	assifica	tion tec	hnique	s for Da	ta Integr	ation		Appl	У	
CO4. /	Assess I	BI tools	to solv	e probl	ems, iss	sues, an	d trend	s using	predict	ive analy	sis		Appl	у	
CO5. I	Develop	system	ns to m	easure,	monito	r and p	redict t	he ente	rprise v	ariables	and perf	ormance	Appl	у	
MAPP	ING W	ITH P	ROGR		E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	-	-	-	-	-	-	M	S	M	M
CO2	S	М	L	-	M	-	-	-	-	-	-	M	S	M	M
CO3	S	M	L		M							M	S	M	M
	5										_		5		
CO4	CO4 S M L - M M S M M														
CO5	S	Μ	L	-	M	-	-	-	-	-	-	M	S	M	M
S- Stro	ng; M-N	Aedium	n; L-Lo	W											

- p-1. - d-=+

INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

BASICS OF DATA INTEGRATION

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

BASICS OF ENTERPRISE REPORTING

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture– Enterprise Reporting using SSRS reporting service

BI ROAD AHEAD

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India, 2011

REFERENCES

1.Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.

2. David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.

3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in				
2.	Mrs. S. Leelavathy	Assistant Professor(G-II)	CSE	leelavathy@avit.edu.in				

- p-1- d-=+

LEARNING IT ESSENTIALS BY DOING	Category	L	Т	Р	Credit
	EC- IE	3	0	0	3

PREAMBLE

The proposed elective course exposes the non-CS/IT students to IT Essentials. The core modules of this Elective includes programming, Database and web Technology amongst other related topics. This course refers to the basic tools and technologies for the right type of website development and enable student to create simple web applications

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To learn about the essentials of Information Technology								
2	To get an idea about the scripting languages.								
3	3 To get an idea about the internet protocols								
COUR	SE OUTCOMES								
On the	successful completion of the course, students will be able to								
CO1 Understand the networking concept internet protocols, network routing Understand									
CO2. Understand the fundamentals of web applications and its modeling Understand									

 CO3. Understand and learn the scripting languages with design of web applications
 Understand

 CO4. Analyze the process of mobile communication and network technologies
 Analyze

CO5. Build simple interactive applications, database applications and multimedia applications.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

					-										
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
001	S	M	M	M	-	-	-	-	-	-	-	M	S	M	M
000															
02	S	M	M	M	-	-	-	-	-	-	-	М	S	-	Μ
CO3	S	м	м	м								м	S	м	м
	5	IVI	IVI	111	-	-	-	-	-	-	-	IVI	5	IVI	IVI
CO4															
	M	M	M	M	M	-	-	-	-	-	-	M	S	M	-
COF															
	М	M	M	M	S	-	-	-	-	-	-	М	-	M	M
S- Stro	S- Strong; M-Medium; L-Low														

- p-1- d-=+

Fundamentals of Computer architecture

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

Operating system

Introduction – memory management schemes Process management Scheduling – threads. Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

RDBMS

Data processing – the database technology – data models-ER modeling concept –notations – Extended ER features -Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

Objected oriented concepts

Object oriented programming -UML Class Diagrams- relationship - Inheritance - Abstract classes - polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool - Application of OOC using Alice tool.

Client server computing

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI, 1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

\$-1.- d-=+

			MATH MODELLING & CONTROL SYSTEMS Category L EC- 2 2 IE 2										ry L	Т	Р	С
		N											0	2	3	
Preamble	e										·					
This cou	rse int	roduce	es Matl	hemati	cal mo	deling	imple	mentat	tion in	contro	l syster	m .				
PREREC	QUISI	TE : N	Nil													
COURSE OBJECTIVES																
1 To present a clear exposition of the classical methods of control system modelling, and basic principles of frequency and time domain design techniques																
2		To to	teach the practical control system design with realistic system specifications													
3		Und	derstand the concept of stability using various stability criteria													
COURSI	e out	COM	COMES													
On successful completion of the course, the students will be able to																
СО	1	Dev	Develop mathematical models of engineering systems Understan										erstar	nd		
СО	2	Abl	e to de	esign co	ontrol	strateg	ies for	engin	eering	system	IS			Understand		
CO	3	Dev	velop p	olant m	odels f	for eva	luating	g contr	ol strat	egies				Und	ersta	ind
CO	4	Dev	velop N	AIL an	d HIL	testing	g frame	eworks	and a	nalyse	results			Ana	lyze	
C0	5	Gai	n profi	iciency	in use	e tools	like M	ATLA	B/ Sin	nulink				А	pply	
Mapping	with P	rogran	nme ou	utcome	s and	Progra	imme	Specif	ic Out	comes						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	Р	'SO3
CO1	S	М	M L M - M - S - M -										S	M		М
CO2	М	L	М	М	-	-	-	-	-	-	-	-	М	-		-
CO3	S	М	S	L	-	-	-	S	М	-	-	-	S	M		-
CO4	М	М	L	S	-	-	-	М	-	-	М	М	S	M		-
CO5	S	S	М	M M M S S -												

-9-1- d-=+

INTRODUCTION TO MATH MODELLING

Need for Math Modelling – Transfer Functions - Steps to Build Transfer Functions. Modelling: Electrical & Electronic systems, Electromechanical systems, Hydraulic systems, Thermal systems - Control Systems in simple terms - Natural behaviour of a system - Controlled behaviour of a system

BUILDING A SIMPLE CONTROL SYSTEM

Input and Response of a system - Identifying control inputs - Types of controllers - Types of Systems based on number of I/O - Types of Systems based on I/O relationship - Time-Variant & In-Variant systems LTI Systems Behaviour - Practical example for controlling system behaviour

SIGNALS & BUILDING A SIMPLE CONTROL SYSTEM

Introduction to Signals - Signal Processing - Signal Noise- Conditioners - First order system and its response -Second order system and its response - Solution to the differential equations - Introduction to frequency domain – Convolution - Impulse response

FREQUENCY ANALYSIS & FEEDBACK SYSTEM

Bode plot - Laplace transform - Initial value theorem - Final value theorem - Zeros and poles - Closed Loop Control System – Air-Fuel Control – SI Engines, Closed Loop Control System – Air – Fuel Control – CI Engines - Data Driven vs Mathematical Models, Data Extraction Methods – Testing vs Simulation

STABILITY ANALYSIS & CONTROLLER DESIGN

Routh stability criterion - Nyquist plot – Linearization - Pole placement - Root locus Observability - Robust control – LQR - Observer design and State-estimator - Cascade control

HIL TESTING

HIL Testing fundamentals, applications and use cases - Developing HIL testing frame-work for control strategy evaluation - Automating HIL Test Scripts – Pass / Fail Scenarios

TEXTBOOK

- 1. U Kiencke, L Nielsen, "Automotive Control Systems for Engine, Driveline, and Vehicle", Springer
- 2. John B Heywood, "Internal Combustion Engine Fundamentals", McGraw-Hill, Inc

REFERENCES

- 1. Graham C Goodwin "Control System Design"
- 2. John R Fanchi "Math Refresher for Scientists and Engineers"
- 3. William, B. Ribbens, Understanding Automotive electronics, ButterWorth Heinemann 1998.
- 4. Robert N. Brandy, Automotive computers and Digital Instrumentation, Prentice Hall Eaglewood Cliffs, New Jersey, 1988

\$-1.- d-=+

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	S.Prakash	AP(Gr-IIP	EEE	sprakash@avit.ac.in
2	Mr. P. Loganathan	AP	EEE/ VMKVEC	loganathan@vmkvec.edu.in

62

-g-1.- d-=+

Electric & Hybrid Electric Vehicles	Category	L	Т	Р	Credit
	EC- IE	2	0	2	3

PREAMBLE

This course presents the fundamental ideas, principles, analysis and design of hybrid and electric vehicles. deeper into the various aspects of hybrid and electric drive train such as their configuration with Matlab program.

PREREQUISITE: *Nil*

COURSE OBJECTIVES															
1	To D	iscuss	differen	t enera	, stora	ne techr	nologie	es used	for hv	brid e	lectric	vehici	les and t	heir cor	ntrol
2	To le	arn ti	he desiar	and set	lect EV	& HEV		onents	based	on des	sian re	auirer	nents.		
3	Тои	nders	tand the	model-	based a	develop	ment ı	ising N	IATLA.	B Sim	ulink	4			
4	To le	earn d	esigning	and ma	thema	tical mo	odellin	g of EH	IV and	drive	<i>s.</i>				
5	To le	earn C	arry out	model-l	based c	alibrati	ion bas	sed on	emissi	ons re	quirer	nents.			
6	To k	now a	bout var	ious Ele	ctrical	propul	sion sy	rstem							
COUF	RSE O	UTCO	MES												
On th	e succ	essful	complet	ion of th	ne cour	se, stud	ents w	ill be a	ble to						
CO1 -Develop the electric propulsion unit and its control for application of electric vehicles. Apply															
CO2 - Analyze different power converter topology used for electric vehicle application. Implement															
СОЗ –	3 – Use the energy on board effectively Remember														
СО4 -	- Create the simulate and observe the behavior of EV Apply														
CO5 -	D5 - Understand various components that make up a EV / HEV vehicle. Apply														
CO6- hybrid HEVs.	CO6- Interpret working of different configurations of electric vehicles and its components, hybrid vehicle configuration, performance analysis and Energy Management strategies in HEVs.														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	P0 1	<i>PO</i> 2	<i>PO</i>	PO A	PO 5	PO 6	<i>P0</i>	PO 8	PO 9	PO 10	P0 11	P0	PSO1	PSO 2	PSO3
<i>C01</i>	L	M	L	M	M	-		M	S	L	-	-	S	2	-
СО2	-	L	М	L	-	S	-	М	М	-	S	-	-	М	-
СО3	М	S	-	S	-	L	L	L	-	М	-	-	-	L	-
СО4	L	L	М	S	-	L		М	М	L	L	S	М	М	М
СО5	М	М	L	М	S	-	L	М	-	М		L	М	_	М
СО6	CO6 L L M - L L L L L L														
S- Str	ong; N	Л-Меа	lium; L-L	ow	1	1									
SYLL	ABUS														
1.	1. Introduction to Hybrid & Electric vehicles														

- p-1- d-=+

- 2. Principles of Electric Machines
- 3. Power electronics and Motor control
- 4. Energy storage system and Fuel cell vehicles
- 5. Transmissions and Alternate storage systems
- 6. Energy Management and Model based development
- 7. Integration of Subsystems

References

- 1. Electric and Hybrid Vehicles: Design Fundamentals, Husain Iqbal.
- 2. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Chris Mi and M. Abul Masrur.
- 3. Electric and Hybrid Vehicles, by Tom Denton
- 4. Electric Vehicle Technology Explained, 2ed (WSE), James Larminie
- 5. Introduction to Hybrid Vehicle System Modeling and Control, Wei Liu.
- 6. Hybrid, Electric, and Fuel-Cell Vehicles, Jack Erjavec.

\$-1.- d-=+

			INNOV DEV	ATIO	N, PRC	DUCT		Cat	egory	L	Т	Р	Credit
			COMN	AERCI		ATION		0	E-IE	3	0	0	3
PREA	MBLE							I			11		I
commercialization of innovation and new products in fast-paced, high-tech markets and matching													
techr	nologica	ıl innov	ation to	market	opport	unities.							
PRER	EQUIS	ITE - N	IIL										
COUR	COURSE OBJECTIVES												
1 To make students understand multiple-perspective approach in organization to capture knowledge and creativity to develop successful products and services for Volatile, Uncertain, Complex and													
	Ambiguous (VUCA) world.												
2	2 Inculcate a disruptive thought process to generate ideas for concurrent and futuristic problems of												
3	society in general and markets in particular which focus on commercialization												
5	3 Improved understanding of organizational best practices to transform exciting technology into successful products and services												
4 Critically assess and evaluate innovation policies and practices in organizations especially from a													
cultural and leadership point of view													
5 Explain why innovation is essential to organizational strategy – especially in a global environment													
COUR	COURSE OUTCOMES												
On the	success	ful com	pletion	of the c	course,	students	will be	e able to					
CO1: 1	Underst	and the	role of	innovat	ion in g	gaining a	nd mai	ntaining	competitiv	ve advantage	;	Uno	derstand
CO2: In	ntegrate	the inn	ovation	basis a	nd its r	ole in de	cision	making e	especially	under uncert	ainty	App	oly
CO3: A	nalyze	busines	s challe	nges in	volving	g innovat	tion ma	inagemei	nt			App	ply
CO4: H	laving p	oroblem	solving	g ability	– solvi	ing socia	l issue	s and bus	siness prob	olems		App	oly
CO5: C	Comprel	nend the	e differe	nt sour	ces of in	nnovatio	n					App	ply
MAPP	ING W	ITH P	ROGR	AMME	OUTO	COMES	AND	PROGR	AMME S	PECIFIC O	OUTC	OMF	ËS
COs	Р	Р	Р	Р	Р	Р	Р	РО	PO9	PO10	PO	11	P012
	O1 O2 O3 O4 O5 O6 O7 8 1010 1010												
CO1	CO1 M M S S - M												
CO2	S	S	S	М	M	M	-	-	-	-	-		-
CO3	S	S	S	М	M	M	-	-	-	-	-		-
CO4	S	S	S	М	M	M	-	-	-	-	-		-
CO5	CO5 S S S M M M												
S- Stro	ng: M-N	Medium	: L-Lov	v									

-g-1- d-=+

Pre-launch, during launch and Post launch preparations;

SYLLABUS:

Introduction to Innovation Management - Innovation – What it is? Why it Matters? - Innovation as a Core Business Process – system thinking for innovation – Framework for System Thinking - system thinking tools

Creating New Products and Services - Product and Service Innovation – Exploiting Open Innovation and Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture – Benefits of Innovation, and Learning from Innovation – Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

The Product offer Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and Organizational Change, 5th edition, Wiley.

Reference Books:

1. Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.

2. Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

- p-1- d-=+

		NEV	V VEN	TURE	PLAN	NING A	ND	Cat	egory	L	Т	Р	Credit
			Μ	IANAG	EMEN	T		Ol	E- IE	3	0	0	3
PREA	MBLE	1						1		L			
Cont	empora	ry meth	ods and	l best pi	actices	for the	entrepro	eneur to	plan, launc	h, and opera	ite a no	ew	
venti	ire and	creation		isiness	plan								
PRER			lot Req	uirea									
COUR	SE OB	JECTT	VES										
1	An op	portunit	y for se	elf-analy	ysis, and	d how th	nis relat	es to suc	cess in an	entrepreneu	rial en	viron	ment.
2	2 Information and understanding necessary to launch and grow an entrepreneurial venture.												
3	3 A realistic preview of owning and operating an entrepreneurial venture.												
4	An entrepreneur must understand the diversity, emotional involvement, and workload necessary to												
5	The of	pportuni	itv to de	evelop a	u busine	ss plan.							
COUR	SE OU	тсом	ES	r		[
			L D										
On the successful completion of the course, students will be able to													
CO1: E	CO1: Explain the concept of new venture planning, objectives and functions and its Understand												
CO2: A	nalyze	the bus	iness pl	an issu	es and 1	remuner	ration p	ractices i	in startups	business.		App	oly
CO3: E	xplore	an entre	preneu	rial idea	to the	point w	here yo	u can int	elligently a	and decide		App	ply
whether	r to "go	tor it''	or not.	ha diffa	rant for	maantr	opropoli	rial anzi	ronmont in	torms of the		Δ.m	-1 ₁
kev dif	ferences	s and si	nilaritie	es.			epreneu				-11	App	JIY
CO5: E	xplore	the busi	ness pla	an and ł	ousiness	s model	canvas	for your	idea.			App	oly
MAPP	ING W	ITH PI	ROGR	AMME	OUTO	COMES	S AND	PROGR	AMME S	PECIFIC C	OUTC	OMF	S
COs	Р	Р	Р	Р	Р	Р	Р	PO	PO9	PO10	PO	11	P012
	01	02	03	04	05	06	07	8					
CO1	М	-	-	-	-	M	S	S	-	М	-		-
CO2	S	S	S	M	M	M	-	-	-	-	-		-
CO3	S	S	S	M	M	M	-	-	-	-	-		-
CO4	S	S	S	M	M	M	-	-	-	-	-		-
CO5	S	S	S	М	M	M	-	-	-	-	-		-
S- Stroi	ng; M-N	viedium	; L-Lov	V									
SYLLA	ARAS: LINU M	JEW VI	ENTII	RE. On	nortuni	tv identi	fication	1 - Search	h for new i	deas - Sourc	esofi	nnov	ative
SIAN	STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative												

-9-1- d-=+

ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising - How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

Text Book:

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

- p-1- d-=+

		50	CIAL I	INTE	DDFN	FUDSH	TD	Cat	egory	L	Т	Р	Credit
		50				LUNSI		Ol	E- IE	3	0	0	3
PREA	MBLE	I											
Socia	al entre	preneurs	ship inv	olves th	ne creati	ivity, im	aginati	on and ii	nnovation	often associa	ited w	ith	
entre	preneui	ship.											
PRER	EQUIS	ITE - N	lil										
COUR	SE OB	JECTI	VES										
1	To pro entrep	ovide sto reneurs	udents v hip	vith a w	vorking	knowled	dge of t	the conce	epts, oppor	tunities and	challe	nges	of social
2	To de	monstra	te the r	ole of s	social e	ntrepren	eurship	in creat	ting innova	ative respons	ses to	critic	al social
	needs	(e.g., h	unger, p	overty,	inner c	ity educ	ation, g	global wa	arming, etc	<u>.</u>			
3	To en domai	gage in n of soc	a colla a colla	borativ eprenei	e learni 1rship	ng proc	ess to	develop	a better ur	nderstanding	of th	e con	itext and
4	To he	lp prepa	re you j	persona	lly and	professi	onally	for mean	ingful em	ployment by	reflec	ting o	on the
	issues	of socia	al entrep	oreneur	ship.								
5	Engag	e with a	a divers	e group	of soci	al entrep	oreneur	S					
COUR	COURSE OUTCOMES												
On the	On the successful completion of the course, students will be able to												
CO1: E	Explain	the cond	cept soc	ial entr	epreneu	rship an	d distir	nguish its	s elements	from across	a	Un	derstand
continu	um of o	organiza	tional s	tructure	es from	traditior	nal non	profits to	o social ent	erprises to			
traditio	nal for	profits		0 1		•	• .•	•	• 1	• 1			1
CO2: A	Analyze	the ope	rations	of a hui	man ser	vice org	anizatio	on using	social enti	epreneurial		Ap	ply
$CO3 \cdot A$	uon and	e Socia	y asses	sment a	ind diag	1000000000000000000000000000000000000	DOIS. Iean sta	rtun met	thods for n	lanning		Δη	nly
develor	ning, tes	sting la	unching	and ev	valuating	g social	change	ventures	s.	laining,			pry
CO4: (Compare	e fundin	g option	ns for s	ocial ch	ange vei	ntures.					Ap	ply
CO5: 1	The outc	omes o	f social	entrepr	eneursh	ip are fo	cused	on addre	ssing persi	stent social		Ap	plv
probler	ns parti	cularly	to those	who a	re marg	inalized	or poor	r.	61				
MAPP	ING W	ITH P	ROGR	AMMF	COUT(COMES	AND	PROGR	AMME S	PECIFIC C	OUTC	OMI	ES
COa					-	D	D	DO	DOA	DO10	DO		D013
	Р	P	Р	Р	P	Y	r	PO	PO9	POIO	PO	11	PUIZ
	P 01	P 02	P 03	P 04	Р 05	Р 06	P 07	PO 8	PO9	POI0	PO	11	PUIZ
CO1	Р 01 М	P 02 -	P 03 -	P 04 -	P 05 -	Р 06 М	P 07 S	8 S	-	РО10 М	- PO		- P012
CO3 CO1 CO2	Р 01 М S	P 02 - S	P 03 - S	Р 04 - М	Р 05 - М	Р 06 М М	P 07 S	PO 8 S -	- -	M -	- PO		- -
CO1 CO2 CO3	P 01 M S S	P 02 - S S	P O3 - S S	Р 04 - М М	Р 05 - М М	Р 06 М М М	P 07 S -	PO 8 S -	- - -	PO10 M - -			- - -

-9-1- d-=+

CO5	S	S	S	М	М	М	-	-	-	-	-	-
S- Strop	S- Strong; M-Medium; L-Low											

Social entrepreneurship – dimensions of social entrepreneurship – social change theories – equilibrium and complexity – theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture sustainability model – feasibility study – planning – marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

Angel Investors & Venture Capitalists – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

Reference Books:

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

S.No	Name of the faculty	Designation	Department	E-Mail Id			
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in			
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in			

\$-1.- d-=+

AND ENTREPRENEURIAL MANAGEMENTOE-IE3003PREAMBLE:A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.PREREQUISITE: NiiCOURSE OBJECTIVES:1. To understand the basies of Startups Management and components.2. To analyze the startups fund management practices3. To practice the various kinds of stocks and employment considerations in startups.4. To apply the importance of intellectual property rights and its procedures.5. To explore the entreprencurial mindset and culture.COURSE OUTCOMES:After successful completion of the course, students will be able toCOURSE OUTCOMES:AnalyseCO2: Analyze the various kinds of stocks and employment oportunities and functions and its components.UnderstandCOURSE COUTCOMES:AnalyseCOURSE out completion of the course, students will be able toCOURSE COUTCOMES:AnalyseCOURSE out constant the various forms of intellectual property protection and practice.AnalyseCOURSE Course and contrast the various forms of intellectual property protection and practice.Analyse </th <th>17MBHS</th> <th>01</th> <th></th> <th>ENG</th> <th>INEE</th> <th>RING</th> <th>STAF</th> <th>RTUP</th> <th>S</th> <th>Categ</th> <th>jory</th> <th>L</th> <th>Т</th> <th>Р</th> <th>Credit</th> <th></th>	17MBHS	01		ENG	INEE	RING	STAF	RTUP	S	Categ	jory	L	Т	Р	Credit	
PREAMBLE: A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner. PREREQUISITE: Nil				AND	ENT MAN	REPR [AGE]	ENEU MENT	JRIAI F		OE-	IE	3	0	0	3	
A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner. PREREQUISITE: Nil COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: Andre startups funding issues and remuneration practices in startups business. Analyze the startups funding issues and remuneration practices in startups business. CO1: Explain the concept of cngincering startups, objectives and functions and its components. Understand CO2: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO3: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse	PREAMBLE:															
scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner. PREREQUISITE: NI COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. CO3: Analyze the various forms of intellectual property protection and practice. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO3: P03 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03	A startup mean	is con	npany	initiat	ted by	indiv	idual i	innova	tor or	entrep	reneurs	to sea	rch for	a rep	eatable ar	ıd
a viable business model to meet a marketplace needs or wants in an optimum manner. PREREQUISITE: Nil COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO3: PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO3 S S M M M M L - - - M M L - CO3	scalable busine	ess mo	del. N	lore sp	pecific	ally, a	startu	p is a 1	newly	emerge	d busin	ess ven	ture that	t aims	s to develo	эр
PREREQUISITE: Nil COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to COURSE OUTCOMES: Analyze the startups funding issues and remuneration practices in startups business. CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO4: For po3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO3 S S M M M M L - - - M M L - CO3 S S M M M M C - -	a viable busine	ss mo	del to	meet a	a mark	etplac	e need	s or w	ants in	an opti	mum n	nanner.				
COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. M M - M L L CO3 P01 P02 P03 P06 P07 P08 P09	PREREQUISITE: Nil															
1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO4 PO1 PO2 PO3 PO4 PO7 PO8 PO9 PO1 PO1 PO2 PS03 PC4 PC PC7 PC8 PO PO1 PO1 PC2 PS03 CO1 M - </td <td>COURSE OBJ</td> <td>ECTIV</td> <td>VES:</td> <td></td>	COURSE OBJ	ECTIV	VES:													
2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS03 CO4: PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS03	1. To u	unders	stand	the bas	ics of	Startu	ps Ma	nagem	ent an	d comp	onents.					
3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2: S S M M M M L - - - M L L - CO3: S S S M M M M C - - - - M L - - - M	2. To a	analyz	the the	startup	s func	l mana	gemer	nt prac	tices							
4. To apply the importance of intellectual property rights and its procedures.5. To explore the entrepreneurial mindset and culture.COURSE OUTCOMES:After successful completion of the course, students will be able toCO1: Explain the concept of engineering startups, objectives and functions and its components.UnderstandCO2: Analyze the startups funding issues and remuneration practices in startups business.AnalyseCO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business.AnalyseCO4: Compare and contrast the various forms of intellectual property protection and practice.AnalyseCO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.EvaluatesCO3P01P02P03P04P05P06P07P08P09P010P011P012PS01PS02PS03CO1MMMS-MLLLLCO2SSMMMMLLLLCO3SSSMMMMMMMM	3. To j	practic	ce the	variou	s kind	s of st	ocks a	nd em	ploym	ent con	siderati	ons in s	startups.			
5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P02 PS02 PS03 CO1 M - - - M L L L CO3 S S M M L - - M L - CO4 S S M	4. To a	apply	the in	portar	nce of	intelle	ctual p	oropert	y right	ts and it	s proce	dures.				
COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 S S M M S - M - L L CO2 S S M M L - - - M L - CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates Evaluates CO1 M - - M M L L L CO2 S	5. To e	explor	e the	entrep	reneur	ial mir	ndset a	nd cul	ture.							
After successful completion of the course, students will be able toCO1:Explain the concept of engineering startups, objectives and functions and its components.UnderstandCO2:Analyze the startups funding issues and remuneration practices in startups business.AnalyseCO3:Analyze the various kinds of stocks and employment opportunities and consideration in startups business.AnalyseCO4:Compare and contrast the various forms of intellectual property protection and practice.AnalyseCO5:Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.EvaluatesCO5P01P02P03P04P05P06P07P08P09P010P011P012PS01PS02PS03CO1MMMS-MMLCO3SSMMMML-MCO4SSSMMMMLL-CO5:Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.EvaluatesEvaluatesCO5P01P02P03P04P05P06P07P08P09P010P011P012PS01PS02PS03CO5SSMMMMML-	COURSE OUTCOMES:															
C01: Explain the concept of engineering startups, objectives and functions and its components. Understand C02: Analyze the startups funding issues and remuneration practices in startups business. Analyse C03: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse C04: Compare and contrast the various forms of intellectual property protection and practice. Analyse C05: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates C08 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 C01 M - - M M S - M L - C02 S S M M M - - - M L - C03 S S M M M - - - M L - C04 S S M M M - - - M L - M <t< td=""><td colspan="12">After successful completion of the course, students will be able to</td><td></td></t<>	After successful completion of the course, students will be able to															
CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO4: Os P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 M - - M M S - M M - - M L - CO2 S S M M M - - - M L - CO3 S S M M M - - - M L - CO3 S S M M M - - - M L - CO3 S S M M	CO1: Explain	the co	oncept	of eng	gineeri	ng stai	tups, o	objecti	ves an	d funct	ions and	d its co	mponen	its.	Understan	d
CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO1 M - - M M S - M - L L CO2 S S M M L - - - M L - CO3 S S S M M M - - - M L - CO3 S S S M M - - - M A - - M - - - M - - - M - - - M - - - M - - - M - - - - M - - - - M - - - - -	CO2: Analyze	the st	artups	s fundi	ng issi	ues and	d remu	inerati	on pra	ctices in	n startuj	os busii	ness.		Analyse	
startups business. CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO5: PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - M M S - M L L - CO2 S S M M M - - - M L - CO3 S S M M M - - - M L - CO4 S S M M - - - M L - CO3 S S M M - - - M L - CO4 S S S M M - - - M L - CO5 S S - M M - - - -	CO3: Analyze	the va	arious	kinds	of sto	cks an	d emp	loyme	nt opp	ortuniti	es and c	conside	ration in	1	Analyse	
CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5 P01 P02 P03 P04 P05 P06 P07 P08 P09 P01 PO1 PSO2 PSO3 CO5 PO1 PO2 PO3 P06 P07 P08 P09 P011 PO12 PSO2 PSO3 CO1 M - M M C PSO1 PSO2 PSO3 CO2 S S M M C M C C M C <th colspan="6"Colspan="6"Colspan="6"Colspan="6"Colspan="6"Colspan="6</td> <td>startups busines</td> <td>ss.</td> <td></td>	startups busines	ss.														
CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - M M S - M - L L CO2 S S M M M - - - M L - CO2 S S M M M - - - M - L L CO2 S S M M M - - - M L - - M L - M - M - M - M - M - M - - M - - M - - M - - M M <td< td=""><td>CO4: Compa</td><td>re and</td><td>l contr</td><td>rast the</td><td>e vario</td><td>us for</td><td>ns of i</td><td>intelled</td><td>ctual p</td><td>roperty</td><td>protect</td><td>ion and</td><td>l practic</td><td>e.</td><td>Analyse</td><td></td></td<>	CO4: Compa	re and	l contr	rast the	e vario	us for	ns of i	intelled	ctual p	roperty	protect	ion and	l practic	e.	Analyse	
companies of all sizes and industries. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Cos P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 M - - M M S - M - M - L L CO2 S S M M M - - - M L - CO3 S S M M M - - - M L - CO4 S S S M M M - - - M M M CO5 S S S M M M - - - M	CO5: Explore	the er	trepre	eneuria	l mino	lset an	d cultı	ure tha	t has b	een dev	veloping	g in			Evaluates	
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - - M M S - M - M - L L CO2 S S M M L - - M - - M - - M L - - M - - M - - M - - M - - M - - - M - - M - - - M - - - M L - - - M L - - - M M - - - - M L - M - - M - - M - <td>compani</td> <td>ies of</td> <td>all siz</td> <td>es and</td> <td>indus</td> <td>tries.</td> <td></td>	compani	ies of	all siz	es and	indus	tries.										
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - - M M S - M - M - L L CO2 S S M M L - - - M L - - M - IL L - CO2 S S M M M L - - - M IL - - - M L - - - M L - M - - M IL - M - - M - - M - - M - - M - - M - - M - - M -	MAPPING	G WIT	TH PR	ROGR	AMM	E OU	TCON	MES A	ND P	ROGR	AMM	E SPEC	CIFIC	OUT	COMES	
CO1 M - - - M M S - M - M - L L L CO2 S S M M M L - - - M - M - L L - CO2 S S M M M L - - - M L L - CO3 S S S M M M - - - M L L - CO3 S S S M M M - - - M L - M CO4 S S S M M M - - - M M M CO5 S S - M M M - - - M M	COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO2 S S M M M L - - - - M L L - CO3 S S S M M M - - - - M L L - CO3 S S S M M M - - - M L L - CO4 S S S M M M - - - M L - M CO4 S S S M M M - - - M M A CO5 S S - M M M - - - M M M	CO1 M	-	-	-	_	М	М	S	_	M	_	М	-	L	L	
CO3 S S M M M - - - - M L - M CO4 S S S M M M - - - - M L - M CO4 S S S M M M - - - M L - M CO5 S S - M M - - - - M M M	CO2 S	S	М	М	М	L	-	-	-	-	_	М	L	L	-	
CO4 S S M M M - - - - M - M L CO5 S S - M M M - - - M - M L	CO3 S	S	S	М	М	М	-	-	-	-	-	М	L	-	M	
CO5 S S - M M - - - - M M M	CO4 S	S	S	М	М	М	-	-	-	-	-	М	-	M	L	
	CO5 S	S	-	М	М	М	-	-	-	-	-	М	М	M	М	

S- Strong; M-Medium; L-Low

SYLLABUS:

Elements of a successful Start up: Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan -

-9-1- d-=+

specific problems and challenge in startup.

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Equity Ownership – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures..

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

S.No	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in		
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in		

\$-1.- d-=+

	INTELLECTUALPROPERTY	Category	L	Т	Р	Credit				
	RIGHTS	OE-IE	3	0	0	3				
PREAMBLE: The course	e is designed to introduce fundamental as	pects of Intellectu	al prop	berty R	ights to	o students				
who are going to play a m	ajor role in development and manageme	nt of innovative pr	ojects	in indu	stries.					
PREREQUISITE: Nil										
COURSE OBJECTIVES	5:									
1. To introduce fur	idamental aspects of Intellectual prope	rty Rights								
2. To disseminate l	knowledge on patents and copyrights									
3. To disseminate l	knowledge on trademarks, Design and	Geographical Ind	dicatio	on (GI)	,					
4. To disseminate l	4. To disseminate knowledge onPlant Variet, Layout Design Protection and create awareness about									
current trends in	IPR									
5. To disseminate l	knowledge onLegislation of IPRs and A	Alternate Dispute	e Reso	lution						
COURSE OUTCOMES										
After successful complet	ion of the course, students will be able t	0								
CO1: Understand the imp	portant of intellectual property rights					Understand				
CO2: Apply for the pater	ts					Apply				
CO3: Understand and ap	ply for the copyrights					Understand				
CO4: Understand the im	portant of trademarks					Apply				
CO5: Appreciate the imp	portance of IPR and its related issues					Understand				
MAPPING WITH P	ROGRAMME OUTCOMES AND	PROGRAMME	SPEC	CIFIC	OUT	COMES				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	L	S	L	-	L	-	L	L	М	-
CO2	L	S	S	M	М	L	-	-	-	-	-	L	М	L	-
CO3	L	S	L	М	М	L	-	-	-	-	-	L	М	L	-
CO4	L	S	S	S	M	L	-	-	-	-	-	L	L	L	-
CO5	L	S	S	M	-	L	-	-	-	-	-	L	М	L	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Unit 1 - Overview of Intellectual Property

Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India : Genesis and development – IPR in

- p-1- d-=+

abroad - Major International Instruments concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention, 1967, the Patent Co-operation Treaty, 1970, the TRIPS Agreement, 1994.

Unit 2 - Patents & Copyright

Patents - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application -Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

Copyright - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and licence of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights

Unit 3 – Trademarks, Design and Geographical Indication (GI)

Trademarks: Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

Design: Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

Geographical Indication (GI): Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

Unit 4 - Plant Varieties, Layout Design and Indian National Intelectual Property Policy

Plant Variety Protection: Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

Layout Design Protection: Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

Indian National Intelectual Property Policy: India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

UNIT - V: Legislation of IPRs and Alternate Dispute Resolution

Legislation of IPRs: The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act,

Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration

- Effective Mechanism for Business Issues.

Text Books:

1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

2. Neeraj, P., &Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

Reference Book:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	P. S. Balaganapathy	Associate Professor	Management	dydirectormanagementstudies@avit.ac.in
2	A. Mani	Associate Professor	Management	mani@vmkvec.edu.in

- p-1- d-=+

					PRI	NCIPI	LES O	F			Categor	ry L	T	Р	(
				т	BI(NSTP	OMED	ICAL	ION			OE-EA	A 3	0	0	
PREA	MBLE			1	11311	UNILI	IAI								
Toenab	lethestu	identsto	odevelo	pknowl	edgeof	principl	es,desi	gnandaj	pplicati	onsof the	Biomedi	cal Instr	uments	•	
PRER	EQUIS	ITE–N	IL												
COUR	SEOBJ	ECTI	VES												
1	Tokno	wabou	tbioeled	etricsig	nals,ele	ctrodes	anditsty	/pes.							
2	Tokno	wtheva	ariousB	iopoten	tialreco	ording n	nethods							-	
3	Tostu	dyabou	tpatient	monito	ringcon	ceptand	lvariou	sPhysic	logical	measurer	nentsmet	hods.			
4	Tostu	dythepr	rinciple	ofopera	tionblo	odflowı	meter,b	loodcel	lscount	er.					
5	Tostu	dyabou	tbioche	micalm	easurer	nentsan	ddetail	sthecon	ceptoft	oioteleme	tryandpa	tientsafe	ety.		
COURSEOUTCOMES															
Onthesuccessfulcompletionofthecourse, students will be able to															
CO1.	Explain	thediffe	erent Bi	osignal	or biop	otential							Und	ersta	ınd
CO2.	Discuss	thewor	kingpri	ncipleso	ofdiagn	osticano	ltherap	euticeq	uipmen	ts.			Und	ersta	ınd
CO3.]	Examin	ethevar	iousins	trument	slikeas	ECG,E	MG,EE	G,X-ra	y mach	ine.			App	ly	
CO4.]	[llustrat	emedic	alinstru	mentsb	asedonj	principl	esanda	pplicati	onused	in hospita	al.		Ana	lyze	
CO5.	Analyze	andcal	ibratefu	Indame	ntalbior	nedical	instrum	entatio	nusedin	hospital			Ana	lyze	
MAPP	INGW	ITHPR	ROGRA	MME	OUTC	OMES	ANDP	ROGR	AMME	ESPECII	FIC OUT	COME	S		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02
CO1	М			-								L	М	-	
CO2	М								L			L	М	-	
CO3	S	S	М	S	М				М			М	М	1	M
CO4	S	М	М	М	L			L	S	L		S	M	5	S
CO5	S	S	М	М	L	М		L	S	L		S	M	;	S
S-Stror	Strong:M-Medium:L-Low														

BIOELECTRICSIGNALSANDELECTRODES

Basicmedicalinstrumentationsystem,OriginofBioelectricPotential,Recordingelectrodes–ElectrodeTissueinterface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jel creams, Microelectrodes.

BIOAMPLIFIERANDBIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, I Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENTMONITORINGSYSTEMANDNONELECTRICALPARAMETERS MEASUREMENTS System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood

- p-1- d-=+

measurement, Measurement of temperature, Respiration ratemeasurement, cardiacoutput measurement, Measurement or rate, Plethysmography technique.

BLOODFLOWMETERS, BLOODCELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of bloo Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO-CHEMICALMEASUREMENTSANDBIOTELEMETRYANDPATIENTSAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-a Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

- 1. KhandpurR.S, **"Hand-bookofBiomedicalInstrumentation"**, TataMcGrawHill, 2ndEdition, 2003.
- 2. LeslieCromwell, FredWeibellJ, ErichPfeiffer. A, "BiomedicalInstrumentationandMeasurements", Prentic

India, 2nd Edition, 1997.

REFERENCES:

1. JohnG.Webster, "MedicalInstrumentationapplicationanddesign", JohnWiley, 3rdEdition, 1997. Carr, Joseph J, Brown, John. M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York Edition, 1997.

S.No.	Nameofthe Faculty	Designation	Department	Mail ID
1	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mr.V.Prabhakaran	AssistantProfessor(Gr-II)	BME	prabhakaran.bme@avit.a
3	Mrs.S.Vaishnodevi	AssistantProfessor	BME	vaishnodevi@vmkvec.ed
4	Ms.LakshmiShree	AssistantProfessor	BME	lakshmishree.bme@avit.

			Category	L	Т	Р	Credit	
--	--	--	----------	---	---	---	--------	--

- p-1- d-=+

]	BIOSE	NSOR	SAND	FRANS	SDUCE	RS		OE-H	EA 3	0	0	3
PREAMBLE The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.															
PREREQUISITE-Nil															
COURSEOBJECTIVES															
1 Tousethebasicconceptsoftransducers, electrodes and its classification.															
2	2 Todiscuss the various types of electrodes.														
3	Todet	ermine	thereco	ordingot	fbiologi	ical con	nponen	ts.							
4	Toem	ploythe	eknowl	edgeine	electroc	hemica	landop	ticalbio	sensors						
5	Toout	tlinethe	various	biologi	calcom	ponent	susing	biosens	ors.						
COUR	RSEOU	TCOM	IES												
Onthes	successi	fulcom	pletion	oftheco	urse,stu	dentsw	rillbeab	leto							
CO1 .I	Describ	ethewo	rkingpı	rinciple	s of trai	nsducer	s.						Und	erstand	
CO2.	Explair	thevari	ious typ	besof el	ectrode	s.							Und	erstand	
CO3.	Utilize	various	FETser	isorsfor	recordi	ngofbio	ologica	lcompo	nents.				App	ly	
CO4.	Disting	uishvaı	riousbio	osensor	slikeele	ctroche	emicala	ndoptic	albiose	ensors.			Ana	yze	
C05.	Analyz	ethebio	logical	compoi	nentsus	ingbios	ensorsi	nvariou	ıs appli	cations.			Ana	yze	
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L		М		М			L			М		М	
CO2	М	L		М		М			L			М		М	
CO3	S	М	L	S		S	М	М	М			М	M	М	М
CO4	S	S	L	S		S	М	М	S			М	M	М	S
CO5	S	S	L	S		S	М	М	S			S	M	M	S

S-Strong;M-Medium;L-Low

SYLLABUS

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezoresistive transducers, photoelectric transducers.

BIOPOTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemicalelectrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor,

- p-1- d-=+

chemical fibro sensors.

APPLICATIONSOFBIOSENSORS:

Bananatrode, bloodglucoses ensors, noninvasive bloodg as monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S.Kalsi, "ElectronicInstrumentation & Measurement", TataMcGrawHILL, 1995.
 - 2. BrainREggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
 - 3. Shakthichatterjee, "BiomedicalInstrumentation", CengageLearning, 2013.
- 4. JohnGWebster, "MedicalInstrumentation: Application and design", JohnWileyPublications, 2001.

REFERENCES:

1. K.Sawhney, "Acoursein Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.

2. JohnPBentley, "**PrinciplesofMeasurementSystems**", 3rdEdition, PearsonEducationAsia, (2000Indianreprint). GeddesandBaker, "**PrinciplesofAppliedBiomedicalInstrumentation**", 3rdEdition, JohnWileyPublications, 2008.

	SEDESIGNERS					
S.No. Nameofthe Faculty		Designation	Department	Mail ID		
1	Dr.L.K.Hema	Professor&Head	BME	hemalk@avit.ac.in		
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in		
3	Mr.V.Prabhakaran	AssistantProfessor(Gr-II)	BME	Prabhakaran.bme@avit.		
4	Mrs.S.Vaishnodevi	AssistantProfessor	BME	vaishnodevi@vmkvec.e		

- p-1- d-=+

		Category	L	Т	Р	Credit
	INTRODUCTION TO BIOFUELS	OE-EA	3	0	0	3
DDFAMBIE						

PREAMBLE

CO5

_

-

-

-

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feedstocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

PREREQUISITE – NIL

COURSE OBJECTIVES

1 ′	1 To understand the different types and differences between existing energy resources.														
2 7	To understand the improcurement, utilization and their impacts on society and environment														
,	To gain knowledge about the existing different biofuels and the methods of production from different														
3 8	sources														
4	To introduce the techonologies involved in the production, characterization of biofuels														
r	To impact the knowledge and applications of biofuel in various sectors and their beneficial aspects to the														
5 8	society.			C		11									I
COL	JRSE C	DUTC	OME	2S											
۸fte	r the sur	reest	ul con	nnleti	on of t	he co	11 1 50 1	earne	r will k	ne able	to				
Alter				ipien	511 01 1		uise, i	learne	i will (10				
CO1	. Under	stand	the ex	isting	and e	emerg	ing bio	omass	to ene	ergy tec	hnolog	gies			Remember
CO2	. Under	stand	the co	ncept	of 1 st	genei	ation,	2 nd g	enerati	on and	advan	ce biof	uels		Understand
CO3	CO3. Appraise the techno-economic analyses of biofuel conversion technologies Understand														
CO4	CO4. To articulate the concept of a biorefinery system and be able to develop major unit														
operations of an integrated biorefinery Apply															
CO5. Illustrate the environmental implications Apply															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	-	L	-	М	-	S	L	-	-	-	-	S	-	L
$C\overline{O2}$	-	S	S	-	М	-	L	-	-	-	-	-	-	S	L
CO3	S	М	-	М	-	М	-	L	L	-	-	-	S	-	L
CO4	-	S	М	-	М	L	L	-	-	-	-	-	-	S	М

\$-1- d-=+

М

-

-

-

-

_

L

S

-

-

-
S- Strong; M-Medium; L-Low SYLLABUS

OVERVIEW OF BIOFUELS

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economic sustainability of biofuels.

BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

BIOMETHANE AND BIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

OTHER BIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

TEXT BOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:**

1.Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech,2011

COURSE DESIGNERS										
	Name of the									
S.No	Faculty	Designation	Department	Mail ID						
		Assistant Professor –								
1	Dr.A.Balachandar	Gr-II	Biotechnology	balachandar.biotech@avit.ac.in						
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in						

\$-1- d-=+

										Categor	·y	L	Т	Р	Credit
		FC TE	OOD A	ND N OLO(IUTRI GY	TION				OE-E	A	3	0	0	3
PREA	MBLE														
The co	urse ai	ims to	enabl	e the s	studen	ts to u	nderst	tand th	ne nhvs	vicoche	mical 1	nitritio	nal mic	robio	logical and
sensor	v aspe	ets. T	o fam	iliariz	e the	studer	nts abo	out the	e proce	essing a	ind pre	servatio	on techt	niques	To emphasize
the im	portanc	ce of t	food s	afetv.	food o	uality	. food	l plant	sani	tation.	food la	ws and	regulat	ions.	food engineering
and pa	ckagin	g in f	ood in	dustry	/ .	1 5	,	1		,			0	,	6 6
PRER	EQUIS	SITE -	- NIL												
	-														
COUR	RSE OF	BJEC	TIVES	8											
1 U	ndersta	nd the	tradit	ion foo	od proe	cessing	g techr	iaues	and the	basics	concept	of foo	d bioche	mistry	1
2 D	emonst	rate th	ne proc	luct de	velop	nent te	chnia		ality an	d contai	minant	check			
3 T	o articu	late th	eir tec	hnical	know	ledge	for inc	lustria	l purpo	se	iiiiiaiit	CHECK			
4 D	escribe	natio	nal foc	d laws	s and s	tandar	ds								
5 La	aws and	l quali	ities of	stand	ard for	food	produc	ets							
COUR	COURSE OUTCOMES														
After t	he succ	essful	comp	letion	of the	course	, learn	er will	l be abl	e to					
CO1: F	Recall t	he pro	cessin	g tech	niques	practi	ced in	olden	days ai	nd the b	iologica	al proce	SS		Remember
CO2. I	llustrat	e the r	nethod	ls for a	nimal	produ	ct deve	elopme	ent, qua	ality cor	trol and	i also s	creen the	e	
contan	ninant	thata	ahniau	in in	aalina	un fo	n in due	trial n	aada						Understand
0.05.1	Tansier	the te	chinqu		scamp	; up 10.	maus	su lai n	eeus						Аррту
CO4.]	Interpre	et and	Troub	leshoo	t instr	uments	s to ma	aintain	accura	cy					Apply
CO5. I	Develop	o stanc	lards f	or foo	d addit	ives									Apply
MAPP	PING V	VITH	PRO	GRAN	IME (DUTC	OME	S ANI	D PRO	GRAM	IME SI	PECIF	IC OUT	COM	IES
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	_	-	-	-	-	-	-	-	-	_	_	-	-	-
CO2	-	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	М	S	М	L	-	-	-	-	-	-	-	М	L	-
CO4	М	S	S	М	L	-	-	-	-	-	-	-	S	S	-
CO5	- na: M	S Modia	S	M	М	-	-	-	-	-	-	М	L	S	-
s-suo	ng; M-		im; L-	LOW											
SYLL	ABUS														
INTR	ODUC'	TION	TO F	TOOD	вют	ECHI	NOLC	O GY							

-9-1- d-=+

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

BIOTECHNOLOGY METHODS IN FOOD PROCESSING:

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

HURDLE TECHNOLOGY:

Principles and applications, Hurdle effect in fermented foods, shelf stable products, intermediate moisture foods, application of hurdle technology

FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

TEXT BOOKS:

- 1. Potter, Norman. M. Food Science, 5th Ed. Springer US
- 2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.
- 3. B. Srilakshmi., (2002) Food Science, New Age Publishers.

REFERENCES:

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

\$-1- d-=+

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

-9-1- d-=+

			DICA	CEEDI	DICIZ			Ca	tegor	у	L	T	,	Р	Cre	edit
			DISA MAN	ISTERI MAGEN	RISK IENT			(DE – E/	٩	3	0	0)		3
PREA	MBLI	E	1													
PRER	EQUI	SITE														
NIL																
COU	RSEC	BJEC	FIVES													
-	1	Tostudy	about th	neDisast	erManag	gement	Cycles									
	2	ToStudy	yaboutth	neDisast	erComm	unitya	ndplan	ning								
	3	ToUnde	erstandtł	neChalle	ngespos	edbyD	isaster	stothed	commu	unity						
2	4	Tostudy	abouted	pingcon	ceptsfor	bothna	aturalaı	nd mai	nmade	disaste	ers					
	5	Tostuc	lyabouts	strengthe	eningtec	hnique	sforstr	uctura	landno	nstruc	turalm	easure	s			
COUR	SE O	UTCO	MES													
Onthes	uccess	sfulcom	pletion	ofthe co	ourse,st	udents	willbe	able t	0							
CO1. U	ndersta	indingD	isasters,	man-ma	deHazaı	dsand	Vulnera	abilitie	es			Ur	nderstand	landA	pply	
CO2. U	ndersta	undingdi	saster m	anagem	entmech	anism						Ap	ply			
CO3To	ogainkr	owledge	eabout o	organizat	ionsinvo	olvedin	ndisaste	ercom	nunity			Ap	ply			
СО4.То	obuilds	killstore	spondto	odisaster	s							Ap	ply			
CO5. Ui	ndersta	undingca	pacityb	uildingc	oncepts	andpla	nningo	fdisas	terman	ageme	ents	Ur	nderstand	landA	pplv	
МАРР	PING	WITH	PROGE	RAMM	FOUT	COM	ES AN	NDPR	OGR		(ESP)	ECIF	ICOUT	CON	IES	
			AUUI	TT FIATIN						PO1	PO	PO		PS	PS	PS
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	11	12	PSO1	02	03	04
CO1	L	L	L	L	L	L	М	L	L	М	L	М	М	L	L	М
CO2	М	М	L	L	М	L	S	L	L	М	М	S	S	L	L	S
CO3	S	М	L	L	М	L	М	L	L	М	S	S	М	L	L	S
CO4	М	М	L	L	М	L	М	L	L	S	S	S	S	L	L	М
CO5	S	S	L	L	S	L	S	L	L	S	М	М	S	L	L	S
S-Stro	ng:M	Mediu	m;L-L	ow												

-g-1- d-=+

SYLLABUS UNITIINTRODUCTION

Overview of Disaster Management – Distinguishing between an emergency and a Disaster situation.Disaster Management Cycle – Disaster management Act and Policy in India; Organisational structurefordisastermanagementinIndia;Preparationofstateanddistrictdisastermanagementplans-

PhaseI: Mitigation, and strategies; hazard Identification and vulnerability analysis. Disaster Mitigation

andInfrastructure,impactofdisastersondevelopmentprogrammes,vulnerabilitiescausedbydevelopment, developingadraftcountry-leveldisasteranddevelopmentpolicyPhaseII:Preparedness, Disaster Risk Reduction(DRR), Emergency Operation Plan (EOP) Phases III and IV:Response and recovery, Response aims, Response Activities, Modern and traditional responses todisasters,DisasterRecovery,andPlan

UNITII DISASTERPLANNING

DisasterPlanning-DisasterResponsePersonnelandduties,CommunityMitigationGoals,Pre-

DisasterMitigationPlan,PersonnelTraining,VolunteerAssistance,School-

based Programmes, Hazardous Materials, Ways of storing and safely handling hazardous materials, Coping with Exposure

UNITIIIDISASTERCOMMUNITY

Disaster Community-Community-based Initiatives in Disaster management, need for Community-Based Approach, categories of involved organizations: Government, Nongovernment organizations(NGOs), Regional AndInternational Organizations, Panchayaths, Community Workers, NationalAnd Local Disaster Managers, Policy Makers, Grass-Roots Workers, Methods Of Dissemination OfInformation, Community-Based Action Plan, Advantages/Disadvantages Of The Community BasedApproach

UNITIV COPINGWITHDISASTER

Coping Strategies; alternative adjustment processes - Changing Concepts of disaster management - IndustrialSafetyPlan;Safetynormsand survivalkits-Massmediaand disastermanagement

UNITV CAPACITYBUILDING

Concept - Structural and Nonstructural Measures Capacity Assessment; Strengthening Capacity forReducing Risk - Counter-Disaster Resources and their utility in Disaster Management - LegislativeSupportatthestate andnationallevels

TEXTBOOKS:

- 1. ManualonDisaster Management, NationalDisasterManagement, AgencyGovtofIndia.
- 2. Ayaz,."DisasterManagement:ThroughtheNewMillennium",AnmolPublications.(2009)
- Dave, P.K.. "Emergency MedicalServicesandDisasterManagement:AHolisticApproach", NewDelhi: JaypeeBrothersMedi calPublishers(P)Ltd., 2009
- 4. Disaster ManagementbyMrinaliniPandeyWiley2014.
- 5. Goel, S. L., "DisasterManagement", NewDelhi:Deep&DeepPublicationPvt. Ltd., 2008

REFERENCEBOOKS:

- 1. Narayan, B. "Disaster Management", New Delhi: A.P.H. Publishing Corporation, 2009
- 2. Kumar, N.. "DisasterManagement". NewDelhi: AlfaPublications., 2009
- 3. Ghosh,G.K., "DisasterManagement", New Delhi: A.P. HPublishingCorporation.

\$-1.- d-=+

S.No	NameoftheFaculty	Designation	Nameofthe College	MailID
		AssistantPr		
1	MrsJ.Srija	ofessor-I	AVIT	srija.civil@avit.ac.in

-9-1- d-=+

										Cate	porv	L	т	Р	Credit
		м	NICIP	AL SO	DLID W	ASTE	MANA	AGEM	ENT	OE-	EA	3	0	0	3
Pream	ble	1110		112 00		11011						<u> </u>	Ū	0	
	Strue	cture is	an arra	angeme	nt and	organiz	ation o	of interr	elated e	elements	in a m	aterial o	bject or	system, or	the
object	or sys	stem so	o organ	ized. N	Iaterial	structu	res inc	lude m	an-made	e objects	s such	as build	ings and	machines	and
natura	al objec	ts such	as biol	ogical o	organisr	ns, min	erals ar	nd chem	nicals.	-			-		
Prereg	uisite														
-	Nil														
	·														
Course	e Objec	ctives													
1.	The	on-site/	off-site	proces	sing of	the sam	e and t	he disp	osal met	hods.					
2.	2. The student is expected to know about the various effects and disposal options for the municipal solid waste.														
3.	3. The collection and supply of water														
4.	4. The offsite processing involved in site														
Course	e Outco	omes													
On the	succes	sful cor	npletion	n of the	course	, studen	ts will	be able	to						
CO1.	To kn	ow abc	out the t	ypes of	waste	& Sour	ces						Analyze		
CO2 .	To St	udy the	on site	Storag	e & Pro	cessing							Apply		
CO3.	To stu	ıdy abo	ut the c	ollectio	on & tra	ansfer t	he was	te					Apply		
CO4.	To St	udy the	proces	s of off	site pro	cessing	5						Apply		
CO5.	To kno	ow abo	ut the so	olid wa	ste disp	osal							Apply		
Mapp	oing wi	th Prog	gramm	e Outco	omes a	nd Prog	gramm	e Speci	fic Out	comes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	м	т												S
CO2	S	M		s		-	-	-	-		-	-		М	S
CO3	S	Μ	M	S	-	-	-	-	-	-	-	-		М	S
CO4	S	М	М	М	-	-	-	-	-	-	-	-		М	S
CO5	S	М	М	-	-	-	-	-	-	-	-	L		-	S
S-Str	ong; M	-Mediu	m; L-L	ow	•		-		· ·			•	·	·	

-9-1- d-=+

Syllabus

SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization– public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

on-site storage & processing

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

COLLECTION AND TRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

OFF-SITE PROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions-cradle to grave management concept, Prevailing laws of hazardous waste management- Risk assessment.

DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

Text Books

- 1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste

Management", Springer, 1994.

3. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest publication, (1992).

Reference Books

- R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997, Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.
- Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002), Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9, Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development.
- 3. Government of India, New Delhi, (2000).
- 4. NPTEL Municipal Soild Waste Management by Prof. Ajay Kalamdhad IIT Guwahati.

\$-1.- d-=+

INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system – Characteristics – Problem Characteristics?

HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE DES	COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in								
2	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in								

\$-1.- d-=+

													<u>г</u>		
											Category	L	Т	P C	redit
		IN	TROD	UCTIO	ON TO	INTE	RNET	OF			<u>-</u>		_		
		TI	HINGS							0	E-EA	3	0	0	3
PREAN	IBLE								-						
Introduc	tion to	loT for	statist	ical dat	a manij	oulation	n and a	nalysis.	lt was	inspired	i by and	is most	compat	ible with	n the
statistica DDEDE	al langu	age.													
i keke NIL	QUISI	IL													
COUR	SE OB	JECTI	VES												
1	To lea	rn Intro	oductior	n to IoT											
2	To Sti	ıdy met	hodolo	gy of Io	T.										
3	To De	velop I	oT app]	lication	s using	Arduin	o and Ir	ntel Edi	tion.						
COUR	SE OU		<u></u>		<u> </u>										
On the		ful con	nletion	of the	course	student	s will h	e able t	0						
CO1: 1	o Unde	rstand t	the basi	cs in Int	troducti	on to I	oT in te	erms of	o constru	cts, cont	rol				
stateme	nts, stri	ng func	tions							,		Underst	and		
CO2: 1	o Unde	rstand t	he use	of Intro	duction	to IoT	fundar	nentals.				Underst	and & A	Apply	
CO3: I	learn to	apply I	ntroduc	tion to	IoT for	Comm	unicati	ng Sequ	iential I	Process		Underst	and & A	Apply	
CO4. /	hletoa	nnrecia	ate and a	annly th	e Intro	luction	to IoT	from a	statisti	al neren	ective	Underst	and & /	\nnly	
04.1		ippreen		appry in		uction	10 101	noma	statisti	car persp					
CO5 TO	o learn l	ntroduc	ction to	IoT Ch	hallenge	S COME	C AND	DDOC		ME SDE		Underst	and & A	Apply	
	PO1	PO2	PO3		PO5	PO6	5 AND PO7	PO8		PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	L	S	S	M	S	L	S	-	S	M	<u> </u>
CO2	2		1,1			2			~	2	~	М	м М	M	S
CO3	М	S	М	М	М	S	S	М	S	Μ	M	-	М	-	S
CO4												М	М	S	М
CO5	S	S	S	S	М	S	S	S	S	Μ	S	S	М	М	М
S- Stro	ong; M-	Mediu	m; L-L	ow											

-9-1- d-=+

SYLLABUS UNIT I –INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network **UNIT III – Network & Communication aspects**

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination UNIT IV – Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"

2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" **REFERENCES**

1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in

\$-1.- d-=+

										Catego	rv	L	т	Р	Cre dit
				CYBE	R SEC	CURIT	ΓY			OE-EA	- <u>,</u>	3	0	0	3
PREAN	ÍBLE	E		-											
To unde	rstan	d the r	need for	Cyber	Secur	ity in r	eal tim	e and t	o study	technic	jues invo	lved in it			
PRERE		SITE	: NIL	1											
		BJEC	IIVES) 		la of C	- ih an C								
1.		unders	stand th	e runda	imenta	IS OI C	yber So	ecurity	and iss	sues					
2.		study	various	cyber	crimes	and leg	gai ren	iedies							
3.	108		various	privac	y and s	security	/								
4.		study	E-Com	merce a	and dig	gital pa	yments	Com	autor of	d Mahi	100				
5. COURS	$\frac{10}{5}$		MES	ic secui	ny asp	iects re) Com	Juter al		168				
On the s	ucces	sful c	omplet	ion of t	he cou	rse, stu	idents v	will be	able to						
CO1: A	ble to	o unde	rstand t	he con	cept of	Cyber	securi	ty and	issues	and cha	llenges	Unders	tand		
associate	ed wi	th it.													
CO2: A	Able to	o unde e crim	erstand	the cyb	er crir	nes, the	eir natu	ire, leg	al reme	edies an	d as to	Apply			
CO3: A	ble to	appro	eciate v	arious	privacy	y and s	ecurity	concer	rns on o	online S	ocial				
media an	nd un	dersta	nd the	reportir	ig proc	edure	of inap	propria	ate cont	tent,		Apply			
underlyi	ng le	gal asj	pects ar	nd best	practic	es for	the use	of Soc	cial me	dia plati	forms.				
CO4: A	ble to	unde	rstand t	he basi	c conc	epts re	lated to) E-Co	mmerc	e and di	gital	Apply			
CO5: A	ble to	o unde	erstand	the bas	ic secu	rity as	pects re	elated t	o Com	puter ar	nd	Apply			
Mobiles	•					5	L			1					
MAPP	ING	WIT	H PRO	GRAN	AME (DUTC	OMES	AND	PROC	RAMN	AE SPE	CIFIC O	UTCO	OME	S
	n	п	D	ъ	D	р	D	р	n						P
	P O	P O	r O	P O	P O	r O	r O	r O	r O	PO	PO1	PO1	PS	PS	
COs	1	2	3	4	5	6	7	8	9	10	1	2	01		$\frac{1}{2}$ $\frac{1}{3}$
CO1	М	М	М	M		-	-	<u> </u>	-	-	-		М	N	и м
CO2	М	М	М	М	М	_	_	_	-	_		_	М	N	и м
CO3	М	М	s	М	М			_	_	_	_	_	М	Ν	í м
CO4	s	М	М	М		_	_	_	_	_	-	-	М	N	ı s
CO5	s	М	М	М	S	_	_	_	_	_	_	-	М	Ν	ı s
S- Stror	ıg; M	-Med	ium; L	-Low											
SYLLA	BUS														

-9-1- d-=+

INTRODUCTION TO CYBER SECURITY

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

SOCIAL MEDIA OVERVIEW AND SECURITY

9 hours

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

E - C O M M E R C E AND DIGITAL PAYMENTS

9 hours

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

DIGITAL DEVICES S E C U R I T Y, TOOLS AND TECHNOLOGIES FOR CYBER SECURITY 9 hours

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

REFERENCES

1. Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010.

2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7. Fundamentals of Network Security by F. Majwald, McGraw Hill

Fundamentals of Network Security by E. Maiwald, McGraw Hill

COUI	RSE DESIGNERS			
S.	Name of the			
No.	Faculty	Designation	Department	Mail ID
		Assistant professor G-		
1	Dr.R.Jaichandran	II	CSE	rjaichandran@avit.ac.in

\$-1.- d-=+

9 hours

2	Mr. B.	Againtont Duofoggan	CSE	sundharamurthy@vmkvec.edu.i
<u> </u>	Sununaramuruny	Assistant Professor	CSE	11

-g-1- d-=+

DESIGN OF ELECTRONIC	Category	L	Т	Р	Credit
EQUIPMENT	OE-EA	3	0	0	3

PREAMBLE

The objective of this course is to sensitise a registrant to various aspects of an electronics product. Specifically on non-Electrical aspects like mechanical design and detailing. Starting from a need translated into specifications, leading to design and prototyping and ending up in a manufacturable physical prototype.

PREREQUISITE - BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OBJECTIVES

To understand the various Concept of Industrial Design process. 1

2 To apply the basic Concept of electronic Product designs methodology.

- 3 *To classify the Concept of Ergonomics & aesthetics in product design.*
- 4 To understand the Knowledge regarding the design of product packaging and working environment.
- 5 To understand the Knowledge of different industrial standard and value analysis.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Visualize the concept for product design with respect to ergonomics and aesthetics.	Remember
CO2. Analyze, design and implement control panels of electronic equipment	Apply
CO3. Apply creativity in the design of system by formulating architecture with proper placement of	Apply
components.	
CO4. Apply the concept of visual communication techniques in product design.	Apply
CO5. Apply the process of value analysis in existing product.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	P01	<i>P02</i>	<i>P03</i>	<i>P04</i>	P05	P06	P07	P08	<i>P09</i>	P010	P011	P012	PSO1	PSO2	PSO3
<i>CO1</i>	М	L	-	-	S	-	-	L	М	L	-	-	S	-	-
СО2	М	L	-	M	S	-	-	L	М	L	-	-	S	-	-
СОЗ	М	L	-	M	S	-	-	L	М	L	-	L	S	-	М
<i>CO</i> 4	S	М	L	-	S	-	-	L	М	L	-	L	S	М	М
СО5	S	М	L	-	S	-	-	M	L	L	-	L	S	М	М
C Charles		N/ - J													

S- Strong; M-Medium; L-Low

SYLLABUS

MODULE 1: INTRODUCTION

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

MODULE 2: PRODUCT PROTOTYPES

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

MODULE 3: PRODUCT DESIGN AND PLANNING

Electronic product design and devel

Product planning: Defining the task

 P
 Image: Strain storming documentation.

 P
 Image: Strain storming documentation.

 Image: Strain storming documentation.
 Image: Strain storming documentation.

 Image: Strain storming documentatin storming documentating storming documentation.

ies, brainstorming documentation.

MODULE 4: ERGONOMICS

Ergonomics: Ergonomics of electronic equipment, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

MODULE 5: CASE STUDIES

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

TEXTBOOKS:

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

REFERENCE BOOKS:

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", &Hall. London. Flurschiem C H, "Industrial

Design and Engineering Design ", Council, London and Springer Verlag, 1983

COUR	LOURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID								
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in								
2	Dr. L.K.Hema	Prof.&Head/ECE	ECE	hodece@avit.ac.in								
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in								

\$-1.- d-=+

INTRODUCTION TO INDUSTRY 4.0 AND	Category	L	Т	Р	Credit
INDUSTRIAL INTERNET OF THINGS	OE-EA	3	0	0	3

PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

PREREQUISITE

Basic knowledge of computer and internet

COURSE OBJECTIVES

- 1 Industry 4.0 concerns the transformation of industrial processes through the integration of modern technologies such as sensors, communication, and computational processing.
- 2 Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing, Machine Learning, and Data Analytics are considered to be the different drivers necessary for the transformation.
- 3 Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.
- ⁴ *IIoT links the automation system with enterprise, planning and product lifecycle.*

⁵ Real case studies

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply & Analyzing the transformation of industrial process by various	Analyze
techniques.	
CO2. Evaluate the transformation technologies are considered to be the	Apply
different drivers.	
CO3. Existing industrial systems will adopt the applications of IIoT.	Apply
CO4. Intensive contributions over automation system with enterprise,	Analyze
planning and product life cycle	
CO5. Analyze of various Real time case studies.	Analyze

\$-1- d-=+

MAPPIN	1APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO	<i>P02</i>	<i>P03</i>	РО	PO	PSO1	PSO	PS							
	1			4	5	6	7	8	9	10	11	12		2	0
															3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
СО2	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
СО3	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
СО4	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
СО5	S	S	S	S	М	-	-	-	-	-	-	М	S	М	М
S- Stron	g; M-Med	ium; L-I	Low												

INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGSIntroduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIOT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

IIOT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, and Industrial IoT-Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

REFERENCE BOOKS:

- 1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016
- 2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

1-1- d-===

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L.K.Hema	Professor &Head	ECE	hodece@avit.ac.in
2	Dr.T.Muthumanickam	Professor& Head	ECE	hodece@vmkvec.edu.in

-9-1- d-=+

		31) PR	INTI	NG A	AND I	ITS	Cate	gory	L		T	Р	Cr	edit
			AP	PLIC	CATI	ONS		OE-I	EA	3		0	0		3
Prean The co applica	n ble urse is tions.	design	ed to	impar	t knov	vledge	and sk	cills rela	ated to	3D pri	nting to	echnolo	ogies its	s type	
Preree	quisite	– NI	L												
Cours	e Obj	ective													
1	To Kno	ow the	impo	rtance	of 3I) print	ing in I	Manufa	cturing	5					
2	To kno	ow abo	ut Va	t Phot	o Poly	meriz	ation 8	& Mater	ial Jett	ing.					
3	To kno	w abo	ut bin	ıder je	etting	mate	rial ext	trusion	& she	eet lam	inatio	n			
4	To kno	w abo	ut the	meth	ods f	or po	wder b	ed fusi	on &	direct	energy	v depo	sition.		
5	To kno	w abo	ut the	appli	cation	s of 31	D Print	ing.							
Cour	rse Ou	tcome	es: O	n the	succ	essful	l comp	oletion	of th	e cour	se, sti	idents	will b	e able	to
CO1.	Impo	rtance	of 3D	printi	ing in	Manu	facturi	ng]	Remen	nber	
CO2.	2.Vat Photo Polymerization & Material Jetting.Understand														
CO3.	Bind	er jetti	ng m	ateria	ıl extı	rusion	& she	et lam	ination	n		1	Unders	tand	
CO4.	Powe	ler bed	d fusi	on &	direc	t ener	gy dep	oosition	1.			1	Unders	tand	
CO5.	Appli	cation	s of 3	D Prir	nting.							1	Unders	tand	
Map	ping w	vith P	rogra	amme	e Out	tcome	es and	Progr	amm	e Spec	cific O	utcon	ies		
	PO	РО	PO	РО	PO	PO	РО	РО	РО	PO1	PO1	PO1	PSO	DSO2	
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	PS02	PSO3
CO1	M	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	M	L	M	-	S	М	М	-	-	-	-	-	М	M-	М
CO3	М	L	M	-	S	М	М	-	-	-	-	-	М	M-	М
CO4	M	L	M	_	S	М	М	-	-	-	_	-	М	M-	Μ
CO5	M	L	L	-	-	-	-	-	-	-	-	-			
S- Str	ong; N	A-Me	dium	; L-I	JOW										

-\$-1- d-=+

INTRODUCTION

Need - Development of AM systems – AM process chain -Classification of AM processes- Applications-Advantages of AM and Types of materials for AM.Introduction to STL format, Pre & Post-processing of STL files, Various slicing methods, Part orientation and support generation, Support structure design, Tool path generation

VAT PHOTO POLYMERIZATION & MATERIAL JETTING

Vat Photo polymerization - Stereo lithography process, working principle, advantages and disadvantages, Material Jetting - process, working principle, advantages and disadvantages.

BINDER JETTING-MATERIAL EXTRUSION & SHEET LAMINATION

Binder Jetting- process, working principle, advantages and disadvantages. Material Extrusion –Fused Deposition Modeling process, working principle, advantages and disadvantages. Sheet Lamination – Laminated Object Manufacturing process, working principle, advantages and disadvantages.

POWDER BED FUSION & DIRECT ENERGY DEPOSITION

Powder Bed Fusion – Selective Laser Sintering process, working principle, advantages and disadvantages, Direct Energy Deposition- process, working principle, advantages and disadvantages.

APPLICATIONS OF 3D PRINTING

Applications for 3D Printing - Use of 3D Printing-Limitations of 3D Printing and Further Development of Medical 3D Printing Applications. Use of Multiple Materials in 3D Printing-Embedded Component 3D Printing, Commercial Applications Using Multiple Materials, Future Directions, Business Opportunities and Future Directions.

l ext B	OOKS									
1	Ian Gibson, David Rosen, and Brent Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, New York, NY, 2015.									
2	Venuvinod, Patri K., & Business Media, 20	and Weiyin Ma. Rapid pr 013.	ototyping: laser-based and	other technologies. Springer Science						
Refer	ence Books									
1	1 Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles & Applications", World Scientific, 2003.									
2	Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Springer, 2006.									
3	Kumar, L. Jyothish, I technologies. Singapo	Pulak M. Pandey, and Dav pre: Springer, 2019.	vid Ian Wimpenny, eds. 3D	printing and additive manufacturing						
Cours	se Designers									
Sl.No	Faculty Name	Designation	Department/ Na me of the college	Email id						
1	S.Kalyanakumar	Assistant Professor	Mech / AVIT	kalyanakumar@avit.ac.in						

\$-1.- d-=+

INDUSTRIAL ROBOTICS OE-EA 3 0 0 3 Preamble 'heobjectiveofthiscourseistoimpartknowledgeaboutindustrialrobotsfortheircontrolanddesign. Prerequisite : NIL CourseObjective 1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots -
Preamble "heobjectiveofthiscourseistoimpartknowledgeaboutindustrialrobotsfortheircontrolanddesign. Prerequisite : NIL CourseObjective 1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 Tounderstandthebasicconfigurationsandkinematicsystemsofrobots CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofsensorsusedinrobotsystemsandtheira cobt systems CO4. Understandthedifferenttypesofsensorsusedinrobots
heobjectiveofthiscourseistoimpärtknowledgeaboutindustrialrobotsfortheircontrolanddesign. Prerequisite : NIL CourseObjective 1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 Tounderstandtheobot controlSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
Prerequisite : NIL CourseObjective 1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 3 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 Tounderstandtheobot controlSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferent typesofsensorsusedinrobots systemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
CourseObjective 1 Tointroducebasicconcepts, parts of robots and types of robots 2 TolearnaboutRobot kinematics and dynamics 3 Tolearndifferent types of sensors used in robots and its control 4 Tounderstand the different types of actuation system sused in robots 5 Tounderstand the robot control Systems, programming of robots and its Applications. Course Outcomes: On the successful completion of the course, students will be able to CO1. Understand the basic configurations and kinematic systems of robots Understand CO2. Solve problems of robot kinematics and dynamics Apply CO3. Understand the different types of sensors used in robots Understand CO4. Understand adapplications of the different types of actuators used in robots Understand CO4. Understand adapplication softhe different types of actuators used in robots Understand
1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotssystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 3 3 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robots Understand
3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin Understand
Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 7 </td
Course Outcomes: On thesuccess fulcompletion of the course, students will be ableto CO1. Understand the basic configurations and kinematic systems of robots Understand CO2. Solve problems of robot kinematics and dynamics Apply CO3. Understand the different types of sensors used in robots Understand CO4. Understand and applications of the different types of actuators used in robots Understand
Tounderstandinfereocoteonirolsystems, programming on ocotstandins, ppreditions. CourseOutcomes: On thesuccessful completion of the course, students will be able to CO1. Understand the basic configurations and kinematic systems of robots Understand CO2. Solve problems of robot kinematics and dynamics Apply CO3. Understand the different types of sensors used in robot systems and the ira pplications, different types of control systems used in robot systems Understand CO4. Understand and application softhe different types of actuators used in robot systems Understand
CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robot systems Understand
CO1.UnderstandthebasicconfigurationsandkinematicsystemsofrobotsUnderstandCO2.SolveproblemsofrobotkinematicsanddynamicsApplyCO3.Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobotsUnderstandCO4.Understandandapplicationsofthedifferent types ofactuatorsusedin robot systemsUnderstand
CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robot systems Understand
CO2. Solveproblemsolrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robot systems Understand
CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robot systems Understand
CO4. Understandandapplicationsofthedifferent types of actuators used in Understand
robot systems Understand
CO5. Understandthe RobotApplications in various fields Understand
Image:
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03
COI 5 M L L 5 - L
CO2 S S M M - M S - L
CO3 S M M M - M S - L
CO4 S S M M - L - - - - - - S - L
CO5 S S L S - S S - L

-\$-1- d-=+

INTRODUCTIONTOROBOTICS

Introduction to Automation and Robotics- Basic concepts, Need, Law, History, Anatomy, specificationsclassification, present and future applications. Components of the Industrial Robotics: common types of arms. Components, Architecture, degrees of freedom, Precision of Movement: Resolution, Accuracy and Repeatability, Speed of Response and Load Carrying Capacity.

ROBOT ARM KINEMATICS

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation-Scaling, Rotation, Translation Homogeneous transformation. Control of robot manipulators – Point to point, Continuous Path Control

GRIPPERS AND SENSORS FOR ROBOTICS

Grippers for Robotics - Types of Grippers, Guidelines for design for robotic gripper, Force analysis for various basic gripper system. Sensors for Robots - Types of Sensors used in Robotics, Classification and applications of sensors, Characteristics, Selections of sensors. Necessity for sensors and vision system in the working and control of a robot.

ROBOTACTUATIONSYSTEMS

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison of Actuators, Feedback components: position sensors – potentiometers, resolvers, encoders – Velocity sensors, Tactile and Range sensors, Force and Torque sensors – End Effectors and Tools

ROBOTAPPLICATIONS

Robot Application in Manufacturing: Material Transfer – Material handling, loading and unloading- Processing – spot and continuous arc welding & spray painting – Assembly and Inspection. ApplicationsinMedical, Household, Entertainment, Space, Underwater, Defense, Disaster management. Micro and Nano robots, Future Applications.

TextBooks

1	Saha,S.K.,"I	ntroductiontoR	obotics,2ndEc	lition,McGrav	w-HillHigherEo	lucation,New	Delhi,2014.
			/	/	U		/

- 2 MikellPGroover,NicholasGOdrey,MitchelWeiss,Roger NNagel,AshishDutta,"IndustrialRobotics, TechnologyprogrammingandApplications",McGrawHill,2012.
- 3 MittalR.K.andNagrathI.J., "RoboticsandControl", TataMcGrawHill.

ReferenceBooks

- 1 Ghosal, A., "Robotics", Oxford, NewDelhi, 2006.
- 2 NikuSaeedB., "IntroductiontoRobotics:Analysis,Systems,Applications",PHI,NewDelhi.
- ³ SteveHeath, "EmbeddedSystemDesign", 2ndEdition, Newnes, Burlington, 2003
- MerzoukiR.,SamantarayA.K.,PhathakP.M.andBouamamaB.Ould,"IntelligentMechatronicSystem:Modeling, ControlandDiagnosis",Springer.

CourseDesigners

S.No	FacultyName	Designation	Department/ Nameofthe College	Emailid		
1	P.KUMARAN	AP-II	MECH/AVIT	kumaranp@avit.ac.in		

\$-1.- d-=+

BIOMOLECULES -	Category	L	Т	Р	С
STRUCTURE, FUNCTION IN HEALTH AND DISEASE	OE-EA	3	0	0	3

PREAMBLE

Biomolecules like carbohydrates, proteins, fat are vital components of any living system. Basic knowledge about them helps in maintaining a healthy lifestyle, free of sickness and a general awareness about hygiene.

PREREQUISITE NIL

COURSE OBJECTIVES

1	To give an overview of importance of biomolecules
2	To elaborate the structure of proteins and nucleic acids and its role in disease.
3	To enumerate the role of carbohydrates and their cellular function in physiology and pathology
4	To enumerate the role of lipids and their cellular function in physiology and pathology.

5 To briefly cholesterol and its role in diseases

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. I	Relate	the ba	sics of	f biom	olecu	les in	and ar	ound h	im				Understand			
CO2. U	CO2. Understand the structure of biomolecules such as proteins and nucleic acids												Und	Understand		
CO3. Discover the role of carbohydrates in healthy and diseased conditions												App	ly			
CO4. I	CO4. Relate disfunctioning of lipids with disease											Ana	lyse			
CO5. 0	CO5. Criticize the role of cholesterol in diseases. Evaluate															
MAPF	PING	WITH	I PRC	OGRA	MMI	E OUI	ГCON	AES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	М	L	L	-	-	L	-	-	-	-	-	-	-	L	-	
CO2	S	М	S	-	-	М	-	-	-	-	-	-	-	L	-	
CO3	M	L	М	М	-	S	-	-	-	-	-	-	-	L	-	
CO4	L	L	L	L	S	L	-	-	S	-	-	М	L	М	М	
CO5	CO5 S - L L - M S S M -															
S- Stro	ong; M	-Medi	um; L	L-Low				•	·	•			•	•		

- p-1- d-=+

PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and nonessential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.

4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

S.No	Name of the	Designation	Department	Mail ID
•	Faculty			

\$-1.- d-=+

1	Dr.P.David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in
2	Ms.S.Sowmiy a	Assistant Professor	Pharmaceutical Engineering	sowmiya.vmkvec@vmrf.edu.in

-9-1- d-=+

				PHAR	MAC	OCF	NOM	ICS		Cat	egory	L	Т	P	Cr	edit
						OUL				OF	C-EA	3	0	0		3
PRF	PREAMBLE															
Phar	Pharmacogenomics involves the study of the relationship between an individual's genetic makeup and															
his c	or her resp	onse	to a di	rug. Pl	narma	cogen	etics,	a com	ponei	nt of pl	narmaco	genomi	ics, is t	the st	udy c	of the
relat	ionship be	etweer	n a sin	gle ge	ne and	l its re	espons	e to a	drug.							
PRF	EREQUIS	SITE -	NIL													
CO	URSE OB	JEC	FIVE	5												
1	Discuss a	about 1	the ba	sic kno	owledg	ge abo	out ph	armac	ogeno	mics a	nd drug	design	using g	genor	nic	
	application	ons fo	r drug	action	n and t	oxicit	y.									
2	Perform	how in	ndivid	ualiza	tion of	f drug	thera	py can	be ac	chieved	l based o	on a per	son's g	geneti	c ma	keup
	while rec	lucing	unwa	nted d	rug ef	fects.										
3	Outline t	he Pha	armac	ogeno	mics s	tudies	s on ho	ow ger	netic c	lifferer	ices betw	ween in	dividua	als ca	n affe	ect
	responses to various drugs.															
4	Formulat	e on 1	medic	ine ski	ills aco	quired	l by th	e stud	ent an	id his a	ction in	differen	nt path	ologi	es	
5	Develop	acquii	re kno	wledg	e aboi	it the	influe	nce of	genet	tic alter	rations o	on the th	nerapet	itic et	ffect	and
	adverse r	reactio	ons of	the dru	ıgs, fr	om a j	perspe	ective	of ind	ividual	ized the	erapy.				
CO	URSE OU	TCO	MES													
Afte	r the succ	essful	comp	letion	of the	cours	se, lear	mer w	ill be	able to						
CO1	.Recogniz	ze the	effect	of gei	netic d	liffere	nces b	etwee	n indi	ividual	s in the	outcom	e of 1	Reme	mbei	r
drug	therapy a	$\frac{1}{2}$ nd in	drug e	efficac	y and	toxici	ty. do no	lumor	mhian		hiomor	kar for	tha	Undo	raton	4
nred	iction of r	ick th	ioronal		spons	and	nrogn	osis of	fmali	ananci	olollial	KCI IUI	uic	Unuc	Istan	u
CO^{2}	Utilize :	and m	anage	the n	ew ge	nomi	rs has	ed too	$\frac{1}{1}$ as	they be	ecome a	vailable	e as 1	Unde	rstan	
well	as make h	oest tro	eatme	nt cho	ices.		00000	cu 100	15 45	uney of		, and the		enae	Istan	4
CO4	. Examine	the app	plicatio	ons of	genom	ics pri	inciple	s in dru	ug acti	on and	toxicolo	gу		Analy	/ze	
CO5	CO5. Validation of case studies related to pharmacogenomics Analyze															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L		
CO2	M	M	M	M	L	-	-	-	M	-	L	L	L	L		-

-9-1- d-=+

CO4	М	М	М	M	M	-	-	-	S	-	L	L	Μ	L	-
CO5	L	L	L	L	S	-	-	-	М	-	М	Μ	S	М	-
0 0															

S- Strong; M-Medium; L-Low

SYLLABUS

PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket.

PHARMACOGENOMICS – CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs,

chemotherapeutic agents for cancer treatment.

TEXT BOOKS

- 1. Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- 3. Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in							

- p-1- d-=+

PROJECT WORK	Categor y	L	Т	Р	Credit
	PI-P	0	0	16	8

PREAMBLE

The project provides learners with the opportunity to explore a problem or issue of particular personal or professional interest and to address that problem or issue through focused study and applied research under the direction of a faculty member. The project demonstrates the learner's ability to synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems. This final project affirms learners' ability to think critically and creatively, to solve practical problems, to make reasoned and ethical decisions, and to communicate effectively.

PREREQUISITE -- Nil

COURSE OBJECTIVES

1	To provide learners with the opportunity to apply the knowledge and skills acquired in their courses to a specific problem or issue.
2	To allow learners to extend their academic experience into areas of personal interest,
	working with new ideas, issues, organizations, and individuals.
	To encourage learners to think critically and creatively about academic, professional,
3	or social issues and to further develop their analytical and ethical leadership skills
	necessary to address and help solve these issues.
1	To provide learners with the opportunity to refine research skills and demonstrate their
4	proficiency in written & oral communication skills.
5	To take on the challenges of teamwork, prepare a presentation in a professional
3	manner, and document all aspects of design work.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply the knowledge and skills acquired in their courses to a specific problem or issue.	Apply
CO2. Extend their academic experience into areas of personal interest, working with new ideas, issues, organizations, and individuals.	Analyze
CO3. Think critically and creatively about academic, professional, or social issues and to furtherdevelop their analytical and ethical leadership skills necessary to address and help solve these sues.	Create
CO4. Refine research skills and demonstrate their proficiency in written & oral	Evaluate

- p-1- d-=+

communication skills.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO'S	PO 1	РО 2	РО 3	PO 4	PO 5	PO 6	PO 7	Р О 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	S	L	L	M	M	-	-	-	М	M	-	Μ	Μ	M	-
CO2	M	M	Μ	M	L	-	-	-	Μ	L	-	Μ	Μ	M	М
CO3	S	S	Μ	M	-	-	-	L	-	L	S	Μ	S	S	-
CO4	S	M	Μ	M	-	-	-	L	-	L	М	Μ	S	S	-
0 0		6 3 6	1.	тт											

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. The project is a major component of our engineering curriculum: it is the culmination of the program of study enabling the learners to showcase the knowledge and the skills they have acquired during the previous four years, design a product/service of significance, and solve an open-ended problem in engineering.
- 2. Each student must register to the project course related to his or her program
- 3. Project course consists of one semester and would be allowed to register only during the final year of study.
- 4. Project may be initiated during the pre-final semester but will be assessed and credits transferred only during the last semester of study, upon completion of all other degree requirements. Generally the undergraduate project is a team based one.
- 5. Each team in the major course will consist of maximum of 5 learners.
- 6. Each project will be assigned a faculty, who will act as the supervisor.
- 7. The project shall be driven by realistic constraints like that related to economic, environmental, social, political, ethical, health & safety, manufacturability and sustainability.
- 8. Each group must document and implement a management structure. Group leadership roles must be clearly identified including who has responsibility for monitoring project deliverables and group coordination.
- 9. A group project may be interdisciplinary, with learners enrolled in different engineering degrees, or in Engineering plus other faculties such as Management, Medical and Health Sciences, Science and Humanities.
- 10. Each student team is expected to maintain a log book that would normally be used to serve as a record of the way in which the project progressed during the course of the session.
- 11. Salient points discussed at meetings with the supervisor (i.e., suggestions for further meetings, changes to experimental procedures) should be recorded by the student in order to provide a basis for subsequent work.
- 12. The logbook may be formally assessed;

\$-1- d-=+

- 13. The contribution of each individual team member will be clearly identified and the weightage of this component will be explicitly considered while assessing the work done.
- 14. A project report is to be submitted on the topic which will be evaluated during the final review.
- 15. Assessment components will be as spelt out in the regulations.
- 16. The department will announce a marking scheme for awarding marks for the different sections of the report.
- 17. The project report must possess substantial technical depth and require the learners to exercise analytical, evaluation and design skills at the appropriate level.

COURSE DESIGNERS									
S.No	Name of the Faculty	Designation	Department	Mail ID					
1	Dr.R.Devarajan	Professor	EEE/VMKVEC	<u>deverajan@vmkvec.edu.</u> <u>in</u>					
2	Dr. L.Chitra	Asso. Prof.	EEE/AVIT	chitra@avit.ac.in					

- p-1- d-==

	MIN		MINI	PROJECT /			Cate	egory]	Ĺ	Т	Р	Cre	edit	
	DESIGN PROJECT				CT	PI-M 0			0	6	2	3			
PRE	PREAMBLETo obtain hands-on experience in converting a small novel idea / technique into														
a wo	a working model / prototype involving multi-disciplinary skills and / or knowledge and														
WOI!	WORKING IN AL LEAM.														
	COURSE OR IECTIVES														
	UUKSE UBJEUTIVES														
$\frac{1}{2}$	1 1 o conceptualize a novel idea / technique into a product 2 Apply the acquired knowledge to carry out a capstone project having substantial														
	multidisciplinary component														
3	Τοι	unders	stand	the m	anage	ement te	echnic	ques of	f imple	mentir	ng a pro	oject			
4	4 To take on the challenges of teamwork, prepare a presentation in a professional manner,														
	and	docui	ment	all as	pects of	of desig	gn wo	rk							
COL	JKSE	.00	ICO	MES											
On t	he su	ccess	ful co	mplet	tion of	the co	urse,	studen	ts will	be able	e to				
CO1	. Ap	ply tł	ne kn	owled	dge ai	nd skil	ls acc	quired	in the	ir cou	rses to	o a sp	ecific	An	nlv
prob	problem or issue.														
CO2	CO2.Apply the acquired knowledge to carry out a capstone project having Apply														
subs		i mui	ahall	ipina	ry cor	nponen	11 17 mm			ntation		mafaga	ional		1
man	ner. a	nd do	cume	enges	aspec	ts of de	sign s	work	a prese	mation	ımaş	DIOIESS	sionai	Ana	lyze
CO4	CO4 Explain design thinking practices and their applications									eate					
	DDIN	C W	ITU						S ANT			MME	SDEC		
	ГСО!	MES			GNAD		JUIC		79 ANI	JIKU	GNAI	VIIVIL	SILU	пк	
CO	Р	Р	Р	Р	PO	PO	PO	PO	PO0	PO	PO1	PO	PS	PS	PS
S	01	02	03	04	5	06	07	08	9	10	1	12	01	02	O3
CO 1	S	М	Μ	Μ	L	-	-	-	М	М	-	М	М	М	М
CO 2	S	L	L	М	М	-	-	-	М	М	-	М	М	М	-
CO 3	М	М	М	М	L	-	-	-	М	L	-	М	М	М	М
CO 4	S	S	М	М	-	-	-	L	-	L	S	М	S	М	-
S- S1	S- Strong; M-Medium; L-Low														

-9-1- d-=+

Norms

- > Each student must register to the project course related to his or her program
- Mini Project course consists of one semester and would be allowed to register only during the final year of study.
- Minor design project identification, the objective and methodology and expected outcome of the proposed work.
- > Presentation of the proposed work design, implementation and partial result
- Presentation of complete project work with results and discussion Demonstration of project work
- Minor Project Report

	COURSE DESIGNERS									
S. No	Name of the Faculty	Designation	Dept	Mail ID						
1	Dr.R.Devarajan	Professor	EEE	<u>deverajan@vmkvec.edu.i</u> <u>n</u>						
2	Dr. L.Chitra	Asso. Prof.	EEE	<u>chitra@avit.ac.in</u>						

- p-1- d-==

Course Code	Course Title	Category	L	Т	Р	С
	YOGA AND MEDITATION	AC	0	0	2	0

OBJECTIVES:

Yoga is derived from a Sanskrit word 'yuj' which loosely means 'union.' It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes you realize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

COURSE CONTENT

- Surya namaskar, Padmasana, Uttakatasana
- Surya pranayama, BrahmariPranayama
- Anjalimudra, Mahamudra, Chin Mudra
- Kapalabathikriya,Bhastrika, Tratakkriya
- Simple Meditation, YogaBreath awareness meditation,.

OUTCOMES :

- It incorporates breathing exercises, meditation and poses designed to encourage relaxation and reduce stress.
- Practicing yoga is said to come with many benefits for both mental and physical health.
- Yoga is known for its ability to ease stress and promote relaxation.
- Many people begin practicing yoga as a way to cope with feelings of anxiety.
- Could Improve Heart Health
- Improves Quality of Life.
- Could Promote Sleep Quality.
- Improves Flexibility and Balance.
- Could Help Improve Breathing.
- Promotes Healthy Eating Habits.
- Can Increase Strength.

TEXT BOOK:

YogacharyaSundaram, *Sundra Yoga Therapy*, Asana Publications, 2009 **REFERENCES:**

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri MathiNilayam, 2012.
- 2. Dr.AnandaBalayogiBhavanani, A Primer of Yoga Theory, Dhivyananda Creations, 2008.
- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.
- 4. Dr.AsanaAndiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Dr.JohnB.Nayagam, MudumaikkuMutrupulliVaikkumMuthiraigal, SaaruPrabha Publications, 2010.

- p-1- d-=+
| Subject Code | | Category | L | Т | Р | Credit |
|--------------|--------------------------|----------|---|---|---|--------|
| | Gender Equity and Law | | | | | |
| | (Common to all Branches) | AC | 0 | 0 | 2 | 0 |

Gender Equity is the provision of fairness and justice in the distribution of benefits and responsibilities between Men, Women, Transgender, and Gender non-binary individuals. Gender equity is important because, historically, societies around the world have deemed females, transgender people, and nonbinary people as "weaker" or less important than males. Gender equity emphasizes respecting individuals without discrimination, regardless of their gender. There are legal provisions thataddress issues like inequalities that limit a person's ability to access opportunities to achieve better health, education, and economic opportunity based on their gender.

PREREQUISITE: NIL

COURSE OBJECTIVES

1	To sensitize the students regarding the issues of gender and thegender inequalities prevalent in society.
2	To raise and develop social consciousness about gender equity among thestudents.
3	To build a dialogueand bring a fresh perspective on transgender and gender non-conforming individuals.
4	To create awareness among the students and to help them face gender stereotype issues.
5	To help the studentsunderstand the various legal provisions that are available in our society.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Understand the importance of gender equity	Understand
CO2.Initiate the awareness and recognize the social responsibility with regards to gender equity.	Apply
CO3.To develop a sense of inclusiveness and tolerance towards various genders without any discrimination.	Apply
CO4. To evaluate the social issues and apply suitable gender-related regulations for inclusive living.	Evaluate
CO5.To identify and analyze the existing gender inequality problems faced in various institutions.	Analyse
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECI	FIC OUTCOMES

COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 P	OS PO1	D1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

- p-1- - -===

CO1	S	Μ	L	_	-	S	S	S	-	-	-	S	-	-	_
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	I	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	I	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	-
S_ Str	S- Strong: M-Medium: L-Low														

s- strong; m-meanum; L-Lo

SYLLABUS

UNIT –I INTRODUCTION TO GENDER AND SEX

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – GenderStereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

UNIT –II - GENDER BIAS

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

UNIT –III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS

Gender Sensitization -Need and Objective - Gender Sensitivity Training at Workplace – GenderSensitization in Judiciary - Gender Sensitization in School Curriculum.

UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The ImmoralTrafficPrevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

Q-1- d-=+

6 hrs

6hrs

6hrs

6 hrs

6 hrs

TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

REFERENCES:

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, andExploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6. Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur, 2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COURSE DESIGNERS										
S.No.	Name of the Faculty	Mail ID								
	Gnana Sanga Mithra.S									
1		sangamithra@avil.edu.in								
	Aarthy.G									
2		aarthy@avil.edu.in								

\$-1.- d-=+

Course Code	Course Title	Category	L	Т	Р	С
	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE					
		AC	0	0	2	0

Course Objectives:

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

Course Outcomes:

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

UNIT-I:

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

UNIT-2:

Protection of traditional knowledge: The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

UNIT-3:

Legal framework and TK: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

UNIT-4:

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

UNIT-5:

Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation

and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

Text Books:

1. Traditional Knowledge System in India, by Amit Jha, 2009.

Reference Books:

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

-9-1- d-=+

Course Code	Course Title	category	L	Т	Р	С
	INDIAN CONSTITUTION	AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.

3 To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.

5 To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution – Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties –Directive Principles State Policy

UNIT II –Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha UNIT III –Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV – Local Government

The New system of Panchayat, Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Total Hours: 30 hours

Software/Learning Websites:

1. https://www.constitution.org/cons/india/const.html

2. http://www.legislative.gov.in/constitution-of-india

3. <u>https://www.sci.gov.in/constitution</u>

4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/

Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW SCHOOL OF
		ADMINISTRATIVE AND ADJUDICATORY	INDIA UNIVERSITY
		PROCESS	

COURSE DESIGNER										
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID						
1	Dr.Sudheer	Professor	AV School of Law	Sudheersurya18@gmail.com						

\$-1.- d-=+

		AR	CHITI	ECTU	RE OF	FELE	CTRI	C AND	HYBRI	DC	Category	L	Т	Р	Cr	edit
				EI	LECTI	RIC V	EHIC	LE			EC-SE	3	0	0		3
PRE	AMBLE															
This	course in	troduc	es the f	undam	ental c	concep	ts, prin	ciples, c	lesign an	nd analy	ysis of ł	nybrid,	electi	ic v	vehicles	5.
PRE	REQUIS	SITE:	Nil													
COU	RSE OI	BJECT	TIVES													
1	To unde	rstand	the bas	ic con	cepts E	lectric	drive	train.								
2	To familiarize the power flow control in different hybrid mode.															
3	To analyze the Complex drive train configuration.															
4	To Analyze characteristics of HEV drive train															
5	5 To understand different types of power transmission configuration, clutch and braking.															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1: Describe the basic concepts of electric drive train.											U	ndersta	nd			
CO2: Explain the power flow control Electric drive train. Evaluate																
CO3:	CO3: Explicate the different Hybrid drive train configuration. Analyze											e				
CO4:	Elucida	te perf	ormanc	e chara	acterist	ics of	Speed	– torque	of Elect	tric driv	ve train.				Analyz	e
CO5:	Explain	the di	fferent	charact	teristic	s for e	lectric	and hyb	rid drive	train.					Analyz	e
CO6:	Describ	e the	power a	and au	xiliary	syster	ns of	drive tra	in mode	el for H	Iybrid e	electric	;		F	
vehic	les.													-	Evaluat	e
MAP	PING V	VITH	PROG	RAM	ME OI	UTCO	MES	AND PH	ROGRA	MME	SPECI	FIC O	UTC	ON	1ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01	PSO2	PSO3
CO1	S	L	-	-	М	-	L	L	-	-	-	L	S		-	-
CO2	S	M	S	L	М	S	L	M	M	L	М	S	S		S	L
CO3	S	L	-	-	М	L	-	-	-	L	L	-	S		М	-
CO4	S	L	-	-	М	L	-	-	-	L	L	-	S		М	-
CO5	S	L	L		М		L		M	М		S	S		М	L
CO6	S	М	S	L	М	S	L	М	M	М	М	S	S		S	L
S- St	rong; M-	Mediu	m; L-L	ow	1	1	1	1	1 1		I		1			

-g-1- - -=+

ARCHITECTURE OF HYBRID DRIVE TRAIN

Hybrid Electric Vehicle: Gasoline ICE, Diesel ICE and Fuel Cell, Energy saving in conventional vehicles - Energy saving potentials of hybrid drive train – Regenerative Breaking – HEV Configuration.

POWER FLOW IN DRIVE TRAIN

Power flow control in ICE - Power flow in series and parallel and complex configuration of HEV – Series Hybrid – Parallel Hybrid – Battery charging in driving

COMPLEX DRIVE TRAIN

Power flow control in Complex Hybrid Control – Loading – Normal and Heavy - Start up mode – Driving mode – Throttle acceleration – Axial balancing - Battery charging.

DRIVETRAIN CHARACTERISTICS

Modelling and Characteristics of EV/HEV Powertrains Components- ICE Performance Characteristics, Electric Motor Performance Characteristics - Battery Performance Characteristics-Transmission and Drivetrain Characteristics-Regenerative Braking Characteristics-Driving Cycles Modelling and Analysis of Electric and Hybrid Electric Vehicles Propulsion and Braking - Longitudinal Dynamics Equation of Motion - Vehicle Propulsion Modelling and Analysis - Vehicle Braking Modelling and Analysis

DRIVE TRAIN CONFIGURATIONS

Propulsion – Electronic Controller – Power Converter – Motor – battery - Mechanical transmission – Auxiliary System: Steering, Temperature, Clutch & Gear box in differential mode – Battery and flywheel sources – Single and multi motor drives.

TEXT BOOKS:

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press,
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

REFERENCE BOOKS:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals", CRC Press, 2010.
- 2. L. Guzzella & A. Sciarretta, "Vehicle Propulsion Systems: Introduction to Modelling and Optimization" Springer 5th Edition 2007.
- 3. G. Lechner & H. Naunheimer, "Automotive Transmissions: Fundamentals, Selection, Design and Applications", Springer 3rd Edition, 1999.

COUR				
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. P. Loganathan	Assistant Professor	EEE/VMKVEC	loganathan@vmkvec.edu.in
2	Dr. B. Parvathi Sangeetha	Assistant Professor	EEE	parvathi.eee@avit.ac.in

\$-1.- d-=+

	BATTERY MANAGEMENT SYSTEM									C	Category	/ L	Т	P C	redit
]	EC-SE	3	0	0	3
PRE This	PREAMBLE This course introduces the fundamental concepts, principles, design and analysis of hybrid, electric vehicles.														
PRE	REQUIS	SITE:	NIL												
COU	COURSE OBJECTIVES														
1	To understand the basic technical parameters of batteries														
2	To understand the different characteristics of Batteries														
3	To analyze the Modelling of batteries.														
4	To unde	rstand	the bat	tery m	anagei	ment s	ystem								
5	To analy	/se the	differe	nt testi	ng of ł	oatterie	es								
COU	RSE OU	JTCO	MES												
On th	On the successful completion of the course, students will be able to														
COl	CO1: Elaborate various technical parameters of batteries. Understand														
CO2	CO2: Distinguish between various types of batteries used for EV applications. Understand														
CO3	Describe	e about	t the bat	tery ch	aracter	istic &	param	eters						Analyz	e
CO4	Analyse	the mo	odelling	of batt	eries.									Analyz	e
CO5	: Explain	the con	ncepts o	f batter	y man	ageme	nt syste	em and d	esign the	e battery	pack.			Apply	7
CO6	: Explain	about	the batte	ery test	ing, dis	sposal a	and rec	ycling.						Analyz	e
MAI	PPING V	VITH	PROG	RAM	ME OI	UTCO	MES .	AND PH	ROGRA	MME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	I PSO2	PSO3
CO1	S	L	M	M	М	-	L	L	-	-	М	L	S	-	-
CO2	S	М	S	L	М	S	L	M	M	L	М	S	S	-	L
CO3	S	L	-	-	М	L	-	-	-	L	L	-	S	М	-
CO4	S	L	-	-	М	L	-	-	-	L	L	-	S	M	-
CO5	S	L	L		М		L		M	М		S	S	M	L
CO6	S	М	S	L	М	S	L	M	M	М	М	S	S	S	L
S- St	rong; M-	Mediu	m; L-L	ow			1		1						1

-g-1.-d-=+

BATTERY PARAMETERS AND EV BATTERIES

Cell and battery voltages, Charge (or Amphour) capacity, Energy stored, Energy density, Specific power, Amphour (or charge) efficiency, Energy efficiency, Self-discharge rates, Battery geometry, Battery temperature, heating and cooling needs, Battery life and number of deep cycles - Lead Acid Batteries - Nickel-based Batteries - Sodium, Lithium and Metal air batteries

BATTERY CHARACTERISTICS & PARAMETERS

Cells and Batteries- conversion of chemical energy to electrical energy- Battery Specifications: Variables to characterize battery operating conditions and Specifications to characterize battery nominal and maximum characteristics; Efficiency of batteries; Electrical parameters Heat generation- Battery design- Performance criteria for Electric vehicles batteries- Vehicle propulsion factors- Power and energy requirements of batteries-Meeting battery performance criteria- setting new targets for battery performance.

BATTERY MODELLING

General approach to modelling batteries, simulation model of a rechargeable Li-ion battery, simulation model of a rechargeable NiCd battery, Parameterization of the NiCd battery model, Simulation examples.

BATTERY PACK AND BATTERY MANAGEMENT SYSTEM

Selection of battery for EVs & HEVs, Traction Battery Pack design, Requirement of Battery Monitoring, Battery State of Charge Estimation methods, Battery Cell equalization problem, thermal control, protection interface, SOC Estimation, Energy & Power estimation, Battery thermal management system, Battery Management System: Definition, Parts: Power Module, Battery, DC/DC Converter, load, communication channel, Battery Pack Safety, Battery Standards & Tests.

BATTERY TESTING, DISPOSAL & RECYCLING

Chemical & structure material properties for cell safety and battery design, battery testing, limitations for transport and storage of cells and batteries, Recycling, disposal and second use of batteries. Battery Leakage: gas generation in batteries, leakage path, leakage rates. Ruptures: Mechanical stress and pressure tolerance of cells, safety vents, Explosions: Causes of battery explosions, explosive process, Thermal Runway: High discharge rates, Short circuits, charging and discharging. Environment and Human Health impact assessments of batteries, General recycling issues and drivers, methods of recycling of EV batteries.

TEXT BOOKS:

- 1. James Larminie Oxford Brookes University, Oxford, UK John Lowry Acenti Designs Ltd., UK, Electric Vehicle Technology Explained
- 2. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- 3. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

REFERENCE BOOKS:

- 1. Arno Kwade, Jan Diekmann, "Recycling of Lithium-Ion Batteries: The LithoRec Way", Springer, 2018. (ISBN: 978-3-319-70571-2)
- 2. Guangjin Zhao, "Reuse and Recycling of Lithium-Ion Power Batteries", John Wiley & Sons. 2017. (ISBN:

- p-1- d-=+

978-1-1193-2185-9)

- 3. Ibrahim Dinçer, Halil S. Hamut and Nader Javani, "Thermal Management of Electric Vehicle Battery Systems", JohnWiley& Sons Ltd., 2016.
- 4. Chris Mi, Abul Masrur& David Wenzhong Gao, "Hybrid electric Vehicle- Principles & Applications with Practical Properties", Wiley, 2011.
- 5. L. Guzzella & A. Sciarretta, "Vehicle Propulsion Systems: Introduction to Modelling and Optimization" Springer 5th Edition 2007.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. P. Loganathan	Assistant Professor	EEE/VMKVEC	loganathan@vmkvec.edu.in
2	Dr. B. Parvathi Sangeetha	Assistant Professor	EEE	parvathi.eee@avit.ac.in

- p-1- d-=+

		М	MODEDN DDIVES FOD ELECTDIC VEHICLE								Category	L	Т	P C	redit
			ODER	N DRI	VESI	UK E	LECI	KIC VI	LUICLE		EC-SE	3	0	0	3
PRE This	AMBLE course	introd	uces th	ne fun	damen	tal co	ncepts	, princi	ples, de	sign a	nd ana	lvsis c	of Mo	dern dri	ves and
comr	nunicatio	on for l	Electric	Vehic	le.		F	, L	F ,	8					
PRE	REQUIS	SITE:	Nil												
COU	COURSE OBJECTIVES														
1	1 To understand the Environmental Impacts of Electric and hybrid electric vehicle.														
2	To familiarize the testing of Hybrid Electric Vehicles.														
3	To analyze the static testing of Electric Vehicle.														
4	To unde	rstand	the Vel	hicle C	ompor	nent te	sting								
5	To unde	rstand	differe	nt type	s of ve	hicula	r com	nunicati	on.						
COU	RSE OU	JTCO	MES												
On the successful completion of the course, students will be able to															
COI	CO1: Describe the environmental impacts of electric drives. Understand														
CO2:	CO2: Explain the basic test and operation of electric vehicle drive Evaluate														
CO3:	Analyse	e the di	fferent	testing	electr	ic vehi	cle.							Analyz	ze
CO4:	Elucida	te perf	ormanc	e of ve	hicle c	ompor	nent te	sting						Analyz	æ
CO5:	Explain	the di	fferent	types o	of vehio	cular c	ommu	nication						Analyz	ze
CO6:	Describ	e the s	ecurity	applica	ations	for Hy	brid el	ectric ve	hicles.					Evalua	te
MAF	PPING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND PI	ROGRA	MME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO3
CO1	S	L	-	-	M	-	L	L	-	-	-	L	S	-	-
CO2	S	М	S	L	М	S	L	М	M	L	М	S	S	S	L
CO3	S	L	-	-	М	L	-	-	-	L	L	-	S	М	-
CO4	S	L	-	-	М	L	-	-	-	L	L	-	S	M	-
CO5	S	L	L		М		L		M	М		S	S	M	L
CO6	S	М	S	L	М	S	L	M	M	М	М	S	S	S	L
S- St	S- Strong; M-Medium; L-Low														

-g-1- d-=+

ENVIRONMENTAL IMPACT AND HISTORY OF MODERN TRANSPORTATION

Air Pollution - Global Warming - Importance of Different Transportation Development Strategies to Future Oil Supply - History of Electric Vehicles - History of Hybrid Electric Vehicles -

TESTS FOR HYBRID ELECTRIC VEHICLES, RETRO-FITMENT AND CHARGING STATION

Hybrid Electric Vehicles Tests (M and N category), Tests for Hybrid Electric System Intended for Retro-fitment on Vehicles of M and N Category (GVW < 3500 kg), Test for Electric Propulsion kit intended for Conversion, Test for Electric Vehicle Conductive AC Charging System, and Test for Electric vehicle conductive DC charging system.

STATIC TESTING OF VEHICLE

Photographs, CMVR physical verification, Tyre Tread Depth Test, Vehicle Weightment, Horn installation, Rear view mirror installation, Tell Tales, External Projection, Wheel Guard, Arrangement of Foot Controls for M1 Vehicle, Angle & Dimensions Measurement of Vehicle, The Requirement of Temporary Cabin For Drive– Away – Chassis, Electric vehicle – Safety Norms, Energy consumption and Power test.

VEHICLE COMPONENT TESTING

Horn Testing, Safety Glasses Test: Windscreen laminated and toughened safety glass, Rear View Mirror Test, Hydraulic Brakes Hoses Fuel Tank Test: Metallic & Plastic, Hinges and Latches Test, Tyre & Wheel Rim Test, Bumper Impact Test, Side Door Intrusion, Crash test with dummies, Demist test, Defrost Test, Interior Fittings, Steering Impact test (GVW<1500 kg), Body block test, Head form test, Driver Field Of Vision, Safety belt assemblies, Safety belt anchorages, Seat anchorages & head restraints test, Airbag Test, Accelerator Control System, Motor power, Safety Requirements of Traction Batteries, EMI-EMC (CI, BCI, RE,RI and CTE).

IN-VEHICLE NETWORKING AND VEHICULAR COMMUNICATION

Overview of Data communication and networking –need for In-Vehicle networking – layers of OSI reference model –multiplexing and de-multiplexing concepts –vehicle buses. Vehicular Communications: Intelligent Transportation Systems: IEEE 802.11p-ITS-IVC: Inter Vehicle Communications- Mobile Wireless Communications And Networks- Architecture Layers Communication Regime.V2V, V2I-VANET-WAVE; DSRC. Information In The Vehicle Network Routing - Physical Layer Technologies-Medium Access For Vehicular Communications- Security Applications And Case Studies.

TEXT BOOKS:

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press,
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

REFERENCE BOOKS:

- 1. Vehicle Inspection Handbook", American Association of Motor Vehicle Administrators
- 2. Automotive Testing & Certification held on 20th to 24th July 2010 at ARAI PUNE

-P-1- 2-=7

- 3. J.Gabrielleen,"Automotive In-Vehicle Networks", John Wiley & Sons, Limited, 2008
- 4. Bosch Automotive Handbook, Robert Bosch, 7th Edition, 2007
- 5. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals", CRC Press, 2010.
- 6. L. Guzzella & A. Sciarretta, "Vehicle Propulsion Systems: Introduction to Modelling and Optimization" Springer 5th Edition 2007.
- 7. G. Lechner & H. Naunheimer, "Automotive Transmissions: Fundamentals, Selection, Design and Applications", Springer 3rd Edition, 1999.

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. P. Loganathan	Assistant Professor	EEE/VMKVEC	loganathan@vmkvec.edu.in
2	Dr. B. Parvathi Sangeetha	Assistant Professor	EEE	parvathi.eee@avit.ac.in

- p-1- d-=+

				P(WFR	CONV	FRTF	RS			Categor	тy	L	Т	P		Credit
				FOI	R ELEO	CTRIC	VEHI	CLE			EC-	SE	3	0	0		3
PREAM	MBLE	I								ł			1			-	
	Р	ower c	onverte	r is the	device	used to	o proce	ess and	l contr	ol the fl	ow of e	lectric e	nergy	by s	upply	ing v	oltages
and cur	rents in	a form	n that is	optima	ally sui	ted for	electric	e vehic	ele.								
PRERI	EQUISI	TE: Ni	il														
COUR	SE OBJ	IECTI	VES														
1 T	o descri	be abou	ut impo	rtance o	of conve	erters in	electri	c vehi	cle.								
2 T	o descr	ibe abo	out the	operati	ng prir	nciple o	f bidire	ctiona	l conve	erter for	electric	vehicles.					
3 T	o explai	n the v	vorking	princip	ole of in	ntegrate	d bidir	ectiona	al conv	erters for	r plug-ir	n HEV aj	pplicat	tions			
4 T	o explai	n the w	orking	princip	le of co	nverters	s in eleo	ctric ve	ehicle l	pattery c	harging						
5 T	o explai	n abou	t the op	eration	of split	conver	ter										
COUR	COURSE OUTCOMES																
On the successful completion of the course, students will be able to																	
CO1: Ic vehicle	lentify applicat	the suitions.	table co	onverte	rs and	also ca	n able	impler	ment th	e suitabl	le conve	rters for	any el	ectri	c]	Reme	ember
CO2: In	npleme	nt the	bi direc	tional	convert	ters in o	electric	vehic	le app	lications	s.				1	Unde	rstand
CO3: A	nalyze	the ele	ectric v	ehicle	throug	h simul	ation .									Analy	/ze
CO4: A	nalyze 1	he con	verters	and also	o can al	ole to su	iggest t	he suit	table co	onverters	for elec	etric veh	icle ba	ttery		Appl [.]	J
CO5: E	g xplain a	bout sp	lit conv	verters a	nd its p	orinciple	e operat	tion als	so can	able to in	npleme	nt the co	nverte	rs in	EV	-PP	
																Evalu	late
MAPP	ING W	ITH P	ROGR	AMMF	C OUT	COME	S AND	PRO	GRAN	AME SI	PECIFI	C OUT	COMI	ES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		PSO2		PSO3
CO1	S	-	-	-	-	-	-	S	-	-	-	-	M		L		-
CO2	S	М	-	M	-	-	-	M	-	-	-	-	L		Μ	[-
CO3	S	S	-	S	-	-	-	L	-	-	-	-	M		S		-
CO4	S	S	-	M	-	L	-	M	-	-	-	M	S		Μ	[-
CO5	S	L	M	L	L	L	-	M	-	-	-	L	S		S		-
S- Strong; M-Medium; L-Low																	

-g-1- d-=+

INTRODUCTION

General EV setup – Plug-In Hybrid Electric Vehicle - Introduction about converters – Isolated Converters – Non isolated converter - Detailed classification of converters in EV - Power conversion Techniques.

BIDIRECTIONAL CONVERTER TOPOLOGIES FOR ELECTRIC VEHICLES

Bidirectional Converters - Topology Explanation - Plug-In Charging Mode - Propulsion Mode - Isolated Bidirectional Converter Topology - System Design - T-Type Converter Topology

INTEGRATED BIDIRECTIONAL CONVERTERS FOR PLUG-IN HEV APPLICATIONS

Introduction - Direct Conversion of an AC–DC Converter - Flow of Operation - Novel Eight-Switch Inverter – Bidirectional DC/DC Interleaved Converter - Simulation and Results

CONVERTERS FOR BATTERY CHARGING

Introduction - Bidirectional Power Flow Converters - Resonant Converter for a Bidirectional EV Charger - Topology and Analysis - Multiphase Integrated On-board Charger for Electric Vehicles - Split Converter-Fed SRM Drive for Flexible Charging in EV and HEV Applications - Simulation and Results

SPLIT CONVERTER –FED SRM DRIVE FOR FLEXIBLE CHARGING IN EV AND HEV APPLICATIONS

Introduction - Charging Control strategy - Simulation and Results - Case studies

TEXT BOOKS

1. L.Ashok Kumar & S. Albert Alexander, "Power Converters for Electric vehicles" CRC Press, 2021

REFERENCES

- 1. Michael Nikowitz, "Advanced Hybrid and Electric vehicles", Springer, 2016.
- 2. J.Larminie, J.Lowry, "Electric Vehicle Technology", Wiley ,2021.

COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID							
1.	Dr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in							
2.	Dr.R.Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in							
3.	Mr.S.Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in							

\$-1.- d-=+

TESTING OF ELECTRIC AND HYBRID VEHICLES	Category	L	Т	Р	Credit
	EC	3	0	0	3
	- SE				

PREAMBLE

To ensure safety and conformity, all current and future EV models must be tested for homologation, at both full-vehicle and component level. But in addition to the vehicles themselves, every other aspect affecting the operational safety must be tested too.

PREREQUISITE: Nil																
COURSE OBJECTIVES																
1	To descri	be the o	concept	ofelec	tric veh	icle tes	ting									
2	To explai	n the op	perating	g princij	ple of s	tatic tes	ting									
3	To explain the working principle of dynamic testing															
4	To employ the suitable techniques for component testing .															
5	5 To describe the testing and retro fitment charging station of hybrid electric vehicle .															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1: Explain the testing procedure of electric vehicle Remember																
CO2:	CO2: Understand the concept of static Testing . Understand															
CO3:	CO3: Analyze the concept of dynamic testing Analyze															
CO4:	Apply the	e suitab	le testi	ng tech	nique f	or Elec	tric vel	nicle C	Compoi	nent test	ing.				Apply	/
CO5:	Evaluate	the per	forman	ce of E	lectric	vehic	le by t	he suit	able m	ethods					Evalu	ate
MAP	PPING W	ITH P	ROGR	AMME	E OUT	COME	S AND	PRO	GRAN	AME SI	PECIFI	C OUT	COMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	PSO3
CO1	S	-	-	-	-	-	-	S	-	-	-	-	М	I		-
CO2	S	М	-	М	-	-	-	M	-	-	-	-	М	N	Л	-
CO3	S	S	-	М	-	-	-	M	-	-	-	-	М	N	Л	-
CO4	CO4 S M - L - M - - M S M -															
CO5	CO5 S L M L L L - M - - M S S -															
S- St	rong; M-N	ledium	; L-Lov	V		-										

-9-1- d-=+

INTRODUCTION

Specification & Classification of Vehicles (including M, N and O layout), Homologation & its Types, Regulations overview (EEC, ECE, FMVSS, AIS, CMVR), Type approval Scheme, Homologation for export, Conformity of Production, various Parameters, Instruments and Types of test tracks, Hardware in The Loop (HIL) concepts for EV/HEVs.

STATIC TESTING OF VEHICLE

Photographs, CMVR physical verification, Tyre Tread Depth Test, Vehicle Weightment, Horn installation, Rear view mirror installation, Tell Tales, External Projection, Wheel Guard, Arrangement of Foot Controls for M1 Vehicle, Angle & Dimensions Measurement of Vehicle, The Requirement of Temporary Cabin For Drive– Away – Chassis, Electric vehicle – Safety Norms, Energy consumption and Power test.

DYNAMICS TESTING OF VEHICLE

Hood Latch, Gradeability, Pass-by Noise, Interior Noise, Turning Circle Diameter & Turning Clearance Circle Diameter, Steering Effort, Constant Speed Fuel Consumption, Cooling Performance, Speedo-meter Calibration, Range Test, Maximum Speed, Acceleration Test, Coast-down test, Brakes Performance ABS Test, Broad band / Narrow band EMI Test, Electric vehicle – Range Test.

VEHICLE COMPONENT TESTING

Horn Testing, Safety Glasses Test: Windscreen laminated and toughened safety glass, Rear View Mirror Test, Hydraulic Brakes Hoses Fuel Tank Test: Metallic & Plastic, Hinges and Latches Test, Tyre & Wheel Rim Test, Bumper Impact Test, Side Door Intrusion, Crash test with dummies, Demist test, Defrost Test, Interior Fittings, Steering Impact test (GVW<1500 kg),Body block test , Head form test , Driver field of vision ,Safety belt assemblies ,Safety belt anchorages, Seat anchorages & head restrains test ,Airbag test , Accelerator Control system,Motor power , Safety requirements of Traction batteries ,EMI – EMC (CI,BCI,RE,RI and CTE)

TESTS FOR HYBRID ELECTRIC VEHICLES, RETROFITMENT AND CHARGING STATION

Hybrid Electric Vehicles Tests (M and N category), Tests for Hybrid Electric System Intended for Retrofitment on Vehicles of M and N Category (GVW < 3500 kg), Test for Electric Propulsion kit intended for Conversion, Test for Electric Vehicle Conductive AC Charging System, and Test for Electric vehicle conductive DC charging system.

REFERENCES

- 1. "Vehicle Inspection Handbook", American Association of Motor Vehicle Administrators
- 2. Michael Plint& Anthony Martyr, "Engine Testing & Practice", Butterworth Heinmenn, 3rd ed, 2007
- 3. Proceedings- Automotive Testing & Certification held on 20th to 24th July 2010 at ARAI PUNE
- 4. Bosch Automotive Handbook, Robert Bosch, 7th Edition, 2007

COURS	COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1.	Dr.G.Ramakrishnaprabu	Associate Professor	EEE / VMKVEC	ramakrishnaprabu@vmkvec.edu.in									
2.	Dr.R.Sathish	Assistant Professor	EEE / VMKVEC	sathish@vmkvec.edu.in									
3.	Mr.S.Prakash	Assistant Professor (Gr-II)	EEE /AVIT	sprakash@avit.ac.in									

\$-1.- d-=+

			DESI	GN (OF H	YBRID		C <mark>ateg</mark> o	ry	L	Т]	P	Cre	dit
		E	LECT	RIC	AL V	EHICL		EC-SI	E	3	0)	3	
Pream	ble	1							1						
Design	of Hy	brid E	lectri	cal Ve	ehicle	, the stu	idents	will b	e able	to lear	n the c	onstru	ctional	details	and
princip	le of h	ybrid	electr	ic and	l conv	entional	l vehic	cles, E	lectri	c drive	-trains	and ele	etric p	oropulsi	on
unit, Eı	nergy s	torage	e, Sizi	ng the	e drive	e systen	n, Ene	rgy m	anage	ment s	trategie	es.			
Prereq	uisite	: NIL	i i												
Course	e Obje	ctive													
1 T	1 To impart knowledge on the constructional details and principle of hybrid electric and														
c	conventional vehicles														
2	To analyzing the various types electric drive-trains and electric propulsion unit.														
3	To apply the various types of energy storage														
4	To analyzing the parameters of sizing the drive system														
5	5 To Analyzing the Various energy management strategies														
Course	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	Recognize the constructional details and principle of hybrid electric Apply														
	and	conve	ntiona	al veh	icles										
CO2.	Anal	yzing	the va	rious t	ype el	ectric d	rive-tr	ains a	nd ele	ectric p	ropulsi	on	Aŗ	oply	
	unit.														
CO3.	Anal	yzing	the va	rious t	ypes o	of sizing	the di	rive sy	vstem				Ap	ply	
CO4.	Anal	yzing	the wo	orking	param	eters of	variou	s brak	ing and	d susper	nsion sy	vstem in	a Ar	ply	
	vehi	cle													
CO5.	Anal	yzing	the Va	nrious	energ	y manag	gemen	t strat	egies.				Ap	oply	
Mappi	ng wit	h Pro	gram	me O	utcor	nes and	l Prog	gramn	ne Sp	ecific (Outcon	nes			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	-	-	S	-	-
CO2	S	L	L	L	-	-	-	-	-	-	-	-	S	-	-
CO3	S	M	M	M	-	-	-	-	-	-	-	-	S	-	-
CO4	S C	M		M	-	-	-	-	-	-	-	-	<u> </u>	-	-
CU5 S. Stror		WI Indium			-	-	-	-	-	-	-	-	3	-	-
SVI I	S- Strong; M-Medium; L-Low														

INTRODUCTION TO HYBRID ELECTRIC AND CONVENTIONAL VEHICLES

History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Conventional vehicle performance, vehicle power source characterization, transmission characteristics, Vehicle performance.

ELECTRIC DRIVE-TRAINS AND ELECTRIC PROPULSION UNIT

Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis, Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

ENERGY STORAGE

Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Hybridization of different energy storage devices.

\$-1- d-=+

SIZING THE DRIVE SYSTEM

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.

ENERGY MANAGEMENT STRATEGIES

Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.

Text Books

- 1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 2. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.

Reference Books

- 1. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.
- 2. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001

Alternative NPTEL/SWAYAM Course

	ui auluii
1 Introduction to Hybrid and Electric Dr. Praveen Kumar Vehicles Prof S Maihi IIT Guwahati 12	2 Weeks

Course Designers

000000				
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	T. Raja	Associate Professor	MECH/VMKVEC	rajat@vmkvec.edu.in
2				

- p-1- d-=+

		CC	ONTRO	DL SYS	STEM	FOR	HYBI	RID EL	ECTRIC	C C	Category	r L	Т	P C	Credit
					V.	EHIC	LE				EC-SE	3	0	0	3
PRE	AMBL	E	_												
This aloot	course in	ntroduc los	es the	fundan	nental	concep	ots, prii	nciples,	analysis	and co	ntrol tec	chniqu	es and	design o	of hybrid,
PRE		SITE:	Nil												
COL		RIFCI	TIVES												
1	Underst	and red	quireme	ent of E	EV mo	tors									
2	Underst	and su	itability	ofele	ctric n	notor 8	their	control							
3	Underst	and sp	eed con	trol of	Induct	tion m	otor								
4	Underst	and PV	VM tec	hnique	s of In	verter	for Ind	luction n	notor						
5	Underst	and dif	fferent	sensors	and so	ensor l	ess ope	eration o	of motor						
COU	JRSE O	UTCO	MES												
On th	ne succes	sful co	ompletio	on of th	ne cour	rse, stu	dents v	will be a	ble to					TT 1	
COI	: Describ	be the b	asic co	ncepts	of elec	etric ve	ehicles.							Underst	and
CO2	: Design	the sui	table co	ontrol e	elemen	ts of e	lectric	motor d	rives					Evalua	ite
CO3	: Explain	the co	onstruct	ion, ch	aractei	ristics	and app	plication	of induc	ction m	otor			Analy	ze
CO4	: Elucida	te perf	ormanc	e chara	acterist	tics of	DC&A	C electr	rical mac	hines.				Analy	ze
CO5	: Describ	e abou	t the va	rious t	ypes a	nd con	figurat	ion of h	ybrid ele	ctric ve	ehicle.			Appl	У
MAI	PPING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND PI	ROGRA	MME	SPECI	FIC O	UTCC	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO3
CO1	S	-	-	-	M	-	L	L	-	-	-	-	M	-	-
CO2	S	M	S	L	М	-	L	М	-	-	-	-	-	М	-
CO3	S	-	-	-	М	-	-	-	M	-	-	-	L	М	-
CO4	S	-	-	-	M	-	-	-	-	-	-	-	-	-	-
CO5	S	M	S	L	M	-	L	М	-	М	М	-	М	L	-
CO6	S	-	-	-	М	-	L	L	-	-	-	-	-	-	-
S- St	rong; M-	Mediu	m; L-L	ow											
	XO2 S M S L M - L M - - - - - M - XO3 S - - M - - M - - M - - M - - M - - M - - M - - M - - M - - M - - M - - M - - M - - - M - </td														

-g-1.-d-=+

EV MOTORS CHARACTERISTICS AND DC MOTOR

Requirement of EV motors, Comparison of EV motors, Basics of DC Motor, Torque speed characteristics, DC Motor dynamics, Field Weakening Control, Four quadrant operation

DC MOTOR DYNAMICS & CONTROL

Current Loop Control, Speed Control Loop Dynamical System Control: Gain & Phase Margins, PD Controller, PI Controller, Selecting PI Gain for Speed Controller, PI Controller Design, PI Controller with Reference model, Comparison of conventional PI Controller with PI controller with Reference Model, 2 DOF Controller with Internal Model Control, Load Torque Observer, Feedback Linearization, Simplified Modeling of Practical Current Loop

INDUCTION MOTOR

Rotating Magnetic Field, Basics of Induction motor, Speed-Torque Curve Leakage inductance, circle diagram, current displacement (double cage rotor), line starting, Dynamic modeling of Induction motor

INDUCTION MOTOR SPEED CONTROL

Rotating Magnetic Field, Basics of Induction motor, Speed-Torque Curve Leakage inductance, circle diagram, current displacement (double cage rotor), line starting, Dynamic modeling of Induction motor , Rotor Field oriented control, Stator Field Oriented Control, Field Weakening Control, Variable Voltage Variable Frequency Control

PWM AND INVERTER

Sinusoidal PWM, Injection of third order harmonics, Space Vector Modulation, Dead time & compensation, Encoders, Resolvers, R/D Converters, Hall current sensors and current sampling, Voltage Model Estimator, Current Model Estimator, Closed-loop MRAS observer, Sliding Mode Observer.

TEXT BOOKS:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001
- 2. K Wang Hee Nam: AC Motor Control & Electrical Vehicle Application, CR Press, Taylor & Francis Group, 2019

REFERENCE BOOKS:

- 1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. V.Rattankumar	Assistant	EEE	rattankumar@avit.ac.in
		Professor		

EC-SE3003PREAMBLEThis course introduces the fundamental concepts, principles, design and analysis of hybrid, electric vehicles.
PREAMBLE This course introduces the fundamental concepts, principles, design and analysis of hybrid, electric vehicles.
This course introduces the fundamental concepts, principles, design and analysis of hybrid, electric vehicles.
PREREQUUISITE :Nil
COURSE OBJECTIVE
1. To understand the basic concepts of electric vehicles.
2. To basic concepts of electric drives trains .
3. To analyze the characteristics of different types Energy Storage
4. To understand different types Sizing the drive system
5. To study about hybrid electric vehicles of case study.
COURSE OUTCOMES
On the successful completion of the course, students will be able to
CO1: Describe the basic concepts of electric vehicles. Understand
CO2: Design the propulsion system for electric vehicles. Evaluate
CO3: Explain the construction, characteristics and application of batteries. Analyze
CO4: Elucidate performance characteristics of DC&AC electrical machines. Analyze
CO5: Design the drive train model for electric vehicles. Evaluate
Mapping with programme outcomes and programme specific outcomes
COS PO1 PO2 PO3 PO4 PO5 PO6 PO PO8 PO9 PO1 PO1 PO12 PSO1 PSO2 P
CO1 S M M S S M L - M - M
CO2 S S M S S M L - L - L
CO3 S S L - S S S M M - M L L
CO4 S M L M S S M M M - M
CO5 S M L M S S M L L - M - M - M
S-STRONG ,M-MEDIUM,L-LOW

Introduction to Hybrid Electric Vehicles:

History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Electric Drive-trains:

Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Energy Storage:

Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.

Sizing the drive system:

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing ications, supporting subsystems the power electronics, selecting th

Q-1- d-=

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies.

Case Studies and Regenerative Braking systems

Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV). Regenerative Braking - Real-world energy storage requirements and driver behaviour assessment. - Brake feel and customer acceptance - Mechanical System Design: New transmission options including split path design approaches and systems

Total Hours = 45

TEXT BOOKS:

Iqbal Hussain, "Electric & Hybrid Vehicles – Design Fundamentals", Second Edition, CRC Press,
James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.
REFERENCE BOOKS:

1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals", CRC Press, 2010.

2. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes, 2000 .http://nptel.ac.in/courses/108103009

S.No	Name of the faculty	Designation	Department	Mail-id
1	Mr.A.BALAMURUGAN	ASSOCIATE PROFESSOR	EEE	balamurugan@vmkvec.edu.in
2.	S.Prakash	AP(Gr-II)	EEE/AVIT	sprakash@avit.ac.in

-\$-1- d-=+

										category L				Т	Р	С
		En	ergy	y Sto	rage	Sim	ulat	ion l	Lab	E	C-SE		0	0	4	2
PREA	MBL	E			0									II		.I
To un	dersta	nd conc	cepts an	nd pri	nciple of	Ener	gy Sto	orage si	mulatio	n syst	ems.					
PRER	EQUU	JISITE	: Nil													
COUF	RSE O	BJECT	IVE									-				
1.		To und	erstand	$\frac{1}{\cdot}$ the c	omponer	$\frac{1}{2}$ ts, va	rious	theorie	s and en	nergy s	storage	e batter	y of sy	ystems		
2.		10 stuc	ly the v	various	s types of	math	ematio	$\frac{1}{1}$ En ang	leling.							
3.		To stuc	$\frac{1}{1}$ about	$\frac{11}{11}$	Alternativ	$\frac{7e}{c} = 1$	Nove	Energ	sy Sour	ces						
4.		$\frac{10 \text{ stuc}}{10 \text{ stuc}}$	iy abol	it the v	arious o	f Fuel	Cell.									
On tl	(SE U)	<u>UICU</u>	MES compl	otion	f the cou	urao at	udont	a will h	a abla t					Unda	ston	1
	$\frac{10}{2}$ succ							s will u	e able i	.0				Under	stand	1
	Realiz	$\frac{1}{1}$	$\frac{1}{1}$	1 energ	gy storage	σαπει	y of sy	/stems						Under	stand	1
CO2:0	Jompr	enend	various	s types	of mathe	ematic		leling sy	/stems	NT 1				Analy	<u>S1S</u>	
CO3:0	inders	tand the	e opera	ations of	of variou	s type	s of A	Iternati	ve and	Novel	Energ	gy Sour	ces	Analy	<u>S1S</u>	
CO4:	Analy	sis the	various	of Fue	el Cell sy	stem.								Analy	S1S	
Mappi	ing wi	th prog	ramme	e outco	mes and	progra	amme	specifi	c outco	mes	DO 1	DO12	DCO	DCOO		<u> </u>
cos	POI	PO2	PO3	PO4	POS	PO6	PO 7	PO8	PO9		PO1 1	PO12	PSO 1	PSO2	P	SO3
CO1	S	M	-	-	М	S	S	М	-	-	L	-	M	-	N	1
CO2	S	S	-	-	М	S	S	М	-	-	L	-	L	-	L	
CO3	S	S	L	-	S	S	S	М	-	-	М	-	М	L	L	,
CO4	S	M	L	M	S	S	М	М	-	-	Μ	-	М	-	-	
CO5	S	M	L	Μ	S	S	Μ	L	L	-	Μ	-	Μ	-	N	1
S-STF	RONG	,M-M	EDIUN	A,L-LO	OW											
LIST	OF EX	PERIN	MENT	S												
1. Stu	dy of I	Energy	Storag	e Batt	eries Para	ameter	rs	a .	D		D					
2. Mea	asure (of diffe	rent ty	pe of t	battery and	d ratii	ng Ene	ergy Sto	orage B	atterie	s Para	meters.				
3.500	dy of I	Viainen	ialical	d Nov	al Enorm			llery								
5 Stu	dy of F	Fuel Ce	live an	u nov	er Energ	y Sour	CCS.									
6. Stu	dy of a	lata for	differ	ent tvr	es of fue	1 cell.										
7. Stu	dv of f	uel cel	l effici	encv a	nd efficie	encv li	imits.									
8. Stu	dy of I	Practica	al fuel	cell vo	ltages.	5										
9. Stu	dy the	experi	ment o	f the f	lywheels											
10. St	udy th	e exper	riment	of the	Super Ca	apacito	ors									
11. Sti	ıdy of	the MA	TLAB													
		CE C														
REFE	REN	CES		TT T A T												
REFE	RENC	E LAE	3 MAN	IUAL												
COIII	Study of Fuel Cell. Study of fuel Cell. Study of data for different types of fuel cell. Study of fuel cell efficiency and efficiency limits. Study of Practical fuel cell voltages. Study the experiment of the flywheels . Study the experiment of the Super Capacitors . Study of the MATLAB. EFERENCES EFERENCE LAB MANUAL OURSE DESIGNERS															
S.No	Na	me of t	the faci	ulty	Designa	tion		T	Departm	nent	M	ail-id				
1	Mr.	A.BALA	<u>MURU</u> G	AN	ASSOCIA	TE PRC) FESSO	R E	EE		bala	amurugan	@vmkv	ec.edu.in		

-\$-1- d-=+

				EL	ECTRI	C DR	IVESI	AB			Cate	egory	L	Т	P	Credit
						C DR					E	C-SE	0	0	4	2
PREAM	IBLE															
This labor	ratory	gives a	practic	al expo	sure to	the stu	dents t	o learr	the el	ectric d	rives. T	he stu	lent	ts w	ill be a	able to
design an	d analy	yze AC	and DC	c motor	drivesf	orrealv	vorldap	oplicat	ions.							
PRERE	QUIS	ITE:N	il													
COURS	EOBJ	ECTI	VES													
1	Toco	nstruct	tDC cho	ppersci	rcuitfor	analys	e thep	erform	anceby	conduc	tingsuit	ableex	per	ime	nts.	
2	To an exper	nalyset riments	heperfo s.	rmance	characte	eristics	softhe g	givenA	Cdrive	e bycon	ducting	suitabl	e			
3	To a	nalyse	the perf	ormanc	e chara	cteristi	cs ofth	e give	n DC d	lrive by	conduc	ting su	uital	blee	xperin	nents.
4	To an suita	nalyze ble exp	the perf	formanc	e chara	cteristi	ics ofth	e give	n PLC	and DS	P based	l AC d	rive	e by	condu	cting
5	Tosii	nulate	ACand	DCdriv	vercircu	itsusin	gMAT	LAB-S	Simuli	nk.						
COURS	EOU	ГСОМ	ES													
On the s	uccess	fulcom	pletion	oftheco	urse,stu	dentsw	villbeal	ole to								
CO1:Co	nstruct	DCcho	oppersfo	orthe giv	venspec	ificatio	onsexp	erimer	ntally.						A	pply
CO2:An experime	alyzetl ents.	heperfo	ormance	charact	eristics	ofAC o	driverc	ircuitb	ycondı	uctingsu	iitable				Aı	nalyze
CO3: Ar suitablee	nalyze experir	the per nents	forman	ce chara	acteristi	cs ofth	ne give	n DC d	lrive b	y condu	cting				Ar	nalyze
CO4: Ar bycondu	nalyze cting s	the per suitable	forman e experi	ce chara ments	acteristi	cs ofth	ne give	n PLC	and D	SP base	d AC d	rive			Ar	nalyze
CO5:Co	nstruct	AC an	dDCdri	vercircı	uitsusin	gMAT	LAB-S	Simulii	nk.						A	pply
CO6:Eva	aluate	the per	forman	ce ofthe	givenA	CandI	OCdriv	ercircu	iitsusin	IgMAT]	LAB-Si	mulati	on.		Ev	aluate
MAPPI	NGW	THPF	ROGRA	MME	OUTC	OMES	AND	PROG	RAM	MESPE	CIFIC	OUTO	COM	MES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PS	501	PSO2	PSO3
CO1	S	L	М	M	-	-	-	-	-	-	М	-		-	S	-
CO2	S	Μ	S	М	-	-	-	-	-	-	М	-		-	S	-
CO3	S	S	M	M	S	-	-	-	S	S	М	-		-	-	-
CO4	S	S	M	M	S	-	-	-	S	S	М	-		-	-	-
CO5	S	L	M	M	S	-	-	-	-	-	S	-		-	S	-
CO6	S	M	S	M	S	-	-	-	S	S	S	-		-	S	-
S-Strong	;;M-M	edium;	L-Low													

-9-1- d-=+

LISTOFEXPERIMENTS

- 1. Voltage commutated chopper fed DC motor
- 2. AC voltage controller fed single phase induction motor
- 3. V/FControlofVSIFedInductionMotor.
- 4. Half controlled rectifier fed DC motor
- 5. RotorResistanceControlofInductionMotor.
- 6. PLC/DSP based 3 phase induction motor drive
- 7. SimulationofPWMinverterfedsinglephase inductionmotorcontrol
- 8. Simulation of PWM inverter fedthree phase induction motor control
- 9. SimulationofCSIfedinduction motordriveanalysis
- 10. SimulationofVSIfedinductionmotordriveanalysis

ReferenceBooks

LaboratoryReference Manual

	EDESIGNERS			
S.No.	NameoftheFaculty	Designation	Department	MailID
1	Dr. R.Sankarganesh	AssociateProfessor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Dr.K. Boopathy	Professor	EEE/AVIT	boopathyk@avit.ac.in

- p-1- d-=+

		NE	W Al	ND R	ENEV	VABI	LE EN	IERG	Y SO	URCE	ES	Category	y L	, T	Р	C
				AN	DITS	S APF	PLICA	ATIO	NS			EC - SE	3	0	0	3
Preambl	e															
To study fundame	the fur ntals ar	ndamer nd appl	ntals of icatior	f non c 1 of No	onven on-con	tional ventio	source nal ene	es due 1 ergy so	to crisi ources	is of con in the e	nventi energy	onal sour sector	ces and	l unders	stand	the
PRERE	QUISI	ГЕ : N	ïl													
COURS	E OBJ	ЕСТГ	VES													
1		To s	tudy a	bout e	nergy	Source	es and	its type	es, sco	pe of R	enewa	able energ	gy			
2		To u	inderst	and ab	out so	lar ene	ergy ar	nd vari	ous tyj	pes of s	olar e	nergy & c	convers	sion me	thod	S
3		Το τ & οι	inderst itput p	and al ower	oout w	ind en	ergy s	ystem	& its	compo	nent, a	and Analy	yze the	selecti	on fa	actor
4		To s	tudy a	bout tł	ne Basi	ics Bic	mass	& geot	herma	l energ	y and	its variou	s sourc	es		
5		To s	tudy d	ifferen	t form	s of no	on-con	ventio	nal en	ergy.						
COURS	E OUT	СОМ	ES													
On succe	essful c	omple	tion o	f the c	ourse,	, the st	tudent	s will	be abl	e to						
СО	1	Tol	Jnders	tand th	ie rene	wable	energ	y sourc	ces & s	systems	5.			Unde	erstai	nd
СО	2	To i	mpart	the tec	hnique	es of so	olar en	ergy a	nd diff	ferent n	nethod	s.		Unde	erstai	nd
СО	3	То а	nalyze	e the w	ind tu	bine s	ystem	and co	mpon	ents.				An	alyze	;
СО	4	To a	nalyze	biom	ass and	l geotł	nermal	energ	y gene	rations				An	alyze	2
СО	5	Dem sour	onstra	te the energy	genera /, have	tion o a wor	f elect king k	ricity f nowle	rom va dge on	arious N 1 types (Non-C of fuel	onventior cells	nal	An	alyze	2
Mapping	with P	rogran	nme ou	itcome	s and	Progra	umme S	Specifi	c Outo	comes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2	PS	503
CO1	S	S	L	-		S	S	-		L	-	-	-	L		-
CO2	M	-	М	-	S	L	M	-	М	L	-	-	S	-		М
CO3	M	-	М	-	S	L	M	-	-	L			-	M		-
CO4	S	-	S	-	S	М	M	L	-	L	М		-	-		L
CO5	S	M	S	S	S	М	S	-	М	L	L	M	L	L		-

-g-1.-d-=+

INTRODUCTION TO ENERGY SOURCES

Renewable and non-renewable energy sources, energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements Global and National scenarios, Prospects of renewable energy sources.

SOLAR ENERGY

Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, flat plate collectors, concentrating collectors, Solar air heaters-types, solar driers, storage of solar energy-thermal storage, solar pond, solar water heaters, solar cooker, solar heating & cooling of buildings, photo voltaic - solar cells & its applications

WIND ENERGY

Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.

BIOMASS AND GEOTHERMAL ENERGY

Biomass conversion technologies, Biogas generation plants, classification, advantages and disadvantage es, constructional details, site selection, Fuel properties of bio gas, utilization of biogas. geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. advantages, disadvantages and application of geothermal energy.

OTHER ALTERNATE ENERGY SOURCES

Energy from tides, basic principle of tidal power, Basics of Magneto Hydro Dynamic (MHD) Power Generation, Basic Fuel Cells construction and Operation, hydrogen as alternative fuel for vehicles.

TEXTBOOK

- 1. G. D. Rai, "Non-Conventional Energy Sources",4th Edition, Khanna Publishers, 2000.
- 2. B H Khan, "Non-Conventional Energy Resources", 2nd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2011.
- 3. S.P.Sukhatme, "Solar Energy", 3rd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2008

REFERENCES

- 1. S.Hasan Saeed and D.K.Sharma, "Non-Conventional Energy Resources", 3rd Edition, S.K.Kataria & Sons, 2012.
- 2. G.N.Tiwari and M.K.Ghosal, "Renewable Energy Resource: Basic Principles And Applications", Narosa Publishing House,2004

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. S.Prakash	AP(Gr-II)	EEE/AVIT	sprakash@avit.ac.in
2	Mr. P. Loganathan	AP	EEE/VMKVEC	loganathan@vmkvec.edu.in

-\$-1- d-=+

		so	LAR	COLL	ЕСТО	ORS A	ND T	HERN	MAL I	ENERG	GY	Categor	ry I	- ,	Г	Р	C
					C	ONVE	RSIO	N				EC- SI	E 3	3 (0	0	3
Preambl	e																
To famili collector	iarize t s.	he stuc	lents w	vith pri	inciple	s of oj	peratio	on, stru	icture,	testing	and ir	istallatio	n of m	ajor t	уре	s of	solar
PRERE	QUISI	ГЕ : N	lil														
COURS	E OBJ	ЕСТГ	VES														
1		Unde	erstand	the fur	ndamen	tals of	solar f	lat plat	e collec	ctors							
2		Fam	Familiar with the solar low, medium and high temperature applications														
3		The	The basics of solar thermal technology for process heating applications.														
COURS	E OUT	COM	COMES														
On succ	essful o	omple	etion o	f the c	ourse,	the st	udent	s will	be abl	e to							
СО	1	Expl tech	ain the nology	princi	ple of c	lirect s	olar en	ergy co	onversio	on to pov	wer us	ing PV		U	nde	rstan	ıd
СО	2	Nam	e the fi	undame	entals o	f solar	flat pla	te colle	ectors					R	eme	embe	er
СО	3	Reca array	all the starts	structu	re, mate	erials a	nd oper	ration o	of solar	cells, PV	V mod	ules, and		R	eme	embe	er
СО	4	Cons	struct th	ne basio	es of so	lar the	rmal te	chnolo	gy for p	process h	neating	; applicati	ions		Ap	ply	
C0	5	Deve	elop th	e solar	collect	or for	low, m	edium	and hig	gh tempe	erature	applicati	ons		Ap	ply	
Mapping	with P	rogran	nme ou	utcome	s and	Progra	imme S	Specifi	ic Outo	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PS	02	PS	03
CO1	S	S	L	-	-	S	S	-	-	L	-	-	L		-		-
CO2	M	-	M	-	S	L	М	-	M		-	-	-]	М		-
CO3	M	-	M	-	-	L	М	-	-		-	-	М		-		L
CO4	S	-	S	-	-	М	М	L	-	L	М	-	-]	М		-
CO5	S	М	S	S	S	M	S		М	L	L	М	-		-		L

-g-1- - -===

INTRODUCTION

Solar Energy: Solar energy system, Solar Radiation, Availability, Measurement and Estimation, Solar Thermal Conversion Devices and Storage, Applications Solar Photovoltaic Conversion solar photovoltaic, solar thermal, applications of solar energy systems

SOLAR FLAT PLATE COLLECTORS

Fundamentals of solar collectors as devices to convert solar energy to heat. Nonconcentrating low temperature flat-plate and evacuated tube collectors. Design and structures of collectors for heating liquids and air.

SOLAR PV AND SOLAR SYSTEM

Solar Photovoltaic systems : Basic Principle of SPV conversion – Types of PV Systems- Types of Solar Cells, Photovoltaic cell concepts: Cell, module, array ,PV Module I-V Characteristics, Efficiency & Quality of the Cell, series and parallel connections, maximum power point tracking, Applications.

SOLAR THERMAL APPLICATIONS

Solar systems for process heat production - Solar cooking – Performance and testing of solar cookers. Seawater desalination – Methods, solar still and performance calculations. Solar pond - Solar greenhouse

APPLICATIONS OF SOLAR COLLECTORS

Application of non-concentrating collectors in low temperature solar thermal plants for space heating and cooling, drying, seawater desalination. Use of concentrating collectors for process heat production and power generation.

TEXTBOOK

- 1. Artur V.Kilian, "Solar Collectors: Energy Conservation, Design and Applications", Nova Science Publishers Incorporated, 2009.
- 2. Duffie .J. A, Beckman .W. A, "Solar Engineering of Thermal Process", Wiley, 3rd ed. 2006.

REFERENCES

- 1. Sukhatme .K, Suhas P.Sukhatme., "Solar energy: Principles of thermal collection and storage", Tata McGraw Hill publishing Co. Ltd, 8th edition, 2008.
- 2. Garg .H.P,Prakash .J, "Solar energy fundamentals and applications", Tata McGraw Hill publishing Co. Ltd, 2006.
- 3. Goswami .D.Y, Kreith .F, Kreider .J.F, "Principles of Solar Engineering", 2nd ed., Taylor and Francis, 2000, Indian reprint, 2003

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	K.S.Kavitha Kumari	Assistant Professor (Gr-II)	EEE	kavitha.eee@avit.ac.in
2	Mrs. V.Manjula	Assistant Professor	EEE/VMKVEC	Cmanjula@vmkvec.edu.in

- p-1- d-=+

	ENERGY CONSERVATION AND ENERGY	Category	L	Т	Р	C
		EC-SE	3	0	0	3
Preamble						
To enable the electrical	he students to acquire the knowledge of energy conserva-	ation measure	s in the	rmal	and	
PREREQUIS	SITE : NIL					
COURSE O	BJECTIVES					
1	To impart knowledge on energy management and facilit	ate application	n of ener	gy co	onserva	ation
2	To impart knowledge on thermal and electrical utilities for	r evaluating er	nergy sav	ving p	otentia	ı l .
3	To learn the positions of energy management in energy in and chart.	ntensive indust	tries usin	g var	ious m	odel
4	To inculcate knowledge and skills about assessing establishment.	the energy e	efficiency	y of	an er	ntity/
5	To bring out Energy Conservation Potential and Busine segments under innovative.	ess opportunit	ies acros	ss dif	ferent	user
COURSE O	UTCOMES					
On successf	ul completion of the course, the students will be able to					
CO1	Acquaintance with conservation of energy and its management, energy planning, and energy economics.		Anal	yse		
CO2	Recognize - How of energy efficient machinery system losses and their management	ns, energy	Eva	luate	9	
CO3	Ability in Energy analysis techniques and methods & Energy conservation planning and practices.		Und	ersta	and	
CO4	Estimate the techno economic feasibility of the energy conservation technique adopted.	7	Appl	У		
CO5	Evaluate the performance of thermal utilities like furnade boilers and steam distribution systems to improve efficient	ce, iency	Crea	iting		
C06	Takeout performance assessment and suggest methods improve the overall efficiency for different energy inte industries	s to nsive	Anal	yse		
Mapping wit	h Programme outcomes and Programme Specific Outcomes					

-9-1- d-=+

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	L	М	S	-	-	-	-	L	-	-	L	L	-	-
CO2	L	-	М	L	-	L	-	L	-	-	-	-	L	-	-
CO3	L	-	L	-	-	-	-	-	-	-	-	-	-	М	-
CO4	S	-	L	-	-	М	-	-	L	-	-	-	-	L	-
CO5	L	M	S	M		-	-	-	-	-	-	-	-	-	-
CO6	М	-	L	-	-	М	-	-	-	-	-	L	-	М	-
S- St	S- Strong; M-Medium; L-Low														

ENERGY CONSERVATION PRINCIPLES

Energy scenario past and present scenario of world, principles of energy conservation, resource availability, energy savings, current energy consumption in India, roles and responsibilities of energy managers in industries.

ELECTRICAL SYSTEMS

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.

ENERGY CONSERVATION IN ELECTRICAL SYSTEMS

Potential areas for electrical energy conservation in various industries, conservation methods, energy management opportunities in electrical heating, lighting system, cable selection, energy efficient motors, factors involved in determination of motor efficiency, adjustable AC drives, variable speed drives, energy efficiency in electrical system

ENERGY CONSERVATION IN THERMAL SYSTEMS

Energy conservation in thermal utilities like boilers, blowers, furnaces, pumps and fans, compressors, Heat exchangers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets.cogeneration - steam and gas turbines.

ENERGY MANAGEMENT

Organizational background desired for energy management persuasion, motivation, publicity role, tariff analysis, industrial energy management systems, energy monitoring, auditing and targeting, economics of various energy conservation schemes — energy policy and energy labeling.SCADA and EMS function.

TEXTBOOK

- p-1- d-=+

1. Reay .D.A, "Industrial Energy Conservation", Pergamon Press, 1st edition, 2003. 2 White .L. C, "Industrial Energy Management and Utilization", Hemisphere Publishers, 2002.

REFERENCES

- 1. Beggs, Clive, "Energy— Management, Supply and Conservation", Taylor and Francis, 2^{'d} edition, 2009.
- 2. Smith .C.B, "Energy "Management Principles", Pergamon Press, 2006.
- 3. Hamies, "Energy Auditing and Conservation; Methods, Measurements, Management and Case study", Hemisphere, 2003.
- 4. Trivedi .P.R and Jolka .K.R, "Energy Management", Common Wealth Publication, 2002.

Sl No	Name of the Faculty	Designation	Department	Mail ID			
1	Dr. B. Parvathi Sangeetha	Assistant Professor	EEE	parvathi.eee@avit.ac.in			
2	Mr. P. Loganathan	AP	EEE/ VMKVEC	loganathan@vmkvec.edu.in			

- p-1- d-=+

		APP TEC	PLICA CHNO	TION LOGI	IS OF IES	GRE	EN BU	JILDI	NG		Cate	egory		L	Т	Р	C
		Tota	ıl Cont	act Ho	ours – 4	45					E	EC - SE		3	0	0	3
		Prerequisite – NIL															
		Co-r	equisi	te - NI	L												
Preamb	le																
To have harnessir	a Sust	ainabl vable s	e arch source	itectur s of en	e for ergy a	creatin and uti	ng ar lizing	n envii materi	ronmer als tha	nt frie t least	ndly a pollute	nd energet environment	gy effi vironm	icie: ent.	nt bu	ildin	ig by
COURS	E OBJ	ЕСТГ	VES														
1	I To create awareness for the need of green buildings and imparting knowledge of designing green buildings.																
2		To understand the applications of passive and active use of renewable energy system															
3	3 To promote the efficient use of water, materials and waste through the sustainable concept of Reduce, Recycle and Reuse.																
4	4 Describe the concepts of sustainable design and green building techniques including energy efficiency																
COURS	COURSE OUTCOMES																
On succ	essful c	omple	etion o	f the c	ourse	, the st	tudent	ts will	be abl	e to							
СО	CO 1To Understand the designing and concept of an environmentally friendly building (low-emissions, low resource-consumption, small environmental footprint)Understand											nd					
СО	CO 2To describe the Concepts of different Heating techniques available for Sustainable Design And Green Building Environment AnalyzeRemember												er				
CO	3	To d build Anal	escribe ling av vze	the Co vailable	oncepts for Su	of diff stainab	erent p le Des	assive ign An	cooling d Greer	; techni n Build	ques, ei ing Env	nergy eff vironmen	icient t		Remember		
СО	CO 4To analyze and determine the different Use of Environment friendly materials and find the methods of recycling and reuse								Apply								
C0 5To know about the innovative green technologies methods and case study of a buildingsUnders										ersta	stand						
Mapping	with P	rogran	nme oi	utcome	es and	Progra	imme	Specif	ic Outo	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		PSO2	P	SO3
CO1	М	S	М	-		S	S	-		L	-	-	-		-		-
CO2	M	-	Μ	-	S	L	Μ	-	M	L	-	-	-		-		-
CO3	L	-	М	-	S	М	M	-	-	М	-	-	-		-		-
CO4	S	-	S	-	S	М	М	L	-	L	Μ	-	-		-		-
CO5	S	М	S	S	S	М	S	-	Μ	L	L	Μ	-		-		-

-9-1- d-=+

INTRODUCTION

Green buildings- salients features- LEED rating systems by IGBC - origin from USGBC -Concept of Sustainable sites -Orientation to sun and Wind -Land form & orientation - Vegetation & Pattern - Water Bodies- Open Space & Built form.

PASSIVE AND ACTIVE HEATING TECHNIQUES

Passive Cooling techniques : General principles - Evaporative cooling, Nocturnal radiation cooling, Passive Dessicant cooling, induced ventilation, earth sheltering, Berming, Wind Towers, earth - Air tunnels, Curved Roofs & Air Vents, Active Cooling techniques : Air coolers

PASSIVE AND ACTIVE COOLING CONCEPTS, ENERGY EFFICIENT BUILDINGS

Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Building energy simulation- Building energy efficiency standards- Lighting system design- Lighting economics and aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management. Active Cooling techniques : Air coolers

REDUCE, RECYCLE AND REUSE

Water conservation by Rainwater Harvesting systems - Treatment of waste water: Physical, Chemical and Biological methods - Root Zone treatment -Use of recycled water. Use of Environment friendly materials, Bio degradable materials. Recycling and Reuse of steel, Aluminium and Glass.

INNOVATIVE GREEN TECHNOLOGIES AND CASE STUDIES

Innovative uses of solar energy : BIPV, Solar Forest, Solar powered street elements-Integrated Use of Landscape : Vertical Landscape, Green Wall, Green Roof.Case studies on Green buildings : Olympia Technology Park, Chennai.

TEXTBOOK

1.Sustainable design manual, Vols 1& 2, The energy and resource institute, New Delhi.

2.Kibert, C. "Sustainable Construction: Green Building Design and Delivery", John Wiley & Sons, 2005

REFERENCES

- 1. Arvind Krishnan & Others Climate Responsive Architecture, Tata Mcgraw –Hill New Delhi 2001.
- 2. Ralph M .Lebens Passive Solar Architecture in Europe 2, Architecture Press, London 1983.
- 3. Sandra Mendler, William Odell, The Guide Book Of Sustainable Design, John Wiley & Sons, 2000.
- 4. Lawson.B,Bulding The Environment; Towards Materials, Energy And Ecologically Sustainable Development Raia, Act, 1996

Sl No	Name of the Faculty	Designation	Department	Mail ID			
1	P.Poornima	AP(Gr-II)	EEE	poornima@avit.ac.in			
2	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu			

\$-1- d-=+
				NUC	TEAT		СТО	р тш	FODV	7		Categor	y L	Т	Р	С	
				NUC	LEAI	X KEA		КІП				EC - S	E 3	0	0	3	
Preamble	e																
Basic con standard u differentia	cepts o indergr al equa	of radio aduate tions a	bactivit cours and bas	ty, nuc es on 1 sic line	lear bi reactoi ar alge	nding physi ebra co	energy cs and	y, cross nucles	s-secti ar phy	ons, and sics. Ba	l nuclea sic knov	r fission wledge o	n which of solvii	are cov 1g ordir	ered ary	by	
COURSE	E OBJI	ECTIV	VES														
1 To study the Fundamental concepts of Nuclear systems. To analyse the Nuclear data, reaction rates.																	
2		To provide the students with description of the computational methods for nuclear engineering applications.															
3	3 To perform analytical and numerical calculations necessary in nuclear system research and development. To understand the Core Composition changes during Reactor operation.																
COURSE OUTCOMES																	
On successful completion of the course, the students will be able to																	
СО	O 1 Remember the Fundamentals concepts of Nuclear systems Remember																
CO	2	Expl and	ain the	e princ n diffu	iples o sion th	of nucle neory	ear rea	ctor ba	ased or	n neutro	on transp	port theo	ory	Unde	rstar	ıd	
CO	3	Anal	yse the	Nuclea	ar data,	reactio	on rates	5.						Ana	lyse		
CO	4	Knov	wing th	e comp	utation	al metl	nods fo	or nucle	ar engi	neering	applicat	ions.		Eva	luate	,	
C0 :	5	Knov syste	vledge m resea	about t arch an	he ana d deve	lytical a lopmen	and nu t.	merical	calcul	ations no	ecessary	in nuclea	ar	Analy eval	se ar uate	ıd	
C0 (5	Infor	mation	about	Core C	Compos	sition c	hanges	during	Reactor	r operati	on.		Reme	embe	r	
Mapping	with Pı	rogram	nme ou	itcome	s and]	Progra	mme S	Specifi	c Outc	omes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS	303	
CO1	М	-	-	-	М	S	М	М	-	-	-	-	S	М		S	
CO2	S	M	М	-	Μ	S	S	M	М	-	-	-	S S S				
CO3	М	S	М	S	L	М	-	-	-	L	-	-	S	М		S	
CO4	S	M	М	М	-	L	-	-	-	L	L	L	S	S		S	
CO5	S	S	S	М	L	М	L	L	-	-	-	-	S	M		S	

-9-1- d-=+

INTRODUCTION

Course overview - Fundamental concepts- Nuclear energetic -Radioactivity-Binary nuclear reactions, neutron nuclear reactions- Principles of nuclear reactors, nuclear power. Materials for Nuclear Reactors-Fuel materials, Moderator and Reflectors, Cladding materials, Coolants and control Rods.

FUNDAMENTALS OF NUCLEAR SYSTEMS

Characteristics of the fission reaction, neutron moderation, practical fission fuels-Reactor power, fuel burn up, and fuel consumption-Neutron chain-reacting systems-Homogeneous and heterogeneous cores, reflectors, Reactor kinetics and dynamics, reactivity feedback- Core composition changes during reactor operation, nuclear system lifetime

MATHEMATICAL DESCRIPTION OF PHYSICAL PHENOMENA : NEUTRON AND MODELLING METHODS

General considerations about reactor physics, engineering requirements- Description of the neutron distribution: fluxes, currents, and sources-Nuclear data, cross sections, and reaction rates- Basic scheme of nuclear system modeling methods-Deterministic modeling of nuclear systems-Neutron balance (conservation) equations

NUCLEAR DATA AND CROSS SECTION PROCESSING

Cross-section data- Evaluated nuclear data files-Introduction to the data formats and procedures of the ENDF-6 system-NJOY nuclear data processing system, multigroup cross section libraries.

CORE COMPOSITION CHANGES DURING REACTOR OPERATION

Core composition changes-Nuclide production-destruction equations, adiabatic fuel depletion modelling Equilibrium fuel cycle-Solution of the nuclide production-destruction equations-Reactivity effects of fuel composition changes

TEXTBOOK

1. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001

2. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, 1976

REFERENCES

1. J.R.Lamarsh, Introduction to Nuclear Reactor Theory, Addison-Wesley Pub., 1966 .

2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., 2001

3. George I. Bell, Samuel Glasstone, "Nuclear Reactor Theory", Robert E. Krieger Publishing Co., Inc. (1970).

Sl No	Name of the Faculty	Designation	Department	Mail ID		
1	P.Poornima	AP(Gr-II)	EEE/AVIT	poornima@avit.ac.in		
2	Mr. P. Loganathan	AP	EEE/ VMKVEC	loganathan@vmkvec.edu.in		

- p-1. - d-=+

			CON	VENITI	ONAT	ENED	CVTE	CUNO		S	Cate	egory	L	, T	Р	C
			CON	VENT	UNAL	LILL	GIIL	CHNU	LUGIE	5	EC	C - SE	3	0	0	3
Preamble	e															
This cour the impor	se prov tance o	vides tl of rene	he kno wable	wledg energ	e of w y sour	orking ces.	g princ	iples o	fconv	ention	al pow	ver gener	ration a	nd		
PREREC	QUISIT	ΓE – N	lil													
COURSI	COURSE OBJECTIVES															
1	1 The operating principles and components of steam and nuclear power plant.															
2		The	operati	ng prin	ciples	and con	npone	nts of h	ydro, g	as turb	ine pov	ver plant	s.			
3		The	solar aı	nd wind	l energ	y conv	ersion	system	s.							
4		The	biomas	s, tidal	and ge	otherm	nal pow	ver plar	nts.							
5 The operating principles of hydrogen energy, fuel cells and MHD power generation.																
COURSE OUTCOMES																
On successful completion of the course, the students will be able to																
CO	1	Rem	ember	the Fur	ndamer	ntals co	ncepts	of Stea	ım and	Nuclea	r Powe	er Genera	ition	Ren	nemt	ber
CO	2	Und	erstand	d the p	erforn	nance	of hyd	lro, Ga	ıs turbi	ine pla	nts			Und	ersta	ind
CO	3	Und	erstand	d the c	oncept	t of sol	lar and	l wind	energy	conv	ersion	system		Und	ersta	ind
СО	4	Have	e an id ration	ea abo	out Tid	al, Bic	o mass	, Geot	hermal	resou	rces an	nd power	r	Und	ersta	ind
C0 :	5	Desi with	gn and fuel c	l devel ell sys	lop sui tem.	table l	nydrog	gen sto	rage sy	stem 1	to be u	sed alon	g	А	pply	·
Mapping	with P	rogran	nme ou	utcome	es and	Progra	amme	Specif	ic Out	comes			·			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	Р	'SO3
CO1	S	S	L	-	-	S	S	-	-	L	-	-	-	-		L
CO2	М	-	М	-	S	L	M	-	М	L	-	-	-	М		-
CO3	М	-	М	-	S	L	М	-	-	L	-	-	L	-		L
CO4	S	-	S	-	S	M	M	L	-	L	М	-	-	-		-
CO5	S	М	S	S	S	М	S	-	М	L	L	М	-	М		-

-9-1- d-=+

STEAM AND NUCLEAR POWER GENERATION

Steam power plant-Selection of site-Generated layout-coal and ash handling-Steam generating plants-Feed

make circuit - Cooling towers-Turbine governing, plant performance enhancement techniques, advanced technologies for coal-fired power plants, power plant major and auxiliary equipment. Nuclear power plants-

HYDRO, GAS TURBINE AND COMBINED CYCLE PLANTS

Hydro power plant - Selection of Site - Classification layout governing of turbines - Gas turbine power plants -Performance enhancement techniques, equipment. combined cycle power plants, integrated gasification combined cycle, cogeneration plant - Equipment and performance.

SOLAR AND WIND ENERGY

Solar radiation – Measurements of solar radiation and sunshine – Solar thermal collectors – Flat plate and concentrating collectors – Solar applications – Fundamentals of photo voltaic conversion – Solar cells – PV applications. WECS components and classification, Wind data and energy estimation - Wind energy generators and performance.

BIOMASS, TIDAL AND GEOTHERMAL ENERGY SOURCES

Biomass – Biogas, source, composition - Technology for utilization – Biomass direct combustion, biomass

gasifier, biogas plant, digesters, ethanol production, Bio-diesel production and economics. Tidal energy – Wave energy – Technology options – Open and closed OTEC cycles. Geothermal energy sources, power

HYDROGEN, FUEL CELL AND MHD POWER

Hydrogen - generation, storage, utilization and applications. Fuel cell technology – Types, power generation and economics. MHD power generation – Principle and classification.

TEXTBOOK

1. Rai .G.D, "Non Conventional Energy Sources", 4th edition, Khanna Publishers, New Delhi, 2000.

2. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012.

REFERENCES

- 1. Sukhatme .S.P, "Solar Energy", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 1997.
- 2. Khartchenko .N.V, "Advanced Energy Systems", Taylor and Francis, Washington DC, 1998.
- 3. Chauhan .D.S, Srivastava .S.K, "Non-Conventional Energy Resources", New Age, 2009
- 4. M.C, "Energy Systems Engineering", Wiley-VCH, 2008.
- 5. Rajput .R.K, "Power Plant Engineering", 4th ed., Laxmi Publ., 2008.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Jensie Anita S	AP	EEE	jensiepresley@avit.ac.in
2	Mr. P. Loganathan	AP	EEE/VMKVEC	loganathan@vmkvec.edu.in

- p-1- d-=+

SOLAR ENERGY LAB	Category	L	Т	P	Credit
	EC - SE	0	0	4	2

PREAMBLE

Solar energy is radiant light and heat from the Sun that is harnessed using a range of everevolving technologies such as solar heating, photovoltaics, solar thermal energy, solar architecture, molten salt power plants and artificial photosynthesis. This laboratory mainly deals with the solar PV part. The electrical parameters are mainly concentrated.

PREREQUISITE

Nil

COUI	COURSE OBJECTIVES														
1	To un	dersta	nd the	behavi	or of P	V Sola	r pane	l in dif	ferent	combin	ations				
2	To ur	dersta	nd the	power	flow w	ith diff	ferent	types o	of loads						
3	To ur	dersta	nd the	behavi	or batte	ery con	nected	d and g	rid con	nected	system.				
COUI	RSE O	UTCC	OMES												
On the successful completion of the laboratory course, students will be able to															
CO1.	Unders	stand th	ne vario	ous cha	racteri	stics of	f PV P	anels					Und	lerstand	
CO2.	Unders	stand P	ower f	flow ca	lculation	ons wit	h diffe	erent lo	oad				Und	lerstand	
CO3. 1	CO3. Explain Performance of a PV system with batteries Understand														
CO4.	CO4. Understand the grid connected performance of a PV system Understand														
CO5.	Unders	stand th	ne islan	iding ai	nd othe	er abno	rmal c	onditi	ons				Und	lerstand	
MAP	PING	WITH	PRO	GRAM	ME O	UTCC	DMES	AND	PROG	RAMN	IE SPE(CIFIC C	DUTCO	MES	_
COS	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2	PSC 3
CO1	S	S	S	М	L	-	М	-	М	-	-	-	S	М	-
CO2	S S M L - M - - - S M -														
CO3	D3 S S M L - M - - -									-	S	М	-		
CO4	S	S	S	M	L	-	M	-	M	-	-	-	S	М	-
CO5	S S S M L - M - - - S M -														
S- Stro	ong; M	-Medi	um; L-	Low						•	•		•	<u>.</u>	•

-9-1- d-=+

- 1. I-V and P-V characteristics with series and parallel combination of modules.
- 2. Effect of variation in tilt angle and shading on PV module power.
- 3. Power flow calculations of standalone PV system of DC load with battery.
- 4. Power flow calculations of standalone PV system of AC load with battery.
- 5. Power flow calculations of standalone PV system of DC and AC load with battery
- 6. Charging and discharging characteristics of battery.
- 7. Interfacing of hardware using RS232 ports and suitable software.
- 8. Evaluation of Active, Reactive Power & Apparent Energy Flow between Grid-Tied Inverter, Grid & Load and Net Metering concept
- 9. Grid Synchronization of Solar PV Inverter and it Performance Analysis
- 10. Impact of Transmission Line Inductance on Voltage Quality at PCC.
- 11. Study of the online monitoring data of an existing solar power plant

References

1. Laboratory reference manual

S.No	Name of the Faculty	Designation	Department	Mail ID
1	V.Rattan Kumar	AP(II)	EEE	rattankumar@avit.ac.in

WIND ENERGY LAB	Category	L	Т	Р	Credit
	EC - SE	0	0	4	2

PREAMBLE

A wind turbine turns energy in the wind into electricity using the aerodynamic force created by the rotor blades, which work similarly to an airplane wing or helicopter rotor blade. When the wind flows across the blade, the air pressure on one side of the blade decreases. The difference in air pressure across the two sides of the blade creates both lift and drag. The student will be able to understand basic operation of wind turbine with all parameters.

PREREQUISITE

Nil

COURSE OBJECTIVES

1 To understand the performance curve of a wind turbine										
2 To do power analysis of a wind turbine.										
3 To understand the behavior of wind turbine controller with respect to the load(AC & DC).										
COURSE OUTCOMES										
On the successful completion of the laboratory course, students will be able to										
······································										
CO1.Understand various characteristics of wind turbine with respect to V, I & P Understand										
CO2.Understand the concept of cut in and cut off speed. Understand										
CO3 Understand the performance of wind turbine at various frequencies										
Concentration of the second at the second at the second of										
CO4. Understand the concept of tip speed ratio. Understand										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES										
CO1 S S S M L - M - M - S M -										
CO2 S S S M L - M - M S M -										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
CO4 S S M L - M - - - S M -										
S- Strong; M-Medium; L-Low										

- p-1- d-=+

- 1. Evaluate the efficiency of charge controller used in the Wind Energy Training System (WETS).
- 2. Evaluate the cut-in speed of wind turbine experimentally.
- 3. Evaluate the Tip Speed ratio (TSR) at different wind speeds.
- 4. Draw the turbine Power versus wind speed curve.
- 5. Draw the curve between TSR and coefficient of power.
- 6. Draw the power curve of turbine with respect to the rotational speed of rotor at fix wind speeds.
- 7. Demonstrate the power analysis at turbine output (for high wind speeds).
- 8. Demonstrate the power analysis at different branches of wind turbine energy system (at high frequency) with AC load only.
- 9. Demonstrate the power analysis at different branches of wind turbine energy system (at high frequency) with AC load only.
- 10. Demonstrate the power analysis at different branches of wind turbine energy system (at high frequency) with DC load only.

References

1. Laboratory reference manual

S.No	Name of the Faculty	Designation	Department	Mail ID
1	V.Rattan Kumar	AP(II)	EEE	rattankumar@avit.ac.in

\$-1- d-=+

		POW	VER E	LECT	RONI	CS SIN	MULA	TION	I LAB	- I	Category	L	TI	P C	redit
											EC - SE	0	0 4	4	2
PREA	MBL	E													
To acq	uire th	e pract	ical kno	owledge	e in po	wer ele	ctronic	device	es and	circuit	ts. Students	will be a	able to ı	ındersta	nd and
analyze	e powe	r conve	erters su	uch as	AC-DC	conve	rters, D	DC-DC	conve	erters,	DC-AC conv	verters, A	AC-AC	converte	ers and
their control circuits for real world applications using MATLAB tool															
PRERQUISITE Nil															
COU	COURSE OBJECTIVES														
1	To in	npart kr	nowledg	ge on si	ngle-ph	ase and	three-p	phase A	AC-DC	conve	erters.				
2	To understand the simulation of various DC-DC converters.														
3	3 To learn the simulation of the various inverter circuits.														
4 To make the students simulate the ac voltage controllers and cycloconverters.															
5 To gain the knowledge of MATLAB interfacing circuit															
COUH	RSE O	UTCC	OMES												
On the	succes	sful cor	npletion	n of the	course	, studen	ts will	be able	e to						
1. De:	sign an	d devel	op the c	controll	ed recti	fiers an	d AC-A	AC con	verters	s as per	r solar panel		Ren	nember	
2. De	sign an	d analy	ze swite	ched-m	ode pov	ver con	verters	as per	power	rating			App	ly	
3. Des	sign and	l analyz	ze singl	e-phase	and the	ree-pha	se inve	rters as	s per po	ower so	ource.		Ana	lysis	
4. Imj	olemen	t the ga	ating pu	ilses usi	ng a m	icrocon	troller	for var	ious so	lar par	nel		Imp	lement	
5. Analysis of the various power circuit using MATLAB tool Apply															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	M	-	М	-	-	-	-	-	-	L	L	M	-
CO2	M	S	S	М	S	-	-	-	-	-	-	L	L	-	М
CO3	L	S	S	М	L	-	-	-	-	-	-	M	М	-	M

-9-1- d-=+

-

-

-

-

-

-

-

-

L

L

S

L

-

М

-

М

-

-

-

-

CO4

CO5

S

М

М

S

S- Strong; M-Medium; L-Low

L

М

Μ

М

S

М

Syllabus :

- 1. Simulation of Single phase Semi controlled converter
- 2. Simulation of Single phase Fully controlled converter
- 3. Simulation of Single phase PWM inverter
- 4. Simulation of Three phase bridge inverter
- 5. Simulation of Three phase semi and fully controlled converter
- 6. Simulation of Buck, Boost, Buck-Boost and Cuk converters
- 7. Simulation of Resonant converters
- 8. Simulation of single phase AC Voltage Controller and cycloconverters

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.K.Boopathy	Associate Professor	EEE/AVIT	boopathyk@avit.ac.in									
2	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in									

- p-1- d-=+

				POW	ER E	LECT	RONI	CS			Category	L	Т	P	С	redit
				SI	MUL	ATION	N LAB	8 -II			EC - SE	0	0	4		2
PREA	MBL	E								·				·		
To acq	uire th	e practi	ical kno	owledge	e in pov	wer ele	ctronic	device	es and	circuit	s. Students	will be	able to	unde	erstar	nd and
analyze	e powe	r conve	erters su	ich as .	AC-DC	conver	rters, D	DC-DC	conve	erters, I	DC-AC conv	verters,	AC-AC	con	verte	rs and
their co	their control circuits for real world applications using PCB board.															
PRER Power	PRERQUISITE Power Electronics															
COUH	COURSE OBJECTIVES															
1	1 To impart knowledge on the Hardware fabrication process															
2	To understand the hardware fabrication of various DC-DC converters.															
3	To le	arn the	interfac	ing kit	of the v	arious	inverte	r circu	its for	solar pa	anel					
4	To understand the performance of single-phase half & full controlled rectifier controller.															
5	5 To gain knowledge on hardware interfacing circuits for various PV System															
COU	COURSE OUTCOMES															
On the	succe	ssful c	omplet	ion of	the cou	ırse, stı	udents	will b	e able	to						
1. Ar	nalyze t	he perf	ormanc	e chara	cteristic	s of ser	nicond	uctor d	levices	by Ha	rdware Kit		Re	mem	ber	
2. De	esign a	solar pa	inel wit	h a pow	ver conv	verter fo	or solar	panel	rating.				Ap	ply		
3. Per	forman	ce analy	ysis of j	power c	onverte	er for th	e vario	us PV	system	l.			Ar	alysi	S	
4. Fat	oricate 1	he trigg	gering c	ircuit f	or vario	us pow	er ratin	ıg					Im	plem	ent	
5. De cycloce	esign an onverte	d analy r by hai	vsis of t rdware	he perfo kit	ormance	e charac	cteristic	s of A	C volta	age con	troller &		Ap	ply		
MAPI	PING	WITH	PRO	GRAM	ME O	UTCO)MES	AND	PRO	GRAN	AME SPEC	CIFIC	OUTC	OM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	5O2	PSO3
CO1	S	S	М	-	М	-	-	-	-	-	-	L	L]	М	-
CO2	S	S	S	М	S	-	-	-	-	-	-	L	L		-	М
CO3	S	S	S	М	L	-	-	-	-	-	-	M	M		-	М
CO4	S	М	М	L	S	-	-	-	-	_	-	L	S		-	-
CO5	S	S	М	М	М	-	-	-	-	-	-	L	L]	M	М
S- Stro	S- Strong; M-Medium; L-Low															

-9-1- d-=+

Syllabus :

- 1. Implantation of single-phase Half controlled converter using PCB for Solar panel
- 2. Design of single phase fully controlled converter using PCB for 10 W solar panel
- 3. Design of single phase PWM inverters for KVA inverter kit.
- 4. Analysis of three phase bridge inverter for low power solar system.
- 5. Analysis of single-phase AC voltage controller for Solar drives.
- 6. Fabrication of Cycloconverter for AC motor drives
- 7. Fabrication of Chopper circuit using PCB for 24 W Solar Panel

COUF	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Dr.K.Boopathy	Associate Professor	EEE/AVIT	boopathyk@avit.ac.in										
2	Dr. R. Devarajan	Professor	EEE/	devarajan@vmkvec.edu.in										
			VMKVEC											

- p-1- d-=+

												Categor	y L	Т	P C
				Funda	iment	als of A	lutom	otive S	ystems	5			3	0	0 3
Preamble	e														I
The cours	se prov	ides a :	fundan	nental ı	underst	tanding	of the	electri	c vehic	ele.					
PREREC	QUISI	Г Е : N	il												
COURSI	E OBJ	ECTIV	/ES												
1	1 To impart knowledge on electric drives														
2		To impart knowledge on Motor Drive and Propulsion Systems of Electric Vehicles													
3		To u	understand the concepts of energy storage systems.												
4		To d	design and analyze the energy management strategies of electric vehicle.												
5		To c	o create the network systems for electric vehicles.												
COURSI	E OUT	COM	OMES												
On successful completion of the course, the students will be able to															
СО	1	Und	erstand	the co	ncepts	ofeleo	etric ve	hicle d	rives.					Under	stand
СО	2	App vehi	ly the A cles.	AC, DC	C and p	erman	ent ma	gnet el	ectric c	lrive cor	ncepts ir	electric	;	Apply	
СО	3	Deve	elop th	e charg	ging sy	stems a	and also	o can a	ble to i	impleme	ent the re	egenerati	ion.	Cre	ate
СО	4	Desi	gn the	electric	e drive	system	ns for c	lifferen	it topol	ogies.				Cre	ate
СО	5	Expo	osure tl	ne vehi	cular c	commu	nicatio	n proto	ocols.					Anal	yze
Mapping	with P	rogram	ime ou	tcomes	and P	rogram	ime Sp	ecific (Dutcon	nes			·		
COs	PO1	PO2	PO 2	PO4	PO 5	PO6	PO 7	PO8	PO	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	S	S	-		L	-	-	S	S	-
CO2	S	M	S	S	S	L	M	L	М	L	-	-	L	M	-
CO3	S	М	М	L	L	L	М	-	-	L	-	-	L	М	-
CO4	S	М	S	S	S	M	М	L	М	L	М	-	М	M	-
CO5	S	М	M L S M S - M L L M - L M												

-g-1.-d-=+

Introduction

xEV:- Introduction to xEV's – BEV, HEV, PEV, FCEV- Configuration of Electric Vehicles, Performance of Electric Vehicles, Traction motor characteristics, Tractive effort and Transmission requirement, xEV Drive Trains:- Architecture of Hybrid Electric Drive Trains, Series Hybrid Electric Drive Trains, Parallel hybrid electric drive trains.

Electric Propulsion Systems

Electric Propulsion systems: EV consideration, DC motor drives, Induction motor drives, Permanent Magnet Motor Drives, Switch Reluctance Motor Drive for Electric Vehicles, Configuration and control of Drives, Sizing of Electric Machine for EVs and HEVs.

Energy Storage Systems

Energy Storage and power electronics for battery charging and grid interface, Energy Storage Requirements in (Hybrid and) Electric Vehicles:- Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Hybridization of different energy storage devices. EV and PHEV Battery Charging: Grid and Renewable Energy Interface, Regenerative braking.

Energy Management Strategies

Energy Management Strategies: classification, comparison and implementation issues of EMS. On-board power electronic battery Management systems. Design of Electric and Hybrid Electric vehicle: Parallel Hybrid Electric Drive Train Design: Control strategies of parallel hybrid drive train, design of engine power capacity, design of electric motor drive capacity, transmission design, and energy storage design.

Vehicular Networks

Vehicular Networks: Cross-System Functions, Requirements For Bus Systems, Classification Of Bus Systems, Application In The Vehicle, Coupling Of Networks, Examples Of Networked Vehicles;

Bus Systems: CAN Bus, CAN-FD, LIN Bus, MOST Bus Bluetooth, Flex Ray, Diagnostic Interfaces: Implementation Of Body Electronics Functionalities Using Controllers. Control Systems for the HEV and EVs:, On-Board Diagnostics (OBD), Introduction to autonomous driving.

TEXTBOOK

- 1.M. Ehsani, Y. Gao, S. Gay and Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2015
- 2. Iqbal Hussain, "Electric & Hybrid Vechicles Design Fundamentals", Second Edition, CRC Press, 2011. Sheldon S. Williamson, Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer, 2013.

3. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003. REFERENCES

1.Paul, A., Chilamkurti, N., Daniel, A. and Rho, S. Intelligent Vehicular Networks and Communications. Elsevier Science and Technology Books, Inc. 2017

2. Wai Chen, "Vehicular Communications and Networks: Architectures, Protocols, Operation and Deployment", Elsevier Science and Technology Books 2015

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.G.Ramakrishnaprab	AssociateProfesso r	EEE/	ramakrishnaprabu@vmkvec.edu.i
2	Mr.S. Prakash	Associate Professor	EEE/	prakash@avit.ac.in

\$-1.- d-=+

Vehicular Networks and Communication	Category	L	Т	Р	C
		3	0	0	3

Preamble:

Vehicular Network and Communication is a course that focuses on the study of communication technologies and protocols specifically designed for vehicles and their integration into intelligent transportation systems. The course examines the characteristics, challenges, and opportunities of vehicular networks, including their deployment, performance, and security aspects.

PREREQUISITE : Nil

COURSE OBJECTIVES

1	To Identify the knowledge on communication technologies and standards of automotive
1	systems.
r	To Understand the fundamental concepts and principles of vehicular networks and their role
Z	in intelligent transportation systems.
3	To Familiarization with vehicular network models and functions.
4	To Evaluate the performance of various vehicular network architectures.
5	To Analyze the protocols and standards for V2V and V2I communication.

COURSE OUTCOMES

On successful completion of the course, the students will be able to

CO 1	Identify the knowledge on communication technologies and standards of automotive systems.	Understand
CO 2	Understand the fundamental concepts and principles of vehicular networks and their role in intelligent transportation systems.	Understand
CO 3	Familiarization with vehicular network models and functions.	Apply
CO 4	Evaluate the performance of various vehicular network architectures.	Evaluate
CO 5	Analyze the protocols and standards for V2V and V2I communication.	Analyze
Manning with Pr	ogramme outcomes and Programme Specific Outcomes	

Mapping with Programme outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	М	-	-	-	-	М	М	М	-	М	-
CO2	L	-	-	-	M	L	-	-	-	L	M	М	-	S	-
CO3	L	-	-	-	M	L	-	-	-	L	L	L	-	М	-

- p-1- d-=+

CO4	L	L	S	L	S	L	-	-	-	М	М	L	-	S	L
CO5	L	М	S	L	S	L	-	-	-	L	S	М	-	S	L

Vehicular communications

Introduction to vehicular communications- Overview on transportation networks, Evolution of transportation models, Vehicular network standardization, Vehicular communication technologies.

Vehicular network

Vehicular network (VN) model- Cluster based vehicular networks, Vehicle platooning, Vehicular cloud, Hybrid sensor-vehicular networks, Information distribution, Internet of Vehicles.

Vehicular network models and functions

Vehicular Networks: Cross-System Functions, Requirements for Bus Systems, Classification of Bus Systems, Application in the Vehicle, Coupling of Networks, Examples of Networked Vehicles;

Vehicular network architectures

Bus Systems: CAN Bus, CANFD, LIN Bus, MOST Bus Bluetooth, Flex Ray.

Protocols and standards for V2V and V2I communication

Vehicular Communications: Intelligent Transportation Systems: IEEE 802.11p-ITS-IVC: Inter- Vehicle Communications- Mobile Wireless Communications and Networks- Architecture Layers Communication Regime.V2V, V2I-VANET-WAVE; DSRC.

TEXTBOOK

1. Dominique Paret, "Multiplexed Networks for Embedded Systems: CAN, LIN, FlexRay, Safe-by-Wire", Wiley,2007.

2. Popescu-Zeletin R, Radusch I and Rigani M.A, "Vehicular-2-X Communication", Springer, 2010.

REFERENCES

1. Dominique Paret, "FlexRay and its Applications: Real Time Multiplexed Networks", Second Edition, Wiley,2012.

2. Xiang W, "Wireless Access in Vehicular Environments Technology", Springer, 2015.

3. Laun T.H, Shen X. (Sherman) and Bai F, "Enabling Content Distribution in Vehicular AdHoc Networks", Springer, 2014.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Mr. S. Prakash	Assistant Professor (Gr-	EEE/AVIT	sprakash@avit.ac.in

- p-1- d-=+

			E-mobility Business and Policies Category										y L	Т	P C	
													3	0	0 3	
Preamble	9															
To impar	know	ledge o	on the r	need of	polici	es for H	Electric	e Vehic	le char	ging and	d infrast	ructure r	requirem	ents.		
PREREC	QUISIT	ГЕ : N	il													
COURSI	E OBJ	ECTIV	/ES													
1 Understanding the models used in public transportation system																
2		Familiarize the concept of shared mobility services, advantages and monitory benefits.														
3		Intro	stroduce to the infrastructure requirements for electric vehicle charging													
4		Abil	bility to comprehend, design and develop policies for electric vehicle charging													
5		Und	nderstanding the various standards of electric vehicle.													
COURSI	JURSE OUTCOMES															
On successful completion of the course, the students will be able to																
СО	1	Und	erstand	the co	ncepts	of pub	olic trai	nsport s	system					Understand		
СО	2	To a	pply th	e conc	ept of	E mob	oility se	ervices						Apply		
CO	3	Deve	elop th	e charg	ing sy	stems a	and also	o can a	ble to i	mpleme	ent the re	egenerati	ion.	Create		
CO	4	To d	esign a	ind dev	elop tl	ne polio	cies foi	electri	ic vehi	cle charg	ging			Create		
СО	5	To u	ndersta	and the	variou	is stanc	lards o	f electr	ic vehi	cle.				Under	stand	
Mapping	with P	rogram	ime ou	tcomes	and P	rogram	ime Sp	ecific (Dutcon	nes						
COs	PO1	PO2	PO 3	PO4	PO 5	PO6	PO 7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	М	L	-	М	S	L	-	М	М	-	-	М	L	-	
CO2	S	М	M M S M L M L M L M								М	M	-			
CO3	S	М	М	L	М	L	М	-	-	L	-	-	М	M	-	
CO4	S	М	S	S	S	M	М	L	М	L	М	-	М	M	-	
CO5	S	М	M L S M S - M L M M - M M										М			

-9-1- d-=+

Introduction

Introduction to India's passenger mobility sector- current state of India's public transport system, public transport: efficiently and affordably mobilizing cities, opportunities to maintain and ideally increase the utilization of public transport in India, expanding India's definition of public transport through data and new business models.

Electric Mobility

India's Path Forward In Public Transport, Sharing and Mobility Services: Unlocking Economic Electrification- the business case for shared, electric mobility services, Examples of Shared Mobility Services Active In Today's Global Marketplace.

Incentives for Electric Mobility

Ride-Hailing Services: Pooled Ride-Hailing Services: Vehicle Sharing: Peer-To-Peer Vehicle Sharing: Fixed-Route Commuter Services: Incentives to promote electric mobility and sharing: Parking and pick-up benefits: Road toll and road tax discount or exemption: Licensing and registration benefits.

EV Charging Infrastructure Deployment

Congestion pricing: Low-emission zones: EV Charging Infrastructure: Powering EVs and Recharging 4 India's Electricity Sector: Considerations and Implications for India's EV Charging Infrastructure Deployment Standards

EV Standards

EV standards-IEEE, IEC and SAE, Basics of EV charging, EV charging standards and infrastructure, Smart Parks, V2G, G2V, V2B, V2H, renewable energy integration to EV charging infrastructure.

TEXTBOOK

1.Emadi, A. (Ed.), Miller, J., Ehsani, M. (2003). Vehicular Electric Power Systems. Boca Raton: CRC Press.

2.Husain, I. (2010). Electric and Hybrid Vehicles. Boca Raton: CRC Press.

REFERENCES

1.Larminie, James, and John Lowry. Electric Vehicle Technology Explained. John Wiley and Sons, 2012.

2. Tariq Muneer and Irene Illescas García, 1 - The automobile, In Electric Vehicles: Prospects and Challenges, Elsevier, 2017.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sathish	Associate Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
2	Mr. S Prakash	Assistant Professor	EEE/AVIT	sprakash@avit.ac.in

- p-1- d-=+

		AUTOMOTIVE ELECTRONICS										Categor	у	L	Т	Р	C
			AU	IOM)		CIN	JUIC	9					3	0	0	3
Pream	ble																
To equ	ip studer	nts wit	h the l	cnowle	edge a	nd skil	lls req	uired t	o wor	k in th	e rapic	lly evolvi	ing f	field	of au	tome	otive
industr	ies. Auto	motive	e Elect	ronics	provid	les the	know	ledge	of both	n Elect	rical ar	nd Autom	otive	e fiel	ld. Th	is co	urse
covers	basic ele	ectronic	cs, auto	omotiv	e elec	trical s	system	s and	compo	nents.	It give	s power	elect	roni	cs app	olicat	ions
for eng	ine contr	ol syst	ems, a	dvance	ed sens	sing, c	ommu	nicatio	on and	contro	ol system	ms, and a	ldvar	nced	electr	onics	s for
green v																	
PRER	PREREQUISITE : Nil																
	OURSE OBJECTIVES																
	Acquire an overview of automotive components, subsystems, and basics of Electronic Engine Control																
2	microp	Use available automotive sensors and actuators while interfacing with microcontrollers/															
3	Unders	Understand the Digital Engine control systems and Onboard diagnosis system.															
4	Ability to analyze the performance of various control systems, engine management and electrical networks and components in electric vehicles.																
5	Design and implement the electronics that attribute the reliability, safety, and smartness to the automobiles, providing add-on comforts and get fair idea on future Automotive Electronic Systems.																
COURSE OUTCOMES																	
On suc	On successful completion of the course, the students will be able to																
	Underst	anding	the evo	olution	of auto	motive	electr	onics a	nd elec	tronic e	engine r	nanageme	ent				
CO 1	system										0	8		U	Jnders	stand	ing
CO 2	Underst	anding	the aut	tomoti	ve con	trol sy	stem a	pplica	tions c	of Sens	ors and	l Actuato	rs	ι	Understanding		ing
CO 3	Analyz automo	ing the	e Digita	al Engin	ne cont	rol sys	tems o	f vario	us elec	ctronic	dash b	oard of			Ana	alyze	;
CO 4	Able to	analyze	e the pe	erforma	nce of	various	s contro	ol syste	ems to a	automo	tive sys	tems			Ap	ply	
CO 5	Analyz automo	ing the	e diffe	rent Or	n-board	d diagr	nostics	, Off-ł	ooard d	liagnos	stics to	the			Ana	alyze	;
Mappir	ng with P	rogran	nme oi	itcome	es and	Progra	imme	Specifi	ic Outo	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1		PSO2	PS	803
CO1	S	S	-	-	-	M	S	L		L	-	-	S		L		М
CO2	М	-	M	-	S	L	M	-	M	L	-	-	L		М		-
CO3	3 M - M - S L M L											Μ	-	L		-	

-P-1- - -==

CO4	S	-	S	-	-	L	М	-	-	L	М	-	М	L	-
CO5	S	М	S	S	S	L	S	-	М	L	L	М	-	L	М

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Evolution of Automotive Electronics, Automobile Physical Configuration, Components for electronic engine management system, open and closed loop control strategies, PID control, Look up tables, introduction to control strategies: Fuzzy logic and adaptive control. Parameters to be controlled in SI and CI engines

SENSORS & ACTUATORS

Automotive Control System applications of Sensors and Actuators - Variables to be measured, Airflow rate sensor, Strain Gauge MAP sensor, Engine Crankshaft Angular Position Sensor, Magnetic Reluctance Position Sensor, Hall effect Position Sensor, Shielded Field Sensor, Optical Crankshaft Position Sensor, Throttle Angle Sensor (TAS), Engine Coolant Temperature (ECT) Sensor, Exhaust Gas Oxygen (02/EGO) Lambda Sensors, Piezoelectric Knock Sensor.

DIGITAL ENGINE CONTROL SYSTEM

Digital Engine control features, engine cooling and warm up control, idle speed control, acceleration and full load enrichment, Electronic Ignition Control -Closed loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System, future automotive electronic systems, Electronic dash board instruments – Onboard diagnosis system

AUTOMOTIVE NETWORKING&VEHICLE MOTION CONTROL

Bus Systems- Classification, Applications in the vehicle, Coupling of networks, Examples of networked vehicles, Buses - CAN Bus, UN Bus, MOST Bus, Bluetooth, Flex Ray, Diagnostic Interfaces.Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS)

AUTOMOTIVE DIAGNOSTICS

Timing Light, Engine Analyzer, On-board diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems -Accelerometer based Air Bag systems

TEXTBOOK

- 1. William B. Ribbens, "Understanding Automotive Electronics", 6th Edition, Elsevier Publishing, 2002.
- 2 Robert Bosch GmbH (Ed.) Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive, 5th edition, John Wiley & Sons Inc., 2007
- 3. Hillier's, "Fundamentals of Motor Vehicle Technology on Chassis and Body Electronics", Fifth Edition, Nelson Thrones, 2007.
- 4. Bosch, "Automotive Electrics and Automotive Electronics. System and components, Networking and Hybrid drive", Fifth edition, Springer view 2014.

REFERENCES

\$-1- d-=+

- 1. Automobile Electrical & Electronic Equipments Young, Griffitns Butterworths, London.
- 2. Understanding Automotive Electronics, Wiliam B. Ribbens, 5th Edition, Newnes, Butterworth-Heinemann.
- 3. Diesel Engine Management by Robert Bosch, SAE Publications, 3rd Edition, 2004
- 4. Gasoline Engine Management by Robert Bosch, SAE Publications, 2nd Edition, 2004
- 5. Understanding Automotive Electronics Bechfold SAE 1998
- 6. Automobile Electronics by Eric Chowanietz SAE.
- 7. Fundamentals of Automotive Electronics V.A.W.Hilliers Hatchin, London
- 8. Automotive Computer & Control System Tomwather J. R., Cland Hunter, Prentice Inc. NJ
- 9. Automotive Computers & Digital Instrumentation Robert N. Brandy, Prentice Hall
- 10. Eaglewood, Cliffs, NJ
- 11. The Fundamentals of Electrical Systems John Hartly Longman Scientific & Technical
- 12. Automobile Electrical & Electronic Systems Tom Denton, Allied Publishers Pvt. Ltd.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	K.S.Kavitha Kumari	Assistant Professor	EEE/AVIT	kavitha.eee@avit.ac.in
2	P. LOGANATHAN	Assistant Professor	EEE/VMKVEC	loganathan@vmkvec.edu.in

- p-1- d-=+

		Category	L	Т	Р	С
	AUTOMOTIVE CONTROL SYSTEMS		4	0	0	4
Preamble						

It is a design oriented course aimed at automotive system control is the active control of the suspension system, which is widely used in industry, and feedback control system.

PREREQUISITE : Nil

COURSE OBJECTIVES

1	To discuss about the impart knowledge control.
2	To estimate the modeling of vehicle dynamics system design.
3	To explain about, design controllers for automotive systems.
4	To discuss the various driver models,
5	To explain about complete simulationsystem.

COURSE OUTCOMES

On successful completion of the course, the students will be able to

CO 1	Understanding of vehicle dynamics and road-driver models.	Understand
CO 2	Ability to diagnosis the vehicle faults using fault models	Create
CO 3	Ability to analyze the ABS control systems.	Apply
CO 4	Ability to develop a complete driver model with path, road surface and wind strength.	Create
CO 5	Ability to develop a complete simulation.	Analyze

Mapping with Programme outcomes and Programme Specific Outcomes

COs	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	S	L	-	M	S	S	-		L	-	-	S	S	-
CO2	S	S	S	S	S	L	М	L	М	L	-	-	L	S	-
CO3	S	S	L	L	L	L	S	-	-	L	-	-	L	S	-

- p-1- d-=+

CO4	S	S	S	S	S	М	М	L	М	L	М	-	L	М	-
CO5	S	М	М	L	S	М	S	-	М	L	L	М	-	S	М

Overview of Control System: Modeling, Time/Frequency Response Analysis And Stability Analysis: PID, State Variable Analysis.

Model Based Diagnosis: Characteristics, Faults, Fault Modeling, Principles Of Model Based Diagnostics-Residual Generator Design, Residual Evaluation, Engineering Of Diagnosis Systems, Application Example.

Vehicle Control Systems: ABS Control Systems- Torque Balance At Vehicle- Road Contact, Control Cycles Of The ABS System, ABS Cycle Detection; Control Of Yaw Dynamics- Deviation Of Simplified Control Law, Derivation Of Reference Values.

Road and Driver Models: Road Model- Requirements of The Road Model, Definition of The Course Path, Road Surface and Wind Strength; PID Driver Model; Hybrid Driver Model – Vehicle Control Tasks, Characteristics of Human as A Controller, Information Handling, Complete Driver Model.

Simulation/case studies on relevant topics.

TEXTBOOK

TEXT BOOKS/REFERENCES

1. Kiencke, Uwe and Nielsen, Lars, "Automotive Control Systems for Engine, Driveline and

Vehicle", Springer, 2005

2. I.J Nagrath and M.Gopal, "Control Systems Engineering", Wiley Eastern Limited, New Delhi, 2008.

M.Gopal, "Modern Control System Theory", New Age International, 2005.

3. Katsuhiko Ogata, "Modern Control Engineering", Fifth Edition, Prentice Hall, 2010.

COURSE DES	GIGNERS
-------------------	---------

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. A.Balamurugan	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in
2	Dr. L. Chitra	Professor	EEE/AVIT	chitra@avit.ac.in

\$-1.- d-==

				VEL		νιλλη						Categor	у	L	Т	P C	2
				VEr		TNAIVII			NUL			EC(PE))	4	0	0 4	1
Preamble																	
.To unders	tand the	concep	ot of vel	hicle dy	mamics	and an	alyze tl	he parai	meters t	for adapt	ive vehi	cular cont	trol				
PREREQ	UISITE	C : Cont	trol Sys	stem													
COURSE	COURSE OBJECTIVES																
1	1 To analyze the performance of vehicle control systems.																
2	2 Develop the analytical skills necessary to quantitatively predict the behavior of open-loop and closed-loop systems.										p						
3		Expe	Experimental design will be complemented with a careful analysis of the performance by simulation.														
4		Deve	Develop skills in using professional computer-aided control system design and analysis tools.														
5	5 To explore properties of dynamic systems composed of a large number sub-systems.																
COURSE OUTCOMES																	
On successful completion of the course, the students will be able to																	
СО	1	Unde	erstandi	ng of c	oncepts	s in veh	icle dyr	namics	and cor	ntrol.					Reme	nber	
CO	2	Know	vledge o	on cont	rol syst	em arcl	nitectu	re and a	adaptiv	e vehicul	lar contr	ol			Reme	nber	
CO	3	Abilit	to de	sign an	d devel	op cont	trollers	for bra	king sys	stem in E	Electric v	ehicle			Anal	yze	
CO	4	Abilit	to an	alyze th	ne elect	ronic st	ability	control	in Elec	tric Vehi	cles				Anal	yze	
CO	5	Expe	cted to	design	feedbac	ck conti	ol syste	ems for	an actu	ial scale	d vehicl	e platform	1.		App	oly	
Mapping w	vith Prog	gramme	e outcor	nes and	l Progra	umme S	pecific	Outcor	nes								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO1	Р	SO2	PSO3	3
CO1	S	-	-	-	-	-	S	М	L	-	-	-	М		L	M	
CO2	S	-	-	L	-	-	-	-	М	-	М	L	М		L	М	
CO3	L	S	S	М	-	-	-	М	-	-	-	-	М		L	L	
CO4	L	S	M	-	М	-	-	М	-	-	-	-	М		L	L	
CO5	S	L	S	М	S	-	-	-	М	-	-	-	М		L	М	

UNIT I- INTRODUCTION

-p-1.- d-=+

Introduction to Driver Assistance Systems, Active Stability Control, Ride Quality, Technologies for Addressing Traffic Congestion, Emissions and Fuel Economy; Lateral Vehicle Dynamics: Kinematic Models, Dynamic Bicycle Model, From Body Fixed To Global Coordinates: Lateral Vehicle Control: State Feedback.

UNIT II- STEADY STATE ANALYSIS:

Understanding Steady State Comering, the Output Feedback Problem, Compensator Design with Look Ahead Measurement; Longitudinal Vehicle Dynamics: Longitudinal Vehicle Model, Driveline Dynamics, Mean Value Engine Models

UNIT III LONGITUDINAL VEHICLE DYNAMICS

Longitudinal Vehicle Control: Introduction: Cruise Control, Control System Architecture, Adaptive Cruise Control, Individual Vehicle Stability and String Stability, String Stability with Constant Spacing, String Stability with Constant Time Gap, Controller for Transitional Maneuvers, Automated Highway Systems, Longitudinal Control for Vehicle Platoons, String Stability with Inter- Vehicle Communication, Adaptive Controller for Unknown Vehicle Parameters.

UNIT IV ELECTRONICS STABILITY CONTROL

Electronics Stability Control: Vehicle Model, Control Design for Differential Braking Based Systems, Control Design for Steer-By-Wire System, Independent All Wheel Drive Torque Control.

UNIT V AUTOMOTIVE SUSPENSIONS

Active Automotive Suspensions: H2 Optimal Control, LQR Formulation for Active Suspension Design, Analysis of Trade-Offs Using Invariant Points, Performance of The Sky-Hook Damping Controller, Control with Hydraulic Actuators; Lab Experiments Based on Simulation Tools.

ТЕХТВООК

1. Thomas D. Gillespie, "Fundamentals of Vehicle Dynamics", SAE International, 1992.

2.R. Rajamani, "Vehicle Dynamics and Control", Second Edition, Springer Verlag 2012.

REFERENCES

1. Uwe Kiencke and Lars Nielsen, "Automotive Control Systems: For Engine Driveline, and Vehicle", Second edition, Springer, 2005.

2. John C Dixon, "Tyres, Suspension and handling", 2nd Revised Edition, SAE International, 1996.

3. Hans B. Pacejka, "Tyre and Vehicle Dynamics", Second Edition, Butterworth-Heinemann, 2006.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. S. Prakash	Assistant Professor(Gr-II)	EEE/AVIT	sprakashavit.ac.in
2	Mrs. N.Aishwarya	Assistant Professor	EEE/VMKVEC	aishwarya@vmkvec.edu.in

- p-1- d-=+

				SF	NSOI	RS & /	ACTU	IATO	RS			Categor	ry	L	Т	Р	С
							1010							3	0	0	3
Preambl	e																
The object	ctive of	this co	ourse i	s to m	ake the	e stude	nts to	list co	mmon	types c	of sense	or and ac	tuator	's us	sed in		
Vehicles.	vc.																
PREREC	QUISIT	ГЕ:															
COURS	E OBJI	ЕСТГ	VES														
1		То с	To convey types of sensor and actuators used in vehicles.														
2		To f	To familiarize with the concepts of measurement of pressure force, temperature and flow.														
3		To u	'o understand the sensors and actuators and their applications.														
4		To le	'o learn the concept of operation of the sensors, actuators and electronic control.														
5		To u	To understand the concepts of temperature control actuators for vehicles.														
COURS	E OUT	СОМ	OMES														
On succe	essful c	omple	tion o	f the c	ourse	, the st	udent	ts will	be abl	e to							
СО	1	To u	Inderst	and ba	sics of	f senso	rs, act	uators	and the	eir cha	racteris	stics.			Unde	rstar	ıd
СО	2	To e	xplain	worki	ng of	various	s types	s of tra	nsduce	rs and	actuate	ors.			Reme	embe	er
СО	3	To e sens	ducate ors.	the st	udents	on dif	ferent	types	of sens	sors and	d other	special			Rem	embe	er
СО	4	To p	orovide	infor	nation	about	interf	acing o	of actua	ators a	nd driv	es.			Ар	ply	
C0	5	To u	Inderst	and th	e chara	acterist	tics of	contro	oller an	d its ap	plicati	ons.			Unde	rstar	ıd
Mapping	with Pr	rogran	nme ou	itcome	es and	Progra	imme l	Specifi	ic Outc	comes							
COs	PO1	PO 2	PO3	PO 4	PO5	PO6	PO 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO	1	PSO2	P	503
CO1	L	S	L	-	-	S	S	-	-	L	-	-	-		-		L
CO2	М	M M M - M L M - M L L												L			
CO3	М	-	М	-	М	L	М	-	-	L	-	-	-		-		-
CO4	L	-	S	-	М	M	М	L	-	L	М	-	М		L		-
CO5	S	L	S	S	S	М	S	-	М	L	L	L	-		-		-

-9-1- d-=+

INTRODUCTION TO MEASUREMENTS AND SENSORS

Sensors: Functions-Classifications-Main technical requirement and trends Units and standards-Calibration Methods-Classification of errors-Error Analysis-Limiting Error-Probable error-Propagation of error-Odds and uncertainty-principle of transduction-Classification. Static characteristics-mathematical model of transducers-Zero, First and Second order transducers- Dynamic characteristics of first and second order transducers for standard test inputs.

VARIABLE RESISTANCE AND INDUTANCE SENSORS

Principle of operation-Construction details-Characteristics and applications of resistive potentiometer-Strain gauges-Resistive thermometers-Thermistors-Piezoresistive sensors, Inductive potentiometer-Variable reluctance transducers:-EI pick up and LVDT.

VARIABLE AND OTHER SPECIAL SENSORS

Variable air gap type, variable area type and variable permittivity type-capacitor microphone Piezoelectric, Magnetostrictive, Hall Effect, semiconductor sensor-digital transducers- Humidity Sensor. Rain sensor, climatic condition sensor, solar, light sensor, antiglare sensor.

AUTOMOTIVE ACTUATORS

Electromechanical actuators-Fluid mechanical actuators-Electrical Machines-Direct current machines-Threephase machines-Single phase alternating-current Machines. Duty-type ratings for electrical machines. Working principles, construction and location of actuators viz. Solenoid, relay, stepper motor etc

AUTOMATIC TEMPERATURE CONTROL ACTUATORS

Different types of actuators used in automatic temperature control-Fixed and variable displacement temperature control-Semi Automatic- Controller design for Fixed and variable displacement type air conditioning system.

TEXTBOOK

- 1. Doebelin's Measurement Systems:7th Edition (SIE), Ernest O.Doebeling Dhanesh N.Manik McGraw Hill Publishers,2019.
- 2. Robert Brandy,"Automotive Electronics and Computer System", Prentice Hall,2001.
- 3. William Kimberley, "Bosch Automotive Handbook",6thEdition,Robert Bosch GmbH,2004.
- Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive,5th Edition,2007,ISBN No:978-3-658-01783-5.

REFERENCES

- 1. James D Halderman," Automotive Electrical and Electronics", Prentice Hall, USA, 2013.
- 2. Tom Denton, "Automotive Electrical and Electronics Systems," Third Edition, 2004, SAE International.
- 3. Patranabis.D,"Sensors and Transducers",2nd Edition, Prentice Hall India Ltd,2003.
- 4. William Ribbens,"Understanding Automotive Electronics-An Engineering Perspective,"7th Edition, Elsevier Butterworth-Heinemann Publishers,2012.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Kavitha Kumari. K.S	AP(Gr-II)	EEE/AVIT	kavitha.eee@avit.ac.in

\$-1- d-=+

				DI		р ітс			τιον	ſC		Categor	y L	Т	Р	С
				I L'		D 115	ALL	LICA		6			4	0	0	4
Preamb	le								. ~.							
To intro	duce t	he fu	ndam c Con	entals	of Pi	rogran	nmabl	e Log	gic Ci	rcuits a	and its	applicat	ions i	n Eng	ginee	ering. latorsand
is a large	subse	et of tl	ne fiel	d of "]	Mecha	tronic	s".	CICICO		noman	c conti	01 101 111	iuni-az	15 1110	mpu	latorsand
PRERE	QUIS	ITE :														
COURS	E OB	JECI	TIVES	5												
1		То	To understand the basic PLC terminologies, digital principles, PLC architecture and operation.													
2		Τοι	To understand the programming instructions of PLC.													
3		Тос	To develop the basic programming for simple applications using PLC.													
4		Τοι	o understand the hardware and software behind PLC and SCADA.													
5		Тос	o develop the PLC logics for real time applications with PLC programming.													
COURS	E OU	TCO	COMES													
On succ	essful	comp	mpletion of the course, the students will be able to													
CC 1		Und anda	Understand the basic requirement of a PLC input/output devices Understand Understand													
$\begin{array}{c} CC\\ 2\end{array}$)	Abi	lity to	under	stand	basics	instru	ictions	s used	for PLO	C progi	ramming.		Und	ersta	nd
CC)	Abi and	lity to	desi	ign P	LC p	orogra	mmes	by	applyin	ıg tim	er/counte	er	А	pply	
3		arith	nmetic	and le	ogic ir	nstruct	ions.									
CC)	Abi	lity	to u betwe	ndersta en	and	the	conce	pts o	of cor	nmunic	cation		Und	ersta	nd
4		PLC	C/SCA	DA	-											
CC 5)	Able	e to de	evelop	a PLC	C logic	c for a	speci	fic rea	l world	applic	ations.		А	pply	
Mapping	g with	Progr	amme	outco	mes a	nd Pro	ogram	me Sp	ecific	Outcor	nes					
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	P 3	SO
CO1	S	L	-	-	-	S	-	-	-	L	-	-	-	-		L
CO2	М	M M L M L - L - L														
CO3	М	L	S	-	-	L	М	-	-	L	-	-	L	-		-
CO4	S	L	М	-	S	М	М	-	-	L	-	-	L	М		-
CO5	S	Μ	М	S	S	Μ	S	L	М	L	М	S	Μ	S		Μ

-\$-1- d-=+

INTRODUCTION TO PLC

Introduction to PLC: Parts of PLC, Principle of operation, I/O section, Special I/O modules, CPU, Drivers-PLCConstruction: PLC Memory Design, HMIs, PLC I/O, Types of PLC.

INSTRUCTIONS IN PLC

Process memory organization, Bit- Level Logic Instructions – Instruction addressing -Function block Programming- Ladder/Function Block functions,

PLC Basic Instructions, Basic Examples (Jump Instructions, Suspend Instructions)– Latching Relay, Configuration of Sensors, Switches - Timers, Counters, Examples.

PROGRAMMING IN PLC

Different types of PLC program, PLC programming languages - Basic Ladder logic, logic functions, PLC module addressing, registers basics, arithmetic functions, comparison functions, data handling, data move functions, timer-counter instructions, input-output instructions, sequencer and shift instructions.

PLC AND SCADA

Types of process - Communication Protocol – Modbus, Profibus-DP - Communication facilities SCADA - Hardware and software, Remote terminal units, Master Station and Communication architectures.

CASE STUDIES/APPLICATIONS OF PLC

PLC ladder diagram using logic gates - Stepper Motor Control- Elevator Control-Traffic light control - ON / OFF control in Flow and Pressure process control - CNC Machine Control- conveyor control-Interlocking Problems

TEXTBOOK

- 1. Frank Petruzzula, "Programmable Logic Controllers", Tata Mc-Graw Hill Edition.
- 2. John W. Webb, Ronald A. Reis, "Programmable Logic Controllers Principles and Applications", PHI publication

REFERENCESS

- 1. Madhuchannd Mitra and Samerjit Sengupta, Programmable Logic Controllers Industrial Automation an Introduction, Penram International Publishing Pvt. Ltd.
- 2. J. R. Hackworth and F. D. Hackworth, Programmable Logic Controllers Principles and Applications, Pearson publication.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L.N.Ramya	AP(Gr-II)	EEE	ramya.avee077@avit.ac.in

- p-1- d-=+

				Dig	ital Ty	vin fo	r Prod	ess In	dustr	V		Categor	ry I	L T	Р	C
				Dig				C35 III	uusu	J			3	8 0	0	3
Preamb	le															
In this co industria	ourse, t l proce	the stu esses.	idents	will le	arn ho	ow to c	develo	p digit	al twi	ns and u	use ther	n to mo	del, sir	nulate,	and	manage,
PRERE	QUIS	ITE :	Nil													
COURS	E OB.	JECT	IVES													
1		To Understand the Concept of Digital Twins technologies. To analyse the Master Digital Twin Development Techniques with cyber physical techniques.														
2		To a	To analyse the Master Digital Twin Development Techniques with cyber physical techniques. To Apply Data Analytics to Digital Twins for Supply Chain and Warehousing													
3		To A	Apply	Data A	Analyt	ics to i	Digita	l Twin	s for S	Supply	Chain a	ind Ware	ehousi	ng		
4		To I	To Design Effective Visualization Interfaces for healthcare.													
5		To I	o Explore Advanced Trends and Ethical Considerations for real time application.													
COURS	E OU	TCON	OMES													
On succ	essful	comp	mpletion of the course, the students will be able to													
CC 1)	dem time	demonstrating and applying the concept of digital twins in real time application. Understand													
CC 2)	deve their simu	develop digital twins for process industry systems, showcasing their proficiency in data collection, integration, modeling, and simulationtechniques.													
CC 3)	appl fron	ly data ndigita	analy I twin	tics m s.	ethods	s to rea	ıl-time	and h	istorica	l data c	collected	l	Ren	nemł	ber
CC 4)	desi twin insig	gn eff is,mor ghts.	ective litor pr	visual ocess	ization param	n inter neters,	faces t analyz	o inter ze data	ract wit a, and ir	h digita nterpret	l		А	pply	
C0	5	criti AI i indu	cally e ntegra istry a	evaluat tion, ndbroa	te adva and a ader so	anced ssess ociety.	trends their	in dig poten	ital tw tial ir	vin tech npact	nology, on the	such as process	5	Und	ersta	ind
Mapping	g with 1	Progra	amme	outcor	nes an	d Prog	gramm	ne Spe	cific C	Outcome	es					
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	P 3	SO
CO1	S	S	L	-	-	L	L	-	-	L	-	-	-	-		L
CO2	М	-	М	-	S	L	М	-	М	L	-	-	-	-		L
CO3	М	L M - S L M L														
CO4	S	-	S	-	S	М	М	L	_	L	М	_	L	М		-
CO5	S	М	S	S	S	М	L	-	М	L	L	М	-	-		L
		I]]		1]]	1	l	l			1		

-9-1- d-=+

Introduction to Digital Twin

Introduction to technologies, need for digital twin, applications, opportunities, and challenges influencing digital twin. Application of digital twin, Merits and demerits of digital twin.

Manufacturing and Production

Introduction to the impact of the digital twin, cyber-physical systems, process automation and optimization, predictive maintenance and anomaly detection on the manufacturing ecosystem and its application

Supply Chain and Warehousing

Introduction to digital twin-based operation and management, and simulation-based smart supply chain ecosystem, including quality assurance in the food and beverage sector, warehousing with machine learning and path planning, and warehousing with machine learning and pallet loading

Healthcare

Introduction to healthcare and bioengineering applications of digital twins. The bioprocess and its potential, industrial-scale bioreactors and biomanufacturing, hospital administration in industry 4.0, epidermic control prediction, and cloud computing for radiotherapy systems.

Application

The fundamental characteristics and applications of digital twins, the future of digital twins and forecast for industrial 5.0.

TEXTBOOK

- 1. Fei Tao, Meng Zhang and A.Y.C. Nee, "Digital Twin Driven Smart Manufacturing" Elsevier, 2019.
- 2. Surjya Kanta Pal, Debasish Mishra, Arpan Pal, Samik Dutta, Debashish Chakravarty, Srikanta Pal "Digital Twin – Fundamental Concepts to Applications in Advanced Manufacturing", Springer 2021

REFERENCES

- 1. Osvaldo A. Bascur, Jim O'Rourke, "Digital Transformation for the Process Industries: A Roadmap", CRC Press, 2020.
- 2. Gopal Chaudhary, Manju Khari, Mohamed Elhoseny, "Digital Twin Technology", CRC Press, 2021.

SI No	Name of the Faculty	Designation	Department	Mail ID
1	K. R. Devabalaji	AssociateProfessor	EEE / AVIT	devabalaji.avee080@avit.ac.in

- p-1- d-==

	Industrial Internat of Things	Category	L	Т	Р	С
	industrial internet of Timigs		3	0	0	3
Preamble						
This cours	e delivers into the convergence of cutting-edge technologies, data analy	tics, and ir	ndusti	rial p	roces	ses t
a holistic u	inderstanding of IIoT and its transformative impact on modern industries	8.				
PREREQ	UISITE : Nil					
COURSE	OBJECTIVES					
1	To provide students with a comprehensive overview of the principles, components of Industry 4.0	evolution,	and l	key		
2	To explore how Industry 4.0 and IIoT contribute to the transformation into smart and agile digital manufacturing processes.	of traditio	nal n	nanuf	actur	ing
3	To discuss the role of cloud computing and data analytics in harness improved decision-making.	sing IIoT-ş	gener	ated	data	for
4	To address the challenges and concerns related to cybersecurity and d Industry 4.0 and IIoT.	ata privacy	y in t	he co	ntext	of
5	To analyze real-world case studies showcasing successful implement IIoT across various industries.	ntations of	Indu	ıstry	4.0 a	ınd
COURSE	OUTCOMES					
On succes	sful completion of the course, the students will be able to					
CO 1	design the core principles and technological foundations of Industry 4. for real time application.	0 and IIoT	[Unde	erstan	d
CO 2	identify and assess the potential benefits and challenges associated integration of Industry 4.0 and IIoT in industrial processes.	d with the	•	Rem	embe	r
CO 3	apply appropriate sensors, communication protocols, and data and techniques for monitoring and optimizing industrial processes.	nalytics		Rem	embe	r
CO 4	design cybersecurity strategies and protocols to protect interconnected systems from potential threats.	l industria	1	Aŗ	oply	
	analyze real-world case studies, propose innovative solutions, actionable plans for the implementation of Industry 4.0 and HoT of	and create concepts in	e n	Unde	orstan	d

-\$-1.-d-=+

CO1	S	М	L	-	-	S	S	-	-	L	-	-	-	-	L
CO2	М	-	М	L	S	L	М	-	М	L	-	-	-	-	L
CO3	М	М	М	-	S	L	М	L	-	L	-	-	-	-	-
CO4	S	-	S	L	S	М	М	L	-	L	М	-	L	М	L
CO5	S	М	S	S	S	М	S	-	М	L	L	М	-	-	-

INDUSTRY 4.0

Cyber Physical Systems and Next Generation Sensors, Collaborative Platform and Product Lifecycle Management, Augmented Reality and Virtual Reality, Artificial Intelligence, Big Data and Advanced Analysis

INDUSTRIAL IoT

IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models, Industrial IoT- Layers: IIoT Sensing, IIoT Processing, IIoT Communication, IIoT Networking

II0T ANALYTICS

Big Data Analytics and Software Defined Networks, Machine Learning and Data Science, Julia Programming, Data Management with Hadoop. Need of Sensors.

IoT SECURITY

Industrial IoT: Security and Fog Computing - Cloud Computing in IIoT, Fog Computing in IIoT, Security in IIoT.

CASE STUDY

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies: Milk Processing and Packaging Industries, Manufacturing Industries.

TEXTBOOK

- 1. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A press, 2017.
- 2. Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat ,"Industrial Internet of Things: Cyber manufacturing Systems", Springer, 2017

REFERENCES

- 1. Giacomo Veneri, Antonio Capasso, "Hands-On Industrial Internet of Things: Create a powerful Industrial IoT", Packt, 2018.
- 2. Ismail Butun, "Industrial IoT Challenges, Design Principles, Applications, and Security", Springer 2020.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	K. R. Devabalaji	Associate Professor	EEE/AVIT	devabalaji.avee080@avit.ac.in

- p-1- d-=+

INTRODUCTION TO MEMS	Category	L	Т	Р	Credit
		3	0	0	3

PREAMBLE

Micro Electro Mechanical System (MEMS) contains components of sizes less than 1 millimeter. MEMS achieve some engineering functions by electro mechanical or electro chemical means. In general a sensor, an actuator and a signal transduction unit forms the MEMS device. Automobile, Aerospace, Health care are some of the areas where MEMS found applications. Natural science, Mechanical, Electrical, Chemical, Materials and Industrial Engineering are the disciplines involved in design, Manufacture and Packaging of MEMS devices. This course provides a comprehensive treatment with synergetic integration of wide spectrum of discipline in science and engineering to cater the multidisciplinary nature of Mechatronics

PREREQUISITE NIL

COURSE OBJECTIVES

1	To ga fabric	in basi ation t	c knov echniq	vledge ues	on ove	rview (of MEI	MS (M	icro ele	ectro Me	echanica	l System) and va	arious	
2	This e	enables	them	to desig	gn, ana	lysis, f	abricat	tion an	d testin	g the M	EMS ba	sed com	ponents		
3	Introc	luce th	e stude	ents var	ious oj	pportur	nities in	n the ei	nergin	g field o	of MEMS	5.			
COUR	RSE OU	U TCO	MES												
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents	will be	able to						
CO1.K	Know the basics of MEMS fabrication technologies and Piezo resistanceEffect, Understand														
Piezoe	electricity, Piezoresistive Sensor														
CO2.	Unders	tandth	e Mecl	nanics (of Bea	m and	Diaph	ragm S	tructur	es				Unde	erstand
CO3.	Use	mecha	nics p	rincipl	es and	l B	asic Eo	quation	is for S	Slide-filı	n AirDa	mping, (Couette	- App	ly
flow N	Iodel, S	Stokes-	flow N	/Iodel.											
CO4.	Know t	the cor	ncept o	f Electi	ostatic	Actua	tion							Anal	lyze
CO5.	. Understand the applications of MEMS in RF Analyze														
MAPI	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	РО	PO4	PO5	PO6	PO	PO8	PO9	PO1	PO11	PO12	PSO1	PSO2	PSO3

-P-1- - -==

			3				7			0					
CO1	S	L	-	-	М	М	-	-	-	-	-	-	S	-	-
CO2	S	М	M	М	L	S	-	L	-	М	L	-	-	-	-
CO3	S	М	М	-	М	-	-	-	М	-	М	-	-	-	-
CO4	S	S	М	-	-	-	-	-	-	-	-	-	-	-	-
CO5	S	S	S	М	М	-	L	-	М	-	-	М	-	L	-
S- Stro	ong; M	-Mediu	ım; L-l	Low											

-P-1- d-=+

Overview of MEMS and Micro Systems: MEMS and Microsystems, products, Evolution of micro-fabrication, Micro system and Microelectronics, The multidisciplinary nature of MEMS, Miniaturization, applications of micro systems in automotive, health care, aerospace, and telecommunication fields.

Working Principles of Microsystems: Introduction, micro sensors: Acoustic waves, optical, chemical, pressure, thermal, biomedical and bio sensors. Micro actuation: using thermal forces, shape memory alloys, piezoelectric crystals and electrostatics forces. MEMS with micro actuators: micro grippers, micro motors, micro valves, micro pumps, micro accelerometer

Scaling law in miniaturization: Introduction to scaling, scaling in rigid body dynamics, electrostatic forces, electromagnetic forces, electricity, fluid mechanics and heat transfer.

Materials for MEMS and Microsystems: Introduction, substrate and wafers, active substrate materials, silicon, silicon compounds, silicon piezoresistors, polymers and packaging materials.

Microsystem fabrication process: Introduction, Photolithography, ion implantation, diffusion, oxidation, chemical vapour deposition, physical vapour deposition (sputtering), Deposition by epitaxy, wet and plasma etching.

Overview of Micro manufacturing: Introduction, bulk micromachining, surface micromachining, the LIGA process. Microsystem packaging: Introduction, Microelectronics packaging, Microsystem packaging, Interfaces in microsystem packaging, Essential packaging technologies, Pressure sensor packaging

TEXTBOOKS

1. Tai –Ran Hsu, "MEMS and Microsystem: Design and Manufacture ", Tata McGraw Hill, First Edition, 2002.

REFERENCE BOOKS

 G.K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Athrae "Micro and Smart System", Wiley India Pvt Ltd, First edition, 2010.
Chang Liu, "Foundation of MEMS", 2nd Edition, Pearson education, 2012.

3. Gad El Hak (Editor), "The MEMS Hand Book", Three volume set, 2nd revised Edition.CRC press, 2005.

S.No ·	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L. Chithra	Professor & Head	EEE/AVIT	chitra@avit.ac.in
2	Dr. R. Sathish	Associate Professor	EEE/VMKVEC	sathish@vmkvec.edu.in

- p-1- d-=+
| | | | | | | | | | 1 | | 1 | | 1 |
|---|--|---|---|---|---|---|---|---|--|--|---|--|--|
| | | PF | ROCES | ESS CONTROL DESIGN | | | | | | Catego | ry L | T | P C |
| | | | | | | | | | | | 3 | 0 | 0 3 |
| | | | | | | | | | | | | | |
| ts to th | e Proc | ess Co | ntrol r | netho | ds used | d in ind | dustrie | es and r | esearch | applica | tion. | | |
| Е: | | | | | | | | | | | | | |
| CTIVI | ES | | | | | | | | | | | | |
| To get adequate knowledge about basic control actions and related issues. | | | | | | | | | | | | | |
| To educate the effect of various control actions and the methods of tuning the controller | | | | | | | | | | | | | |
| To study the control schemes for typical processes and its P & I model. | | | | | | | | | | | | | |
| To learn the concepts of process control, including principles of industrial practices | | | | | | | | | | | | | |
| 5 To introduce the dynamics of various processes and modelling of physical processes using poles and zero principles. | | | | | | | | | | | | | |
| СОМЕ | S | | | | | | | | | | | | |
| comp | oletion | 1 of th | e cou | rse, th | ne stu | dents | will b | e able | to | | | | |
| Discuss the principles of process control, evaluation, data representation | | | | | | | | | | - 1 | | | |
| and the elements of final control operation. | | | | | | | | stana | | | | | |
| Analyze the principle and working of continuous and discontinuousRemembercontroller modes.Remember | | | | | | | | | | | | | |
| Desi | ign and | alog co | ontroll | ers ba | sed on | multi | -proce | ss and a | decoupl | ing syste | ems | Reme | mber |
| Desi | ign the | funda | imenta | al conc | cepts o | fmult | ivarial | ble and | intellig | ent | | | |
| controllers for industrial application. Analysis | | | | | | | | | | <i>ysis</i> | | | |
| Model type of controller that can be used for specific problems inApplyAutomation industryApply | | | | | | | | | | | | | |
| Progra | imme | outcor | nes an | d Prog | ıramn | ne Spec | cific Ou | utcome | S | | | | |
| <i>PO</i> 2 | <i>PO</i>
3 | <i>PO</i>
4 | <i>PO</i> 5 | <i>P0</i>
6 | <i>PO</i>
7 | <i>P0</i>
8 | <i>PO</i>
9 | P01
0 | P01
1 | <i>P01</i> 2 | PSO1 | PSO2 | PSO3 |
| S | L | - | - | S | S | - | - | L | - | - | - | - | L |
| L | М | - | М | L | М | - | М | L | - | - | - | - | L |
| - | М | - | М | - | М | - | - | L | - | - | - | - | - |
| - | S | - | М | М | М | L | - | L | М | - | М | L | - |
| I. | _ | S | S | _ | S | - | М | L | L | L | _ | _ | _ |
| | S to the
S to the
TE :
CTIVE
To g
To e
To s
To la
To la
COME
COME
Disc
and
Disc
and
Disc
and
Desi
Conte
Desi
Conte
Conte
Disc
and
Desi
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Conte
Con | Image: stop the Procession of the Procession of the Procession of the Procession of the Programme of the Progra | PH
To the Process Co
TE :
CTIVES
To get adequate
To educate the e
To study the con
To learn the cond
To introduce the
poles and zero p
COMES
COMES
COMES
Completion of th
Discuss the princ
and the elements
Analyze the princ
and the elements
Analyze the princ
controller modes
Design analog co
Design analog co
Design the funda
controllers for in
Model type of co
Automation indu
Programme outcor
PO PO PO
2 3 4
S L -
L M -
- M -
- S - | PROCES Sto the Process Control not in the Society of the Society in | PROCESS CON Sto the Process Control method To get adequate knowledge of To educate the effect of vario To get adequate knowledge of To educate the effect of vario To study the control schemes To learn the concepts of proce To introduce the dynamics of poles and zero principles. COMES Completion of the course, the Discuss the principles of proce and the elements of final controller modes. Design analog controllers base Design analog controllers base Design the fundamental control controllers for industrial app Model type of controller that Automation industry Programme outcomes and Prog PO PO 2 S L - S L M - M - - S - M - | PROCESS CONTROL STOLESS Control methods used SCTIVES To get adequate knowledge about a To educate the effect of various control ro educate the effect of various control schemes for ty To study the control schemes for ty To learn the concepts of process control poles and zero principles. COMES Completion of the course, the study Discuss the principles of process control and the elements of final control optimal control c | PROCESS CONTROL DESI STOLES To get adequate knowledge about basic of To educate the effect of various control and To study the control schemes for typical p To learn the concepts of process control, it To introduce the dynamics of various pripoles and zero principles. COMES Completion of the course, the students Discuss the principles of process control, e and the elements of final control operation of the course, the students Discuss the principle and working of controller modes. Design analog controllers based on multi Design the fundamental concepts of multi controllers for industrial application. Model type of controller that can be used Automation industry Programme outcomes and Programme Spect PO PO PO PO PO PO PO PO PO | PROCESS CONTROL DESIGN STOLE PROCESS Control methods used in industrie To study the control schemes for typical process To learn the concepts of process control, include To introduce the dynamics of various processe poles and zero principles. COMES Completion of the course, the students will b Discuss the principles of process control, evalua and the elements of final control operation. Analyze the principle and working of continuou controller modes. Design analog controllers based on multi-proce Design the fundamental concepts of multivarial controllers for industrial application. Model type of controller that can be used for spradutomation industry PO Programme outcomes and Programme Specific Out and control operation. Model type of controller that can be used for spradutomation industry PO PO PO PO PO PO PO PO | PROCESS CONTROL DESIGN Stothe Process Control methods used in industries and restrictions To get adequate knowledge about basic control actions To get adequate knowledge about basic control actions To get adequate knowledge about basic control actions and the To get adequate knowledge about basic control actions and the To deucate the effect of various control actions and the To study the control schemes for typical processes and To introduce the dynamics of various processes and repoles and zero principles. COMES Completion of the course, the students will be able Discuss the principles of process control, evaluation, date and the elements of final control operation. Analyze the principle and working of continuous and d controller modes. Design analog controllers based on multi-process and controllers for industrial application. Model type of controller that can be used for specific production industry Programme outcomes and Programme Specific Outcomes PO | PROCESS CONTROL DESIGN s to the Process Control methods used in industries and research Te : CTIVES To get adequate knowledge about basic control actions and the metho To educate the effect of various control actions and the metho To study the control schemes for typical processes and its P & 1 To learn the concepts of process control, including principles of To introduce the dynamics of various processes and modelling poles and zero principles. COMES Completion of the course, the students will be able to Discuss the principles of process control, evaluation, data repraand the elements of final control operation. Analyze the principle and working of continuous and disconting controller modes. Design analog controllers based on multi-process and decouple Design the fundamental concepts of multivariable and intelligic controllers for industrial application. Model type of controller that can be used for specific problems: Automation industry Programme outcomes and Programme Specific Outcomes PO | Categor Categor Categor Stothe Process Control methods used in industries and research application Stothe Process Control methods used in industries and research application Stothe Process Control methods used in industries and research application Stothe Process Control methods used in industries and research application To get adequate knowledge about basic control actions and related is: To educate the effect of various control actions and the methods of tur To study the control schemes for typical processes and its P & I model. To introduce the dynamics of various processes and modelling of ph poles and zero principles. COMES Completion of the course, the students will be able to Discuss the principles of process control, evaluation, data representati and the elements of final control operation. Analyze the principle and working of continuous and discontinuous controller modes. Design analog controller that can be used for specific problems in Automation industry Programme outcomes and Programme Specific Outcomes Programme outcomes and Programme Specific Outcomes | PROCESS CONTROL DESIGN Category L 3 st to the Process Control methods used in industries and research application. E: CTIVES To get adequate knowledge about basic control actions and related issues. To educate the effect of various control actions and the methods of tuning the To study the control schemes for typical processes and its P & I model. To learn the concepts of process control, including principles of industrial pra To introduce the dynamics of various processes and modelling of physical p poles and zero principles. COMES completion of the course, the students will be able to Discuss the principles of final control operation. Analyze the principle and working of continuous and discontinuous controller modes. Design analog controllers based on multi-process and decoupling systems Design the fundamental concepts of multivariable and intelligent controllers for industrial application. Model type of controller that can be used for specific problems in Automation industry Programme outcomes and Programme Specific Outcomes PQ PO P | PROCESS CONTROL DESIGN Category L T 3 0 s to the Process Control methods used in industries and research application. TE : CCTIVES To get adequate knowledge about basic control actions and related issues. To ducate the effect of various control actions and the methods of tuning the control To study the control schemes for typical processes and its P & I model. To learn the concepts of process control, including principles of industrial practices To introduce the dynamics of various processes and modelling of physical processes poles and zero principles. COMES Completion of the course, the students will be able to Discuss the principles of process control, evaluation, data representation and the elements of final control operation. Analyze the principle and working of continuous and discontinuous controllers for industrial application. Design the fundamental concepts of multivariable and intelligent controllers for industrial application. Model type of controller that can be used for specific problems in Automation industry. Programme outcomes and Programme Specific Outcomes P2 P3 P4 P5 P0 P0 P0 P0 P1 P2 PS01 PS02 S L - - <t< td=""></t<> |

-9-1- d-=+

SYLLABUS

Process Control

Plan aspects – Fundamentals of Hardware Process Control System. Mathematical modeling of Processes: Basic laws and equations – linearization – transfer function representation of process – variable gain, variable time constant.

Loop Control of Processes:

Basic control actions – characteristics of ON/OFF, PI, PD, PID control modes – non-linear PID control – position and velocity forms of PI(D) controllers – anti-reset windup

Control Techniques:

Cutting-edge control techniques, cascade, ratio, feed forward, adaptive control, Smith predictor, internal model control

Multivariable Control Analysis:

Introduction to state-space methods, degrees of freedom analysis and analysis, Interaction, Bristol arrays, Nieder link index - design of controllers, Tuning of multivariable controllers

Design of Control Systems for Multivariable Process:

Design equations – degrees of freedom – poles and zeros – number of controlled and manipulated variables – generation of alternative loop configurations – design of non-interacting control loops. Decoupling control.

TEXTBOOK

- 1. Peter Harriott, Process Control, Tata McGraw Hill 26th Reprint, 2005.
- 2. S. Bhanot, Process Control-Principles and Applications, Oxford University Press, Edition No.04, 2010

REFERENCES

- 1. D.E. Seborg, T.F. Edger, and D.A. Millichamp, 'Process Dynamics and Control', John Wileyand Sons, 3nd Edition, 2016.
- 2. T. E. Marlin, Process Control: Designing Processes and Control Systems for DynamicPerformance, McGrow Hill, Edition No. 02, 2019.

COURSE DESIGNERS

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.K.Boopathy	Prof	EEE	<u>Boopahyk@avit.ac.in</u>

\$-1.- d-=+