

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB
Purpose	A governor, or speed limiter or controller, is a device used to
	measure and regulate the speed of a machine
Scope	Governor is the device used to control the speed in engines. Governors are
	used in automobiles
Responsibility	Faculty In-charge and HOD/MECH
	<u>.</u>

STANDARD OPERATING PROCEDURE FOR GOVERNOR

- → Tighten the necessary bolts.
- \rightarrow Start the motor and gradually increase the speed.
- \rightarrow The flyweight will fly outward due to which the sleeve will rise.
- \rightarrow Note down the speed and sleeve rise or calculate by theoretical method.
- → Repeat the experiment at different speeds till the balls fly to maximum position.
- → Bring back the sleeve down by reducing the speed gradually and stop

PRECAUTIONS TO BE FOLLOWED

- \rightarrow Do not keep the mains on when trial is complete
- \rightarrow Increase the speed gradually.
- \rightarrow Take the sleeve displacement reading when the pointer remain steady
- \rightarrow Measure the height of governor carefully

- \rightarrow Laboratory Manual containing the experiments that can be performed with the equipments
- ➔ Maintain Record

aller !

(Prof. L.PRABHU) HOD MECH

11GC Art 1956)

DEPARTMENT OF MECHANICAL ENGINEERING 17MECC86: DYNAMICS AND METROLOGY LAB

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB	
Purpose	A gyroscopic couple is defined as the turning moment in which the changes	
	are opposed by the inclination of the axis of rotation of the gyroscope.	
Scope	Gyroscope finds applications in gyrocompass, used in aircraft, naval ship,	
	control system of missiles and space shuttle	
Responsibility	Faculty In-charge and HOD/MECH	
STANDARD OPERATING PRO	CEDURE FOR GYROSCOPIC COUPLE	
→ The working principle of t momentum.	he mechanical gyroscope is based on the conservation of angular	
\rightarrow The mechanical gyroscop	→ The mechanical gyroscope is dependent on the ball bearing to spin.	
→ Start the motor by increasing the voltage with the autotransformer and wait until it attains constant speed		
 Press the yoke frame No.2 about vertical axis by applying necessary force by hand to the same. {In the clockwise sense seen from above}. → It will be observed that the rotor frame swings about the horizontal axis yy.Motor side is seen coming upward and the weight pan side going downwards 		
→ Rotate the vertical yoke in the anti clockwise sense seen from above and observe that the rotor frame swings in the opposite sense		
PRECAUTIONS TO BE FOLLO	WED	
\rightarrow When rotating parts of the	engine rotate in opposite directions, then negative sign is used.	
→ The reaction will be vertically downwards on the outer wheels and vertically upwards on the inner wheels.		
→ The gyroscopic couple will act over the vehicle outwards i.e. in the anticlockwise direction when see from the front of the vehicle.		
RECORD TO BE MAINTAINED)	
 Laboratory Manual containing the experiments that can be performed with the equipments Maintain Record 		

Water.

(Prof. L.PRABHU) HOD MECH

STANDARD OPERATING PROCEDURE

DYNAMICS AND METROLOGY LAB	
Tri-filar suspension system is used to find the moment of inertia by three	
fine vertical wires of equal length.	
Tri-filar suspension system is used for find out the centering correction,	
Space applications etc.	
Faculty In-charge and HOD/MECH	
STANDARD OPERATING PROCEDURE FOR TRI-FILAR SUSPENSION SYSTEM	

- \rightarrow With the help of string of chucks tighten at tops
- \rightarrow Adjust length of string to desire values are measure length as it is
- → Give small horizontal twist
- → Start stop watch and note down time required for 5 or 10 oscillations
- → Repeat experiment by adding weight and changing length

PRECAUTIONS TO BE FOLLOWED

- \rightarrow Use carefully the circular plate
- \rightarrow Set the distance of threads equally

- \rightarrow Laboratory Manual containing the experiments that can be performed with the equipments
- ➔ Maintain Record

atter

(Prof. L.PRABHU) HOD MECH

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB
Purpose	A compound pendulum has an extended mass, like a swinging bar, and is
	free to oscillate about a horizontal axis. The compound pendulum depends
	on the length of gyration, the moment of inertia and the mass of the
	pendulum as well as gravitational acceleration.
Scope	A compound pendulum has more vibrations and more energy. It can be
	used Engineering, technical and other construction fields.
Responsibility	Faculty In-charge and HOD/MECH

STANDARD OPERATING PROCEDURE FOR COMPOUND PENDULUM

- → The rod is supported on the knife-edge..
- \rightarrow The total length of suspended rod is noted and 'OG' is determined.
- \rightarrow The bar is allowed to oscillate and the time taken for 10 oscillations is noted
- \rightarrow The time period is calculated.
- \rightarrow The same procedure repeated for the other pendulum.
- \rightarrow Using the experimental time period the radius gyration is calculated using given relation.
- \rightarrow The experimental value is verified with the theoretical value.

PRECAUTIONS TO BE FOLLOWED

The bob of pendulum should be displaced with a small angle.

The amplitude of the oscillation of a simple pendulum should be small.

Fans should be switched off to reduce the air resistance.

The simple pendulum should be oscillate in a vertical plane only.

- → Laboratory Manual containing the experiments that can be performed with the equipments
- ➔ Maintain Record

aller.

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB
Purpose	The purpose of Whirling of shaft is to determine the critical speed or
	whirling speed of a rotating shaft and it verify the value theoretically
Scope	Whirling of shafts occurs due to rotational imbalance of a shaft,
	even in the absence of external loads, which causes resonance to
	occur at certain speeds, known as critical speeds, and also can
	understand different types of vibrations
Responsibility	Faculty In-charge and HOD/MECH

STANDARD OPERATING PROCEDURE FOR WHIRLING OF SHAFT

- \rightarrow Fix the shaft properly at both ends
- \rightarrow Check the whole apparatus for tightening the screw etc.
- → First increase the voltage slowly for maximum level and then start slowing down step by step
- → Observe the loops appearing on the shaft and note down the number of loops and the speed at which they are appearing.
- → Slowly bring the shaft to rest and switch of the supply
- \rightarrow Repeat the same procedure for different shaft
- \rightarrow since both the ends have double ball bearing hence both the ends are assumed fixed.

PRECAUTIONS TO BE FOLLOWED

- \Rightarrow It is destructive test and fresh test pieces may be used every time
- ➔ If the revolution of an unloaded shaft is gradually increased, it will be reached at which violent instability will occur, the shaft.
- \rightarrow Fix the apparatus firmly on suitable foundation

- → Laboratory Manual containing the experiments that can be performed with the equipments
- ➔ Maintain Record

aller

(Prof. L.PRABHU) HOD MECH

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB
Purpose	Bevel protractor is used to measure the angle of any job or work piece. It can be used to measure the angle 0° to 360° . Bevel Protractor is used to check V Blocks, and can measure inside beveled face of the ground surface. It is also used for measuring acute angles.
	The bayal protractor is useful for establishing and testing the angles to very
	close tolerances. It reads to 5 arc minutes and can also measure angles from 0
Scope	degrees to 360 degrees. It plays a very important role in the mechanical and
Scope	architectural drawing although its general use is decreasing with the
	availability of the modern drawing software or CAD
Responsibility	Faculty In-charge and HOD/MECH
STANDARD OPERATING PRO	CEDURE FOR BEVEL PROTRACTOR
→ Determine The Least Cour	nt Of Bevel Protractor.
\rightarrow Place the specimen whose	taper is to be measured between adjustable Plate and movable with
one of its base parallel to t	he base plate.
→ Lock the adjustable plate in this position and note down the main scale Reading (MSR). Depending upon the direction of rotation of adjustable Plate that is clockwise or anticlockwise, note the venire scale reading (VSR)	
→ Suppose the adjustable plate is rotated clockwise direction then the VSR Right of zero should be	
taken.	
\rightarrow To obtain the actual multip	bly the VSR with the least count and add to MSR.
PRECAUTIONS TO BE FOLLO	WED
→ Angle of instrument must	coincide with the angular scale
\rightarrow Clean the measuring faces with paper or cloth. Keep the instrument in the box properly.	
\rightarrow Set the zero reading of the instrument before measuring	
\rightarrow Gripped the instrument to the measuring face exactly	
RECORD TO BE MAINTAINED	
 Laboratory Manual containing the experiments that can be performed with the equipments Maintain Record 	

Water.

(Prof. L.PRABHU) HOD MECH

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB
PURPOSE	A sine bar with slip gauge blocks is used for precise angular measurement and
	used to measure sine bars very accurately or to detect any work that offered a
	high level of accuracy in measuring angles for milling, grinding, and
	inspection applications.
SCOPE	Accuracy up to 0.01mm/m of length of the sine bar can be obtained. Sine bars
	is used to measure on unknown angles of any components. It is used measure
	the flatness of any new products.
RESPONSIBILITY	FACULTY IN-CHARGE&HOD/MECH

STANDARD OPERATING PROCEDURE FOR MEASUREMENT TAPER ANGLE USING SINE BAR

- → The dial gauge is fixed on the magnetic stand and placed on the surface plate and the parallelism of the sine bar is checked.
- → The given specimen is placed above the sine bar and the dial gauge is placed on the top edge of the specimen and adjusted for zero deflection.
- → The front end of the SINE BAR is raised with the slip gauges until the work surface is parallel to the datum surface. The parallelism is checked using dial gauge.
- → Then the distance between the centers of the sine bar rollers is measured as 'L'. The height of the slip gauge in noted as 'H'.
- → The angle of inclination of the wedge is a ratio of the height of gauge blocks used and the distance between the centers of the cylinders.

PRECAUTIONS TO BE FOLLOWED

- → The sine bar should not be used for angle greater than 60" because any possible error in construction accentuated at this limit.
- → A compound angle should not be formed by mis-aligning of work piece with the sine bar. This can be avoided by attaching the sine bar and work against an angle plate.
- → Accuracy of sign bar should be ensured.

- → Laboratory Manual containing the experiments that can be performed with the equipments
- ➔ Maintain Record

(Prof. L.PRABHU) HOD MECH

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB
Purpose	Rota meter is a form of variable area flow meter which is used to measure
	the flow of liquid or gas passes through a tapered tube. The spinning float
	is giving clear indication that fluid is flowing.
Scope	Rota meter widely used for industrial applications, Transportation,
	Agriculture, Energy Engineering and Biotechnology etc
Responsibility	Faculty In-charge and HOD/MECH

STANDARD OPERATING PROCEDURE FOR ROTAMETER

- → A rotameter consists of a tapered tube, typically made of glass with a 'float', made either of anodized aluminum or a ceramic, actually a shaped weight, inside that is pushed up by the drag force of the flow and pulled down by gravity.
- \rightarrow The drag force for a given fluid and float cross section is a function of flow speed squared only.
- → A higher volumetric flow rate through a given area increases flow speed and drag force, so the float will be pushed upwards.
- → Keeping the voltage fixed note down the Rota meter discharge and switch off the apparatus
- \rightarrow At the same time note down actual discharge in the collecting tank
- \rightarrow Empty the collecting tank to zero position Switch on the apparatus and again hold down.
- \rightarrow We use the experiment and note down the time of different voltage and reading
- \rightarrow The time is set for 60 seconds.

PRECAUTIONS TO BE FOLLOWED

- \rightarrow The Rota meters must be installed vertically
- \rightarrow It is necessary to keep the float and cone tube is clean
- \rightarrow Use line mounting only
- \rightarrow Only clean water can use as a circulating fluid

- → Laboratory Manual containing the experiments that can be performed with the equipments
- ➔ Maintain Record

aller.

(Prof. L.PRABHU) HOD MECH

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB
Purpose	The profile projector is widely used for measure the complex-shape
	stampings, gears, cams, threads and comparing the measured contour model.
	Profile projector can magnify every minute details of the components, it will
	give the clear picture of the product and we can easily find out the errors in
	the production side
Scope	Profile Projector technology designed to display accurate magnification of
	sample for comparison and precision measurements with data processing.
	Profile projector gives the better quality of the products. Profile projector is
	widely used in major machinery manufacturing including aviation, aerospace
	industry, watches and clocks, electronics, instrumentation industry, research
	institutes and detection metering stations at all levels
Responsibility	Faculty In-charge and HOD/MECH

STANDARD OPERATING PROCEDURE FOR MEASUREMENT OF PROFILE PROJECTOR

- \rightarrow Keep the specimen on the glass table and switch on the bulb
- → Adjust the height of the table until; a sharp image of contour of the specimen appears on the screen.
- \rightarrow In this position note down the reading of the micrometer.
- → Rotate the micrometer thimble until same Vertical cross line occupies diametrically opposite point.
- \rightarrow In this position again note down the reading of micrometer.
- \rightarrow Repeat the above procedure for other sides.

PRECAUTIONS TO BE FOLLOWED

- \rightarrow Students are advised to take readings without any parallax error.
- \rightarrow For each feature at least two readings must be taken and average is to be presented.
- \rightarrow Table must be properly adjusted to get a sharp image.

- \rightarrow Laboratory Manual containing the experiments that can be performed with the equipments
- ➔ Maintain Record

aller?

(Prof. L.PRABHU) HOD MECH

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB
Purpose	LVDT is an electromechanical sensor used to transform mechanical motion
	into a variable electrical signal (current or voltage) and is used
	for measurement of displacement. LVDT is used to measure the physical
	quantities such as Force, Tension, Pressure, Weight, etc.
Scope	LVDT has a very wide range of measurement of displacement. It can measure displacement ranging from 1.25mm to 250 mm. It is mostly used in industries as well as a servomechanism. It is also used in Industrial Automation, Aircraft. Turbine, Satellite, hydraulics, etc.
Responsibility	Faculty In-charge and HOD/MECH
	•

STANDARD OPERATING PROCEDURE FOR LINEAR VARIABLE DIFFERENTIAL TRANSDUCER (LVDT)

- → LVDT consists of one primary winding P and two secondary windings S1 & S2 mounted on a cylindrical former
- \rightarrow There is a movable soft iron core placed inside the former.
- → Connect the LVDT and Digital displacement meter to main supply.
- \rightarrow Adjust the zero pot of the displacement indicator to indicate zero.
- → Connect the LVDT sensor to the displacement indicator through the cable.
- → Rotate the micrometer knob to clock wise or antilock direction, to bring the LVDT core to null position of the sensor. Where there is no induced emf. At this position indicator will read zero. Note down the micrometer reading. This is initial reading of micrometer.

PRECAUTIONS TO BE FOLLOWED

- → LVDT is sensitive to stray magnetic fields so it always requires a setup to protect them from stray magnetic fields.
- \rightarrow All connections should be neat & clean.
- \rightarrow Sometimes, the transducer performance is affective by the vibration.

- \rightarrow Laboratory Manual containing the experiments that can be performed with the equipments
- ➔ Maintain Record

(Prof. L.PRABHU) HOD MECH

STANDARD OPERATING PROCEDURE

Name of the Lab/Facility	DYNAMICS AND METROLOGY LAB
Purpose	The stroboscopic effect is a phenomenon due to interrupted illumination of a moving object. When an oscillating body is seen in periodically interrupted light (a series of light flashes occurring at a definite rate) it appears different. If the periodicity of the vibrating body is same as that of
	the flashing light, the body appears to be stationary.
Scope	Stroboscopes play an important role in the study of stresses on machinery in motion, and in many other forms of research.
Responsibility	Faculty In-charge and HOD/MECH

STANDARD OPERATING PROCEDURE FOR STROBOSCOPE

- → Connect the stroboscope to a 230/50Hz A.C. Supply
- \rightarrow Switch ON' the motor and stroboscope simultaneously.
- → Set the voltage in the variac and vary the frequency of illuminations till the rotating member appears stationary with three leaves in the case of constant marking with the varying voltage
- \rightarrow In the case of varying making set the voltage as 50 volts.
- \rightarrow The indicator gives the stroboscope reading.
- \rightarrow Repeat the experiments.

PRECAUTIONS TO BE FOLLOWED

- → When using the stroboscope, the user is cautioned not to become careless and touch the object
- \rightarrow Stroboscope having high intensity of light source

- \rightarrow Laboratory Manual containing the experiments that can be performed with the equipments
- ➔ Maintain Record

(Prof. L.PRABHU) HOD MECH