
HOD / ECE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DIGITAL LOGIC CIRCUITS &
DESIGN LAB

Program/ Branch : B. E., /ECE

Year / Semester : II/ III

Academic Year : 2021 – 2022 (Odd Semester)

Regulation : R 2017

HOD / ECE

HOD / ECE

EXPT.

NO
NAME OF THE EXPERIMENT

PAGE

NO

Study of Logic Gates 2

1.

Design and implementation of Adder and Subtractor using

Logic gates
8

2.

Design and implementation of code converters using logic

gates

(i) BCD to excess-3 code and vice versa.

(ii) Binary to gray and vice versa

14

3.

Design and implementation of 4 bit binary Adder/ Subtractor

and BCD Adder using IC 7483
24

4.

Design and implementation of 2-bit Magnitude Comparator

using logic gates and 8-bit Magnitude Comparator using IC

7485

30

5.

Design and implementation of Multiplexer and

Demultiplexer using logic gates
36

6.

Design and implementation of encoder and decoder using

logic gates
40

7.

Design and implementation of 16-bit odd/ even parity

checker generator using IC74180
44

8.

Construction and verification of 4-bit ripple counter and

Mod-10/ Mod-12 Ripple counters
48

9.

Design and implementation of 3-bit synchronous up/down

counter
56

10.

Implementation of SISO, SIPO, PISO and PIPO shift

registers using Flip-flops
60

11.

Design of experiments 1, 5, 8 and 10 using Verilog

Hardware Description Language
68

HOD / ECE

AND gate:

3-Input AND gate:

HOD / ECE

AIM:

To study about logic gates and verify their truth tables.

APPARATUS REQUIRED:

THOERY:

 Logic gates are the basic elements that make up a digital system. The gate is a digital

circuit with one or more inputs, but only one output. By connecting the different gates in

different ways, we can build circuits that perform arithmetic and other functions.

The operation of a logic gate can be easily understood with the help of “truth table”. A

truth table is a table that shows all the input-output possibilities of a logic circuit ie., the truth

table indicates the outputs for different possibilities of the inputs.

The types of gates available are the AND, OR, NOT, NAND, NOR, exclusive-OR and

the exclusive-NOR. Except for the exclusive-NOR gate they are available in monolithic

integrated form.

AND gate:

 The AND gates has two or more inputs. It performs a logical multiplication. The output

is HIGH (1), when both the inputs are 1; otherwise the output from the gate is LOW (0). The

output from the AND gate is written as A.B.

SL.NO COMPONENTS SPECIFICATION QUANTITY

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

2- I/P AND gate

3-I/P AND gate

OR gate

NOT gate

2- I/P NAND gate

3-I/P NAND gate

NOR gate

EX-OR gate

IC Trainer Kit

Patch cords

IC 7408

IC7411

IC 7432

IC 7404

IC7400

IC7410

IC7402

IC7486

-

-

1

1

1

1

1

1

1

1

1

Few

STUDY OF LOGIC GATES

HOD / ECE

OR gate:

NOT gate:

HOD / ECE

OR gate:

 The OR gates has two or more inputs. It performs a logical addition. The output is

HIGH (1), if any of the inputs are 1; the output is LOW (0) if and only if all the inputs are 0.

The output from the OR gate is written as A+B.

NOT gate:

 The NOT gate has only one input. It performs a basic logic function called inversion.

The output is HIGH (1), when the input is 0; the output is LOW (0) when the input is 1. The

output from the NOT gate is written as A’.

NAND gate:

 The NAND gate is a contraction of AND-NOT. It has two or more inputs. The output

is HIGH (1), when any of the inputs are 0; the output is LOW (0), if and only if all the inputs

are 1. The output from the AND gate is written as (A.B)’. It is a universal gate.

NOR gate:

 The NOR gate is a contraction of OR-NOT. It has two or more inputs. The output is

HIGH (1), when all inputs are 0; the output is LOW (0), when any of the inputs are 1. The

output from the AND gate is written as (A+B)’. It is a universal gate.

EX-OR gate:

 The EX-OR gate has two or more inputs. The output is HIGH (1), when odd number of

inputs is 1. The output from the AND gate is written as (AB).

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the truth table.

3. Observe the logic output and verify with the truth table.

HOD / ECE

2-Input NAND gate:

3-Input NAND gate:

HOD / ECE

NOR gate:

EX-OR gate:

RESULT:

Thus the logic gates are studied and their truth tables are verified.

HOD / ECE

HALF ADDER:

TRUTH TABLE:

Inputs Outputs

A B Carry (C) Sum (S)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

K- MAP SIMPLIFICATION:

LOGIC DIAGRAM:

FULL ADDER:

TRUTH TABLE:

Inputs Outputs

A B Cin Sum (S) Carry (Cout)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

HOD / ECE

AIM:

To design and construct a half adder, full adder, half subtractor and full subtractor

circuits and verify their truth table using logic gates.

APPARATUS REQUIRED:

SL.NO COMPONENTS SPECIFICATION QUANTITY

1.

2.

3.

4.

5.

6.

IC Trainer kit

EX-OR gate

NOT gate

OR gate

AND gate

Patch cords

-

IC 7486

IC 7404

IC 7432

IC7408

-

1

1

1

1

1

Few

THEORY:

Half Adder:

A half-adder is a combinational circuit that can be used to add two binary bits. It has

two inputs that represent the two bits to be added and two outputs, with one producing the SUM

output and the other producing the CARRY. The Sum can be applied using EX-OR gate, carry

output can be applied using an AND gate.

Full Adder:

A full adder is a combinational circuit that forms the arithmetic sum of three input bits.

It consists of 3 inputs and 2 outputs. Two of the input variables, represent the significant bits

to be added. The third input represents the carry from previous lower significant position.

The logic diagram of the full adder can also be implemented with two half-

adders and one OR gate. The S output from the second half adder is the exclusive-OR

of Cin and the output of the first half-adder

HOD / ECE

K-MAP SIMPLIFICATION:

LOGIC DIAGRAM:

Full Adder:

Full Adder using Two Half Adders:

HOD / ECE

Half Subtractor:

A half-subtractor is a combinational circuit that can be used to subtract one binary digit

from another to produce a DIFFERENCE output and a BORROW output. The BORROW

output here specifies whether a ‘1’ has been borrowed to perform the subtraction. The

difference can be applied using EX-OR gate, borrow output can be applied using an AND gate

and an inverter.

Full Subtractor:

A full subtractor performs subtraction operation on two bits, a minuend and a

subtrahend, and also takes into consideration whether a ‘1’ has already been borrowed by the

previous adjacent lower minuend bit or not.

As a result, there are three bits to be handled at the input of a full subtractor, namely

the two bits to be subtracted and a borrow bit designated as Bin. There are two outputs, namely

the DIFFERENCE output D and the BORROW output Bo. The BORROW output bit tells

whether the minuend bit needs to borrow a ‘1’ from the next possible higher minuend bit.

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the truth table.

3. Observe the logic output and verify with their truth tables.

HALF SUBTRACTOR:

HOD / ECE

TRUTH TABLE:

Input Output

A B Difference (D) Borrow (Bout)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

K- MAP SIMPLIFICATION:

LOGIC DIAGRAM:

FULL SUBTRACTOR:

TRUTH TABLE:

Inputs Outputs

A B Bin Difference(D) Borrow(Bout)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1
K- MAP SIMPLIFICATION:

HOD / ECE

LOGIC DIAGRAM:

Full Subtractor:

Full Subtractor with Two Half Subtractors:

RESULT:

Thus half adder, full adder, half subtractor and full subtractor circuits was designed

using logic gates and their truth tables were verified.

BINARY TO GRAY CODE CONVERTER:

HOD / ECE

TRUTH TABLE:

Binary code Gray code

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

K- Map Simplification:

HOD / ECE

AIM:

 To design and implement 4-bit

1. Binary to Gray code Converter

2. Gray to Binary code Converter

3. BCD to Excess-3 code Converter

4. Excess-3 code to BCD Converter

APPARATUS REQUIRED:

SL.NO COMPONENTS SPECIFICATION QUANTITY

1.

2.

3.

4.

5.

6.

7.

IC Trainer kit

EX-OR gate

NOT gate

OR gate

2-Input AND gate

3-Input AND gate

Patch cords

-

IC7486

IC7404

IC7432

IC7408

IC7411

-

1

1

1

1

1

1

As Required

THEORY:

 An availability of large variety of codes for the same discrete elements of information

results in the use of different codes by different systems. A conversion circuit must be inserted

between the two systems if each uses different codes for the same information. Thus, code

converter is a circuit that makes the two systems compatible even though each uses different

binary code.

 The input variable are designed as B3,B2,B1,B0 and the output variables are designed

as G3,G2,G1,G0. From the truth table, combinational circuit is designed. The Boolean functions

are obtained from K-Map for each output variable.

HOD / ECE

Logic Diagram:

GRAY TO BINARY CODE CONVERTER:

TRUTH TABLE:

Gray code Binary code

G3 G2 G1 G0 B3 B2 B1 B0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 0 0

0 1 1 1 0 1 0 1

1 0 0 0 1 1 1 1

1 0 0 1 1 1 1 0

1 0 1 0 1 1 0 0

1 0 1 1 1 1 0 1

1 1 0 0 1 0 0 0

1 1 0 1 1 0 0 1

1 1 1 0 1 0 1 1

1 1 1 1 1 0 1 0

HOD / ECE

To convert from binary code to Excess-3 code, the input lines must supply the bit

combination of elements as specified by code and the output lines generate the corresponding

bit combination of code. Each one of the four maps represents one of the four outputs of the

circuit as a function of the four input variables.

A two-level logic diagram may be obtained directly from the Boolean expressions

derived by the maps. These are various other possibilities for a logic diagram that implements

this circuit.

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the truth table.

3. Observe the logic output and verify with the truth tables.

HOD / ECE

K-Map Simplification:

Logic Diagram:

HOD / ECE

BCD TO EXCESS-3 CODE:

Truth table:

BCD code Excess-3 code

B3 B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

K-Map Simplification:

HOD / ECE

Logic Diagram:

HOD / ECE

EXCESS-3 TO BCD CONVERTER:

Truth Table:

Excess-3 code BCD code

E3 E2 E1 E0 B3 B2 B1 B0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 1

0 1 0 1 0 0 1 0

0 1 1 0 0 0 1 1

0 1 1 1 0 1 0 0

1 0 0 0 0 1 0 1

1 0 0 1 0 1 1 0

1 0 1 0 0 1 1 1

1 0 1 1 1 0 0 0

1 1 0 0 1 0 0 1

K-Map Simplification:

HOD / ECE

Logic Diagram:

RESULT:

Thus the 4-bit

1. Binary to Gray code Converter

2. Gray to Binary code Converter

3. BCD to Excess-3 code Converter

4. Excess-3 code to BCD Converter was designed and implemented.

HOD / ECE

4- BIT BINARY ADDER/ SUBTRACTOR:

PIN DIAGRAM:

LOGIC DIAGRAM:

HOD / ECE

AIM:

To Design and implement the 4-bit adder/ subtractor and BCD adder using IC 7483.

APPARATUS REQUIRED:

SL.NO COMPONENT SPECIFICATION QUANTITY

HOD / ECE

1.

2.

3.

4.

5.

6.

IC Trainer kit

4-bit binary full adder

EX-OR gate

AND gate

OR gate

Patch cords

-

IC 7483

IC 7486

IC 7408

IC 7432

-

1

2

1

1

1

Few

THEORY:

4-Bit binary adder/ subtractor:

The 4-bit binary adder/ subtractor circuit performs the operation of both addition and

subtraction. It has two 4-bit inputs A0, A1, A2, A3 and B0, B1, B2, B3. The mode input M controls

the operation of the circuit. When M= 0, the circuit is an adder and when M=1, the circuit

becomes a Subtractor. Each exclusive-OR gate receives input M and one of the inputs of B.

When M=0, the operation is B 0= B. The full adders receive the value of B and the

input carry is 0, and the circuit performs the addition operation, A+ B.

When M=1, the operation is B 1= B’ and C0=1. The B inputs are all complemented

and a 1 is added through the input carry. Thus the circuit performs the subtraction operation,

i.e., A+ (2’s complement of B) = A- B.

TRUTH TABLE:

Input data A Input data B Addition Subtraction

A3 A2 A1 A0 B3 B2 B1 B0 C S3 S2 S1 S0 B D3 D2 D1 D0

1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0

1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0

0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0

1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1

1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1

BCD ADDER:

HOD / ECE

LOGIC DIAGRAM:

4- Bit BCD Adder:

The digital system handles the decimal number in the form of binary coded decimal

numbers (BCD). A BCD adder is a circuit that adds two BCD bits and produces a sum digit

also in BCD.

In examining the contents of the table, it is apparent that when the binary sum is equal

to or less than (1001)2, the corresponding BCD number is identical, and therefore no conversion

is needed. When the binary sum is greater than 9 (1001)2, we obtain a non-valid BCD

representation. The addition of binary 6 (0110)2 to the binary sum converts it to the correct

BCD representation and also produces an output carry as required.

The logic circuit to detect sum greater than 9 can be determined by simplifying the

Boolean expression of the given truth table.

HOD / ECE

The two decimal digits, together with the input carry, are first added in the top 4-bit

binary adder to provide the binary sum. When the output carry is equal to zero, nothing is added

to the binary sum. When it is equal to one, binary (0110)2 is added to the binary sum through

the bottom 4-bit adder. The output carry generated from the bottom adder can be ignored, since

it supplies information already available at the output carry terminal. The output carry from

one stage must be connected to the input carry of the next higher-order stage.

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the truth table.

3. Observe the logic output and verify with the truth tables.

Truth table:

HOD / ECE

RESULT:

Thus the 4-bit adder/ subtractor and BCD adder using IC 7483 was designed and

implemented.

2-BIT MAGNITUDE COMPARATOR:

HOD / ECE

TRUTH TABLE:

Inputs Outputs

A1 A0 B1 B0 A>B A=B A<B

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

DESIGN:

A = A1A0

B = B1 B0

Xi = AiBi + Ai′Bi′

 Xi = (Ai  Bi)′ for i = 0,1

(A = B) = X1 X0

(A>B) = A1B1′ +X1A0B0′

(A<B) = A1′B1 +X1A0′B0

HOD / ECE

AIM:

 To design and implement

(i) 2-bit magnitude comparator using logic gates.

 (ii) 8-bit magnitude comparator using IC 7485.

APPARATUS REQUIRED:

SL.NO COMPONENT SPECIFICATION QUANTITY

1.

2.

3.

4.

5.

6.

7.

IC Trainer kit

EX-OR gate

NOT gate

OR gate

AND gate

4-bit Magnitude

Comparator

Connecting Wires

-

IC7486

IC7404

IC7432

IC7408

IC 7485

-

1

1

1

1

2

Few

THEORY:

A magnitude comparator is a combinational circuit that compares two given numbers

(A and B) and determines whether one is equal to, less than or greater than the other. The output

is in the form of three binary variables representing the conditions A = B, A>B and A<B, if A

and B are the two numbers being compared.

The two binary numbers A and B with two digits each, written in descending order as,

A = A1A0

B = B1 B0

Each subscripted letter represents one of the digits in the number. It is observed from the bit

contents of two numbers that A = B, when A1 = B1 and A0 = B0. When the numbers are binary

they possess the value of either 1 or 0, the equality relation of each pair can be expressed

logically by the equivalence function as,

HOD / ECE

LOGIC DIAGRAM:

2-bit Magnitude Comparator:

HOD / ECE

Xi = AiBi + Ai′Bi′ for i = 1, 2, 3, 4.

Or, Xi = (A  B)′ or, Xi ′ = A  B

Or, Xi = (AiBi′ + Ai′Bi)′

where,

Xi =1 only if the pair of bits in position i are equal

 To satisfy the equality condition of two numbers A and B, it is necessary that all

Xi must be equal to logic 1. This indicates the AND operation of all Xi variables. In other

words, we can write the Boolean expression for two equal 2-bit numbers.

(A = B) = X1 X0.

The binary variable (A=B) is equal to 1 only if all pairs of digits of the two numbers are equal.

To determine if A is greater than or less than B, we inspect the relative magnitudes of

pairs of significant bits starting from the most significant bit. If the two digits of the most

significant position are equal, the next significant pair of digits is compared. The comparison

process is continued until a pair of unequal digits is found. It may be concluded that A>B, if

the corresponding digit of A is 1 and B is 0. If the corresponding digit of A is 0 and B is 1, we

conclude that A<B. Therefore, we can derive the logical expression of such sequential

comparison by the following two Boolean functions,

(A>B) = A1B1′ +X1A0B0′

(A<B) = A1′B1 +X1A0′B0

The symbols (A>B) and (A<B) are binary output variables that are equal to 1 when A>B or

A<B, respectively.

8- BIT MAGNITUDE COMPARATOR:

HOD / ECE

Truth Table:

A B A>B A=B A<B

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the truth table.

3. Observe the logic output and verify with the truth tables.

RESULT:

Thus the 2-bit magnitude comparator was designed and implemented using logic

gates and 8-bit magnitude comparator using IC 7485.

4:1 MULTIPLEXER:

HOD / ECE

Truth table:

S1 S0 OUTPUTS, (Y)

0 0 D0

0 1 D1

1 0 D2

1 1 D3

HOD / ECE

AIM:

To design and implement multiplexer and demultiplexer using logic gates.

APPARATUS REQUIRED:

SL.NO COMPONENT SPECIFICATION QUANTITY

1.

2.

3.

4.

5.

IC Trainer kit

3-I/P AND GATE

NOT GATE

OR GATE

Patch cords

-

IC7411

IC7404

IC7432

-

1

2

1

1

Few

THEORY:

Multiplexer:

 Multiplexer means transmitting a large number of information units over a small number

of channels or lines. A digital multiplexer is a combinational circuit that selects binary

information from one of many input lines and directs it to a single output line. The selection of

a particular input line is controlled by a set of selection lines. Normally there are 2n input line

and ‘n’ selection lines whose bit combination determine which input is selected. It is called as

data selector, because the output depends on the input data bit that is selected.

Demultiplexer:

 The function of Demultiplexer is in contrast to multiplexer function. It takes

information from one line and distributes it to a given number of output lines. For this reason,

the demultiplexer is also known as a data distributor. Decoder can also be used as

Demultiplexer.

In the 1:4 demultiplexer circuit, the data input line goes to all of the AND gates. The

data select lines enable only one gate at a time and the data on the data input line will pass

through the selected gate to the associated data output line.

HOD / ECE

1: 4 DEMULTIPLEXER:

Truth Table:

INPUT OUTPUT

S1 S0 I/P D0 D1 D2 D3

0 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 0

1 1 1 0 0 0 1

HOD / ECE

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the truth table.

3. Observe the logic output and verify with the truth tables.

RESULT:

Thus the multiplexer and demultiplexer was designed and implemented using logic

gates.

HOD / ECE

Logic Diagram (2-to-4- Line Decoder with Enable Input):

Truth Table:

INPUTS OUTPUTS

E A B D0 D1 D2 D3

1 x x 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

HOD / ECE

AIM:

 To design and implementation encoder and decoder using logic gates.

APPARATUS REQUIRED:

SL.NO COMPONENT SPECIFICATION QUANTITY

1.

2.

3.

4.

5.

IC Trainer kit

3-I/P NAND gate

NOT gate

OR gate

Patch cords

-

IC7410

IC7404

IC7432

-

1

2

1

3

Few

THEORY:

Encoder:

 An encoder is a digital circuit that performs inverse operation of a decoder. An encoder

has 2n input lines and ‘n’ output lines. In encoder the output lines generates the binary code

corresponding to the input value. In octal to binary encoder it has eight inputs, one for each

octal digit and three output that generates the corresponding binary code. In encoder it is

assumed that only one input has a value of one at any given time otherwise the circuit is

meaningless. It has an ambiguila that when all inputs are zero the outputs are zero. The zero

outputs can also be generated when D0=1.

Decoder:

 A decoder is a multiple output logic circuit which converts input into coded output

where input and output codes are different. The input code generally has few bits than the

output code. Each input code word produces a different output code word i.e., there is one to

one mapping can be expressed in truth table. In block diagram of decoder circuit the encoded

information is present as n input producing 2n possible outputs. The 2n output values are from

0 through out 2n-1.

HOD / ECE

ENCODER:

Logic Diagram:

Truth Table:

INPUTS OUTPUTS

Y1 Y2 Y3 Y4 Y5 Y6 Y7 A B C

1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 1

0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 1 1 1

HOD / ECE

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the truth table.

3. Observe the logic output and verify with the truth tables.

RESULT:

Thus the design and implementation of encoder and decoder using logic gates.

HOD / ECE

8- Bit ODD/EVEN PARITY GENERATOR/ CHECKER:

PIN DIAGRAM:

FUNCTION TABLE:

INPUTS OUTPUTS

Number of Data Inputs

(D0 - D7)
PE PO ∑E ∑O

EVEN 1 0 1 0

ODD 1 0 0 1

EVEN 0 1 0 1

ODD 0 1 1 0

X 1 1 0 0

X 0 0 1 1

16- Bit ODD/EVEN PARITY GENERATOR:

LOGIC DIAGRAM:

HOD / ECE

AIM:

 To design and implement 16 bit odd /even parity checker generator using IC 74180.

APPARATUS REQUIRED:

SL.NO COMPONENTS SPECIFICATION QUANTITY

1.

2.

3.

4.

IC Trainer kit

NOT gate

8-bit parity generator/

checker

Patch cords

-

IC7404

IC74180

-

1

1

2

Few

THEORY:

A Parity is a very useful tool in information processing in digital computers to indicate

any presence of error in binary information. External noise and loss of signal strength causes

loss of data bit information while transporting data from one device to other device, located

inside the computer or externally. To indicate any occurrence of error, an extra bit is included

with the message according to the total number of 1s in a set of data, which is called parity.

HOD / ECE

If the extra bit is considered 0 if the total number of 1s is even and 1 for odd quantities

of 1s in a set of data, then it is called even parity. On the other hand, if the extra bit is 1 for

even quantities of 1s and 0 for an odd number of 1s, then it is called odd parity.

 The message including the parity is transmitted and then checked at the receiving end

for errors. An error is detected if the checked parity does not correspond with the one

transmitted. The circuit that generates the parity bit in the transmitter is called a parity generator

and the circuit that checks the parity in the receiver is called a parity checker.

TRUTH TABLE:

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 PE PO ∑E ∑O

 1 1 0 0 0 0 0

0

 1 1 0 0 0 0 0

0
1 0 1 0

 1 1 0 0 0 0 0

0

 1 1 0 0 0 0 0

0
0 1 0 1

 1 1 0 0 0 0 0

0

 0 1 0 0 0 0 0

0
0 1 1 0

16- Bit ODD/EVEN PARITY CHECKER:

LOGIC DIAGRAM:

TRUTH TABLE:

HOD / ECE

D7 D6 D5 D4 D3 D2 D1 D0
D7’ D6’ D5’ D4’ D3’ D2’

D1’D0’
PE PO ∑E ∑O

 0 0 0 0 0 0 0

1
 0 0 0 0 0 0 0 0 0 1 1 0

 0 0 0 0 0 1 1

0
 0 0 0 0 0 1 1 0 1 0 1 0

 0 0 0 0 0 1 1

0
 0 0 0 0 0 1 1 0 0 1 0 1

The parity checker circuit produces a check bit and is very similar to the parity generator

circuit. If the check bit is 1, then it is assumed that the received data is incorrect. The check bit

will be 0 if the received data is correct. The table shows the truth table for the even parity

checker.

In even parity, the added parity bit will make the total number 1’s even amount. In odd

parity, the added parity bit will make the total number 1’s odd amount. The parity checker

circuit checks for possible errors in the transmission. If the information is passed in even parity,

the bits required must have an even number of 1’s. An error occur during transmission, if the

received bits have an odd number of 1’s indicating that one bit has changed in value during

transmission.

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the truth table.

3. Observe the logic output and verify with the truth tables

HOD / ECE

RESULT:

Thus the 16 bit odd /even parity checker generator was designed and implemented using

IC 74180.

4- BIT RIPPLE COUNTER:

PIN DIAGRAM: (JK Flip-Flop)

Function Table for 7476:

HOD / ECE

Inputs Outputs

Preset Clear Clock J K Q Q’

0 1 X X X 1 0

1 0 X X X 0 1

0 0 X X X 1 1

1 1 0 0 No Change

1 1 0 1 0 1

1 1 1 0 1 0

1 1 1 1 Toggle

AIM:

 To construct and verify 4 bit ripple counter, MOD-10 and MOD-12 ripple counter.

APPARATUS REQUIRED:

SL.NO COMPONENTS SPECIFICATION QUANTITY

1.

2.

3.

4.

IC Trainer kit

JK Flip-flop

NAND gate

Patch cords

-

IC7476

IC7400

-

1

2

1

Few

THEORY:

 A counter is a register capable of counting number of clock pulse arriving at its clock

input. Counter represents the number of clock pulse arrived. A specified

HOD / ECE

sequence of states appears as counter output. This is the main difference between a register and

a counter. There are two types of counter, synchronous and asynchronous. In synchronous

common clock is given to all flip flop and in asynchronous, first flip flop is clocked by external

pulse and then each successive flip flop is clocked by Q or Q’ output of pervious stage.

A ripple counter is a cascaded arrangement of flip-flops where the output of one flip-

flop drives the clock input of the following flip-flop. The number of flip-flops in the cascaded

arrangement depends upon the number of different logic states that it goes through before it

repeats the sequence, a parameter known as the modulus of the counter.

In a ripple counter, also called an asynchronous counter or a serial counter, the clock

input is applied only to the first flip-flop, also called the input flip-flop, in the cascaded

arrangement. The clock input to any subsequent flip-flop comes from the output of its

immediately preceding flip-flop. For instance, the output of the first flip-flop acts as the clock

input to the second flip-flop, the output of the second flip-flop feeds the clock input of the third

flip-flop and so on.

LOGIC DIAGRAM: (4-Bit Ripple Counter)

 TRUTH TABLE:

CLK QA QB QC QD

0 0 0 0 0

HOD / ECE

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 1 0 1

11 1 1 0 1

12 0 0 1 1

13 1 0 1 1

14 0 1 1 1

15 1 1 1 1

A four-bit ripple counter is implemented with negative edge-triggered J-K flip-flops

wired as toggle flip-flops. The output of the first flip-flop feeds the clock input of the second,

and the output of the second flip-flop feeds the clock input of the third, the output of which in

turn feeds the clock input of the fourth flip-flop. The outputs of the four flip-flops are

designated as Q0 (LSB flip-flop), Q1, Q2 and Q3 (MSB flip-flop).

LOGIC DIAGRAM: (MOD-10 Ripple Counter)

HOD / ECE

TRUTH TABLE:

CLK QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 0 0 0

LOGIC DIAGRAM: (MOD-12 Ripple Counter)

HOD / ECE

TRUTH TABLE:

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the logic diagram.

3. Observe the logic output and verify with the truth tables.

RESULT: Thus 4-bit ripple counter, MOD-10 and MOD-12 ripple counter was constructed

and verified successfully.

3- BIT SYNCHRONOUS UP/DOWN COUNTER:

CLK QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 1 0 1

11 1 1 0 1

12 0 0 0 0

HOD / ECE

STATE DIAGRAM:

TRUTH TABLE:

Input

Up/Down’

Present State Next State A B C

QA QB QC QA+1 QB+1 QC+1 JA KA JB KB JC KC

0 0 0 0 1 1 1 1 x 1 x 1 x

0 1 1 1 1 1 0 x 0 x 0 x 1

0 1 1 0 1 0 1 x 0 x 1 1 x

0 1 0 1 1 0 0 x 0 0 x x 1

0 1 0 0 0 1 1 x 1 1 x 1 x

0 0 1 1 0 1 0 0 x x 0 x 1

0 0 1 0 0 0 1 0 x x 1 1 x

0 0 0 1 0 0 0 0 x 0 x x 1

1 0 0 0 0 0 1 0 x 0 x 1 x

1 0 0 1 0 1 0 0 x 1 x x 1

1 0 1 0 0 1 1 0 x x 0 1 x

1 0 1 1 1 0 0 1 x x 1 x 1

1 1 0 0 1 0 1 x 0 0 x 1 x

1 1 0 1 1 1 0 x 0 1 x x 1

1 1 1 0 1 1 1 x 0 x 0 1 x

1 1 1 1 0 0 0 x 1 x 1 x 1

HOD / ECE

AIM:

 To design and implement 3 bit synchronous up/down counter using JK flip-flop.

APPARATUS REQUIRED:

SL.NO COMPONENTS SPECIFICATION QUANTITY

1.

2.

3.

4.

5.

6.

7.

IC Trainer kit

JK Flip-flop

3-I/P NAND gate

NOT gate

OR gate

EX-OR gate

Patch Cords

-

IC7476

IC7411

IC7404

IC7432

IC7486

1

2

1

1

1

1

Few

THEORY:

A Counter is a register capable of counting number of clock pulse arriving at its clock

input. Counter represents the number of clock pulses arrived. An up/down counter is one that

is capable of progressing in increasing order or decreasing order through a certain sequence.

An up/down counter is also called bi-directional counter. Usually up/down operation of the

counter is controlled by up/down signal. When this signal high counter goes through up

sequence and when up/down signal is low counter follows reverse sequence.

The counter counts upwards when UP control are logic ‘1’ and DOWN control is logic

‘0’. In this case the clock input of each flip-flop other than the LSB flip-flop is fed from the

normal output of the immediately preceding flip-flop. The counter counts downwards when the

UP controls input are logic ‘0’ and DOWN control is logic ‘1’. In this case, the clock input of

each flip-flop other than the LSB flip-flop is fed from the complemented output of the

immediately preceding flip-flop.

HOD / ECE

EXCITATION TABLE: (JK Flip-Flop)

Q Q t+1 J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

K-MAP SIMPLIFICATION:

HOD / ECE

LOGIC DIAGRAM:

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the logic diagram.

3. Observe the logic output and verify with the truth tables.

RESULT:

 Thus 3- bit synchronous up/down counter was designed and implemented

successfully.

HOD / ECE

SHIFT REGISTER:

PIN DIAGRAM: (D-Flip-Flop)

Function Table:

Inputs Outputs

Preset Clear Clock D Q Q’

0 1 X X 1 0

1 0 X X 0 1

0 0 X X 1 1

1 1 0 0 1

1 1 1 1 0

1 1 0 X No Change

PIN DIAGRAM: (QUAD 2-LINE TO 1-LINE MULTIPLEXERS)

HOD / ECE

AIM:

 To design and implement

1. Serial in serial Out(SISO)

2. Serial in parallel Out(SIPO)

3. Parallel in serial Out(PISO)

4. Parallel in parallel Out(PIPO)

APPARATUS REQUIRED:

SL.NO COMPONENTS SPECIFICATION QUANTITY

1.

2.

3.

4.

IC Trainer kit

D-Flip flop

Quad 2-Line to 1-Line

Multiplexer

Patch cords

-

IC7474

IC74157

-

1

2

1

Few

THEORY:

 A register is capable of shifting its binary information in one or both directions is known

as shift register. A logical configuration of shift register consist of a D flip flop cascaded with

output of one flip flop connected to input of next flip flop. All flip flops receive common clock

pulses which causes the shift in the output of the flip flop. The simplest possible shift register

is one that uses only flip flop. The output of a given flip flop is connected to the input of next

flip flop of the register. Each clock pulse shifts the content of register one bit position to right.

HOD / ECE

Function Table: (74157)

SERIAL IN SERIAL OUT:

LOGIC DIAGRAM:

TRUTH TABLE:

CLK Serial IN Serial OUT

1 1 0

2 1 0

3 1 0

4 1 1

5 0 1

6 0 1

7 0 1

8 0 0

HOD / ECE

Serial IN Parallel OUT:

LOGIC DIAGRAM:

TRUTH TABLE:

CLK DATA
OUTPUT

Q3 Q2 Q1 Q0

1 1 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 0

4 1 1 0 0 1

HOD / ECE

Parallel IN Serial OUT:

LOGIC DIAGRAM:

TRUTH TABLE:

SHIFT/

LOAD’
CLK

INPUTS OUTPUT

A B C D Q

0 0 1 0 1 0 0

1 1 1 0 1 0 1

1 2 1 0 1 0 0

1 3 1 0 1 0 1

HOD / ECE

Parallel IN Parallel OUT:

Logic Diagram:

TRUTH TABLE:

CLK
DATA INPUTS OUTPUT

D3 D2 D1 D0 Q3 Q2 Q1 Q0

1 1 0 0 1 1 0 0 1

2 1 0 1 0 1 0 1 0

PROCEDURE:

1. Connections are given as per the logic diagram.

2. Logic inputs are given as per the logic diagram.

3. Observe the logic output and verify with the truth tables.

RESULT:

 Thus the design and implementation of

1. Serial in serial Out (SISO)

2. Serial in parallel Out (SIPO)

3. Parallel in serial Out (PISO)

4. Parallel in parallel Out (PIPO) were done successfully.

HOD / ECE

Logic Diagram:

Fulladder using two half adders:

Truth Table:

Inputs Outputs

x y Cin Sum (S) Carry (Cout)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

HOD / ECE

Aim:

 To design the following experiment using Verilog HDL

➢ Full adder and Full subtractor

➢ Multiplexer and Demultiplexer

➢ 4 – Bit Ripple Counter, MOD10 and MOD12 counter

➢ SISO, SIPO, PISO, PIPO Shift register

Software Used:

1. Xilinx 9.1i

Program:

//Gate-level description of Full Adder using two Half Adder

//Description of Half Adder

module halfadder(s,co,x,y);

input x,y;

output s,co;

//Instatiate primitive gates

xor (s,x,y);

and (co,x,y);

endmodule

//Description of Full Adder

module fulladder(s,co,x,y,ci);

input x,y,ci;

output s,co;

wire s1,d1,d2; //Outputs of first XOR and AND gates

//Instantiate Half Adder

halfadder ha_1(s1,d1,x,y);

halfadder ha_2(s,d2,s1,ci);

or or_gate(co,d2,d1);

endmodule

HOD / ECE

Logic Diagram:

Full Subtractor using two half subtractors:

Truth table:

Inputs Outputs

x y Bin Difference(D) Borrow(Bout)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

HOD / ECE

Program:

//Gate-level description of Full Subtractor using two Half Subtractor

//Description of Half Subtractor

module halfsubtractor(d,bo,x,y);

input x,y;

output d,bo;

wire z; //Output of NOT gate

//Instatiate primitive gates

xor (d,x,y);

not (z,x);

and (bo,z,y);

endmodule

//Description of Full Subtractor

module fullsubtractor(d,bo,x,y,bi);

input x,y,bi;

output d,bo;

wire a,g1,g2; //Outputs of first XOR and AND gates

//Instantiate Half Subtractor

halfsubtractor hs_1(a,g1,x,y);

halfsubtractor hs_2(d,g2,a,bi);

or or_gate(bo,g2,g1);

endmodule

HOD / ECE

Logic Diagram:

4 to 1 Multiplexer:

Truth table:

INPUT OUTPUT

s[1] s[0] y

0 0 D[0]

0 1 D[1]

1 0 D[2]

1 1 D[3]

HOD / ECE

//Gate-level description of 4 to 1 Multiplexer

module multiplexer(y,d,s);

output y;

input [3:0] d;

input [1:0] s;

wire a,b,c,e,f,g,h,i;

//Instantiate Primitive gates

not (a,s[1]);

not (b,s[0]);

and (c,d[0],b,a);

and (e,d[1],s[0],a);

and (f,d[2],b,s[1]);

and (g,d[3],s[0],s[1]);

or (h,c,e);

or (i,f,g);

or (y,h,i);

endmodule

Logic Diagram:

1 to 4 Demultiplexer:

HOD / ECE

Truth Table:

INPUT OUTPUT

s[1] s[0] D y[0] y[1] y[2] y[3]

0 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 0

1 1 1 0 0 0 1

//Gate-level description of 1 to 4 Demultiplexer

module demultiplexer(y,d,s);

output [3:0]y;

input d;

input [1:0] s;

wire a,b;

//Instantiate Primitive gates

not (a,s[1]);

not (b,s[0]);

and (y[0],d,b,a);

and (y[1],d,s[0],a);

and (y[2],d,b,s[1]);

and (y[3],d,s[0],s[1]);

endmodule

LOGIC DIAGRAM: 4-Bit Ripple Counter:

TRUTH TABLE:

HOD / ECE

COUNT A0 A1 A2 A3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 1 0 1

11 1 1 0 1

12 0 0 1 1

13 1 0 1 1

14 0 1 1 1

15 1 1 1 1

//Structural description of Ripple Counter

module ripplecounter(A0,A1,A2,A3,COUNT,RESET);

output A0,A1,A2,A3;

input COUNT,RESET;

//Instantiate Flip-Flop

FF F0(A0,COUNT,RESET);

FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);

endmodule

//Description of Flip-Flop

module FF(Q,CLK,RESET);

output Q;

input CLK,RESET;

reg Q;

always @(negedge CLK or negedge RESET)

if(~RESET)

Q=1'b0;

else

Q=(~Q);

endmodule

LOGIC DIAGRAM:

HOD / ECE

MOD-10 Ripple Counter:

TRUTH TABLE:

COUNT A0 A1 A2 A3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 0 0 0

//Structural description of MOD10 Counter

HOD / ECE

module MOD10(A0,A1,A2,A3,COUNT);

output A0,A1,A2,A3;

input COUNT;

wire RESET;

//Instantiate Flip-Flop

FF F0(A0,COUNT,RESET);

FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);

//Instantiate Primitive gate

nand (RESET,A1,A3);

endmodule

//Description of Flip-Flop

module FF(Q,CLK,RESET);

output Q;

input CLK,RESET;

reg Q=1'b0;

always @(negedge CLK or negedge RESET)

if(~RESET)

Q=1'b0;

else

Q=(~Q);

endmodule

HOD / ECE

LOGIC DIAGRAM:

MOD-12 Ripple Counter:

TRUTH TABLE:

COUNT A0 A1 A2 A3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 1 0 1

11 1 1 0 1

12 0 0 0 0

HOD / ECE

//Structural description of MOD12 Counter

module MOD12(A0,A1,A2,A3,COUNT);

output A0,A1,A2,A3;

input COUNT;

wire RESET;

//Instantiate Flip-Flop

FF F0(A0,COUNT,RESET);

FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);

//Instantiate Primitive gates

nand (RESET,A2,A3);

endmodule

//Description of Flip-Flop

module FF(Q,CLK,RESET);

output Q;

input CLK,RESET;

reg Q=1'b0;

always @(negedge CLK or negedge RESET)

if(~RESET)

Q=1'b0;

else

Q=(~Q);

endmodule

LOGIC DIAGRAM:

SERIAL IN SERIAL OUT:

TRUTH TABLE:

HOD / ECE

Clk d q

1 1 0

2 1 0

3 1 0

4 1 1

5 0 1

6 0 1

7 0 1

8 0 0

//Structural description of Serial in Serial Out Shift Register

module siso(q,d,clk);

output q;

input d,clk;

wire [2:0] a;

dff df1(a[0],d,clk);

dff df2(a[1],a[0],clk);

dff df3(a[2],a[1],clk);

dff df4(q,a[2],clk);

endmodule

//Description of D - Flipflop

module dff(q,d,clk);

output q;

input d,clk;

reg q=1'b0;

always @(posedge clk)

q=#5 d;

endmodule

LOGIC DIAGRAM:

Serial IN Parallel OUT:

HOD / ECE

TRUTH TABLE:

Clk d
OUTPUT

Q[3] Q[2] Q[1] Q[0]

1 1 1 0 0 0

2 1 1 1 0 0

3 1 1 1 1 0

4 1 1 1 1 1

//Structural description of Serial in Parallel Out Shift Register

module sipo(q,d,clk);

output [3:0] q;

input d,clk;

dff df1(q[3],d,clk);

dff df2(q[2],q[3],clk);

dff df3(q[1],q[2],clk);

dff df4(q[0],q[1],clk);

endmodule

//Description of D - Flipflop

module dff(q,d,clk);

output q;

input d,clk;

reg q=1'b0;

always @(posedge clk)

q=#5 d;

endmodule

LOGIC DIAGRAM:

Parallel IN Serial OUT:

HOD / ECE

TRUTH TABLE:

//Structural description of Parallel in Serial Out Shift Register

module piso(q,i,clk,sl);

Sl Clk
INPUT OUTPUT

i[3] i[2] i[1] i[0] q

0 0 1 0 0 1 1

1 1 1 0 0 1 0

1 2 1 0 0 1 0

1 3 1 0 0 1 1

HOD / ECE

output q;

wire [2:0] a;

wire [6:0] b;

wire [2:0] c;

wire d;

input clk,sl;

input [3:0]i;

//Instantiate D – Flipflop

dff df1(a[0],b[0],clk);

dff df2(a[1],c[0],clk);

dff df3(a[2],c[1],clk);

dff df4(q,c[2],clk);

//Instantiate Primitive gates

not (d,sl);

and (b[0],d,i[3]);

and (b[1],a[0],sl);

and (b[2],d,i[2]);

and (b[3],a[1],sl);

and (b[4],d,i[1]);

and (b[5],a[2],sl);

and (b[6],d,i[0]);

or (c[0],b[1],b[2]);

or (c[1],b[3],b[4]);

or (c[2],b[5],b[6]);

endmodule

//Description of D - Flipflop

module dff(q,d,clk);

output q;

input d,clk;

reg q=1'b0;

always @(posedge clk)

q=d;

endmodule

Logic Diagram:

Parallel IN Parallel OUT:

HOD / ECE

TRUTH TABLE:

Clk
INPUT OUTPUT

d[3] d[2] d[1] d[0] q[3] q[2] q[1] q[0]

1 1 0 1 0 1 0 1 0

2 1 0 0 1 1 0 0 1

//Structural description of Parallel in Parallel Out Shift Register

module pipo(q,d,clk);

output [3:0] q;

input [3:0] d;

input clk;

//Instantiate D - Flipflop

dff df1(q[3],d[3],clk);

dff df2(q[2],d[2],clk);

dff df3(q[1],d[1],clk);

dff df4(q[0],d[0],clk);

endmodule

//Description of D - Flipflop

module dff(q,d,clk);

output q;

input d,clk;

reg q=1'b0;

always @(posedge clk)

q=#5 d;

endmodule

