

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

17CVCC82 - Strength of Materials Lab

Standard Operating Procedures (SOP)

Name of the Lab /facility	Strength Of the Materials Lab
Purpose	To study the UTM and perform the tensile test.
Scope	The concept of UTM test can be studied easily and to find Tensile, shear, Double shear properties of given specimens and also easy to operate and ideal for group studies & demonstration.
	UNIVERSAL TESTING MACHINE (UTM)

PROCEDURE:

- **1.** The load pointer is set at zero by adjusting the initial setting knob.
- 2. The dial gauge is fixed and the specimen for measuring elongation of Small amounts.
- 3.Measuring the diameter of the test piece by vernier caliper at least at three places and determine the mean value also mark the gauge length.
- 4.Now the specimen is gripped between upper and middle cross head Jaws of the m/c.
- 5.Set the automatic graph recording system
- 6. Start the m/c and take the reading.
- 7. The specimen is loaded gradually and the elongation is noted until the Specimen breaks.

Name of the Lab /facility	Strength Of the Materials Lab
Purpose	To determine the stiffness of spring, modulus of rigidity of the spring wire and maximum strain energy stored.
Scope	The concept of Impact test can be studied easily and to find impact energy of given specimens and also easy to operate and demonstration.

IMPACT TEST - IZOD

PROCEDURE:

- **1.** Raise the swinging pendulum weight and lock it.
- **2.** Release the trigger and allow the pendulum to swing.
- 3. This actuates the pointer to move in the dial.
- 4. Note down the frictional energy absorbed by the bearings.
- 5. Raise the pendulum weight again and lock it in position.
- 6. Place the specimen in between the simple anvil support keeping the "U" notch in the direction opposite to the striking edge of hammer arrangement.
- 7. Release the trigger and allow the pendulum to strike the specimen at its midpoint.
- 8. Note down the energy spent in breaking (or) bending the specimen.
- 9. Tabulate the observation.

Name of the Lab /facility	Strength Of The Materials Lab	
Purpose	To conduct the torsion test on the given specimen forthe following 1. Modulus of rigidity 2. Shear stress	
Scope	The concept of Torsional test can be studied easily and to find torsion properties of given specimens and also easy to operate & demonstration.	
Responsibility	ility Faculty Incharge, HOD/MECH	
TORSION TEST		

PROCEDURE:

- **1.** Measure the diameter and length of the given rod.
- 2. The rod is fixing in to the grip of machine.
- **3. Set the pointer on the torque measuring scale.**
- 4. The handle of machine is rotate in one direction.
- 5. The torque and angle of test are noted for five degree.
- 6. Now the handle is rotated in reverse direction and rod is taken out

FORMULA USED:

1. Modulus of rigidity, C =
$$\frac{TL}{J\alpha}$$
 N/mm²

Where,

α =angle of degree

2. Shear stress (t) =TR/L N/mm²

Name of the				
Lab /facility	Strength Of The Materials Lab			
Purpose	To determine the Young conducting bending test	"s modulus of the given specimen by t.		
Scope	The concept of Beam d find young's modulus pr to operate & demonstra	eflection test can be studied easily and to operties of given specimens and also easy tion.		
Responsibility	Faculty Incharge, HOD/N	ЛЕСН		
BEAM DEFLECTION TEST				
PROCEDURE: 1. Measure the length (L) of the given specimen.				
2. Mark the ce	ntre of the specimen using p	bencil / chalk		
3. Mark two po	bints A & B at a distance of 3	350mm on either side of the centre mark. The		
distance betwo	een A & B is known as span	of the specimen (I)		
5. Place the sn	ecimen over the two suppo	in the machine property.		
the points A	&B coincide with centre of	the supports. While placing, ensure that the		
Tangential surface nearer to heart will be the top surface and receives the load.				
6. Measure the breadth (b) and depth (d) of the specimen using scale.				
7. Place the dial gauge under this specimen at the centre and adjust the dial gauge				
Reading to zero position.				
8. Place the load cell at top of the specimen at the centre and adjust the load indicator				
9 Select a stra	ai box to zero position. ain rate of 2 5mm / minute u	sing the gear boy in the machine		
10. Apply the lo	pad continuously at a const	ant rate of 2.5mm/minute and note down the		
deflection f	or every increase of 0.25 to	nne load up to a maximum of 6 sets of		
readings.				
11. Calculate t	he Young [®] s modulus of the g	given specimen for each load using the		
following formula:				
Young's modulus, $E = \frac{Pl^2}{4015}$				
Where	4010	I = Moment of Inertia in mm^4 (bd ³ /12)		
P = Loa	ad in N	b = Breadth of the beam in mm.		
L = Spa	an of the specimen in mm	d = Depth of the beam in mm		
		δ = Actual deflection in mm.		
12. Find the average value of young's modulus that will be the Young's modulus of the				
	given specimen.			

Name of the Lab /facility	Strength Of The Materials Lab	
Purpose	To determine the stiffness of spring, modulus of rigidity of the spring wire and maximum strain energy stored.	
Scope	The concept of spring test can be studied easily and to find stiffness properties of given springs and also easy to operate and ideal for group studies & demonstration.	
Responsibility	Faculty Incharge, HOD/MECH	
SPRING TEST		

PROCEDURE:

- **1.** By using Vernier caliper measure the diameter of the wire of the spring and also the diameter of spring coil.
- 2. Count the number of turns.
- 3. Insert the spring in the spring testing machine and load the spring by a suitable weight and note the corresponding axial deflection in compression.
- 4. Increase the load and take the corresponding axial deflection readings.
- **5.** Plot a curve between load and deflection. The shape of the curve gives the stiffness of the spring.