

Faculty of Engineering and Technology

Programme : B.E – Mechanical Engineering – Part Time

Choice Based Credit System (CBCS) Curriculum & Syllabus (Semester I to VII)

Regulations 2021

VINAYAKA MISSION'S RESEARCH FOUNDATION, DEEMED TO BE UNIVERSITY, SALEM

Board of Mechanical Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

	Design, analyze & fabricate, maintain and improve mechanical
PEO.1	engineering systems that are technically sound, economically feasible and
	socially acceptable to enhance quality of life.
	Apply modern computational, analytical, simulation tools and techniques
PEO.2	to address the challenges faced in mechanical and allied engineering
	streams.
	Communicate effectively using innovative tools and demonstrate
PEO.3	leadership & entrepreneurial skills.
	Exhibit professionalism, ethical attitude, team spirit and pursue lifelong
PEO.4	learning to achieve career and organizational goals.

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Mechanical Engineering graduates will be able:

2001	To work independently as well as in team to formulate, design, execute
PSO.1	solutions for engineering problems and also analyze, synthesize technical
	data for application to product, process, system design & development
	To understand & contribute towards social, environmental issues,
PSO.2	following professional ethics and codes of conduct and embrace lifelong
	learning for continuous improvement
PSO.3	To develop expertise towards use of modern engineering tools, careers in
P50.5	industries and research and demonstrate entrepreneurial skill

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

	Engineering knowledge: Apply the knowledge of mathematics, science,
PO1	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems
	Problem analysis: Identify, formulate, review research literature, and analyze
PO2	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering
PO3	problems and design system components or processes that meet the specified
105	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based
PO4	knowledge and research methods including design of experiments, analysis
104	and interpretation of data, and synthesis of the information to provide valid
	conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques,
PO5	resources, and modern engineering and IT tools including prediction and
105	modeling to complex engineering activities with an understanding of the
	limitations.
	The engineer and society: Apply reasoning informed by the contextual
PO6	knowledge to assess societal, health, safety, legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.
	Environment and sustainability: Understand the impact of the professional
PO7	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities
PO10	with the engineering community and with society at large, such as, being able
-	to comprehend and write effective reports and design documentation, make
	effective presentations, and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and
PO11	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects and
	in multidisciplinary environments.
DOIA	Life-long learning: Recognize the need for, and have the preparation and
PO12	ability to engage in independent and life-long learning in the broadest context
	of technological change.

VINAYAKA MISSION'S RESEARCH FOUNDATION DEEMED TO BE UNIVERSITY, SALEM CURRICULUM FOR REGULATION-2021

Credit Requirement for the Course Categories <u>DEPARTMENT OF MECHANICAL ENGINEERING- (PART TIME)</u>

SI.	Category of		Suggested Breakup of Credits
No.	Courses	Types of Courses	(min – max)
	A.Foundation Course	S	18-24
	Humanities and	d Social Sciences including	
	Management co	ourses	9-12
	Basic Science	Courses	
1.	(Maths, Physic	s and Chemistry)	9-12
2.	B. Professional Core	Courses	61
3.	C. Elective Courses		18-27
	Professional Electi	ves	12-15
		Innovation, Entrepreneurship, Skill	
		Development etc.	3-6
		Emerging Areas like 3D	
		Printing, Artificial	
		Intelligence, Internet of	
	Open Electives	Things etc.	3-6
4.	D. Project work		8
	E. Mandatory/Audit Yoga and Meditation, Essence of Indian Tra NCC/NSS/RRC/YRC Bharat Abhiyan/Swac	Indian Constitution, ditional Knowledge, /Student Clubs/Unnat hh Bharat, Sports and	Zero Credit Course (Minimum 2 courses to be completed other than Yoga and Meditation)
5.	Games, Gender Equit	y and Law	105
	Min	imum Credits to be earned	105

B.E./B	B.TECH. – I	MECHANICAL ENGINEERIN	NG - SEMESTH	ER I TO VII						
A.Fot	indation C	Courses (18-24)								
Humanities and Social Sciences including Management Courses Credits (9-12)										
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE	
1	34121H02	TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL	
2	34121H05	ENGINEERING MANAGEMENT AND ETHICS	MANAG	FC-HS	3	0	0	3	NIL	
3	34121H83	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL	
4	34121H08	OPERATIONS MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL	
5	34121H11	SOFT SKILLS FOR ENGINEERS	ENG	FC-HS	3	0	0	3	NIL	
Basic	Science C	ourses Credits (9-12)								
1	34121B01	ENGINEERING MATHEMATICS	MATH	FC-BS	2	1	0	3	NIL	
2	34121B12	SMART MATERIALS	РНҮ	FC-BS	3	0	0	3	NIL	
3	34121B24	INDUSTRIAL MATERIALS	CHEM	FC-BS	3	0	0	3	NIL	
4	34121B11	MATHEMATICS FOR MECHANICAL SCIENCES	MATH	FC-BS	2	1	0	3	ENGINEERING MATHEMATIC S	
5	34121B15	NUMERICAL METHODS FOR MECHANICAL SCIENCES	MATH	FC-BS	2	1	0	3	I.ENGINEERI NG MATHEMATI CS 2.MATHEMATI CS FOR MECHANICAL SCIENCES	
6	34121B35	RESOURCE MANAGEMENT TECHNIQUES	MATH	FC-BS	2	1	0	3	NIL	
7	34121B18	PROBABILITY AND STATISTICS	MATH	FC-BS	2	1	0	3	NIL	
8	34121B19	ENVIRONMENTAL SCIENCES	CHEM	FC-BS	3	0	0	3	NIL	

SL.	COURSE		OFFERING						
NO	CODE	COURSE	DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
		MANUFACTURING							
		PROCESSES							
		(THEORY AND							
1	34421C02	PRACTICALS)	MECH	CC	3	0	2	4	NIL
		FLUID MECHANICS AND							
		MACHINERY (THEORY AND							
2	34421C05	PRACTICALS)	MECH	CC	2	1	2	4	NIL
-	01121000	MECHANICS OF			_	-			
		MACHINES							
		(THEORYAND							
3	34421C08	PRACTICALS)	MECH	CC	2	1	2	4	NIL
		MECHANICAL BEHAVIOUR							
		OF MATERIALS AND							
4	24421002	METALLURGY	MECH	66		0	2		NII
4	34421C03	(THEORY AND PRACTICALS) STRENGTH OF MATERIALS	MECH	CC	3	0	2	4	NIL
5	34421C06	(THEORY AND PRACTICALS)	MECH	CC	2	1	2	4	NIL
5	57721000	ENGINEERING				1			111L
		THERMODYNAMICS							
		(THEORY AND							
6	34421C04	PRACTICALS)	MECH	CC	2	1	2	4	NIL
		THERMAL ENGINEERING							ENGINEERING
7	34421C09	(THEORY AND PRACTICALS)	MECH	CC	2	1	2	4	THERMODYNAMICS
		DESIGN OF MACHINE							
8	34421C11	ELEMENTS	MECH	CC	2	1	0	3	NIL
0	51121011	ENGINEERING METROLOGY				1	0	5	
		AND							
		MEASUREMENTS							
9	34421C13	(THEORY AND PRACTICALS)	MECH	CC	3	0	2	4	NIL
		AUTOMOBILE ENGINEERING							
10	34421C10	(THEORY AND PRACTICALS)	MECH	CC	3	0	2	4	NIL
		COMPUTER INTEGRATED							
1.1	24421 007	MANUFACTURING	MECH	66		0	2		NII
11	34421C07	(THEORY AND PRACTICALS)	MECH	CC	3	0	2	4	NIL
		DESIGN OF TRANSMISSION							DESIGN OF MACHINE
12	34421C12	SYSTEMS	MECH	CC	2	1	0	3	ELEMENTS
		HEAT AND MASS							
		TRANSFER							
		(THEORYAND							
13	34421C16	PRACTICALS)	MECH	CC	2	1	2	4	ENGINEERING THERMODYNAMICS
		FINITE ELEMENT							
		ANALYSIS							
		(THEORY							
14	34421C14	AND PRACTICALS)	MECH	CC	2	1	2	4	NIL
		GAS DYNAMICS AND JET							ENGINEERING
15	34421C15	PROPULSION	MECH	CC	3	1	0	4	THERMODYNAMICS
		ENGINEERING MECHANICS							
16		(STATICS AND DYNAMICS)	MECH	CC	2	1	0	3	NIL
/ B. TI	LCH. –ME(CHANICAL ENGINEERIN	G - SEMES	IEKI IO VI	L				
		(19.27)							
	ve Courses								
lessi	mai Electiv	ve Courses Credits-(12-15))						
	COURSE		OFFERING		1				

	1			1				1	
1	34421P01	RENEWABLE SOURCES OF ENERGY	MECH	EC-PS	3	0	0	3	NIL
2	34421P03	ADVANCED IC ENGINES	MECH	EC-PS	3	0	0	3	NIL
3	34421P15	INDUSTRIAL TRIBOLOGY	MECH	EC-PS	3	0	0	3	NIL
4	34421P16	LEAN MANUFACTURING SYSTEMS	MECH	EC-PS	3	0	0	3	NIL
5	34421P13	INDUSTRIAL ENGINEERING HYDRAULICS AND	MECH	EC-PS	3	0	0	3	NIL
6	34421P12	PNEUMATICS SYSTEMS	MECH	EC-PS	3	0	0	3	NIL
7	34421P09	FAILURE ANALAYSIS OF MATERIALS	MECH	EC-PS	3	0	0	3	NIL
8	34421P11	FUNDAMENTALS OF PIPING ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
9	34421P04	CONCURRENT ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
		ENGINEERING PRODUCT			2	0	0	2	
10 11	34421P08 34421P07	DESIGN DESIGN OF EXPERIMENTS	MECH MECH	EC-PS EC-PS	3	0	0	3	NIL NIL
12	34421P10	FLUID POWER SYSTEMS	MECH	EC-PS	3	0	0	3	NIL
						-			
13	34421P17	MEMS AND NEMS PETROLEUM PRODUCTION	MECH	EC-PS	3	0	0	3	NIL
14	34421P19	ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
Open Ele	ectives								
Electives	from Inno	ovation, Entrepreneurship	o, Skill Dev	elopment etc	Credi	its (3-	6)		
SL.	COURSE		OFFERING						
NO	CODE	COURSE ENGINEERING STARTUPS	DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1	34121001	AND ENTREPRENEURIAL MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL
2	34121002	INTELLECTUAL PROPERTY RIGHTS	MANAG	OE-IE	3	0	0	3	NIL
	24121004	INNOVATION, PRODUCT DEVELOPMENT AND	MANIAC		2	0	0	2	NU
3	34121004	COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL
4	34121007	SOCIAL ENTREPRENEURSHIP NEW VENTURE PLANNING	MANAG	OE-IE	3	0	0	3	NIL
5	34121006	AND MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL
6	34121003	FINANCE AND ACCOUNTING FOR ENGINEERS	MANAG	OE-IE	3	0	0	3	NIL
Emergin	g Areas lik	xe 3D Printing, Artificial I	Intelligence	, Internet of	Thing	s etc	Cred	its (3	3-6)
		BIOSENSORS AND							
1	35321001	TRANSDUCERS	BME	OE-EA	3	0	0	3	NIL
2	35321003	PRINCIPLES OF BIOMEDICAL INSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL
3	38121002	INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	NIL
4	38121001	FOOD AND NUTRITION TECHNOLOGY	BTE	OE-EA	3	0	0	3	NIL
1		1	1						
5	34221001	DISASTER RISK MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
5	34221001 34221002		CIVIL CIVIL	OE-EA OE-EA	3	0	0	3	NIL

8		INTRODUCTION TO INTERNET OF THINGS	CSE	OE-EA	3	0	0	3	NIL
0	33021003	INTERNET OF THINGS	CSE	UE-EA	3	0	0	3	INIL
9	35021001	CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL
10		DESIGN OF ELECTRONIC EQUIPMENT	ECE	OE-EA	3	0	0	3	NIL
11		INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET OF THINGS	ECE	OE-EA	3	0	0	3	NIL
12	34621001	GREEN POWER GENERATION SYSTEMS	EEE	OE-EA	3	0	0	3	NIL
13		INDUSTRIAL DRIVES AND AUTOMATION	EEE	OE-EA	3	0	0	3	NIL
14		BIOMOLECULES-STRUCTURE AND FUNCTION	PE	OE-EA	3	0	0	3	NIL
15	36921002	PHARMACOGENOMICS	PE	OE-EA	3	0	0	3	NIL
B.E./B.TE	CH. – ME	CHANICAL ENGINEERIN	G - SEMES	TER I TO VII					
D. Projec	t Work C	redits-(8)							
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1	34421R01	PROJECT WORK	MECH	PI-P	0	0	16	8	NIL

B.E./B	B.E./B.TECH. –MECHANICAL ENGINEERING – SEMESTER I TO VII										
E. Ma	C. Mandatory/Audit Courses										
	MANDATORY COURSES (ZERO CREDITS)										
		(NOT INCLU	DED FOR CGPA	CALCULAT	IONS)			T			
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	с	PREREQUISITE		
1	34121Z81	YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL		
	ANY TWO COURSES										
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE		
1	34121Z84	INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL		
2	34121Z83	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL		
3	34121Z85	NCC/NSS/RRC/YRC/STU DENT CLUBS/UNNAT BHARAT ABHIYAN/ SWACTH BHARAT/ROTARACT CLUB	GEN	AC	0	0	2	0	NIL		
4	34121Z86	SPORTS AND GAMES	PHED	AC	0	0	2	0			
5	34121Z82	GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL		

HUMANITIES AND SOCIAL SCIENCES COURSES

	TOTAL QUALITY	Category	L	Т	Р	Credit
34121H02	MANAGEMENT	FC-HS	3	0	0	3
PREAMBLE:						
global market. Total Qu business. TQM integra technical tools under a becomes essential to su		enhancement to hniques, existir g quality of pro s, organizations	the trans the trans ducts will b	adition proven and proven pe req	nal wa nent o rocess uired	ay of doing efforts, and ses. It to develop
	otal Quality Management concepts.					
2. To practice the TQM						
3. To apply the statistic						
4. To analyze the varie	ous TQM tools.					
5. To adopt the quality	systems.					
COURSE OUTCOMES:						
After successful completion	n of the course, students will be able to					
CO1: Understand the i	mportance of quality and TQM at m	anagerial level.		U	Inders	stand
CO2: Practice the relevant	vant quality improvement tools to in	plement TQM.		A	pply	
CO3: Analyze various	TQM parameters with help of statis	tical tools.		A	nalyz	ze
CO4: Assess various T	QM Techniques.			E	valua	te
	lity Management Systems in a differ	ent organization	1		pply	
Environment.	DGRAMME OUTCOMES AND H					C

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 COs PSO3 CO1 Μ L L Μ L L М _ CO₂ L Μ L L L М М _ М _ CO3 S S М S S L L L L Μ L _ _ CO4 L Μ S L L М _ -L Μ L Μ _ _ S S CO5 L L М L М Μ L L Μ М S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TQM Principles and Barriers & Implementation –Leadership – Concepts- Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting - Strategic Planning.

TQM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention-Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement: Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve-Control Charts for variables and attributes - OC curve - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA -Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COUR	COURSE DESIGNERS:									
S.No	Name of the Faculty	Designation	Department	Mail ID						
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in						
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in						

ENGINEERING	Category	L	Т	Р	Credit
34121H05 MANAGEMENT AND ETHICS	FC-HS	3	0	0	3

PREAMBLE:

Engineering management provides technological problem-solving ability of engineering and the organizational to oversee the operational performance of complex engineering enterprises to Engineers. Engineers require honesty, impartiality, fairness, and equity, and dedication to the protection of the public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights and duties of the employees through basic ethics confronting individuals and organizations engaged. It also emphasise values that are morally desirable in engineering practice and research. It allows them to understand various occupational crimes and learn the moral leadership.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To Understand the principles of planning at various levels of the organisation.

2. To analyse and practice the concepts of organizing, staffing to higher productivity.

3. To apply the concepts related to directing and controlling.

4. To understand and apply the case studies to practice code of ethics in organisation.

5. To apply the ethical principles in working environment.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of planning principles in organization CO2: Apply the various strategies of organising and staffing process.

CO2: Apply the various strategies of organising and staffing process.ApplyCO3: Analyze various leadership skills and control techniques for shaping the
organization.Analyze

CO4: Understand and apply best ethical practices in organisation

CO5: Analyse and Apply relevant ethical practices in engineering.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Understand

Analyze

Apply

	-														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	L	S	М	М	L	S	S	S	S	-	-	-
CO2	М	L	L	-	М	М	М	L	М	S	М	М	-	-	-
CO3	М	М	L	-	М	М	М	L	L	S	S	М	-	-	-
CO4	L	М	-	М	-	М	S	S	S	S	-	М	-	-	-
CO5	М	М	-	L	-	М	S	S	S	S	-	М	-	-	-
Ctures		Mad	T	I are											

S- Strong; M-Medium; L-Low

SYLLABUS:

PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting -Objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure– types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

DIRECTING

Foundations of individual and group behavior – motivation – motivation theories – motivational -Techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – Communication – process of communication – barrier in communication – effective communication – communication and IT.

CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of Computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

ETHICS IN ENGINEERING

Moral dilemmas -Uses of Ethical Theories- Engineering as Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger - Employed Engineers Rights and Duties- Collective Bargaining - Occupational Crime - Global Issues- Multinational Corporation- Technology transfer - Engineers as managers - Consulting Engineers - Expert Witness-Moral Leadership.

TEXT BOOKS:

1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.

2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.

3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).

REFERENCES:

1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).

2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management - A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.

3. Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.

4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi, (2004)

5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

COURSE DESIGNERS:

COUR	SE DESIGNERS:			
S.No	Name of the Faculty	Designation	Department	mail id
1	M. Manickam	Associate Professor	Management Studies	manickam@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

	Category	L	Т	Р	С
UNIVERSAL HUMAN VALUES –					
34121H83 UNDERSTANDING HARMONY	FC-HS	3	0	0	3

Course Objectives:

1. Development of a holistic perspective based on self- exploration.

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.

- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body-Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours: 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

2.Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

COUR	RSE DESIGNERS			
S.NO	COURSE INSTRUCTOR	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID
		Vice		
1	Dr.S.P.Sangeetha	Principal(Academics)	AVIT	sangeetha@avit.ac.in
	Dr.Jennifer G			
2	Joseph	HoD-H&S	AVIT	Jennifer@avit.ac.in

	Category	L	Т	Р	Credit
34121H08 OPERATIONS MANAGEMENT	FC-HS	3	0	0	3

PREAMBLE:

The contemporary uncertain business environment is forcing the organizations to adopt the latest tools, techniques and strategies for managing their resources in the most effective and efficient fashion. The topics of the course deals with the management of resources and activities that lead to production of goods of right quality, in right quantity, at right time and place in the most cost- impressive manner. The course focuses on the basic concepts, issues, and techniques adopted worldwide for efficient and effective operations. The topics include operations strategy, product design and development, forecasting, facility planning and layout, aggregate production planning, capacity planning, project management, production control, materials management, inventory and quality management, JIT and Kanban System.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the Fundamentals of Operations.

2. To Understand the importance of Job Design and their relationship towards Efficiency.

3. To understand the importance of Production, Planning and Control.

4. To evaluate the material requirement with the techniques.

5. To impart the Operation management Techniques to get rid of the Competitive advantage.

COURSE OUTCOMES:

CO1. Understand the importance of Operations Management. Understand CO2. Evaluating the various organisation and staffing functions Evaluate Understand CO3. Understand the Importance of Production Planning and Control. CO4. Evaluate the Various Operation Management Techniques Evaluate CO5. Analyze and Evaluating the various Inventory Management Techniques to take Competitive advantage.

Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	L	S	L	S	L	L	L	L	L	-	-	-
CO2	S	S	М	М	-	L	L	М	М	L	L	М	-	-	-
CO3	S	S	S	S	S	М	L	S	М	L	L	L	-	-	-
CO4	М	М	S	S	М	L	L	М	М	L	L	L	-	-	-
CO5	S	S	S	S	М	М	S	L	М	М	S	L	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS:

UNIT- I INTRODUCTION TO OPERATIONS MANAGEMENT

Hours

Operations Management- Nature & Scope – Evolution of Operations Management – Types of Production System, Operations Strategy – Product Life Cycle- Value Engineering concepts - Make or Buy Decision-Recent Trends in Operations Management- Plant Capacity - Plant Location & Factors. 9

UNIT-II JOB DESIGN & MATERIAL HANDLING

Hours

Layout- Principles of Layout- Factory-Basic types of layout product layout, group technology layout, fixed position layout, Retail service layout. Principles of material handling-Material handling equipment. Jobdesign: Effective job design- Combining engineering and behavioral approaches, Work measurement- method analysis- Ergonomics-Case studies.

UNIT-III PRODUCTION, PLANNING & CONTROL

Hours

Basic types of production- Interminent, Batch, continuous-Routing, Scheduling, Activating and Monitoring-Production Planning and Control, Process Planning, Aggregate Production Planning, Capacity Planning: Introduction, Capacity Planning

Q

UNIT IV OPERATION TECHNIQUES

9 Hours

Project Scheduling, Network Diagrams, Critical Path Method (CPM), Critical Path Method: Problems, Critical Path Method. Program Evaluation and Review Technique (PERT), PERT Problems, PERT Problems, Time Cost Trade Off Production Control, Sequencing, Sequencing Problems-I, Sequencing Problems- II, Master Production Scheduling- Concept of Quality, Total Quality Management (TQM), Total Productive Maintenance (TPM), Statistical Quality Control (SQC), Six Sigma.

UNIT- V INVENTROY MANAGEMENT

9 Hours

Materials Management, Inventory Control, Economic Order Quantity (EOQ) Models, Economic Order Quantity (EOQ): Problems, Production Quantity- Just in Time (JIT), Kanban System, Materials Requirement Planning (MRP)-I, Materials Requirement Planning (MRP)-II, Enterprise Resource Planning (ERP).

TEXT BOOKS:

1. Operation Management: K. N. Dervitsiotis, McGraw-Hill International Company.

2. Operations Management: R.S. Russell, and B.W. Taylor, Pearson Education

3. Industrial Engineering and Production Management: M. Telsang, S. Chand & amp; Company Ltd.

REFERENCES:

 The Encyclopedia of Operations Management: A Field Manual and Glossary of Operations Management ARTHUR V HILL 1st Edition.

2. Handbook of Industrial Engineering: Technology and Operations Management, Gavriel Salvendy 3rd Edition.

3. Quality and Operations Management: Revised Edition.

4. Operations Management: Theory and Practice by Mahadevan

5. Production and Operations Management by PANNEERSELVAM. R.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id
1	Dr. B. Rajnarayanan	Associate Professor	Management Studies	rajnarayanan@vmkvec.edu.in
2	Mr. T. Thangaraja	Associate Professor	Management Studies	thangaraja@avit.ac.in

		Category	L	Т	Р	Credit
34121H11	SOFT SKILLS FOR ENGINEERS	FC-HS	3	0	0	3

PREAMBLE

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario.

PREREQUISITE: NIL

COURSE OBJECTIVES
1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.)
2 To make them become effective communicators.
3 To ensure that learners use Electronic media materials for developing language.
4 To aid the students with employability skills.
5 To develop the students communication skills in formal and informal situations.
COURSE OUTCOMES
On the successful completion of the course, students will be able to
CO1. Listen, remember and respond to others in different scenario Remember
CO2. Understand and speak fluently and correctly with correct pronunciation in
different situation. Understand
CO3. To make the students experts in professional writing Apply
CO4. To make the students in proficient technical communicator Apply
CO5 To make the students recognize the role of technical writing in their careers in
business, technical and scientific field Analyze
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 3
CO1 · · · M M M · S · S S · S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
CO4 - - - M - L M S L S S M S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO SOFT SKILLS

Aspects of Soft Skills, Effective Communication Skills, Classification of Communication, Telephonic Communication Skills, Communicating without Words, Paralanguage.

INTERPERSONAL SKILLS

Group Communication Skills, Leadership Skills, Group Discussion, Meeting Management, Adaptability & Work Ethics, Personality development Positive Thinking, Proxemics, Haptics: The Language of Touch, Metacommunication, Applied Grammar.

LIFE SKILLS

Emotional Intelligence, Critical Thinking, Decision making, Problem solving, Listening Skills, Types of Listening, Negotiation Skills, Culture as Communication, Communication Breakdown, Organizational Communication.

PROFESSIONAL WRITING SKILLS

Advanced Writing Skills, Principles of Business Writing, Business Letters: Format and Style, Types of Business Letter writing, Reports, Types of Report, Strategies for Report Writing, Evaluation and Organization of Data Structure and Style of Report.

CAREER SKILLS

Advanced Speaking Skills, Speeches & Debates, Combating Nervousness, Patterns & Methods of Presentation, Oral Presentation: Planning & Preparation, Making Effective Presentations, Speeches for Various Occasions, Interviews, Planning & Preparing: Effective Résumé, Facing Job Interviews.

TEXTBOOK

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

Course	e Designers:	
S.No.	Name of the Faculty	Mail ID
1	Dr.P.Saradha / Associate Professor - English	saradhap@vmkvec.edu.in
2	Dr Bhuvaneswari R/ Assistant Professor - English	bhuvaneswarir@vmkvec.edu.in

BASIC SCIENCE COURSES

	ENGINEERING	Category	L	Т	Р	Credit
34121B01	MATHEMATICS	FC-BS	2	1	0	3

Preamble

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

Prerequisite : NIL Course Objectives

1 To recall the advanced matrix knowledge to Engineering problems.

2 To equip themselves familiar with the functions of several variables.

- 3 To improve their ability in solving geometrical applications of differential calculus problems.
- 4 To examine knowledge in multiple integrals.

5 To improve their ability in Vector calculus.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	App	ly the	conc	ept of	f orth	ogonal	l reduct	tion to	o diag	onalis	e the g	iven	A	pply	
	mat	matrix.													
CO2.	Find	l the r	adius	of cu	rvatu	re, ciro	cle of c	urvat	ure ar	nd cent	re of		A	pply	
	curv	curvature for a given curve.													
CO3.	Clas	Classify the maxima and minima for a given function with several													
	vari	variables, through by finding stationary points													
CO4.	Finc	Find double integral over general areas and triple integral over general													
	volu	volumes													
CO5.	App	ly Ga	uss D	iverg	ence	theore	m for e	evalua	ting t	he surf	face in	tegral.	A	Apply	
Mappin	g witl	h Prog	gram	me O	utco	mes ar	nd Pro	gram	me S	pecific	Outc	omes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	Μ	-	-	-	-	L	-	-	-	Μ	-	-	-
CO2	S	S	Μ	-	-	-	-	L	-	-	-	Μ	-	-	-
CO3	S	S	Μ	-	-	-	-	L	-	-	-	Μ	-	-	-
CO4	S	S	Μ	-	-	-	-	L	-	-	-	Μ	-	-	-
CO5	S	S	Μ	-	-	-	-	L	-	-	-	Μ	-	-	-
S- Strong	;; M-M	edium	; L-Lo	W											

SYLLABUS

MATRICES

Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof). **DIFFERENTIAL CALCULUS&PARTIAL DERIVATIVES**

Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature. Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method.

ORDINARY DIFFERENTIAL EQUATIONS

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration (in both Cartesian and polar coordinates)-Change of order of integration.

VECTOR CALCULUS

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof), Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gauss divergence and Stoke's theorems (Statements only)

Text Books

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delh (2020).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

Reference Books

- 1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics/AVIT	bhuvaneswari@avit.ac.in
2	Dr.G.Selvam	Associate Professor	Mathematics/VMKVEC	selvam@vmkvec.edu.in

									C	CATEGOR	RY	L	Т	Р	С
3412	1B12			SMA	RT MA	TERL	ALS			FC-BS		3	0	0	3
PREAM												-	-	-	_
Smart M	aterials	gives	an outle	ook abo	out vario	ous type	es of m	aterials	having	potential	applica	tion in H	Engineeri	ng and To	echnology.
In partic	ular, St	udents	learn a	bout Pi	operties	s of Cr	ystalline	e Mater	rials, Sr	mart Mater	rials an	d Nanor	naterials,	and their	r industrial
applicati	ons, ch	aracteri	stics an	d indus	strial app	plicatio	ns of M	lagnetic	and Su	uperconduc	cting m	aterials.			
PRERE Nil	QUISI	ГЕ:													
COURS	E OBJ	ECTIV	/ES:												
1	To im	part the	e basic p	oroperti	es of di	fferent	materia	ls.							
2	To un	derstan	d the st	ructure	of cryst	alline r	naterial	s.							
3	To un	derstan	d the pr	opertie	s of sma	art mate	erials an	nd realiz	ze its in	dustrial ap	plicatio	ons.			
4	To lea	rn the s	synthesi	is of Na	no mate	erials a	nd carbo	on nano	otubes.						
5 To learn the properties, classification and relevant applications of magnetic materials.															
6	To un	derstan	d the co	oncept o	of super	conduc	tivity, p	oropertie	es of su	per conduc	ctor and	l their in	dustrial a	pplication	ns.
COURS	E OUT	COM	ES:												
After suc	cessful	compl	etion of	the co	urse, lea	irner wi	ill be ab	ole to							
CO1. Ur	nderstai	nd the b	asic pro	operties	of vari	ous ma	terials.							Understa	nd
CO2. Le	arn the	structu	re of C	rystalliı	ne Mate	rials								Apply	
CO3. Ga	ain the l	oasic kr	nowledg	ge and 1	recogniz	the a	pplicati	ons of S	Smart N	Aaterials				Apply	
CO4. Ge	et an ex	posure	about tl	he prop	erties of	f Nano	materia	ls						Apply	
CO5. Ga	in the	knowle	edge at	out the	e prope	rties of	magne	etic ma	terials	and famili	arize t	heir			
applicati			C				U							Apply	
CO6. Ga	ain the l	knowle	dge abo	out Supe	ercondu	cting m	aterials	5						Apply	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPEC	IFIC (DUTCO	MES		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	POS	POS	
COS	1 S	2	3	4	5	6	7	8	9	0	1	2	1	2	POS3
CO1 CO2	S S	- S	- S	- S	- M	-	-	-	-	-	-	- S	-	-	-
CO2 CO3	S S	M	<u> </u>	S S	- IVI	-	-	-	-	-	-	S S	-	-	-
CO4	S	S	S	S	M	-	-	-	-	-	-	S	-	-	_
CO5	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO6	S	М	М	S	М	-	-	-	-	-	-	S	-	-	-
S – stro	ng, M-	Mediu	m, L – I	Low					•	· · · · · ·				I	

SYLLABUS

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures – determination of interplanar distance (d).

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application – SMA in Actuators and Blood clot filters, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and industrial applications (Core of the Transformer).

NANO MATERIALS: Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications; Chemical Sensors.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials – Applications of Magnetic materials (Magnets in Generators and MRI scan).

SUPER CONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Industrial Applications of superconductors (SQUID, Cryotrons and Maglev Trains).

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. A.K. Katiyar and C.K. Pandey, Engineering Physics Theory and Practical, Wiley Publisher, 2015.

REFERENCES

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.

COURSE DESIGNERS										
S. No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr. G. Suresh	Associate Professor	Physics	suresh.physics@avit.ac.in						
2	Dr. R. N. Viswanath	Professor	Physics	rnvishwanath@avit.ac.in						
3	Dr. B. Dhanalakshmi	Associate Professor	Physics	dhanalakshmi.phy@avit.ac.in						

								Catego	ory	L	Т]	P	Cre	dit
34121	B24	IN	DUST	RIA	L MA	TERIA	LS	FC-B	S	3	0		0	3	;
Preamb															
Industria															
the ideas															
problem					r esse	ntial sk	ills a	re, in-d	epth k	knowle	dge an	d appli	cation	of chen	nistry
and creat				icals.											
Prerequ															
Course	Obje	ctives	5												
1 To	Desc	ribe ti	he vai	rious 1	netall	ic mate	rials.								
2 To	Appl	y the	vario	us sm	art ma	terials f	for in	dustrie	s.						
						n the ind									
						paints			indus	tries.					
						oleum									
Course	Outco	omes	: On t	he su	ccess	ful com	pleti	on of t	he cou	urse, st	tudent	s will b	oe able	e to	
CO1.	Disc	uss th	e vari	ous n	netalli	c materi	ials u	ising in	indus	tries.			Unc	lerstand	l
CO2.	Inter	pret tl	he var	ious s	mart	material	ls and	d its ap	plicati	ions.			App	oly	
CO3.	Com	pare t	the dif	feren	t lubri	cants w	ith tł	neir pro	pertie	s.			Ana	alyze	
CO4.	Rela	te the	vario	us sur	face c	oatings	•						App	oly	
CO5.	Cate	gorize	e the d	liffere	nt pet	roleum	prod	ucts.					Ana	alyze	
Mappi									me S	pecific	Outco	mes		2	
COs	PO1	PO2	PO3	PO4	PO5		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	Μ	S	-	-	-	-	-	М	Μ	Μ
CO2	S	М	-	-	-	S	S	-	-	-	-	-	М	Μ	Μ
CO3	S	М	-	-	-	S	Μ	-	-	-	-	-	М	Μ	Μ
CO4	S	S	-	-	-	Μ	S	-	-	-	-	-	М	М	Μ
CO5	S	S	-	-	-	S	Μ	-	-	-	-	-	М	М	Μ
S- Strong		edium	n; L-Lo)W											
SYLLA				VC											
						• 1 •	1 .	• •		NT' 1	1 1 4	<u> </u>		•	11
Enginee															
for engir	neerin	ig app	olicati	ons.	Phase	diagra	ams,	proper	rties	and t	ypical	alloys	with	refere	ence

to their applications.

SMART MATERIALS

Shape Memory Alloys, Varistors and Intelligent materials for bio-medical applications, Polymers and Plastics from industry. Development, important properties and smart applications of polymeric materials.

LUBRICANTS

Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants. Properties of lubricants (viscosity index, cloud point, pour point) and their determination.

PAINTS

surface Coatings: Objectives of coatings surfaces, preliminary treatment of surface, classification

of surface coatings- Paints, pigments, Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers, Thinners, Enamels, emulsifying agents.

Special paints (Heat retardant, Fire retardant, Eco-friendly paint, Plastic paint), Dyes, Wax polishing,

Water and Oil paints, Metallic coatings (electrolytic and electroless), metal spraying and anodizing.

PETROLEUM AND PETROCHEMICAL INDUSTRY

Composition of crude petroleum- Refining and different types of petroleum products and their applications - Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from biomass) - synthetic fuels (gases and liquids).

Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene.

Text Books

- 1. Industrial chemistry by B.K.Sharma. Goel publishing home.
- 2. Engineering Material Technology, 5th edition, by James A.Jacobs & Thomas F. Kilduff.

Reference Books

- 1. An Introduction to Industrial chemistry by C,A.Heaton. Springer publications.
- 2. Engineering materials1: An introduction to properties, applications and design by Michael F Ashby and David R H Jones, Elsevier Butterworth Heinmann Publishers, 2007

Course Designers

			Department/Name of	-
S.No	Faculty Name	Designation	the College	Email id
	Mr.A.Gilbert			gilbertsunderraj@vmkvec.
1	sunderraj	Associate Professor	Chemistry/VMKVEC	edu.in
				nagalakshmi.chemistry@a
2	Dr.R.Nagalakshmi	Professor	Chemistry/AVIT	vit.ac.in

	MATHEMATICS FOR	Category	L	Т	Р	Credit
	MECHANICAL					
34121B11	SCIENCES	FC-BS	2	1	0	3

Preamble

This course provides a solid undergraduate foundation in partial differential equations, probability theory and mathematical statistics and at the same time provides an indication of the relevance and importance of the theory in solving practical problems in the real world. Partial differential equations are derived from physics and instruct the methods for solving boundary value problems, that is, methods of obtaining solutions which satisfy the conditions required by the physical situations such as Heat flow equations of one dimension and two dimensions. Fourier analysis is to represent complicated functions in terms of simple periodic functions, namely cosines and sines. Statistics is permeated by probability. Statistics has been responsible for accelerating progress in all applied sciences by defining the correct methods of

planning, collecting, analyzing and interpreting data for establishing cause and effect relationship.

Prerequisite : Engineering Mathematics

Cours	e Objectives

1	To formulate and solve	partial differential equations.
---	------------------------	---------------------------------

- 2 To represent a periodic function as a Fourier series.
- 3 To be familiar with applications of partial differential equations.
 - To provide an understanding for the graduate on statistical concepts to include measures 4 of central tendency, curve fitting, correlation and regression.
- 5 To be familiar with discrete and continuous random variables.

5 10	5 To be familiar with discrete and continuous fandom variables.														
Course Outcomes: On the successful completion of the course, students will be able to															
	Exp	lain th	ne me	thodo	ology	of for	ning ai	nd sol	ving	partial	differe	ntial			
CO1.	equa	ations	•				-						A	pply	
	Den	nonstr	ate pe	eriodi	c fun	ctions	arising	in th	e stud	y of er	igineer	ing			
	prob	olems	as Fo	urier	series	s of sir	ne and	cosine	es and	l comp	ute the				
CO2.	Fou	Fourier coefficients numerically.								A	pply				
	Solve partial differential equations arising in engineering problems like														
CO3.	wav	wave equations and heat flow equation by Fourier series								A	pply				
	App	Apply least square method to fit a curve for the given data and evaluate													
CO4.	the correlation coefficient and regression lines for the data								A	pply					
	Apply concepts of probability, discrete and continuous random														
CO5.	variables.								A	pply					
Mappin	g witł	n Prog	gram	me O	utco	mes ar	nd Pro	gram	me Sj	pecific	Outco	omes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	Μ	L					Μ				Μ			
CO2	S	Μ	Μ	L				Μ				Μ			
CO3	S	Μ	Μ	L				Μ				Μ			
CO4	S	Μ	L					Μ				Μ			
CO5	S	S	Μ	L				Μ				Μ			
S- Stron	0,	Medi	ium;	L-Lo	W										
SYLLA	BUS														

PARTIAL DIFFERENTIAL EQUATIONS

Formation - Solutions of standard types f(p,q)=0, clairauts form, f(z,p,q)=0,f(p,x)=g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

FOURIER SERIES

Dirichlet's conditions – General Fourier series – Half -range Sine and Cosine series – Parseval's identity – Harmonic Analysis.

BOUNDARY VALUE PROBLEMS

Classification of second order linear partial differential equations – Solutions of one – dimensional wave equation, one – dimensional heat equation – Steady state solution of two – dimensional heat equation – Fourier series solutions in Cartesian coordinates.

STATISTICS

Measures of central tendency, Curve fitting – Straight line and Parabola by least square method, Correlation, Rank correlation and Regression.

VECTOR CALCULUS

Probability Concepts – Random Variables - Discrete and Continuous Random Variables-Probability mass function – Probability density functions - Moment Generating Functions and their properties.

Text Books

- 1. S.C. Gupta, V.K. Kapoor, "Fundamentals of mathematical statistics", Sultan Chand & Sons (2017).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- T. Veerarajan, "Probability, Statistics and Random processes" 2nd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi (2006).

Reference Books

- Dr.A. Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- 2. Dr.A. Singaravelu, "Probability and Statistics", Meenakshi Agencies, Chennai (2016).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			
Course	Designers			

Course	Course Designers										
			Department/Name of								
S.No	Faculty Name	Designation	the College	Email id							
1	Dr. S. Punitha	Associate Professor	Mathematics/VMKVEC	punitha@vmkvec.edu.in							
2	Ms. S. Sarala	Associate Professor	Mathematics/AVIT	sarala@avit.ac.in							

NUMERICAL METHODS FOR MECHANICALCategoryLTPCredit34121B15SCIENCESFC-BS2103PreambleThis course provides an introduction to the basic concepts and techniques of numerical solution of algebraic equation, system of algebraic equation, numerical solution of differentiation, integration, interpolations and applications to computer science and engineering, and science areas and develops problem solving skills with both theoretical and computational oriented problems.Prerequisite:1. Engineering Mathematics 2. Mathematics for Mechanical SciencesCourse Objectives1To familiar with numerical solution of Non-linear equations2To familiar with numerical solution of Non-linear equations3To be get exposed to finite differences and interpolation and the numerical Differentiation and integration4To find numerical solutions of ordinary differential equations5To find numerical solutions of partial differential equations5To find numerical solutions of partial differential equations5To the system of linear algebraic equations and single non linear equations arising in the field of Mechanical Engineering.											
34121B15 SCIENCES FC-BS 2 1 0 3 Preamble This course provides an introduction to the basic concepts and techniques of numerical solution of algebraic equation, system of algebraic equation, numerical solution of differentiation, integration, interpolations and applications to computer science and engineering, and science areas and develops problem solving skills with both theoretical and computational oriented problems. Prerequisite: 1. Engineering Mathematics 2 2 1 0 3 2 Nathematics for Mechanical Sciences 2 0 3 3 2 To familiar with numerical solution of linear equations 2 1 1 10 10 3 and integration 3 3 3 3 3 4 To find numerical solutions of ordinary differential equations 5 5 10 10 10 10 10 4 To find numerical solutions of partial differential equations 5 5 10 <											
Preamble This course provides an introduction to the basic concepts and techniques of numerical solution of algebraic equation, numerical solution of differentiation, integration, integration, interpolations and applications to computer science and engineering, and science areas and develops problem solving skills with both theoretical and computational oriented problems. Prerequisite: 1. Engineering Mathematics 2. Mathematics for Mechanical Sciences Course Objectives 1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations 3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations 5 To find numerical solutions of partial differential equations 5 Solve the system of linear algebraic equations and single non linear											
This course provides an introduction to the basic concepts and techniques of numerical solution of algebraic equation, system of algebraic equation, numerical solution of differentiation, integration, interpolations and applications to computer science and engineering, and science areas and develops problem solving skills with both theoretical and computational oriented problems. Prerequisite: 1. Engineering Mathematics 2. Mathematics for Mechanical Sciences Course Objectives 1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations To be get exposed to finite differences and interpolation and the numerical Differentiation and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
of algebraic equation, system of algebraic equation, numerical solution of differentiation, integration, interpolations and applications to computer science and engineering, and science areas and develops problem solving skills with both theoretical and computational oriented problems. Prerequisite: 1. Engineering Mathematics 2. Mathematics for Mechanical Sciences Course Objectives 1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations To be get exposed to finite differences and interpolation and the numerical Differentiation 3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
integration, interpolations and applications to computer science and engineering, and science areas and develops problem solving skills with both theoretical and computational oriented problems. Prerequisite: 1. Engineering Mathematics 2. Mathematics for Mechanical Sciences Course Objectives 1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations 3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
areas and develops problem solving skills with both theoretical and computational oriented problems. Prerequisite: 1. Engineering Mathematics 2. Mathematics for Mechanical Sciences Course Objectives 1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations To be get exposed to finite differences and interpolation and the numerical Differentiation 3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
problems. Prerequisite: 1. Engineering Mathematics 2. Mathematics for Mechanical Sciences Course Objectives 1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations 3 To be get exposed to finite differences and interpolation and the numerical Differentiation 3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to 2 Solve the system of linear algebraic equations and single non linear											
2. Mathematics for Mechanical Sciences Course Objectives 1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations 3 To be get exposed to finite differences and interpolation and the numerical Differentiation and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
2. Mathematics for Mechanical Sciences Course Objectives 1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations 3 To be get exposed to finite differences and interpolation and the numerical Differentiation 3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations 3 To be get exposed to finite differences and interpolation and the numerical Differentiation 3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
1 To familiar with numerical solution of linear equations 2 To familiar with numerical solution of Non-linear equations 3 To be get exposed to finite differences and interpolation and the numerical Differentiation 3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
2 To familiar with numerical solution of Non-linear equations To be get exposed to finite differences and interpolation and the numerical Differentiation 3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
3 and integration 4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
4 To find numerical solutions of ordinary differential equations 5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
5 To find numerical solutions of partial differential equations Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
Course Outcomes: On the successful completion of the course, students will be able to Solve the system of linear algebraic equations and single non linear											
Solve the system of linear algebraic equations and single non linear											
CO1. equations arising in the field of Mechanical Engineering. Apply											
Apply methods to find intermediate numerical value & polynomial											
CO2.of numerical data.Apply											
Apply methods to find integration, derivatives of one and two variable											
CO3. functions. Apply											
Solve the initial value problems using single step and multistep											
CO4. methods. Apply											
CO5.Solve the boundary value problems using finite difference methods.ApplyMapping with Programme Outcomes and Programme Specific Outcomes											
PO PO PO PO											
COs PO1 PO2 3 PO4 PO5 PO6 PO7 8 9 0 PO11 PO12PS01PS02 PS03											
CO1 S M L L M											
CO2 S M L L M											
CO3 S S L L M											
CO4 S S L L L M											
CO5 S S L M L M											
S- Strong; M-Medium; L-Low											
SYLLABUS											
SOLUTION OF LINEAR EQUATIONS											
SOLUTION OF LINEAR EQUATIONS Solution of linear system – Gaussian elimination and Gauss-Jordan methods – LU-											
SOLUTION OF LINEAR EQUATIONS Solution of linear system – Gaussian elimination and Gauss-Jordan methods – LU- decomposition methods – Jacobi and Gauss-Seidel iterative methods – sufficient conditions for											
SOLUTION OF LINEAR EQUATIONS Solution of linear system – Gaussian elimination and Gauss-Jordan methods – LU- decomposition methods – Jacobi and Gauss-Seidel iterative methods – sufficient conditions for convergence – Power method to find the dominant eigenvalue and eigenvector.											
SOLUTION OF LINEAR EQUATIONS Solution of linear system – Gaussian elimination and Gauss-Jordan methods – LU- decomposition methods – Jacobi and Gauss-Seidel iterative methods – sufficient conditions for convergence – Power method to find the dominant eigenvalue and eigenvector. SOLUTION OF NONLINEAR EQUATIONS											
SOLUTION OF LINEAR EQUATIONS Solution of linear system – Gaussian elimination and Gauss-Jordan methods – LU- decomposition methods – Jacobi and Gauss-Seidel iterative methods – sufficient conditions for convergence – Power method to find the dominant eigenvalue and eigenvector.											

METHODS OF INTERPOLATION, NUMERICAL DIFFERENTIATION AND

INTEGRATION

Newton's forward, backward and divided difference interpolation –Lagrange's interpolation – Numerical Differentiation and Integration –Trapezoidal rule –Simpson's 1/3 and 3/8 rules -Curve fitting -Method of least squares and group averages.

INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Euler's method – Euler's modified method – Taylor's method and Runge-Kutta method for simultaneous equations and 2nd order equations -Multistep methods – Milne's and Adams' methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Numerical solution of Laplace equation and Poisson equation by Liebmann's method – s lution of one dimensional heat flow equation – Bender-Schmidt recurrence relation – Crank -Nicolson method – Solution of one dimensional wave equation.

Text Books

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers (2015).
- S.R.K. Iyengar, R.K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition (2012).
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2008).

Reference Books

- Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3rd Edition, Tata Mc-Graw Hill.(New York) (2015).
- Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education (2010).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

			Department / Name of the			
S.No	Faculty Name	Designation	College	Email id		
			Mathematics/	vijayarakavan@vmkvec.edu		
1	Dr. M.Vijayarakavan	Associate Professor	VMKVEC	.in		
2	Dr. S. Gayathri	Assistant Professor	Mathematics/AVIT	gayathri@avit.ac.in		

								Catego	ry	L	Т		Р		Credit
3412	1B35	RES		RCE N 'ECH		GEMI		C-BS	-	2	1		0		3
PREA		Г.	-	ECIL	nyc		I ,			-	-		U		0
Operati			ch is	the st	udv c	f ontin	nizatio	n tecl	miau	es and	its he	Ins in	solvin	σnra	blems
in diffe					•	-			-			-			
and Re										•	-	•			
applica									ems a	and De	cision	mode	ls. En	tire s	ubject
is usefu				man	agers	of vari	ous fie	elds.							
Prereq															
Course	e Obje	ective	S												
			-		-	orograr g mod	-	prob	lem a	nd forr	nulate	a real	world	l prol	olem as
		•		-		-		engine	ering	g and 1	Manag	gerial	solutio	ons i	n
	To acquire skills in handling techniques of PERT, CPM and sequencing model to perform operation among various alternatives.														
4	To be get exposed to the concepts of Inventory control.														
5 To study decision theory and game theory techniques to analyze the real world systems.															
Course Outcomes: On the successful completion of the course, students will be able to															
	Formulate the Linear programming problem. Conceptualize the feasible region. Solve the LPP with two variables using graphical method and by														
CO1.	simpl	ex me	ethod.	•									A	pply	
	Solve	spec	ialize	d line	ear pr	ogram	ming p	proble	ms li	ike the	Trans	sportat	ion		
CO2.	and A	ssign	ment	prob	lems.								A	pply	
CO3.			vork p	oroble	ems u	sing C	PM, P	ERT	techr	iques a	and se	equenc	<u> </u>	pply	
CO4.	Desig	n a co	ontinu	lous d	or per	iodic re	eview	inven	torv o	control	svster	n	A	pply	
	Ŭ				-				2	roblem	ž			11.2	
				· •		•		-		smal			and		
CO5.				-		uuou	u pro	/010111	mu	, ona				pply	
Mappi	L		ogran			omes a	nd Pr		nme	Specifi					
	DO1	DOC	PO	DO 4	DO.5		D-07	PO	PO	PO1	PO1		DCO1	DGOC	DECO
COs CO1	PO1 S	PO2 S	3 M	РО4 М	PO5 L	PO6	PO7	8 S	9	0		PO12 S	PSO1	PSO2	PSO3
CO1 CO2	S	S	M	L	L			S				S			
CO3	S	S	М	L	S			S				S			
CO4 CO5	S S	S S	S S	M M	 M			S S				S S			
S- Stro								G				5			
SYLLA				<u> </u>											
LINEA															
probler	n, app	olicati	ons a	and li	imitat	ions, (Graphi	cal n	netho	d, Sim	plex 1	Metho	d - T	he E	Big –M

method –Duality principle

TRANSPORTATION AND ASSIGNMENT MODELS: Transportations problem: North West Corner Method, Least Cost Method, Vogel's Approximation Method, Modified Distribution Method, Unbalance and Degeneracy in Transportation Model, Assignment problem: Hungarian algorithm, Unbalanced Assignment problems - Maximization case in Assignment problems, traveling salesman problem.

NETWORK MODELS: Basic terminologies, constructing a project network, network computations in CPM and PERT, Sequencing Models: Scheduling – processing n jobs through two machines, processing n jobs through three machines, processing n jobs through m machines.

INVENTORY MODELS: Variables in inventory problems – Economic Order Quantity Model – Purchasing Model (with and without shortages) – Manufacturing Model (with and without shortages) - Stochastic Inventory Model (Stock in discrete and continuous units). Inventory models with quantity discount, safety stock, multi-item deterministic model.

DECISION MODELS: Decision Model – Game theory – Two Person Zero sum game – Algebraic solutions Graphical solutions, Matrix Oddment method for nxn games (Arithmetic Method) – Replacement Models: Replacement of Items due to deterioration with and without time value of Money, Group replacement policy.

TEXTBOOKS:

- 1. H.A.Taha, "Operations Research: An Introduction", 10th Edition, Prentice Hall of India (2019).
- 2. F.S Hillier and G.J. Lieberman, "Introduction to Operations Research: Concept and Cases", McGraw-Hill International (2012).

REFERENCES:

- 1. Kanti Swarup, P.K.Gupta, Man Mohan, "Operations Research", S.Chand & Sons, New Delhi (2014).
- 2. Sundarasen.V, Ganapathy Subramaniyam, K.S, Ganesan.K. "Resource Management Techniques", A.R. Publications, Chennai (2013).
- 3. Premkumar Gupta, D.S. Hira, "Operations Research", S.Chand & company New Delhi (2014).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College				
1	Dr.S.Punitha	Associate Professor	Mathematics	punitha@vmkvec.edu.in			
2	Dr.M.Thamizhsudar	Associate Professor	Mathematics	thamizhsudar@avit.ac.in			

	PROBABILITY AND	Category	L	Т	Р	Credit
34121B18	STATISTICS	FC-BS	2	1	0	3

Preamble

Probabilistic and statistical analysis is mostly used in varied applications in Engineering and Science. Statistical method introduces students to cognitive learning in statistics and develops skills on analyzing the data by using different tests and designing the experiments with several factors. Statistical Quality control is a method of quality control which employs statistical methods to monitor and control a process and ensure the process operates efficiently, producing more specification-conforming product. Based on this, the course aims at giving adequate exposure in random variables, probability distributions, regression and correlation, test of hypothesis and statistical quality control.

hypoth	esis and statistical quality control.										
Preree	quisite : Nil										
Cours	e Objectives										
1	To get the knowledge on concepts of random variables and distributions who they are applied to statistical data.	with respect to									
2	To acquire skills in handling situations involving more than one random functions of random variables	n variable and									
3	To acquire knowledge of Testing of Hypothesis useful in making decision and test them by means of the measurements made on the sample.										
4	To be exposed to statistical methods designed to contribute to the process of making scientific judgments in the face of uncertainty and variation										
To understand the concept of Quality control and the use of operating characteristic (OC) curves in Acceptance sampling.											
Cours	e Outcomes: On the successful completion of the course, students will be a	able to									
CO1.	Select an appropriate probability distribution to determine probability function for solving engineering problem.	Apply									
CO2.	Derive the marginal and conditional distributions of bivariate random variables.	Apply									
CO3.	Apply the concepts of large/small sample tests into real life problems.	Apply									
CO4.		Apply									
CO5.	Prepare Control charts and decide on the in-control status of the process. Estimate whether a lot is acceptable or unacceptable based on acceptance sampling plans.	Apply									
Mapp	ing with Programme Outcomes and Programme Specific Outcomes										

	8		5				e	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	le pp	conne .	outeon	les			
									PO	PO1					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	9	0	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	Μ	L		-	-	L	1			Μ			-
CO2	S	S	Μ	L		-	-	L	1			Μ			-
CO3	S	S	Μ	L				L				Μ			
CO4	S	S	Μ	L				L				Μ			
CO5	S	S	Μ	Μ				L				Μ			
S- Stroi	ng; M	Medi	ium; l	L-Lov	W										
SYLLA	BUS														

STANDARD DISTRIBUTION

Standard Distributions - Binomial, Poisson, Geometric, Uniform, Exponential, Normal distributions.

TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and **Regression Analysis**

TESTING OF HYPOTHESIS

Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) - Chi-square Tests for Goodness of fit independence of attributes.

DESIGN OF EXPERIMENTS

Analysis of Variance – One Way Classification – Two Way Classification – Completely Randomized Design – Randomized Block Design – Latin Square Design.

STATISTICAL QUALITY CONTROL

Introduction – Process control – Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling – single sampling, double sampling, multiple sampling and sequential sampling.

Text Books

- 1. S.P. Gupta, "Statistical Methods", 45th Edition, Sultan Chand & Sons Publishers (2017).
- 2. Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).

Reference Books

- 1. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", 12th Edition, Sultan Chand & Sons, New Delhi (2020).
- 2. Miller, "Probability and Statistics for Engineers", 9th Edition, Freund-Hall, Prentice India Ltd. (2017).
- Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			
Course	Designers			

Course Designers

			Department / Name	
S.No	Faculty Name	Designation	of the College	Email id
		Associate		vijayarakavan@vmkvec.edu
1	Dr.M.Vijayarakavan	Professor	Mathematics/VMKVEC	. <u>in</u>
		Associate		
2	Dr. A.K.Bhuvaneswari	Professor	Mathematics/AVIT	<u>bhuvaneswari@avit.ac.in</u>

										(Categor					
341	21B19		NVIRO				CES			J		L 3	<u>T</u>	P		redit
_	-	(C	Common			,	ld that	integrat	es nhv		FC-BS emical,		0 ical	0 and		3 pheric
											ronmen					
conser	ving th	ne envir	onment	for the	future.	Enviro	nmenta	l engine	eering f	ocuses	on the v	various	issues	s of e	enviro	
and its	s manag	gement	for sust	ainable	develop	pment b	y impro	oving th	e envir	onment	al qualit	y in eve	ery as	pect.		
PRER	EQUI	SITE														
	DSE O	BJECT	IVES													
	NSE U	DJECI	11123													
				knowle	dge of s	significa	nce of	environ	mental	studies	and con	servatio	on of	the n	atural	
1	re	sources	•													
1	T	o acqui	e know	ledge of	f ecosys	stem, bi	odivers	ity, it's	threats	and the	need fo	or conse	rvatic	n		
2																
3	To gain knowledge about environmental pollution, it's sources, effects and control measures															
	To familiarize the legal provisions and the national and international concern for the protection of															
1	4 environment															
4	To be aware of the population on human health and environment, role of technology in monitoring human												uman			
	health and environment.															
5			MEG													
	XSE U	UTCO	WES													
On the	e succe	ssful co	mpletio	n of the	e course	, studer	nts will	be able	to							
CO1.	Unders	tand the	e import	tance of	enviro	nment a	and alte	rnate en	ergy re	sources		u danatar	. d			
CO2.	Initiate	e the aw	areness	and rec	cognize	the soc	ial resp	onsibili	tv in ec	osystem		ndersta	la			
			servatio			the soc	iui resp	011510111	<i>cy</i> III <i>cc</i>	05550011						
				•								pply				
	Fo dev oblems	-	hnologi	les to ar	halyse t	he air, v	vater ar	id soil p	ollution	n and so	olve					
the pro	JUICHIS										A	pply				
			e social		and app	ly suita	ble env	ironmer	ntal reg	ulations						
for a s	ustaina	ble dev	elopme	nt							E	valueta				
CO5. '	To ider	ntify and	d analys	e the ur	ban pro	blems.	popula	tion on	human	health a		valuate				
	nment		, and the second s		eun pro	,	P • P • I •									
											A	nalyse				
MAPI	PING	WITH	PROGI	RAMM	E OUI	COMI	ES ANI) PRO	GRAM	ME SP	ECIFIC	COUT	СОМ	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	11 1	PSO2	PSO3
COS CO1	S	M	L	-	-	S	FO 7	S	-	-	-	<u>F012</u>		<u>, 1</u>	-	-

CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	Μ	-	S	S	S	-	-	-	S	-	-	-
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS

ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and over-exploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems –Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management–Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style

SOCIAL ISSUES AND ENVIRONMENT

Sustainable Development- Water conservation – rain water harvesting, watershed management -Resettlement and rehabilitation of people, case studies –Climate change - Global warming - Acid rain - Ozone depletion- Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act- Pollution Control Board-central and state pollution control boards.

HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion –Family welfare programme - Environment & human health - Human rights – Value education –AIDS/HIV, Role of information technology in environment and human health.

TEXT BOOK

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

- 2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II,

9 hrs waste-

9 hrs

9 hrs

9 hrs

9 hrs

Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

COURS	E DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1	Dr. R.Nagalakshmi	nagalakshmi.chemistry@avit.ac.in
2	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in

PROGRAM CORE COURSES

					URIN	G		Catego	ry	L	Т	I)	Cre	dit
3442	1C02		OCES		racti	(als)		СС		3	0	2	,	4	
Pream			cory		Tacin	cais)		u		3	U	4	-		
		rovide	es an i	ntrod	uction	to Basic	Ma	nufacti	ıring	Process	with	a focus	castin	g weld	ing
	-					ng and pl			-					-	-
						application									
						g produc									
metal f						01		0		1			5		2
Prereq	uisite	: NIL													
Course	e Obje	ctives													
			<u> </u>			cturing co	•								
	To unde technol		the n	nanufa	cturin	g process	of co	onventio	onal a	nd speci	al casti	ng proce	ess of f	foundry	
			know	ledge	of vari	ous types	weld	ling nra	Cess	in metal	ioining	nroces	ses		
	•					cutting pr		~ .			v •	process			
						rent opera						arious tv	nes of	work ho	olding
	devices			Juge o	I unite	rent open		s on spe		naenne	j und vi	unous ty	pesor	work in	Jung
			knowl	edge o	of vario	ous metal	form	ning pro	ocesse	s.					
				<u> </u>		of the var		<u> </u>			ventior	al mach	ining o	operation	ns and
	also me												U	1	
Course						ful comp								to	
God						of variou									
CO1.						es in the p						5.		Underst	and
						of variou Select th						hrication			
CO2.	assem				eu ano	i Select in	le sui	table jo	ming	method	s for fa	Drication		Underst	and
002.	assem	Uly Ul	produ	C 13.										Chiders	unu
CO3.	Under	stand	the chi	ip forn	nation	for differ	ent c	utting f	orces	and cut	ting too	ol life.	1	Underst	and
~ ~ .				orking	princi	ple and op	perati	ions of	Shape	er, Milli	ng, Dri	lling and			
CO4.		/			<u> </u>				<u> </u>					Underst	and
COS				•	• ·	ple of var	ious	metal f	ormin	g proces	sses and	d basics		Underst	and
CO5.				U		nes and	Droc	nomn	n Sn	ogific (Jutoon	200		Undersi	and
	ing wit	II FTO	gram			nes anu	FTOE	grann	ie sp		Jutcon	lies			1
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	-	-	-	-	-	•	-	-	-	M	-	-
CO2 CO3	S S	M M	S S	-	-	-	-	-	-	-	-	-	M M	-	-
CO3 CO4	S S		S S	- L	-	-	-	-	<u>.</u>		-	- M	M	-	-
C04	S		S				-		-		-	M	M	-	
S- Strong					_	_	_	_	_	_	_	IVI	171		
SYLLÄ	BUS														
INTRO	DUCT	ION	TO N	IANU	JFAC	TURIN	G &	CAST	TING	r					
						n the dev									
						$ting - T_{1}$								erent ca	isting
				aces –	- Defe	cts in cas	sting	s - Tes	sting	and ins	pection	n of cas	tings.		
JOININ														a	1
						s - Prin									
						erged ard nit weldi									
						Soldering				uiii WU	ung-	iuser U	cuili V	, crunig	, unu
		11		, r - 00	N		,	~ + ******	0'						

FUNDAMENTALS OF METAL CUTTING & CUTTING TOOLS

Basics of metal cutting: Mechanism of chip formation (orthogonal and oblique cutting)-Chip thickness ratio-Velocity ratio-Merchant circle diagram- Types of chips- Basics of cutting tools: Characteristics, Cutting tool materials, properties and applications -Tool life: Taylor's equation-Variables affecting tool life and Tool wear. Tool wear and Causes.

MACHINING PROCESSES

Introduction, Classification, working principle, operations performed: Lathe, Shaper, Planner, Horizontal milling machine, Universal drilling machine, Cylindrical grinding machine, Capstan and Turret lathe. Basics of CNC machines. Super finishing processes: Lapping, Honing, Super finishing, Polishing & Buffing.

METAL FORMING PROCESSES & ADVANCED MANUFACTURING TECHNOLOGY

Cold and hot working of metals – Bulk metal forming- Sheet metal forming- High Energy Rate Forming processes: Explosive forming- Electro hydraulic forming – Electromagnetic forming. Need and Classification of Additive Manufacturing Technology - Product development and Materials for Additive Manufacturing Technology – Tooling - Applications.

LIST OF EXPERIMENTS

- 1. Greens and moulding process using split pattern.
- 2. Joining of two metal pieces by electric arc welding.
- 3. Make an external thread cutting operation by using centre lathe.
- 4. Make a square end from a given round bar by using shaping machine.
- 5. Make a hexagonal block from a given round stock by using plain milling machine.
- 6. Make a spur gear from the given blank by using universal milling machine.
- 7. Make an external keyway on a given round rod by using vertical milling machine.
- 8. Make an internal keyway on a given hallow specimen by using slotting machine.
- 9. Make a grinding process on a machined surface as given surface finish by using cylindrical grinding machine.
- 10. Make an internal thread cutting on a given specimen as per given dimensions by the sequence drilling, boring, reaming and tapping by using respective tools and machines.

Text Books

- 1. Fundamental of Modern Manufacturing : Mikell P.Groover
- 2. A Text Book of Production Technology (Manufacturing Processes) : S. Chand.

Reference Books

- 1. SeropeKalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007.
- 2. Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001
- 3. E.PaulDegarmo, J.T.Black, and Ronald A. Konser, "Materials and Processes in Manufacturing", 5th Edition, Prentice Hall India Ltd., 1997.
- 4. P. N. Rao, Manufacturing Technology (Volume 1) Foundry, Forging and Welding, 4th Edition, Tata McGraw Hill Education, New Delhi, 2013.
- 5. Mikell P. Groover, Fundamentals of Modern Manufacturing Materials, Processes and Systems, Publishers: Wiley India, 2012.

S.No	NPTEL /SWAYAM (Course Name		Instructor	Host	Institution	Duration
	Manufacturing Process	s Technology	Prof. S	Shantanu			
1	I & II		Bhatta	charya	II	T Kanpur	12 weeks
Course	Designers						
				Department/Na	me		
S.No	Faculty Name	Designation		of the College		Email id	
1	R.Jayaraman	Associate Prof	essor	MECH/VMKVE	С	jayaramanr@	vmkvec.edu.in

2	C.Thangavel	Associate Professor	MECH/VMKVEC	thangavel@vmkvec.edu.in
		Assistant Professor-		
3	P.Kumaran	II	MECH/AVIT	kumaranp@avit.ac.in

		FLU	J ID M	ECH	ANIC	S AND		Catago		L	Т		Р	Cre	J:4
2442			CHIN			`		Catego	ry					1	
3442 Dream		(The	eory a	ndPra	actical	s)		CC		2	1		2	4	
Pream The ain		, cubi	act is	to pro	wida	funde	monto	lknou	بامامر	, in flui	d mad	hanice	and m	achinar	.7
Prereq		z subje		to pre		i Tunuc	incina		leuge		u mee	lancs			у.
NIL	uisite														
Course	Obje	tives													
	<u> </u>		the stu	idents	abou	t prope	erties o	f the f	luids,	behavi	our of	fluids	under	static	
	onditio					1 1									
2 T	o impa	rt bas	ic kno	owled	ge of	the kin	ematic	s of fl	uids a	and bou	ndary	layer c	oncept	•	
3 T	o unde	rstand	l the i	mport	ance	of dime	ensiona	ıl anal	ysis.						
4 T	o unde	rstand	l the i	mpor	tance	of vari	ous typ	bes of	flow i	n pum	os.				
5 T	o unde	rstand	l the i	mpor	tance	of vari	ous typ	bes of	flow i	n turbi	nes.				
Course	Outco	omes:	On t	he su	ccessf	ul con	npletio	n of t	he cou	urse, st	udent	s will b	e able	e to	
	Apply	math	emati	cal kr	nowled	lge to	predict	the p	ropert	ies and	charac	cteristic	cs		
CO1.	of a fl	uid.				•	-	-	-					Apply	y
										ids and			n		
									the co	oncept	of bou	ndary			
CO2.	layer a	and its	thick	iness	on the	flat so	olid sur	face.					1	Underst	and
	Formu	late tl	he rel	ations	hip ar	nong ti	he para	meter	s invo	olved in	the gi	ven flu	id		
CO3.	pheno	meno	n and	to pre	edict t	he perf	forman	ces of	proto	type by	y mode	l studio	es.	Appl	y
	Explai	in the	work	ing pr	incipl	es of c	entrifu	gal pu	mps a	and reci	iprocat	ing			
CO4.	pumps	5.											1	Underst	and
	Explai	in the	work	ing pr	incipl	es of v	arious	turbin	es an	d desig	n the v	arious			
CO5.	types of												1	Underst	and
Mappin	g with	Prog	ramn	ne Ou	tcom	es and	Progr	amm	e Spe	cific O	utcom	es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	-	-	-	-	-	-	-	-	-	М	Μ	L
<u>CO2</u>	S	S	M	L	-	-	-	-	•	-	-	-	<u>M</u>	M	L
<u>CO3</u>	S	S	M	L	-	-	-	-	-	-	-	-	M	M	L
CO4	S	S S	S	S	-	-	•	-	•	-	-	•	M	M	L
CO5 S- Strong	S · M-Me	S dium:	S L-Lov	S	-	-	-	-	-	-	-	-	Μ	Μ	L
SYLLA		uiuiii,	L-LUV	•											
BASIC (EPTS	AND	PROF	PERTI	ES									
							of flui	de-ma	iss de	nsity, s	necifi	woid	at ano	oific ve	lumo

Definition of fluid-mechanics-Properties of fluids-mass density, specific weight, specific volume, specific gravity-Viscosity-Newton's law of viscosity-Compressibility and Buk modulus, Surface tension and Capillarity-Vapor pressure-Continuity equation (one and three dimensional differential forms)-Bernoulli's equation and its assumptions.

KINEMATICS AND BOUNDARY LAYER OF FLUID FLOW

Types of fluid flow - Velocity and acceleration – Velocity Potential Function -Stream Function-Types of motion –Vortex flow-Euler's equation of motion-Flow of viscous fluid through circular pipe-Major and Minor losses-Darcy Weisbach's equation-Boundary layer concepts-Types of boundary layer thickness-Separation of Boundary Layer.

DIMENSIONAL ANALYSIS

Fundamental dimensions -Dimensional homogeneity-Methods of dimensional analysis-Model analysis -Similitude –Types of similitude-Dimensionless Numbers-Types of dimensionless numbers-Model laws–Classification of models.

HYDRAULIC PUMPS

Classification of pumps-Centrifugal pumps-Working principles-Work done by the impeller-Velocity Triangles-Heads and efficiencies of centrifugal pumps-Characteristic curves of centrifugal pumps-Cavitations in centrifugal pumps-Net Positive Suction Head (NPSH)- Reciprocating pumpsWorking principles-Slip and negative slip of reciprocating pump-Classification of reciprocating pumps-Indicator diagram and it's variations - Work saved by fitting air vessels.

HYDRAULIC TURBINES

Classification of turbines-Heads and efficiencies- Pelton wheel -Velocity triangles- Radial flow reaction turbines- -Francis turbine-Axial flow reaction turbines-Working principles – Draft-Tube-Specific speed-Unit quantities-Performance curves for turbines –Governing of turbines.

LIST OF EXPERIMENTS

- 1. Determination of the Coefficient of discharge given Orifice Meter
- 2. Determination of the Coefficient of discharge given Venturi Meter
- 3. Determination of friction factor for a given set of pipes.
- 4. Conducting experiments and drawing the characteristic curves of Centrifugal Pump/Submersible Pump
- 5. Conducting experiments and drawing the characteristic curves of Reciprocating Pump
- 6. Conducting experiments and drawing the characteristic curves of Gear Pump
- 7. Conducting experiments and drawing the characteristic curves of Jet Pump
- 8. Conducting experiments and drawing the characteristic curves of Kaplan Turbine
- 9. Study about the performance characteristics curves of Pelton wheel & Francis Turbine

Text Books

- 1. Modi P.N. and Seth, S.M. Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 22nd edition 2019.
- 2. Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi, 2014.
- 3. Bansal- R.K. "Fluid Mechanics and Hydraulics Machines"- (9th edition)–Laxmi Publications (P) Ltd- New Delhi 2010.

Reference Books

- 1. Pani B S, Fluid Mechanics: A Concise Introduction, Prentice Hall of India Private Ltd, 2016.
- 2. Cengel Y A and Cimbala J M, Fluid Mechanics, McGraw Hill Education Pvt. Ltd., 2014.
- 3. S K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill Education Pvt. Ltd., 2012.
- 4. Streeter, V. L. and Wylie E. B., Fluid Mechanics, McGraw Hill Publishing Co., 2010.

S.No	NPTEL /SWAY	AM Course Name	Instructor	Host Institution	Duration
Course	Designers				
S.No	Faculty Name	Designation	Department/Name of the College	Email id	
		Associate			
1	Dr.S.Arunkumar	Professor	MECH / VMKVEC	arunkumar@vmk	vec.edu.in
2	B.Selva Babu	Assistant Professor	MECH/ AVIT	selvababu@avit.a	ic.in

		ME	CHAN	NICS	OF										
			CHIN		UI		(Catego	ry	L	Т		Р	Cre	dit
3442	1C08	(Th	eory	and F	racti	cals)		CC		3	0		2	4	
Preamb The stude		mpletir	ng this	cours	e are e	expected	l to und	lerstan	d the r	ole of n	nechani	sms and	d its ap	olicatior	18.
Prerequ NIL			0												
Course	Obiec	tives													
			te the	variou	s type	s of kine	ematics	of me	chanis	ms					
						and ill					gears a	nd gear	· trains.		
	To stud								10000	5100001	Bearse	ina Bea			
						static for	rce ana	lvsis.							
						ses and									
Course		•		-					e cou	rse, stu	dents	will be	able t	20	
CO1.						ed in me								Underst	and
CO2.	Solv	e probl	lems re	elated	to gea	r tooth f	for vari	ous ap	olicati	ons				Appl	у
CO3.	Cons	struct c	cams a	nd fol	lowers	for spe	cified r	notion	profil	es.				Appl	
CO4.	Anal	yze ab	out the	e vario	ous sta	tic and c	lynami	c force	s.					Analy	ze
CO5.	Anal	yze ba	lancin	g prot	lems i	n rotatir	ng and	recipro	cating	g parts o	f mach	inery.		Analy	ze
Mappin	ng with	Prog	ramn	ne Ot	tcom	es and	Progr	amme	e Spec	cific O	utcom	es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	•	-		-		-	M	M	L
CO2	S	S	Μ	L	-	-	-	-	-	-	-	-	М	Μ	L
CO3	S	S	M	Ĺ	-	-	-	-	-	-	-	-	M	M	L
CO4	S S	S	S	S	-	-	-	-	-	-	-	•	M	M	L
CO5 S- Strong		S	S L-Lov	S	-	-	-	-	-	-	-	-	Μ	Μ	L
SYLLA		<u>urum</u> ,	L LOV	•											
~ KINEM		OF MI	ECHA	NICS	5										
Mechan	isms –	Term	inolog	gy and	l defir	nitions -	– kiner	matics	inver	sions o	f 4 bar	and sl	ide cra	nk chai	n –
kinemat															
GEARS															
Spur ge	ar – la	w of	toothe	ed gea	aring	– invol	ute ge	aring	– Inte	erchang	geable	gears -	- Gear	tooth	action
interfere				-				– gear	⁻ train	s – par	allel az	kis gea	rs trair	ıs – epi	cyclic
gear trai				ansm	ission	gear tr	ains								
KINEM															
Classific															
of plate					ves o	f Follov	wer m	otion	- Higl	h speed	l cams	- circı	ılar arc	e and ta	ingent
cams - S			moti	on											
FORCE				_											
Applied										-					
and four															
Inertia F				-			pert's p	princip	pie - s	superpo	sition	princip	me - dy	ynamic	rorce
Analysis						•									
BALAN						•	C	1 •					- ·	•	
Static ar	-			-		-	of revo	lving	and re	eciproc	ating r	nasses	– Bala	ncing	
machine								Б.,		P		1 ·	•.	1	1
Free vit			-					-	ency -	– Dam	ped V	oratio	n –crit	ical spe	ed of
simple s	snatt –	1 Orsic	onal v	oratio	n - F	orced v	/ibratic	on							

LIS	ΤO	FEXPERIMENTS	8							
1.	Top	perform an experime	nt on Watt and Porter	r Governor to prepare pe	erformance characte	eristic curves				
	and	to find stability and	sensitivity							
2.	To	determine the position	on of sleeve against co	ontrolling force and spee	ed of a Hartnell gov	vernor and to				
			rve of radius of rotat		C					
3.	To	analyse the motion o	f a motorized gyrosco	ope when the couple is a	pplied along its spi	in axis and				
	dete	ermine gyroscopic co	ouple							
4.	Det	ermine the Moment	of Inertia by compour	nd pendulum and tri-fila	r suspension.					
5.	To	determine the freque	ncy of undamped free	e vibration and damped	forced vibration of	an				
		ivalent spring mass s		*						
6.	To	determine whirling s	peed of shaft theoreti	cally and experimentally	<i>.</i>					
Tex	t Bo	ooks								
1.	Aı	mbekar A.G., —Mech	anism and Machine T	heory Prentice Hall of In	dia, New Delhi, 200)7				
2.	Sh	nigley J.E., Pennock G	R and Uicker J.J., —	Theory of Machines and I	Mechanisms , Oxfor	d University				
	Press, 2003									
3.										
Ref	Reference Books									
1.	Tho	mas Bevan, —Theory	of Machines. CBS P	ublishers and Distributor	s. 1984.					
				hine, Affiliated East-Wes		elhi.				
			•	d Machines, Wiley-East						
				arosa Publishing House, 2		,				
			of Machinery", McG							
		tive NPTEL/SWA		,,,,,,,,,						
S.]	No	NPTEL /SWAYA	M Course Name	Instructor	Host Institution	Duration				
		Kinematics of Mecha	anisms and							
1	l	Machines		Prof. A. Dasgupta	IIT Kharagpur	12 Weeks				
Cou	irse	Designers	I	01						
				Department/Name						
S.N	No	Faculty Name	Designation	of the College	Email id					
1	l	Dr.S.Venkatesan	Professor	MECH/ VMKVEC	venkatesan@vml	cvec.edu.in				

MECH/AVIT

Sathiyaraj@avit.ac.in

Assistant Professor-II

2

Mr.S.Sathiyaraj

METALLURGY (Theory and Practicals) CC 3 0 2 4 Preamble This course to imparts through knowledge on the metallic and nonmetallic materials, mechanical testing methods and deformation mechanisms in crystalline solid materials, also the mechanical treatment process, corrosion and advanced materials pertaining to Mechanical Engineers. Tereatment process, corrosion and advanced materials pertaining to Mechanical Engineers. Prerequisite NIL Course Objectives To develop the broad knowledge of the classification, properties and application of various 1 Engineering Materials. To provide an understanding to students on the mechanical properties and performance of 2 materials. Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous and non ferrous 3 materials. Develop the knowledge of the various forms of corrosion and powder metallurgy 4 fabrication methods. To give insight to advanced materials such as polymers, ceramics and composite and their 3 applications. Course Outcomes: On the successful completion of the course, students will be able to Understand the concepts of structure properties, performance and CO1. Understand the mechanical behaviour of materials. Understand the enclose of structure properties.
Preamble This course to imparts through knowledge on the metallic and nonmetallic materials, mechanical testing methods and deformation mechanisms in crystalline solid materials, also the mechanical treatment process, corrosion and advanced materials pertaining to Mechanical Engineers. Prerequisite NIL Course Objectives To develop the broad knowledge of the classification, properties and application of various 1 Engineering Materials. To provide an understanding to students on the mechanical properties and performance of 2 materials. Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous 3 materials. Develop the knowledge of the various forms of corrosion and powder metallurgy 4 fabrication methods. To give insight to advanced materials such as polymers, ceramics and composite and their 5 applications. Course Outcomes: On the successful completion of the course, students will be able to Understand the concepts of structure properties, performance and CO1. processing related to metallurgy and materials.
methods and deformation mechanisms in crystalline solid materials, also the mechanical treatment process, corrosion and advanced materials pertaining to Mechanical Engineers. Prerequisite NIL Course Objectives To develop the broad knowledge of the classification, properties and application of various 1 Engineering Materials. To provide an understanding to students on the mechanical properties and performance of 2 materials. Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous 3 materials. Develop the knowledge of the various forms of corrosion and powder metallurgy 4 fabrication methods. 5 applications. Course Outcomes: On the successful completion of the course, students will be able to Understand the concepts of structure properties, performance and CO1. processing related to metallurgy and materials.
Prerequisite NIL Course Objectives To develop the broad knowledge of the classification, properties and application of various 1 Engineering Materials. To provide an understanding to students on the mechanical properties and performance of 2 materials. Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous 3 materials. Develop the knowledge of the various forms of corrosion and powder metallurgy 4 fabrication methods. To give insight to advanced materials such as polymers, ceramics and composite and their 5 applications. Course Outcomes: On the successful completion of the course, students will be able to Understand the concepts of structure properties, performance and processing related to metallurgy and materials. Evaulate the mechanical behaviour of materials and the effect of
Course Objectives To develop the broad knowledge of the classification, properties and application of various 1 Engineering Materials. To provide an understanding to students on the mechanical properties and performance of 2 materials. Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous 3 materials. Develop the knowledge of the various forms of corrosion and powder metallurgy 4 fabrication methods. To give insight to advanced materials such as polymers, ceramics and composite and their 5 applications. Course Outcomes: On the successful completion of the course, students will be able to Understand the concepts of structure properties, performance and Understa CO1. processing related to metallurgy and materials. Understa
To develop the broad knowledge of the classification, properties and application of various 1 Engineering Materials. To provide an understanding to students on the mechanical properties and performance of 2 materials. Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous 3 materials. Develop the knowledge of the various forms of corrosion and powder metallurgy 4 fabrication methods. To give insight to advanced materials such as polymers, ceramics and composite and their 5 applications. Course Outcomes: On the successful completion of the course, students will be able to Col1. processing related to metallurgy and materials. Understand Understand Evaulate the mechanical behaviour of materials and the effect of
1 Engineering Materials. To provide an understanding to students on the mechanical properties and performance of materials. 2 Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous materials. 3 materials. 4 fabrication methods. 5 applications. Course Outcomes: On the successful completion of the course, students will be able to CO1. processing related to metallurgy and materials. Understand the mechanical behaviour of materials and the effect of
2 materials. Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous 3 materials. 0 Develop the knowledge of the various forms of corrosion and powder metallurgy 4 fabrication methods. 5 applications. Course Outcomes: On the successful completion of the course, students will be able to 0 Understand the concepts of structure properties, performance and 0 processing related to metallurgy and materials. 0 Understand the effect of
3 materials. 3 materials. 4 Develop the knowledge of the various forms of corrosion and powder metallurgy 4 fabrication methods. 5 To give insight to advanced materials such as polymers, ceramics and composite and their applications. Course Outcomes: On the successful completion of the course, students will be able to Understand the concepts of structure properties, performance and processing related to metallurgy and materials. Understand the effect of Evaulate the mechanical behaviour of materials and the effect of Understand the effect of
4 fabrication methods. To give insight to advanced materials such as polymers, ceramics and composite and their applications. 5 applications. Course Outcomes: On the successful completion of the course, students will be able to Understand the concepts of structure properties, performance and processing related to metallurgy and materials. Understand the effect of Evaulate the mechanical behaviour of materials and the effect of Understand the effect of
To give insight to advanced materials such as polymers, ceramics and composite and their applications. Course Outcomes: On the successful completion of the course, students will be able to Understand the concepts of structure properties, performance and processing related to metallurgy and materials. Understand the effect of
Course Outcomes: On the successful completion of the course, students will be able to Understand the concepts of structure properties, performance and Understand the concepts of structure properties, performance and CO1. processing related to metallurgy and materials. Understand Evaulate the mechanical behaviour of materials and the effect of Understand
CO1.Understand the concepts of structure properties, performance and processing related to metallurgy and materials.UnderstaEvaulate the mechanical behaviour of materials and the effect ofUndersta
CO2. mechanical properties. Apply
Correlate the structure-property relationship in metal/alloys in as-CO3.received and heat-treated conditions.Apply
Predict the formation of corrosion, mechanism and to preventCO4.corrosion and powder metallurgy fabrication methods.Apply
Apply advanced materials such as polymers, ceramics and compositesCO5.in product design.Apply
Mapping with Programme Outcomes and Programme Specific Outcomes
COs P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 P
CO1 S M M M -
CO2 S M - - - - - M S M -
CO3 S S M - - - - S M - CO4 S
CO4 S S - - S - - S M - CO5 S S - - S - - - S M -
S- Strong; M-Medium; L-Low
SYLLABUS
FERROUS & NON-FERROUS MATERIALS
Classification of cast iron and steels – properties, microstructures and uses of cast irons, plain carl
alloy steels, HSLA, stainless, tool and die steels & maraging steels. Properties, microstructures
uses of non – ferrous alloys – copper, aluminium and nickel alloys. Phase diagrams - Iron – I
carbide equilibrium diagram. MECHANICAL BEHAVIOR OF MATERIALS
Introduction to plastic deformation - Slip and twinning – Types of fracture – ductile fracture, br
Itracture, - Eatigue – Eatigue test, S-N curves. Creep and stress runture fatigue – mechanism of cree
fracture, - Fatigue – Fatigue test, S-N curves, Creep and stress rupture fatigue – mechanism of cree Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vicker
Testing of materials under tension, compression and shear loads - Hardness tests (Brinell, Vicker

Tempering, Austempering and martempering. Case hardening process- Carburizing- nitriding cyniding and carbonitriding, flame and induction hardening. Hardenability - Jominy end quench test. Time Temperature Transformation (TTT) and Cooling Curve Transformation (CCT) curve.

POWDER METALLURGY AND CORROSION

Powder metallurgy–powder production, blending, compaction, sintering-applications, Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification, erosion-corrosion, Crevice Corrosion, Fretting-Protection methods - PVD, CVD.

INTRODUCTION TO ADVANCED MATERIALS

Polymers – types of polymer, Properties and applications of various Engineering polymers (PP,PS, PVC, PMMA, PET, PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTEF, Urea and phenol formaldhydes. Composites Types- Metal Matrix Composites (MMC), Polymer Matrix Composites (PMC), Ceramic Matrix Composites (CMC) – properties, processing and applications. Ceramics – properties and applications of SiC, Al2O3, Si3N4. PSZ and SIALON

LIST OF EXPERIMENTS

- 1. Introduction to Metallographic
- 2. Preparation metallographic specimen
- 3. Identification of Ferrous specimens (Minimum 5)
- 4. Identification of Non-Ferrous specimen (Minimum 2)
- 5. Heat treatment – Annealing – comparation between annealed and unheat treated specimen.
- Heat treatment Normalizing comparation between annealed and unheat treated specimen. 6.

Text Books

- William D Callister "Material Science and Engineering", John Wiley and Sons 2010-8thEdition. 1.
- Sydney H.Avner "Introduction to Physical Metallurgy" McGraw Hill Book Company Prentice Hall 2. 2014-8th Edition.
- 3. V. Raghavan, "Materials Science and Engineering", PHI, Sixth Edition

Reference Books

- 1. George E. Dieter, "Mechanical Metallurgy" TATA McGraw Hill 2013 3rd Edition
- 2. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India
- 3. Upadhyay. G.S. and AnishUpadhyay, "Materials Science and Engineering", Viva Books Pvt. Ltd., New Delhi, 2006.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Mechanical Behaviour of Materials	Prof. S. Shankar	IIT Madras	12 Weeks
2	Materials Science and Engineering	Dr. Vivek Pancholi	IIT Roorkee	12 Weeks
Course	Designers			

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
				arunkumar@vmkvec.ed
1	Dr.S.Arunkumar	Assoc. Professor	MECH/VMKVEC	u.in
2	Dr.M.Thiruchirambalam	Professor	MECH/AVIT	thiru.mech@avit.ac.in

		STR	RENG	GTH (OF			C -4		Ŧ	т		D	G	1.4
		MA'	TER	IALS			_	Catego	ry	L	T		Р	Cre	
	1C06	(The	eory	and P	racti	cals)		CC		2	1		2	4	•
Preamb								_							
The stude	ents cor	npletin	g this	cours	e are e	expected	to und	lerstan	d the r	ole of n	nechani	sms and	d its ap	plication	ns.
Prerequ NIL	iisite														
Course	Object	tives													
· · · · · · · · · · · · · · · · · · ·			ehav	ior of	mater	rial at v	arious	loadii	ng cor	nditions	s in coi	npress	ion and	1	
	ension								C						
2 U	Inderst	and an	d ana	alyze s	shear	force ar	nd ben	ding n	nome	nt in va	rious l	oading	condit	tions.	
						ending									
3 p	rinciple	e stres	ses.			-						-		-	
4 T	'o unde	rstand	s var	ious c	olumi	ns sectio	ons an	d geoi	netric	al anal	ysis.				
						ion and									
Course												will be	able t	to	
	-					erial at	variou	s load	ing co	onditior	ns in				
CO1.	-	ression												Unders	tand
CO2.						ding m								App	ly
	-		-		non of	bendin	ig of d	ifferer	nt sect	tions an	nd reco	gnize			
CO3.	princi	ple str	resses											Analy	/ze
CO4.	Analy	ze abo	out th	e vari	ous co	olumns	sectio	ons and	l geon	netrical	l .			Analy	/ze
CO5.	Analy	ze of	etrain	ener	w to	sion an	d num	perical	analy	veie				Analy	170
Mappin											utcom	PS		Anary	ZC
COs CO1	PO1 S	PO2 M	PO3 L	PO4	PO5	PO6	PO7	PO8	PO9 -	PO10	PO11	PO12	PSO1 M	PSO2 M	PSO3 L
CO1 CO2	S	S	M	L	-	-	-	-	-	-	-	<u>.</u>	M	M	
CO3	S	S	S	S	-	-	-	-	-	-	-		Μ	М	L
CO4	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	L
CO5	S	S	S	S	-	-	-	-	-	-	-	•	Μ	Μ	L
S- Strong SYLLA		dium;	L-Lov	V											
STLLA STRESS		П СТЕ		C											
Stress an						Strain a	norau	dua to	avial	force	sudda	n load	and in	mact lo	ad
Poisson'															
under in															
and plan							P			- F	~			- F	
BENDIN							IN BE	EAMS							
Shear fo	orce and	d bend	ing n	nomer	nt diag	grams fo	or can	tilever	, simp	oly sup	ported	and ov	erhang	ging bea	ams
under co										ly vary	ing loa	ids, coi	ncentra	ted mo	ments
						nt of co	ontra f	lexure	•						
FLEXU															
Theory of								re equ	ation.	Theory	y of toı	sion a	nd assu	Imption	1S —
torsion e	-	-													
DEFLE															
Governi												ethod -	- appli	cation	to
simple j		-			eams	and si	mply s	suppo	rted k	beams	only).				
COLUM									_						
Column				-				-		nn mer	nbers	– buck	ling lo	ad – Ei	uler's
theory -	- differ	ent er	nd co	nditio	ons –	Kankin	e's foi	rmula							

LIST (OF EXPERIMENTS	5										
1.	Direct Shear Test on	Mild Steel Rod and	Mild Steel Plate									
2.	Brinell Hardness Tes	st										
3.	Izod Impact Test											
4.	Bending Test on Mil	d Steel										
5.	Rockwell Hardness	Test										
6.	Tensile Test on Mild	l Steel										
7.	Compression test& 7	Forsion test on Mild	Steel									
Text B	ooks											
1.	1. Bedi D.S., "Strength of Materials", Khanna Publishing House, 2017.											
2.												
3.	3. Rajput.R K, "Strength of Materials", S.Chand& Co Ltd, New Delhi, 1996.											
Refere	nce Books											
1. Eg	or P Popov, "Engine	ering Mechanics of S	Solids", Prentice Hall of	India, New Delhi	i, 1997.							
2. Su	bramanian R, "Streng	gth of Materials", Oz	xford University Press,	Oxford Higher Ed	ucation							
Se	ries, Oxford, 2007.											
3. Hi	bbeler R.C, "Mechan	ics of Materials", Pe	earson Education, New J	lersey, 2007.								
4. Ba	nsal R.K, "Strength o	of Materials", Lakshi	mi Publications(P)Ltd, I	New Delhi,2010.								
5. Fe	rdinand P Been, Russ	sell Johnson, J.R. and	l John J Dewole, "Mech	anics of Materials	s", Tata							
Mo	graw Hill Publishing	g Co Ltd, New Delhi	i, 2006.									
Altern	ative NPTEL/SWAY	YAM Course										
S.No	NPTEL /SWAYA	M Course Name	Instructor	Host Institution	Duration							
			PROF. SRIMAN KUMAR									
1	STRENGTH OF MAT	ERIALS	BHATTACHARYYA	IIT KGP	12 Weeks							
Course	Designers											
			Department/Name									
S.No	Faculty Name	Designation	of the College	Email id								
1	Dr.S.Sangeetha Associate Professor MECH/AVIT sangeethas@avit.ac.in											
		Assistant										
2	R.Chandrasekar	Professor	MECH / VMKVEC	chandrasekar@vm	kvec.edu.in							
	·		·	·								

				ERIN		aa		Catego	ry	L	Т		Р	C	redit
3442	1004				AMI Practi			CC	,	2	1		2	4	
Preamb		(11	cory		Tacti	cais)			~	4			4		
This co	-	provide	es an	n intr	oducti	ion to	the 1	pasic o	conce	epts in	thern	nodvna	mics.	first la	w of
hermody															
non-react															
solving s		•			0			•		1 5			I	1	
Prerequ		U													
Nil															
Course	Object	tives													
1 T	o learr	abou	t wor	k and	heat i	nteracti	ons, a	nd bala	ance	of ener	gy betv	veen sy	stem a	and	
i	ts surr	oundi	ngs.									-			
2 T	o learr	abou	t appl	licatio	n of I	law to	variou	s energ	gy co	nversio	n devi	ces.			
	To learn about application of I law to various energy conversion devices. To evaluate the changes in properties of substances in various processes.														
4 T	o unde	understand the difference between high grade and low grade energies.													
		understand the II law limitations on energy conversion.													
Course								<u> </u>			dents	will be	able	to	
						& vario									
CO1.		neerin					<i>Jus</i> IIIC		neut	uunsiei	0 seu 1			Under	stand
						blems u	ising v	arious	meth	ods of 7	Fransie	nt			
CO2.		condu					0							App	oly
	To a	pply tł	ne con	cepts	of cor	vection	syster	ms in a	n eng	ineerin	g probl	em usi	ng	• •	2
CO3.		lard va		1			2		C	, , , , , , , , , , , , , , , , , , ,			C	App	oly
	To c	hoose	the va	arious	conce	pts of ra	adiatio	n basec	l on t	he requ	iremen	ts for th	ne		
CO4.		n prob				-				-				App	oly
						blems u						heat			
CO5.						ers usin								App	oly
Mappin	g with	Prog	ramn	ne Ot	itcom	es and	Progr	amme	Spe	cific O	utcom	es		-	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	-	-	-	S	S	S	-	-	S	М	-
CO2	Ŝ	М	L	L	-	-	-	Š	Ŝ	Š	-	-	Š	M	-
CO3	S	Μ	L	L	-	-	-	S	S	S	-	-	S	М	-
CO4	S	Μ	L	L	-	-	-	S	S	S	-	-	S	М	-
CO5	S	M	L	L	-	-	-	S	S	S	-	-	S	Μ	-
S- Strong		dium;	L-Lov	V											
SYLLA		TATE		יידדי											
FUNDA										D				1.00	
Fundame															
Work -								-		+				-	
lisplace															
and shaf	t work	. Tem	iperat	ure, L	Jerini	tion of t	tnerma	ai equi	IDriu	im and	Leroth	i law;	1 empe	rature s	cales

Various Thermometers- Definition of heat; examples of heat/work interaction in systems- First Law for Cyclic & Non-cyclic processes; Concept of total energy E; Demonstration that E is a property; Various modes of energy, Internal energy and Enthalpy. FIRST AND SECOND LAW OF THERMODYNAMICS

First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady I law applications for system and control volume. Second law - Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle; Absolute temperature scale

CLAUSIUS INEQUALITY, IRREVERSIBILITY AND AVAILABILITY

Clausius inequality; Definition of entropy S; Demonstration that entropy S is a property; Evaluation of S for solids, liquids, ideal gases and ideal gas mixtures undergoing various processes; Determination of s from steam tables- Principle of increase of entropy; Illustration of processes in T-s coordinates; Definition of Isentropic efficiency for compressors, turbines and nozzles- Irreversibility and Availability, Availability function for systems and Control volumes undergoing different processes, Lost work. Second law analysis for a control volume. Energy balance equation and Exergy analysis.

PURE SUBSTANCE AND GAS MIXTURES

Definition of Pure substance, Ideal Gases and ideal gas mixtures, Real gases and real gas mixtures, Compressibility charts- Properties of two phase systems - Const. temperature and Const. pressure heating of water; Definitions of saturated states; P-v-T surface; Use of steam tables and R134a tables; Saturation tables; Superheated tables; Identification of states & determination of properties, Mollier's chart

THERMODYNAMIC CYCLES AND RELATIONS

Thermodynamic cycles - Basic Rankine cycle; Basic Brayton cycle; Basic vapor compression cycle and comparison with Carnot cycle. Thermodynamic relations : Thermodynamic potentials, thermodynamic gradients, general thermodynamics relations, entropy (Tds) equations, equations for internal energy and enthalpy, equation of state, coefficient of expansion and compressibility, specific heats, Joule Thomson coefficient, Clausius –Claperyon equation, Maxwell's relations.

LIST OF EXPERIMENTS

IC Engine Valve Timing diagrams.

IC Engine Port Timing diagrams.

Determination of Flash Point and Fire Point of Various fuels / Lubricant

Determination of Viscosity of Various fuels / Lubricant

Actual P-V diagrams of IC engines.

Determination of Calorific value of liquid fuel

Text Books

Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
 Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co. Ltd.

Reference Books

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, Fundamentals of Thermodynamics, John Wiley and Sons.
- 2. Moran, M. J. and Shapiro, H. N., 1999, Fundamentals of Engineering Thermodynamics, John Wiley and Sons.

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Basic Thermodynamics	Prof. Suman Chakraborty	IIT Kharagpur	12 weeks
Course	Designers			

			Department/	
S.No	Faculty Name	Designation	Nameof the College	Email id
1	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in
3	C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in

		TH	ERMA	AL EN	IGINF	EERIN(Catego	ory	L	Т		P	C	credit
3442	1C09		heory					C	C	2	1		2	4	ļ
Preamb	le		·			,									
This cou	rse im	parts	under	standi	ng ab	out the	power	r gener	ation	using	heat en	lergy co	onvers	ion and	
makes a	n atten	ipt to	be co	nvers	ant wi	th the e	quipm	nent's u	used i	n the p	rocess	. It help	os in u	nderstar	nding
the thern	nodyna	amic c	conce	pts, th	e con	structio	on and	the wo	orking	g princi	ples of	variou	s engi	neering	
devices															
Prerequ															
Enginee			odyn	amic	5										
Course	Objec	tives													
1 To learn about of reacting systems and heating value of fuels.															
2 T															
3 To understand about the properties of dry and wet air and the principles of psychrometry															
		earn about gas dynamics of air flow and steam through nozzles.													
	To learn the about reciprocating compressors with and without intercooling and performance of														
5 steam turbines.															
Course	Outco	mes:	On th	e suc	cessfu	ıl comp	pletion	of the	e cou	rse, stu	idents	will be	able	to	
CO1.	To a	ssess t	he ba	sic of	reacti	ng syste	ems ar	nd heat	ing v	alue of	fuels			Under	stand
CO2.	App	ly the	gas ar	nd var	or cy	cles and	d their	first la	aw an	d secor	nd law	efficie	ncies	App	oly
CO3.						and we								App	
CO4.			• •			mamics			•					App	
						compre								F I	
CO5.		orman										0		Anal	yze
Mappin	g with	Prog	ramn	ne Ot	itcom	es and	Progr	amme	e Spe	cific O	utcom	es			2
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	L	-	-		S	S	S	-	-	S	Μ	-
CO2	S	Μ	L	L	-	-	-	S	S	S	-	-	S	Μ	-
CO3	S	Μ	L	L	-	-	-	S	S	S	-	-	S	Μ	-
CO4	S	Μ	L	L	-	-	•	S	S	S	-	-	S	Μ	-
CO5	S M M	M		L	-	-	•	S	S	S	-	-	S	Μ	-
S- Strong; M-Medium; L-Low SYLLABUS															
INTRODUCTION TO SOLID, LIQUID AND GASEOUS FUELS															
					/	÷						1 .	D .	1	<u> </u>
Introduc			-		-				•		-	-			alysis
of comb							0						lemper	ature-	

Chemical equilibrium and equilibrium composition calculations using free energy.

GAS AND VAPOR CYCLES

Vapor power cycles Rankine cycle with superheat, reheat and regeneration, exergy analysis. Supercritical and ultra super-critical Rankine cycle- Gas power cycles, Air standard Otto, Diesel and Dual cycles-Air standard Brayton cycle, effect of reheat, regeneration and intercooling- Combined gas and vapor power cycles- Vapor compression refrigeration cycles, refrigerants and their properties.

PROPERTIES OF DRY AND WET AIR

Properties of dry and wet air, use of pschyrometric chart, processes involving heating/cooling and humidification/dehumidification, dew point.

COMPRESSIBLE FLOW

Basics of compressible flow. Stagnation properties, Isentropic flow of a perfect gas through a nozzle, choked flow, subsonic and supersonic flows- normal shocks- use of ideal gas tables for isentropic flow and normal shock flow- Flow of steam and refrigerant through nozzle, supersaturation-compressible flow in diffusers, efficiency of nozzle and diffuser.

RECIPROCATING COMPRESSORS AND STEAM TURBINE

Reciprocating compressors, staging of reciprocating compressors, optimal stage pressure ratio, effect of intercooling, minimum work for multistage reciprocating compressors.

Analysis of steam turbines, velocity and pressure compounding of steam turbines

LIST OF EXPERIMENTS

- 1. Load Test on a four stroke Single cylinder diesel engine.
- 2. Load Test on a four stroke twin cylinder diesel engine.
- 3. Performance and Emission test of a four stroke multi-cylinder Petrol engine.
- 4. Performance and Emission test of a four stroke multi-cylinder Diesel engine.
- 5. Morse Test on a multi-cylinder petrol engine.
- 6. Performance test of a bio-fuel on a variable compression ratio engine.

Text Books

- 1. Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
- 2. Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co. Ltd.

Reference Books

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, Fundamentals of Thermodynamics, John Wiley and Sons.
- 2. Moran, M. J. and Shapiro, H. N., 1999, Fundamentals of Engineering Thermodynamics, John Wiley and Sons.

Alternative NPTEL/SWAYAM Course - Nil

	NPTEL /SWAYAM Course			
S.No	Name	Instructor	Host Institution	Duration

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in
3	C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in

		DES	SIGN	OF N	ЛАСІ	HINE	(Catego	ry	L	Т]	Р	Cre	dit
34421	C11		EME					CC		2	1		0	3	
Preamb	e	-													
Students															
science i															
respect to															ıble
the stude		have h	igh et	hical s	standa	rds in t	erms of	team	work	to be a	good d	esign e	ngineei	ſ	
Prerequ NIL															
Course (Object	tives													
1 D	evelop	an ab	ility to	o appl	y knov	wledge	of mec	hanics	and r	naterial	s.				
2 D	evelop	an ab	ility to	o desig	gn var	ious m	achine e	elemei	nts wit	th pract	ical con	nstraint	s by ap	plying	
	andard	0													
							orinciple								
	pply Design principles and validation for critical safety analysis.														
	Understand the background in material failure through the study of theories of failure.														
Course (,				0	
G G A	-		e influ	ence of	of stea	dy and	variabl	le stres	ses in	machi	ne com	ponent			
CO1.	desig	gn.												Underst	tand
CO2.	Appl	y the o	design	, princ	iples i	in shaft	s and c	ouplin	gs for	defined	d const	raints.		Appl	y
G Q Q				n princ	iples i	in bolte	ed and v	velded	joints	s for det	fined				
CO3.		traints		•	• • •		• •	•	C	. 1	1	• 1	1	Appl	y
CO4.		y the of	design	i princ	iples i	in meci	hanical	spring	s for s	steady a	ind var	ying loa	ad	Appl	V
0.04.	conu	100115												<u> </u>	y
CO5.	Appl	y the o	design	n princ	iples i	in beari	ing and	flywh	eel fo	r define	d const	traints		Appl	y
Mappin	g with	Prog	ramn	ne Ou	tcom	es and	Progr	amm	e Spe	cific O	utcom	es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	L	-	-	-	Μ	L	L	-	-	S	-	-
CO2	S	S	S	M	-	-	-	M	L	L	-	-	S	-	-
CO3 CO4	S S	S S	S S	M M	-	-	-	M M	L L	L L	-	-	S S	-	-
CO4 CO5	S	S	S	M	-	-	-	M		L	-	-	S	-	
S- Strong;								141	Ľ		-	-	5		
SYLLA		,													
INTRO	DUCT	'ION '	TO D	ESIG	SN PF	ROCE	SS WI	TH V	ARIC	DUS ST	RESS	COM	BINA'	TIONS	5
Introducti	on to t	he des	ign pr	ocess	- facto	or influ	encing 1	nachir	ie desi	gn – D	irect – I	Bending	g and to	orsional	stress
equations															
of safety-		es of fa	ailure-	-stress	conce	entratio	n –desi	gn for	variał	ole load	ing – S	oderbe	rg – Go	oodman	and
Gerber re	lations														

DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength – rigidity and critical speed – Design of rigid and flexible couplings.

DESIGN OF BOLTED AND WELDED JOINTS

Threaded fasteners – Design of bolted joints – Design of welded Joints for pressure vessels and structures-Theory of Bolted joints

DESIGN OF SPRINGS

Design of helical, leaf and torsional springs under constant loads and varying loads.

DESIGN OF BEARINGS AND FLYWHEELS

Design of bearings – sliding contact and rolling contact types – Design of journal bearings calculation of bearing dimensions- Design of flywheels involving stresses in rim and arm.

Text Books

- 1. Design of Machine Elements-V.B.Bhandari
- 2. Mechanical Engineering Design: Joseph E Shigley and Charles R. Mischke

Reference Books

- 1. Machine Design: Robert L. Norton, Pearson Education, 2001
- 2. Design of Machine Elements-M.F. Spotts, T.E. Shoup, pearson Edn,2006.
- 3. Fundamentals of Machine component Design–Robert C. Juvinall, Wiley India Pvt.Ltd,3rdEdn,2007.
- 4. Design Data PSG College of Technology, DPV Printers, Coimbatore, 2012.
- 5. P.C. Sharma &D.K. Aggarwal, A Text Book of Machine Design, S.K. Kataria & Sons, New Delhi,12thedition, 2012.

Alternative NPTEL/SWAYAM Course – Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	-	-	-	-

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id		
1	R.Venkatesh	Assistant Professor	MECH/VMKVEC	venkatesh@vmkvec.edu.in		
2	J. Senthil	Associate Professor	MECH/AVIT	jsenthil@avit.ac.in		

	ENGINEERING METROLOCY AND	Category	L	Т	Р	Credit
	METROLOGY AND MEASUREMENTS					
34421C13	(Theory and Practicals)	CC	3	0	2	4
Preamble						

The aim of the subject is to provide basic knowledge in instrumentation and measurements. Familiarization with basic concepts and different instrumentation and measurement strategies being used in practice.

Prerequisite

NIL

Course Objectives															
1	Го appl	y the f	fundar	nenta	ls of t	oasic e	ngineer	ring m	easure	ement s	system				
r.	To unde	erstand	l the v	variou	s instr	rument	s used	for lin	lear, a	ngular	measu	rement	, form		
2 1	measure	ement	and s	urface	finis	h.									
	Го appl									ents lik	e linea	r, angu	lar		
	measure	,													
	Fo unde and floy				ole, co	oncepts	s, applio	cation	s and	advanc	ement	s of ten	nperati	ire, pre	ssure
r.	To use information to classifications, working and processes of optical measuring														
5 instruments, also to acquire the data and store in computer.															
Course Outcomes: On the successful completion of the course, students will be able to															
Explain the sensitivity of the instruments by evaluating the error in															
CO1	. mea	measurements Understand													
	Disc	Discuss the working principle and usage of various instruments used for													
CO2	. linea	ar, ang	g <mark>ular</mark> r	neasu	remer	nt, forn	n meas	ureme	nt and	l surfac	e finis	h	1	Underst	and
		nonstra	ate the	e vario	ous se	tups us	sed for	meası	uring l	linear,					
CO3	. angi	ılar m	easure	ement	, form	meas	uremen	t and	surfac	e finis	h			Appl	у
					riate i	instrun	nents fo	or tem	peratu	ire, pre	ssure a	nd			
CO4	. flow	v meas	ureme	ents										Appl	у
							nowled	lge in	the us	se of					
CO5		cal me												Underst	and
Mappi	ng with	Prog	ramn	ne Ou	tcom	es and	Progr	amm	e Spe	cific O	utcom	es		1	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	Μ	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	S	Μ	L	-	•	-	-	-	-	-	-	L	-	-
CO3	S	L	Μ	L	-	-	-	-	-	-	-	-	L	-	-
CO4	S	S	М	L	-	-	-	-	-	-	-	-	L	-	-
CO5	S	M	S	L	-	-	-	-	-	-	-	-	L	-	-
S- Stron		edium;	L-Lov	V											
SYLLA	ARUS														

SYLLABUS

BASIC PRINCIPLES & LINEAR / ANGULAR MEASUREMENT

Basic principles of measurement - Generalized measuring system - Characteristics of measuring instruments, Static and Dynamic characteristics - Precision, Accuracy, Sensitivity, Repeatability, Reproducibility, Linearity, Errors -sources of error, classification and elimination of error-Calibration. Linear and angular Measurements: Vernier – Micrometer - Slip gauges and classification Optical flats - Limit gauges - Comparators: Mechanical - Pneumatic and Electrical types applications. -Sine bar - optical bevel protractor - Autocollimator- Angle Decker – Taper measurements.

DISPLACEMENT, SPEED & ACCELERATION / VIBRATIONMEASUREMENT

Measurement of displacement: Theory and construction of various transducers to measure displacement - LVDT, piezo electric, inductive, capacitance, resistance, ionization and photo electric transducers, calibration procedures.

Measurement of speed: Mechanical tachometers, electrical tachometers, strobe Objective, noncontact type of tachometer.

Measurement of acceleration and vibration: Piezoelectric Accelerometer, Seismic Accelerometer, Vibrometer.

TEMPERATURE, PRESSURE AND FLOW MEASUREMENT

Measurement of Temperature: Classification, ranges, various principles of measurement, expansion, electrical resitance, Thermistor, Thermo couples, Pyrometers, temperature Indicators.

Measurement of pressure: Units, classification, different principles used, piston Digital pressure gauges, Manometers, bourdon, pressure gauges, bellows diaphragm gauges. Low pressure measurement, thermal conductivity gauges – ionization pressure gauges, Mcleod pressure gauge, Knudsen gauge. Calibration of pressure gauges. Measurement of level: Direct method – indirect methods– capacitative, ultrasonic, magnetic, cryogenic fuel level indicators – bubler level indicators Measurement of flow: Orifice meter, Venturi meter, Rotameter, magnetic, ultrasonic, turbine flow meter, Anemometers - hotwire anemometer, Laser Doppler anemometer (LDA).

FORCE, TORQUE, & STRAIN MEASUREMENTS

Measurement of force& torque: Load cells, Dynamometers: Eddy current dynamometer, Cantilever beams, proving rings, differential transformers.

Measurement of torque: Torsion bar dynamometer, servo controlled dynamometer, absorption dynamometers. Power Measurements.

Strain Measurements: types of stress and strain measurements – electrical strain gauge – gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains – usage for measuring torque, Strain gauge calibration.

FORM MEASUREMENTS AND OPTICAL MEASUREMENTS

Form measurements: Measurement of screw threads - thread gauges - Floating carriage micrometermeasurement of gears-tooth thickness-constant chord and base tangent method- Gleason gear testing machine – radius measurements-surface finish - Straightness - Flatness and roundness measurements. Optical measurements: Optical Micro Objective, interference micro Objective, tool makers micro Objective, profile projector, vision Systems, laser interferometer – linear and angular measurements.

LIST OF EXPERIMENTS

- 1. Angular Measurements using Bevel Protector and Sine Bar
- 2. Measurement of linear parameters using precision measuring instruments like micrometer, Vernier caliper and Vernier height gauge.
- 3. Flow Measurement using a Rotameter.
- 4. Fundamental dimension measurement of a gear using a contour projector.
- 5. Measurement of Displacement using Linear Variable Differential Transducer
- 6. Measurement of speed of Motor using Stroboscope
- 7. Measurement of cutting forces using Lathe Tool Dynamometer

Text Books

- 1. Kumar D.S., Mechanical Measurements and Control, Tata McGraw Hill.
- 2. Jain R.K., Engineering Metrology, Khanna Publishers, 1994.
- 3. GuptaS.C.- "Engineering Metrology"- Dhanpatrai Publications- 2018.
- 4. Metrology and Measurements lab Manual

Reference Books

- 1. Alan S. Morris- "The Essence of Measurement"- Prentice Hall of India- 1997
- 2. Jayal A.K- "Instrumentation and Mechanical Measurements"- Galgotia Publications 2000
- 3. Beckwith T.G- and N. Lewis Buck- "Mechanical Measurements"- Addison Wesley- 1999.
- 4. Donald D Eckman- "Industrial Instrumentation"- Wiley Eastern-1985.

Alternative NPTEL/SWAYAM Course												
S.No	NPTEL /SWAYAN	1 Course Name		Instructor	Host Institution	Duration						
			Pro	f. J. Ramkumar,								
1	Engineering Metrolog	У	Pro	f. Amandeep Singh	IIT Kanpur	12 Weeks						
Course Designers												
				Department/Nam	e							
S.No	Faculty Name	Designation		of the College	Email id							
1	S.Duraithilagar	Associate Profes	sor	MECH/VMKVEC	duraithilagar@vr	nkvec.edu.in						
2	R.Mahesh	Assistant Profes	sor	MECH/AVIT	mahesh@avit.ac.	in						

	AUTOMOBILE	Category	L	Т	Р	Credit
	ENGINEERING (Theory and					
34421C10	Practicals)	CC	3	0	2	4
Preamble						

Automobile Engineering is a blend of both practical and theories, course the students will be able to learn the layout and arrangement of principal parts of an automobile, Engine Management and Emission Control System, working of Transmission, Suspension, Steering and brake systems along with the Advance in Automobile Engineering.

Prerequisite

NIL

Course Objectives

Course	Objec	11105														
	-			-		onstruc	tional o	details	and p	orincip	le of op	peration	n of va	rious		
	utomo	bile c	ompo	nents.												
2 T	o analy	yzing	the va	rious	types	Engin	e Auxil	liary a	nd En	igine m	lanagei	ment sy	stems.			
3 T	o anal	yzing	the va	rious	types	of tran	nsmissi	on sys	stems	for a ve	ehicle.					
4 T	To analyzing the working parameters of various braking and suspension system in a Vehicle.															
5 T	To Analyzing the Various advance in automotive Engineering.															
Course	Course Outcomes: On the successful completion of the course, students will be able to															
	Recognize the various parts of the automobile and their functions and															
CO1.	mate	materials.												Apply		
	Ana	Analyzing the various types Engine Auxiliary and Engine														
CO2.		ageme								-			Ar	nalyze		
CO3.	Ana	lyzing	the v	arious	s type	s of tra	nsmiss	ion sy	stems	s for a v	vehicle		Ar	nalyze		
				vorkin	ig para	ameter	s of va	rious l	orakin	g and s	suspens	sion				
~ ~ /		em in	a													
CO4.	vehi	cle											Ar	nalyze		
CO5.	Ana	lyzing	the V	/ariou	s adv	ance in	autom	otive	Engin	eering.			Ar	nalyze		
Mappi	ng wit	h Pro	gram	me O	utcor	nes an	d Prog	ramn	ne Sp	ecific (Outcon	nes	•	2		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	L	L	L	-	-	-	-	-	-	-	-	S	-	-	
CO2	S	L	L	L	-	-	-	-	-	-	-	-	S	-	-	
CO3	S	М	Μ	Μ	-	-	-	-	-	-	-	-	S	-	-	

CO5 S Μ Μ S- Strong; M-Medium; L-Low

Μ

S

SYLLABUS

CO4

VEHICLE STRUCTURE AND ENGINES

Μ

Μ

Μ

Types of automobiles vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics, IC engines -components-functions and materials, variable valve timing (VVT).

S

S

ENGINE MANAGEMENT & EMISSION CONTROL SYSTEMS

Engine auxiliary systems, electronic injection for SI and CI engines, unit injector system, rotary distributor type and common rail direct injection system, transistor based coil ignition & capacitive discharge ignition systems, turbo chargers (WGT, VGT), Engine emission control by 3-way catalytic converter system, Emission norms (Euro & BS).

TRANSMISSION SYSTEMS

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, overdrive, transfer box, fluid flywheel – propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive

STEERING, BRAKING AND SUSPENSION SYSTEMS

Steering Geometry, Types of steering Gearbox – Power Steering, Front Axle, Stub Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, ABS and Traction Control.

ADVANCES IN AUTOMOBILE ENGINEERING

Passenger comfort - Safety and security - HVAC - Seat belts - Air bags - Automotive Electronics - Electronic Control Unit (ECU). Active Suspension System (ASS) - Electronic Brake Distribution (EBD) – Electronic Stability Program (ESP) Traction Control System (TCS) - Global Positioning System (GPS) - Electric - Hybrid vehicle.

LIST OF EXPERIMENTS

- 1. Construction Mechanism of Petrol and Diesel engine (Four stroke and Two Stoke)
- 2. Construction Mechanism of Clutch Assembly
- 3. Construction Mechanism of Sliding mesh, Constant mesh and Synchromesh gear boxes
- 4. Construction Mechanism of Differential and Rear axles assembly
- 5. Construction Mechanism of Hydraulic brake, Disc brake and Air brake systems
- 6. Construction Mechanism of Suspension and Steering systems
- 7. Construction Mechanism of Hybrid and Electric vehicles

Text Books

- 1. Kirpal Singh, "Automobile Engineering Vol 1 & 2 ", Standard Publishers, Seventh Edition, New Delhi R.B. Gupta- "Automobile Engineering "- Satya Prakashan.
- 2. Jain K.K. and Asthana R.B., Automobile Engineering, Tata McGraw Hill, New Delhi.
- 3. Gill P.S., "A Textbook of Automobile Engineering Vol. I, II and III", S.K.Kataria and Sons, 2ndEdition.

Reference Books

- 1. William Crouse- "Automobile Engineering Series "- McGraw-Hill
- 2. Newton and Steeds- "Motor Vehicles "- ELBS
- 3. Duffy Smith- "Auto Fuel Systems "- The Good Heat Willcox Company Inc.
- 4. "Hybrid and Electric Vehicles"-CRC Press Taylor and Francis Group.

S.No	NPTEL /SWAYAM (Course Name		Instructor	Host I	nstitution	Duration				
1	Fundamentals of Autom	otive Systems	Prof (C.S. Shankar Ram	IIT I	Madras	12 Weeks				
Course	Course Designers										
				Department/Na							
S.No	Faculty Name	-									
1	T. Raja	Associate Prof	essor	MECH/VMKVEC		rajat@vml	vec.edu.in				
2	N. Shivakumar	Assistant Profe	essor	MECH/AVIT		shivakuma	r@avit.ac.in				

		INT	MPU TEGR	ATE				Catego	ry	L	Т		P	Cre	dit
24401	1007		NUF. eory a					CC		3	0		2	4	
3442 Pream		(11	eory	and P	racu	cais)		u		3	0		Z	4	
		rompl	eting	this c	ourse	are exp	ected 1	to und	erstar	nd the n	ature a	nd rol	e of co	mnuter	s in
manufa		-	0			-								-	5 111
program															s,
shop flo	0				. 0	1	0.		1		L	1	U	1	
trends f	followe	ed in t	he inc	lustrie	es				-						
Prerequ	isite														
NIL															
Course	-														
-						AM/CI		-							
						techniq							CAD.		
				-		ures in (*			-	nachini	ng.			
						d group									
						manufa		- 1			1 (•11.1			
						ful com	•		ne cou	urse, st	udents	s will b			
CO1	Unde	rstand	basic	conc	ept of	CAD/C	CAM/	CIM					Un	derstand	1
			stand	ards fo	or geoi	metrical	model	ling. D)emor	nstrate S	Solid n	nodelli	U		
CO2	techn	iques.											Ap	ply	
CO3	Interp	oret an	d den	nonstr	ate co	mplex	progra	ms fo	r CN(C mach	ining c	enters	Ap	oly	
	Apply	y grou	p tech	nolog	gy cor	ncept in	manu	facturi	ing pr	oduct.	Make u	ise of			
CO4	FEA	conce	pt for	analy	sis.	_							Ap	ply	
	Expla	in FM	IS and	l CIM	whee	el for m	anufac	cturing	g indu	stry, di	scuss t	he late	st		
CO5						ng persj				•			Ap	oly	
Mappi	ng wit	h Pro	gram	me O	utcor	nes and	l Prog	ramn	ie Spo	ecific (Jutcom	nes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	М	М	-	-	-	-	-	-	-	L	Μ	-	-
CO2	S	Μ	М	М	-	-	-	-	-	-	-	L	Μ	-	-
CO3	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO4 CO5	S S	M M	M	M M	-	-	-	-	-	-	-	L	M	-	-
S- Strong			M L-Lov		•	-	-	-	-	-	-	L	Μ	•	-
SYLLA		,													
INTRO	DUCT	ION													
Definitio	on and	l scop	pe of	CAI	D/CA	M- Co	mpute	rs in	indu	strial r	nanufa	cturing	g, desi	ign pro	ocess-
Compute															grated
Manufac systems.		(CIM	l) - Ir	itrodu	ction	to Com	iputer	graph	1CS -F	kaster s	can gra	aphics	Co-or	dinate	
GRAPH		ND (COM	PUTI	NGS	TAND	ARDS	5							
Data bas									/-3D 1	transfo	matior	ns –Cli	pping-	hidden	line
removal	-Colou	r-shac	ling-S	standa	rdizat	tion in	graphi	cs- O	pen C	JL Data	a Exch	ange s	tandar	ds – IC	
STEP - (Graphi	c Keri	nal sy	stem (GKS). Geom	netric (constr	uctior	n meth	ods-Co	onstraii	it bas	ed	la a c c
modeling	g- w1	ierram	ic, 3	urrace		50110	– rara	ametri	e repr	esentat	1011-01	curves	, sonds	$\infty \text{ surl}$	aces.

CNC MACHINE TOOLS

Introduction to NC, CNC, DNC - Manual part Programming – Computer Assisted Part Programming – Examples using NC codes- Adaptive Control – Canned cycles and subroutines – CAD/ CAM approach to NC part programming – APT language, machining from 3D models.

GROUP TECHNOLOGY & FEA CONCEPTS

Group technology-coding-Production flow analysis-computer part- programming-CAPP implementation techniques. Nodes -Meshing – Pre and Post processing – Modal analysis – Stress analysis – Steady state and Transient analysis.

AUTOMATED MANUFACTURING SYSTEMS

Flexible Manufacturing systems (FMS) – the FMS concepts – transfer systems – head changing FMS – Introduction to Rapid prototyping, Knowledge Based Engineering, Virtual Reality, Augmented Reality –automated guided vehicle-Robots-automated storage and retrieval systems - computer aided quality control-CMM-Non contact inspection methods.

LIST OF EXPERIMENTS

- 1. 2D Geometry –Splines
- 2. Surface Modelling –NURBS
- 3. Solid Modelling-CSG, Brep.
- 4. Preparing solid models for analysis-Neutral files
- 5. Real time component analysis-STRESS, STRAIN Analysis.
- 6. Model analysis of different structures.
- 7. Tolerance analysis of any mechanical component.
- 8. CNC Milling program involving linear motion and circular interpolation
- 9. CNC Milling program involving contour motion and canned cycles
- 10. CNC Milling program involving Pocket milling.
- 11. CNC Turning program involving turning and facing
- 12. CNC Turning program involving Step turning, Taper turning and Grooving
- 13. CNC Turning program involving Fixed/Canned cycles& Thread cutting cycles
- 14. Diagnosis and trouble shooting in CNC machine
- 15. Route sheet generation using CAM software.
- 16. Generation of CNC programming and machining using Master Cam/Edge Cam.

Text Books

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated
- 2. Radhakrishnan P, Subramanyan.S. andRaju V., "CAD/CAM/CIM", New Age International (P) Ltd., New Delhi.
- 3. P.N.Rao, CAD/CAM: Principles and Applications-3rd Edition, Tata McGraw Hill, India, 2010.

Reference Books

- 1. Yoremkoren, "Computer Integrated Manufacturing System", McGraw-Hill.
- 2. Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International
- 3. David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.
- 4. Roger Hanman "Computer Integrated Manufacturing", Addison Wesley
- 5. Viswanathan.N, Narahari.Y "Performance Modeling& Automated Manufacturing systems" Prentice hall of indiapvt. Ltd.

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
		Prof. J. Ramkumar,		
1	Computer Integrated Manufacturing	Prof. Amandeep Singh	IIT Kanpur	12 weeks

Course	Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.L.Prabhu	Associate Professor	MECH/ AVIT	prabhu@avit.ac.in
		Assistant Professor-		
2	S.Prakash	II	MECH/ AVIT	prakash@avit.ac.in
3	M.Saravanan	Associate Professor	MECH/VMKVEC	saravanan@vmkvec.edu.in

DESIGN OF TRANSMISSION	Category	L	Т	Р	Credit
34421C12 SYSTEMS	CC	2	1	0	3

Preamble

Design of Transmission System course is concerned with design of mechanical transmission elements for engineering applications. In industries motors and turbines use energy to produce rotational mechanical motion. In order to harness this motion to perform useful work, there must be a way to transmit it to other components and machines. Three common methods of accomplishing this include gears, chain drives, and belt drives. The Mechanical Transmission Systems subject area covers these types of transmission systems, including specific applications, how each works.

Prere	equisite	;													
DESI	IGN OI	F MA(CHIN	E EL	EME	NTS									
Cour	se Objo	ectives	5												
1	To inte	erpret tl	ne proo	cedure	e for po	ower tra	ansmiss	ion by	belt, r	opes a	nd chai	n drives	5.		
2	To des	ign the	e spur a	and he	lical g	ears.									
3	To des	ign the	bevel	l and v	vorm g	gears.									
4	Toexp	olore th	e imp	ortanc	e of ge	ar box	and des	ign of	gear b	OX.					
5	To ass	ess the	design	n proce	edure f	for clut	ches and	d brak	es.						
Cour	se Outo	comes	: On t	he su	ccessf	ul con	npletio	n of t	he cou	irse, st	tudent	s will b	oe able	to	
	Des	ign a su	itable f	flat bel	t, V-be	lt, rope	s and cha	ain dri	ve for s	pecifie	d loadin	g			
CO1.	cone	dition b	y using	g pre-d	lefined	set of v	values ar	nd proc	edures	5.		-		Appl	у
							ng streng								
				el gear	and wo	orm gea	ır pair by	using	pre-de	fined se	et of val	ues and			
CO2.		cedures												Appl	у
G Q Q							ng streng						el		
CO3.							defined :							Analyze	
001							ensions	for giv	en spe	ed cond	litions b	yusing			
CO4.						ocedur		1	1	1	1 .	1 1 4		Appl	у
CO5.							set of va					gle plate	e	Annl	• •
	ping wi						en speci					205		Appl	y
wiapp	ping wi		gi am			iics aii	uiiog	1 anni	lie ope		Juicon	ites			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	S	Μ	-	-	-	-	-	-	-	-	S	-	-
CO2	S	M	S	Μ	-	-	-	-	-	-	-	-	S	-	-
CO3	M	S	S	M	-	-	-	-	-	-	-	-	S	-	-
CO4	S	M	S	M	-	-	-	-	-	-	-	-	S	-	-
CO5	S	Μ	S	Μ	-	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

DESIGN OF FLEXIBLE DRIVES

Types and configuration of belt drive-slip-initial tension-centrifugal tension-selection of flat belt drive, Selection of V-belt drives- problems-based on basic equations. Types of chain-factor of safety-selection of chain drives. Design of Sprockets

DESIGN OF SPUR GEAR AND HELICAL GEARS

Gear nomenclature - Spur gears - Stresses induced in gears - gear tooth failure - Lewis bending equations, Calculation of appropriate safety factors and power rating - force analysis, Design of spur gears -helical

DESIGN OF BEVEL AND WORM GEARS

Gear nomenclature - Stresses induced in gears - gear tooth failure - Lewis bending equations -Calculation of appropriate safety factors and power rating - force analysis - Design of bevel and worm gears

DESIGN OF GEAR BOXES

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - peed reducer unit

DESIGN OF CLUTCHES AND BRAKES

Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes – external shoe brakes – Internal expanding shoe brake.

Text Books

- 1. Joseoh Edward Shigley, Charles R Misucke, Mechanical Engineering Design, Tata Mc Graw Hill.
- 2. Prabhu. T.J. -Design of Transmission Elements- Mani Offset- Chennai.
- 3. V.B. Bhandari, -Design of Machine Elements, Tata McGraw Hill.

Reference Books

- 1. Md.Jalaludeen- Machine Design- Anuradha Publicatiions, Chennai
- 2. Maitra G.M. Prasad L.V. -Hand book of Mechanical Design- II Edition- Tata McGraw
- 3. Sundarajamoorthy T.V. and Shanmugam. N, -Machine Design, Anuradha Publications
- 4. Design Data, PSG College of Technology, Coimbatore.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration

Course Designers

Course	Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	S.Kalyanakumar	Assistant Professor	MECH/AVIT	kalyanakumar @avit.ac.in
2	J Satheesbabu	Associate Professor	MECH/VMKVEC	satheesbabu@vmkvec.edu.in

		HEAT	т лі	NDN	1766			Catego	ry	L	Т		Р	C	redit
		TRA			IASS										
		(Theo													
344	21C16	Pract						C	r I	2	1		2	4	L
Pream			1041	<i>.</i> ,						_	-		_		
		f this sul	biect	t is to	been	able stud	dents ı	inderst	ood d	lifferen	t princi	ples of	heat tra	ansfer a	nd its
		ineering									· F	r			
Prereq		0													
ENGIN	EERIN(G THER	MOI	DYNA	MICS	5									
Cours	se Obje	ctives													
	To ena	ble stude	ents	under	stand	their con	nducti	on med	hanis	m in st	eady sta	ate emp	hasizi	ng on	
1		tion in e									·			C	
	To ena	ble stude	ents	under	stand	their con	nducti	on med	hanis	m in ui	nsteady	state e	mphasi	izing on	l
2	applica	tion in e	ngin	eerin	g.						-		-	-	
3	To cate	egorize v	vario	us typ	bes of	convecti	ion an	d its ap	plicat	tion.					
4	To categorize various types of convection and its application. To assess various concepts of radiation and its applications.														
5	To enable students to understand Boiling, Condensation and Various types of Heat Exchangers.														
Cours		omes: C													
		ssess the					-								
CO1		neering									0.500		1	Underst	tand
	0	olve the				blems u	ising v	arious	meth	ods of					
CO2		sient hea												Appl	y
	To a	pply the	con	cepts	of cor	vection	syster	ns in a	n eng	ineerin	g probl	em			
CO3		g standar					•		U		01			Appl	y
	To c	hoose th	e va	rious	conce	pts of ra	diatio	n based	d on t	he requ	iremen	ts for			
CO4		given pro				-				-				Appl	у
	To se	olve the	engi	neeri	ng pro	blems u	ising l	Boiling	, Con	densati	ion and	heat			
CO5	. trans	fer rate	of he	eat ex	chang	ers usin	g LM	TD and	NTU	J metho	od			Appl	у
Mapp	oing wit	h Progr	amı	me O	utcon	nes and	l Prog	ramm	e Sp	ecific (Jutcon	nes		-	
COs	PO1	PO2 P	203	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		L	L				S	S	S			S	M	-
CO2	S		L	L	-	-	-	S	S	S	-	-	S	M	-
CO3	S		L	L	-	-	•	S	S	S	-	-	S	М	-
CO4	S	Μ	L	L	-	-		S	S	S	-	-	S	Μ	-
CO5	S		L	L	-	-	-	S	S	S	-	-	S	М	-
	0,	edium; L-	-Low	r											
SYLLA															
		ON TO													
		fundame		,						·	,				
		troducti								-					
limens	ional st	eady sta	ate c	ondu	ction	across]	Large	nlane	wall	Long	cylind	er and	Spher	- Com	nnsit

Conduction -Introduction -Fourier law of conduction- General equation in Cartesian coordinates - One dimensional steady state conduction across Large plane wall, Long cylinder and Sphere- Composite wall – Composite cylinder – Composite sphere, Overall heat transfer coefficients, Critical Radius of insulation, Variable thermal conductivity, conduction with Heat generation, - Fins or extended

surfaces- Pin fins, annular fins, longitudinal fins, fins efficiency and fins effectiveness- Problems. **TRANSIENT HEAT CONDUCTION**

Introduction – Lumped system analysis, semi – infinite solids. Transient Heat Conduction in Large Plane Walls, Long cylinders and Spheres. Significance of Biot and Fourier numbers, Transient heat transfer analysis of an infinite slab with specified temperature and connective boundary conditions. - Refrigeration and Freezing of Foods- Problems.

Use of Grover & Heisler charts for solving problems of infinite slabs, cylinders, spheres.

CONVECTION

Introduction – Physical Mechanism on Convection, Classification of Fluid Flows, Significance of non-dimensional numbers, Velocity Boundary Layer, Thermal Boundary Layer, Laminar and Turbulent Flows. External Forced convection – Flow over a Flat plate, cylinder, sphere and Tube Banks. Internal Forced Convection - Flow through pipes – annular spaces and noncircular conducts. Natural convection from vertical, inclined and horizontal surfaces.

RADIATION

Introduction – Thermal Radiation – Black body Radiation – Radiation Intensity- Radioactive Properties – Atmospheric and Solar Radiation – View Factor- Simple Problems- Black surfaces and Grey Surfaces – Net Radiation – Heat Transfer in Two and Three Surface Enclosures- Radiation Shield – Problems – Radiation Exchange with Emitting and Absorbing Gases.

BOILING, CONDENSATION AND HEAT EXCHANGERS

Boiling – Types of Boiling- Problems. Condensation – Types of Condensation- Problems. Heat Exchangers- Types- Overall heat transfer co-efficient- Analysis of Heat Exchangers – LMTD method – Effectiveness - NTU Method – Selection of Heat Exchangers – Problems.

LIST OF EXPERIMENTS

- 1. Determination of Thermal conductivity (Insulating Powder)
- 2. Determination of Emissivity
- 3.Determination of Heat transfer co-efficient through Forced Convection
- 4. Determination of Heat transfer co-efficient through Natural Convection
- 5. Determination of Heat transfer co-efficient of Pin-Fin Apparatus.
- 6.Determination of Stefan Boltzmann' s Constant
- 7.Determination of Thermal conductivity (Two Slabs Guarded Hot Plate Method)
- 8. Determination of Effectiveness of a Heat Exchanger by Parallel & Counter Flow
- 9. Determination of Thermal conductivity of the Composite wall.

Text Books

- 1. YUNUS A CENGEL "Heat Transfer"-Tata Mc Graw Hill–New Delhi.
- 2. KOTHANDARAMAN C.P "Fundamentals of Heat and Mass Transfer" New Age International.
- 3. SACHDEV R C "Fundamentals of Engineering Heat and Mass Transfer" New Age International.

Reference Books

- 1. OZISIKM.N- "Heat Transfer"-Tata Mc Graw-Hill Book Co.
- 2. NAGP.K-"Heat Transfer"-Tata Mc Graw-Hill-New Delhi.
- 3. HOLMAN J.P "Heat and Mass Transfer" Tata Mc Graw-Hill.
- 4. INCROPRA and DEWITE, Heat Transfer–John Wiley.

S.No	NPTEL /SWAYAM Course	Instructor	Host Institution	Duration
	Name			

1	Heat Transfer		Prof. Sur	nando DasGupta	IIT I	Kharagpur	12 weeks			
Course	Course Designers									
S.No	Faculty Name	Designati	on	Department/Na of the College	me	Email id				
1	R.Anandan	Associate I	Professor	MECH/VMKVEC		anandan@vm	nkvec.edu.in			
2	C.Thiagarajan	Associate I	Professor	MECH/AVIT		cthiagarajan@	@avit.ac.in			

					IENT		Categor	y	L	Т		Р	Cre	dit
3117	1C14		LYS		racticals)		CC		2	1	,	2	4	
<u> </u>		(The	01 y a	ina i i			u		4			2		
		ides to	learn	the ba	sic concepts	of finit	e eleme	nt ana	alysis (I	FEA) of	solids,	structu	res, flui	ds
and its ap					I				5 、	,	,			
Prerequ	isite													
NIL														
Course	Object	ives												
1	Underst	tand fi	nite e	elemer	nt analysis f	undam	entals a	and f	ormula	tions.				
2	Study the basics of element properties natural, Triangular & rectangular.													
3	Formulation of finite element methods for Two and three-dimensional solids.													
4]	Formulate the truss, beam and frame problems.													
5	Formula	ation c	of fini	ite ele	ment metho	ds for	the ana	lysis	of heat	t transf	er in so	olids.		
Course	Outcor	nes: O)n the	e succ	essful com	pletion	n of the	cou	rse, stu	dents	will be	able t	0	
	To u	ndersta	and th	ne basi	ic concepts	of finit	te elem	ent a	nalysis	, node	and no			
CO1.		bering										1	Underst	and
~~~					ent equation			t mec	chanica	l eleme	ents.			
CO2.					rectangular				1 (	<u> </u>	11.1		Appl	у
$CO^{2}$					roblems in 2	2-D& 3	3-D stri	uctur	al syste	emsof s	solids		A	
CO3.		heir stu			n and chara	atoriati	as of F	EA o	lomont	a anab	og hora		Appl	у
CO4.					arametric el			LAC	lement	s such	as Dais	,	Appl	V
001.					engineering			asic l	heat co	nductio	on.			<u>y</u>
CO5.					oroblems use					nadoti	,		Appl	v
										Jutaan				5
		TFTOg	rann		itcomes an	u Frog	gramm	e sp		Jutcon	ies			
00-	PO1	PO2	PO3	PO4	PO5 PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COs			3.6	Μ		-	I _ I	-	-	-	L	Μ	-	-
CO1	S	М	Μ					_						
CO1 CO2	S	М	Μ	Μ		-	-	-	-	-	L	M	-	-
CO1 CO2 CO3	S S	M M	M M	M M	· ·	-	-	-	-	-	L	Μ	-	-
CO1 CO2 CO3 CO4	S S S	M M M	M M M	M M M	· ·			-		-	L L	M M		-
CO1 CO2 CO3 CO4 CO5	8 8 8 8	M M M M	M M M M	M M M M		-	-	-		- - -	L	Μ	-	- - -
CO1 CO2 CO3 CO4 CO5 S- Strong	S S S ; M-Mee	M M M M	M M M M	M M M M		-	-	-		- - -	L L	M M	-	- - -
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA	S S S ; M-Mee BUS	M M M dium; I	M M M L-Low	M M M M		-	-	-		-	L L	M M	-	-
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO	S S S ; M-Mee BUS DUCT	M M M dium; I	M M M L-Low	M M M V	  E ELEMEN	- - - NT AN	- - - ALYS	- - IS	-	-	L L L	M M M	-	-
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO	S S S ; M-Mee BUS DUCT tion, B	M M M dium; I ION T asic C	M M M L-Low	M M M / INITE	· ·	- - NT AN ment A	- - - ALYS	- - IS s, Int	- - troduct	- - ion to	L L L Elastic	M M M	- - eps in	- - Finite
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element	S S S S BUS DUCT tion, B Analys	M M M dium; I ION T asic C sis. Fit	M M M L-Low TO FI Conce nite H	M M M M INITE pts of Eleme	  E ELEMEN Finite Eler	- - NT AN ment A tion Te	- - ALYS Analysi echniqu	- - IS s, Int ies, V	- - troduct	- - ion to Work	L L Elastic and Va	M M M	- - eps in nal Prir	- - Finite
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkir	S S S S BUS DUCT tion, B Analys	M M M dium; I ION T asic C sis. Fit	M M M L-Low TO FI Conce nite H	M M M M INITE pts of Eleme	  E ELEMEN Finite Elem nt Formula	- - NT AN ment A tion Te	- - ALYS Analysi echniqu	- - IS s, Int ies, V	- - troduct	- - ion to Work	L L Elastic and Va	M M M	- - eps in nal Prir	- - Finite
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkir Conditic	S S S H-Mee BUS DUCT tion, B Analys Metho ons.	M M dium; I ION T asic C sis. Finod, Fin	M M M L-Low TO FI Conce nite H nite E	M M M INITE pts of Eleme	  E ELEMEN Finite Elem nt Formula	- - NT AN ment A tion Te	- - ALYS Analysi echniqu	- - IS s, Int ies, V	- - troduct	- - ion to Work	L L Elastic and Va	M M M	- - eps in nal Prir	- - Finite
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkin Conditic ELEMH	S S S S BUS DUCT tion, B Analys Metho ons. ENT PH	M M M dium; I ION T asic C sis. Fin od, Fin	M M M <b>L-Low</b> <b>FO FI</b> Conce nite H nite E	M M M INITE pts of Eleme Clemen	  E ELEMEN Finite Elem nt Formula	- - MT AN ment A tion Te Displae	- - - Analysi echniqu cement	- IS s, Int ies, V App	- - troduct Virtual proach,	- ion to Work Stiffne	L L Elastic and Va ess Mat	M M ity, St ariation trix an	- - eps in nal Prir d Boun	- Finite ciple dary
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkir Conditic ELEMI Natural	S S S S BUS DUCT tion, B Analys Metho ons. ENT PH Coordi	M M M dium; I ION T asic C sis. Fin od, Fin ROPE nates,	M M M <b>L-Low</b> TO FI Conce nite H nite E RTIH	M M M M INITE pts of Eleme Elemen	  E ELEMEN Finite Eler nt Formulat nt Method: 1	- - NT AN ment A tion Te Displac	- - - Analysi echniqu cement	IS s, Int ies, V App Eler	- - troduct Virtual proach, ments,	- ion to Work Stiffne Lagrar	L L Elastic and Va ess Mat	M M ity, St ariation trix an	- - eps in nal Prir d Boun	- Finita ciple dary
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkin Conditic ELEMI Natural Element	S S S S BUS DUCT tion, B Analys Metho ons. ENT PI Coordi s. Solic	M M M dium; I dium; I ION T asic C sis. Fin od, Fin ROPE nates, 1 Elem	M M M L-Low CO FI Conce nite I nite E RTII Trian nents,	M M M M INITE pts of Eleme Elemen Elemen Elemen Elemen Elemen Elemen	 <b>E ELEMEN</b> Finite Eler nt Formulat the Method: 1 Elements,	- - - MT AN ment A tion Te Displac Recta	ALYS Analysi echniqu cement	IS s, Int ies, V App Eler tiffne	- - troduct Virtual proach, ments, ess Ma	- ion to Work Stiffne Lagrar trix of	L L Elastic and Va ess Mat	M M ity, St ariation trix an l Sere ametri	- - eps in nal Prir d Boun ndipity c Elem	- Finite ciple dary ents,
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkir Conditic ELEMI Natural Element Numeric Worked	SSSSSBUSDUCTtion, BAnalysMethoons.ENT PICoordis. Soliccal Integout Example	M M M dium; I dium; I dium; I I ON T asic C sis. Fin od, Fin asic C sis. Fin od, Fin ROPE. nates, l Elem gration amples	M M M <b>M</b> <b>L-Low</b> <b>FO FI</b> Conce nite H nite E <b>RTIH</b> Trian nents, n – on s	M M M M INITE pts of Eleme Eleme Elemen Elemen Elemen Elemen Elemen Elemen	-       -         -       -         E ELEMEN         Finite Element         nt Formulat         at Method:         E Elements,         arametric Formulat, N	- - NT AN ment A tion Te Displac Recta ormula Numer	ALYS Analysi echniqu cement ingular ition, S ical Int	- IS s, Int ies, V App Eler tiffne	- - - virtual proach, ments, ess Ma ion: T	- ion to Work Stiffne Lagrar trix of	L L Elastic and Va ess Mat	M M ity, St ariation trix an l Sere ametri	- - eps in nal Prir d Boun ndipity c Elem	- Finite ciple dary ents,
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkir Conditic ELEMI Natural Element Numeric Worked	SSSSSBUSDUCTtion, BAnalysMethoons.ENT PICoordis. Soliccal Integout Example	M M M dium; I dium; I dium; I I ON T asic C sis. Fin od, Fin asic C sis. Fin od, Fin ROPE. nates, l Elem gration amples	M M M <b>M</b> <b>L-Low</b> <b>FO FI</b> Conce nite H nite E <b>RTIH</b> Trian nents, n – on s	M M M M INITE pts of Eleme Eleme Elemen Elemen Elemen Elemen Elemen Elemen	ELEMEN     Finite Elem     Tormulat     Method: 1     Elements,     arametric Fo	- - NT AN ment A tion Te Displac Recta ormula Numer	ALYS Analysi echniqu cement ingular ition, S ical Int	- IS s, Int ies, V App Eler tiffne	- - - virtual proach, ments, ess Ma ion: T	- ion to Work Stiffne Lagrar trix of	L L Elastic and Va ess Mat	M M ity, St ariation trix an l Sere ametri	- - eps in nal Prir d Boun ndipity c Elem	- Finite ciple dary ents,
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkin Conditic ELEMI Natural Element Numeric Worked FEM FC	S S S S BUS DUCT tion, B Analys Metho ons. ENT PH Coordi s. Solic cal Integ out Exa OR TW	M M M dium; I dium; I	M M M L-Low TO FI Conce nite E nite E Trian nents, n – on s ND T	M M M M INITE pts of Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen Elemen El	-       -         -       -         E ELEMEN         Finite Element         nt Formulat         at Method:         E Elements,         arametric Formulat, N	- - - - - - - - - - - - - - - - - - -	ALYS Analysi echniqu cement ingular ition, S ical Int	IS s, Int ies, V App Eler tiffne egrat	- - - troduct Virtual proach, ments, ess Ma ion: T	- ion to Work Stiffne Lagrar trix of wo and	L L Elastic and Va ess Mat	M M ity, St ariation trix an l Sere ametri e Dime	- eps in hal Prir d Boun ndipity c Elem	- Finite faciple dary ents,
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkir Conditic ELEMI Natural Element Numeric Worked FEM FO Constan	S S S S S BUS DUCT tion, B Analys Metho ons. ENT PH Coordi s. Solic cal Integ out Exa DR TW t Strain	M M M dium; I dium; I ION T asic C sis. Fin od, Fin asic C sis. Fin od, Fin ROPE nates, l Elem gration amples VO- Al n Triar	M M M -Low TO FI Conce nite H nite E RTIH Trian nents, n – on s ND T ngle,	M M M M INITE pts of Eleme Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Clemen Cle	E ELEMEN     Finite Elem     The formulat     The fo	- - - - - - - - - - - - - - - - - - -	ALYS Analysi echniqu cement ingular ition, S ical Int AL SO Rectar	IS s, Int ies, V App Eler tiffne egrat LIDS ngula	- - - virtual proach, ments, ess Ma ion: T	- ion to Work Stiffne Lagrar trix of wo and	L L L Elastic and Va ess Mat Isopar I Three	M M M ity, St ariation trix an l Sere ametri e Dime	- eps in nal Prir d Boun ndipity c Elem ensional	- Finite faciple dary ents,
CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc Element Galerkin Condition ELEMIE Natural Element Numeric Worked FEM FO Constan Element	S S S S BUS DUCT tion, B Analys Metho ons. ENT PI Coordi s. Solic cal Integ out Exa OR TW Stiffne	M M M dium; I dium; I ION T asic C sis. Fin od, Fin asic C sis. Fin od, Fin ROPE. nates, l Elem gration amples <b>(O- A)</b> Triar ess, Co	M M M -Low Conce nite I nite E Trian nents, n – on s ND T ngle, omput	M M M M M INITE pts of Eleme Eleme Eleme Eleme Eleme Eleme Clemen CHRE Linea tation	E ELEMEN     Finite Elements, arametric Formulat     Elements, arametric Formulat     E-DIMENS     r Strain Tri	- - - - - - - - - - - - - - - - - - -	ALYS Analysi echniqu cement ical Int ALSO Rectan netric I	IS s, Int ies, V Eler tiffne egrat LIDS ngula	- - troduct Virtual proach, ments, ess Ma ion: T S ur Elen nearity	- ion to Work Stiffne Lagrar trix of wo and	L L L Elastic and Va ess Mat Isopar I Three Numeri tatic C	M M M ity, St ariation trix an l Sere ametri e Dime	- - eps in nal Prir d Boun ndipity c Elem ensional valuatic sation,	- Finite faciple dary ents,

# ANALYSIS OF FRAME STRUCTURES

Stiffness of Truss Members, Analysis of Truss, Stiffness of Beam Members, Finite Element Analysis of Continuous Beam, Plane Frame Analysis, Analysis of Grid and Space Frame.

# STEADY STATE HEAT TRANSFER ANALYSIS

Basic equations of heat transfer, Axially loaded bar- Heat flow in a bar, Structure of FEA software package.Rate equation: conduction, convection, radiation, energy generated in solid

# LIST OF EXPERIMENTS

1.	1. Study of analysis and its benefits												
2.													
3.	. Application of distributed loads												
4.	4. Nonlinear analysis of cantilever beam												
5.													
6.	6. Stress analysis of axis-symmetry vessels												
7.	7. Static analysis of two-dimensional truss												
8.													
9.	Conductive heat transfe	er analysis											
10	). Plane stress bracket												
11	. Modal analysis of simp	bly supported be	eam										
	2. Harmonic analysis of a	• • • •											
Text Bo	ooks												
	utton, D.V., "Fundament	als of Finite Ele	ement	Analysis", McGr	aw H	ill, Internatio	nal Edition,						
	)04.	inita Elamont A	nolu	vie" John Wilow P	- Son	1094							
	egerlind, L.J., "Applied F ace Books	inite Element A	Anarys	sis, john whey a	2 5011	5, 1984.							
Hal 2. Zie: 3. Coo Ana	andrupatla, T.R., Belegur lofIndia, 2002. nkiewicz, O.C., "Finite E ok R.D., Malkus, D.S., Pl alysis", 4 th Edition, John C. Martin and G. F. Carey,	Elements and Ap lesha, M.E., Wi Wiley & Sons,	oprox tt, R.J 2001.	imation", Dover In ., "Concepts and A	nterna Applio	tional, 2006 cations of Fin	nite Element						
	k, McGraw-Hill					, <u>r</u> <u>r</u>							
Alterna	tive NPTEL/SWAYAN	I Course			1								
S.No	NPTEL /SWAYAM (	Course Name	Instructor Ho			Institution	Duration						
	Introduction to Finite El	ement											
1	Analysis		Prof N	Nachiketa Tiwari,	тп	Karagpur	12 weeks						
	Designers		1 101.1	aciiiketa 11wall,	111	magpui	12 WEEKS						
				Department/Na	me								
S.No	Faculty Name	Designation		of the College		Email id							
		Assistant Profes	ssor										
	Dr.S.Prakash	Gr II		MECH/ AVIT		prakash@a	vit.ac.in						
2	J.Santhos	Assistant Profe	essor	MECH/VMKVEC	2	santhos@vmkvec.edu.in							

		C	GAS D	57NT A N	ЛСС			Cate	gory	L		Т	Р	Cr	edit
344	21C15		FAS D ET PR						C	3		1	0		4
fundan compre constar change	ubject nentals essible nt area e in flo ms in ty	of je flow flow flow ow con	et prop includ with h ndition	oulsion ing iso heat tr s thro	n syst entrop ransfer ugh P	em. Fo ic nozzl r (Rayli	ormul le flo iegh Meye	ate ar ow, co flow).	nd sol onstant To e	ve pro area f nhance	blems low wi the kr	in on th fric nowled	ressible f ae -dimer ction (Far lge of de ristic met	nsional nno flov etermini	steady w) and ng the
ENGIN	EERI	NG TI	HERM	IODY	NAM	ICS									
Course	e Obje	ctives													
1 7	Го und	To understand the compressible flow fundamentals.													
2 7	Го anal	yze th	e flow	throug	gh var	iable are	ea du	icts.							
3 ]	Го stud	ly the	compre	essible	flow	with frid	ction	and h	eat tra	nsfer.					
						nal shoc									
5 ]	Гo stud	ly the a	aircraft	propu	ulsion	systems	s and	rocket	t propi	ulsion a	nd its a	pplica	tions.		
Course	e Outc	omes:	On th	e succ	essful	l compl	etion	of the	e cour	se, stud	lents w	vill be	able to		
CO1.	Unde	erstand	d the ba	asic of	comp	ressible	e flow	v.					Understa	and	
CO2.	Kno	w to so	olve flo	ow thre	ough v	variable	area	ducts.					Analyze		
CO3.						n compr			incon	npressil	ole flow	vs.	Analyze		
CO4.	-	•			<u> </u>	nd Fanr			nulsion	n and va	rious		Analyze		
CO5.		ellants						er prop					Understa	and	
Mappi	ing wit	h Pro PO	gramn PO	ne Ou PO	tcome PO	s and P PO	Progr PO	amme PO	e Spec PO	ific Ou PO1	tcomes PO1	s PO1	PSO	PSO	PSO
COs	PO1	PO 2	PO 3	4	PO 5	6 6	PO 7	PU 8	PO 9	0 0	1	2	1	2 PSO	<b>PSU</b> 3
CO1	М	L	М	М	М	L	-	-	-	-	-	-	L	-	-
CO2	М	М	L	М	L	L	-	-	-	-	-	-	L	-	-
CO3	S	М	L	М	М	L	-	-	-	-	-	-	L	-	-
CO4	S	S	М	S	М	L	-	-	-	-	-	-	L	-	-
CO5	S	S	S	S	М	L	-	-	-	-	-	-	L	-	-
S- Stror	ng; M-	Mediu	ım; L-	Low											

## **COMPRESSIBLE FLOW – FUNDAMENTALS**

Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types of waves, Mach cone, Mach angle, effect of Mach number on compressibility.

## FLOW THROUGH VARIABLE AREA DUCTS

Isentropic flow through variable area ducts, T-s and h-s diagrams for nozzle and diffuser flows, area ratio as a function of Mach number, mass flow rate through nozzles and diffusers, effect of friction in flow through nozzles.

## FLOW THROUGH CONSTANT AREA DUCTS

Flow in constant area ducts with friction (Fanno flow) -Fanno curves and Fanno flow equation, variation of flow properties, variation of Mach number with duct length.

Flow in constant area ducts with heat transfer (Rayleigh flow), Rayleigh line and Rayleigh flow equation, variation of flow properties, maximum heat transfer.

## NORMAL AND OBLIQUE SHOCK

Governing equations, variation of flow parameters like static pressure, static temperature, density, stagnation pressure and entropy across the normal shock, Prandtl –Meyer equation, impossibility of shock in subsonic flows, flow in convergent and divergent nozzle with shock. Flow with Oblique Shock

Fundamental relations, Prandtl''s equation, Variation of flow parameters

## PROPULSION

Aircraft propulsion –types of jet engines –study of turbojet engine components –diffuser, compressor, combustion chamber, turbine and exhaust systems, performance of turbo jet engines-thrust, thrust power, propulsive and overall efficiencies, thrust augmentation in turbo jet engine, ram jet and pulse jet engines. Rocket propulsion –rocket engines thrust equation –effective jet velocity specific impulse–rocket engine performance, solid and liquid propellants.

## Text Books

	Yahya. S.M., Fundamental of compressible flow with Aircraft and Rocket propulsion", New Age
1	International (p) Ltd., New Delhi, 2005.

2 Ganesan. V., "Gas Turbines", Tata McGraw-Hill, New Delhi, 19	999.
----------------------------------------------------------------	------

## **Reference Books**

1	Rathakrishnan. E., "Gas Dynamics", Prentice Hall of India, New Delhi, 2001.

Patrich.H. Oosthvizen, William E. Carscallen, "Compressible fluid flow", McGraw-Hill, 1997.

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
1	P.Sellamuthu	Associate Professor	MECH / VMKVEC	selsrikanth29@gmail.com
2	R.Chandrasekar	Assistant Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in
3	R. Mahesh	Assistant Professor	MECH / AVIT	mahesh@avit.ac.in

				EERIN NICS				Ca	itegor	<b>y</b>	L	Т	Р	Cro	edit
344	21C01		Statics an			ics)			CC		2	1	0		3
Pream		,		•											
	-			asic k	nowle	edge a	bout	the be	havio	r of th	e bodie	s which	are un	der stat	ic
	namic c	onditi	ons.												
Prereq	uisite														
NIL															
Course	e Objec	tives													
1 7	To expl	ain the	e basi	c laws	s of m	echan	ics ar	nd for	ces.						
										igid b	odies	under e	equilibr	ium in	two
	dimensi				1					0			1		
	-			-	-	-			aces a	nd to	find th	e Centr	oid and	d mom	ent of
	Inertia u								1.D'	• 1 1	1 1	• •	1	. 1'	.1
	To prac basic co									gid bo	dy dyn	amics b	y unde	rstandii	ng the
5	To calcu	ilate a	ind ca	tegori	ze of	proble	ems ii	n the a	area of	f dynai	nics of	particle	es.		
Course	e Outco	mes:	On th	e suc	cessfu	ıl con	ıpleti	on of	the co	ourse,	studer	nts will	be able	to	
	Ident	ify the	e engi	neerir	ng pro	blems	usin	g the	conce	pt of s	tatic				
CO1.	equil	ibriun	n										Unde	rstand	
	Solve	e prob	lems	of rigi	d bod	lies ur	nder e	auilib	rium i	in two	dimen	sion			
CO2.		pply v		0				quino			annon	, ion	Apply	/	
	Dotor	mino	the C	ontroi	dofo	ling	oroog	and	volum	00 00*	tor of	<b>m</b> 0.00			
											nter of : momen				
CO3.	inerti	-	u moi		/i mei	114 01	comp	05110	arcas,	mass	mome	11 01	Apply	7	
CO4.			lems	involv	ving fr	iction	al nh	enome	na				Apply		
001.	Borve	<i>p</i> 100			mg n	letion	ai più		/11 <b>a</b> .				71001	Y	
	Solve	e prob	lems i	in eng	ineeri	ng sy	stems	using	the c	oncept	t of dyr	namic			
CO5.		-		<u> </u>		<b>U</b> .		result		1	5		Analy	/ze	
Mappi	ng with	Prog	ramn	ne Ou	itcom	es an	d Pro	gram	me Si	pecific	Outco	omes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
										_ = •					
CO1	М	L	L	L	-	L	-	-	-	-	-	-	L	-	
000	C	т	т	3.4		т							т		
CO2	S	L	L	М	-	L	-	-	-	-	-	-	L	-	•
CO3	S	М	М	М	-	L	-	-	-	-	-	-	М	-	
CO4	S	M	М	M	-	L	-	-	-	-	-	-	M	-	•
CO5	S	S	S	S	-	L	-	-	-	-	_	-	S	-	-
								1			1		~	1	
3- SILO	ng; M-M	leulum	1, L-L(	) W											

## BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics - Lame's theorem. Parallelogram and triangular law of forces - Coplanar Forces - Resolution and Composition of forces - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility - Single equivalent force.

## EQUILIBRIUM OF RIGID BODIES

Free body diagram - Types of supports and their reactions - requirements of stable equilibrium -Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem -Equilibrium of Rigid bodies in two dimension.

## PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes - First moment of area the Centroid of sections - Rectangle, circle, triangle from integration - T section, I section, Angle section, Hollow section by using standard formula - second and product moments of plane area - Rectangle, triangle, circle from integration - T section, I section, Angle section, Hollow section by using standard formula - Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia - Principle moments of inertia of plane areas - Mass moment of inertia.

## FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force - Laws of Coloumb friction - simple contact friction - Rolling resistance - Belt friction. Translation and Rotation of Rigid Bodies - Velocity and acceleration - General Plane motion.

## DYNAMICS OF PARTICLES

Displacement, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion - Newton's law - Work Energy equation of particles - Impulse and Momentum - Impact of elastic bodies.

## Text Books

1	Beer & Johnson, Vector Mechanics for Engineers. Vol. I Statics and Vol. II Dynamics, McGraw Hill International Edition, 1995.
2	Kottiswaran N, Engineering Mechanics-Statics & Dynamics, Sri Balaji Publications, 2014.
3	Meriam, Engineering Mechanics, Vol. I Statics & Vol. II Dynamics 2/e, Wiley Intl., 1998.
Refer	ence Books
1	Rajasekaran.S, and Sankara Subramanian G, "Engineering Mechanics", Vikas Publishing Co. New Delhi.
2	Irving H. Sharma, Engineering Mechanics - Statics & Dynamics, III Edition, Prentice Hall of India Pvt. Ltd., 1993.
3	K.L.Kumar, Engineering Mechanics III Edition, Tata McGraw Hill Publishing Co. Ltd., 1998

Course	e Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	J.Sathees Babu	Associate Professor	MECHVMKVEC	satheesbabu@vmkvec.edu.in
2	Dr.S.Arunkumar	Associate Professor	MECH/VMKVEC	arunkumar@vmkvec.edu.in
3	Dr.S.Sangeetha	Associate Professor	MECH/AVIT	sangeethas@avit.ac.in

# PROGRAM ELECTIVE COURSES

RENEWABL	E SOURCES Category	L	Т	Р	Credit
34421P01 OF ENERGY		3	0	0	3

#### Preamble

Renewable source of energy are developing fast throughout the world, and their combination is increasingly able to meet the needs for available, agreeable, and affordable energy, also for the people that lack access to energy today. In addition, local energy resources are not hit by the high energy price increases that are threatening to reverse the progress in providing energy to the poor people that lack appropriate energy today. This is why sustainable energy, the combination of renewable energy and energy efficiency, is increasingly become a part of the efforts to reduce poverty.

#### Prerequisite

#### NIL

		tives													
1	To und	erstan	d the in	mporta	ince of	fsolar	energy	у.							
2	To lear	o learn the importance of wind energy.													
3	To kno	w the	import	ance o	f bio e	energy	•								
4	To kno	w vari	ous rei	newab	le ener	rgy po	wer pl	ants.							
5	To lear	n the n	ecessi	ty of la	atest a	nd mo	dern e	nergy	source	es.					
Cours	e Outco	mes: (	On the	succe	ssful	compl	etion	of the	course	e, stude	ents wil	l be al	ole to		
CO1.		pply tl nal co			ation,	measu	remen	ts of s	olar ra	diation	and sol		Apply		
CO2.	syste	ems			01					0.	onversi		Apply		
CO3.			ne Bior	mass c	lirects	Comb	oustion	ı, Bior	nass g	asifier a	and Bio	0	Apply		
CO4.		pply t o plan			ergy, (	Open a	and clo	osed C	TEC (	Cycles	and Sm		Apply		
CO5.		apply nologi		powe	er gen	eration	n, tran	sport,	Fuel	cells a	nd its		Apply		
Map	ping wit	th Pro	gramn	ne Ou	tcome	es and	Progr	amm	e Spec	ific Ou	tcomes				
COs	PO1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS O3
COS															
CO1	M	М	М	-	-	-	-	-	-	-	-	-	М	-	-
		M M	M M	-	-	-	-	-	-	-	-	-	M M	-	-
CO1	М			-	-	-	-	-		-				-	-
CO1 CO2	M S	M	M						-	-	_	-	М		

#### SOLAR ENERGY

Solar Radiation – Measurements of solar Radiation – Solar Thermal Collectors – Flat Plate and Concentrating Collectors – Solar Applications – fundamentals of photo Voltaic Conversion – solar Cells – PV Systems – PV applications.

## WIND ENERGY

Wind Data and Energy Estimation – wind Energy Conversion Systems – Wind Energy-Generators and its performance – Wind Energy Storage – Applications – Hybrid systems.

#### **BIO – ENERGY**

Biomass, Biogas, Source, Composition, Technology for utilization – Biomass direct Combustion – Biomass gasifier – Biogas plant – Digesters – Ethanol production – BioDiesel production and economics.

## OTEC, TIDAL, GEOTHERMAL AND HYDEL ENERGY

Tidal energy – Wave energy –Open and closed OTEC Cycles – Small hydro plant turbines – Geothermal energy sources- environmental issues.

#### NEW ENERGY SOURCES

Hydrogen generation, storage, transport and utilization, Applications - power generation- transport – Fuel cells – technologies, types – economics and the power generation.

#### Text Books

1	G.D. Rai, "Non-Conven	tional Energy So	ources", Khanna Publish	ers, New Delhi, 1999.						
2	S.P. Sukhatme, "Solar E	nergy", Tata Mo	CGraw Hill Publishing C	ompany Ltd., New Delhi,1997.						
Refere	erence Books									
	Godfrey Boyle, "Renew	able Energy, Po	ower for a Sustainable F	uture", Oxford University Press,						
1	U.K., 1996			· · · ·						
•										
2	Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 1986									
	G.N. Tiwari, "Solar Energy Fundamentals Design, Modelling and applications", Narosa									
3	Publishing House, New Delhi, 2002									
4	I I Enonia "Wind Enon	ou Convension a	vatama" Duantian Hall I	IV 1000						
4	L.L. Freris, "Wind Ener	gy Conversion s	ystems, Prenuce Han, u	JK, 1990.						
Course	e Designers									
			Department/Name							
S.No	Faculty Name	Designation	of the College	Email id						
		Assistant								
1	Raja.s	Professor	MECH / VMKVEC	rajaslm3@yahoo.co.in						
		Assistant		<u> </u>						
		Professor								
2	D Mahaah		MECH / AVIT	mahash@avit as in						
2	R.Mahesh	-II	MECH / AVIT	mahesh@avit.ac.in						

		AD	VAN	CED	IC			Cate	gory	L	,	Г	Р	Cre	edit
3442	21P03	EN	GINE	S				EC	PS	3		0	0	3	3
Pream On com combus	npletio											he op	eration,		
Prereq NIL	uisite														
Course	e Obje	ctives													
1 7	To stu	ly the	const	ructio	n and	work	ing of	f Spar	k Igni	tion Er	ngines.				
2	To stu	- lv abc	uit the	Com	nrecci	on Ia	nition	Engi	nec an	d Turb	ocharo	or			
		•			•					techni		<u>, , , , , , , , , , , , , , , , , , , </u>			
	To stud										iques.				
		•								dofa	tomob	ilaa			
		•					•			d of au			•••••		
Course CO1.			nd the				-			,	, stude	nts w	<b>ill be ab</b> Underst		
CO1.			nd the						U				Underst		
CO3.	Dis		sh the						<u> </u>	s lutants	from a	ın	Underst		
CO4.			e vario rol tec			e fuels	s, eng	ine en	nissio	ns, Me	asuring	5	Apply		
CO5.	Illu Inc	strate lude ti	the re his	cent c	levelo	pmen	its in 1	Intern	al Cor	nbusti	on engi	nes	Underst	and	
Mappi	ng wit	h Pro	gram	me O	utcor	nes ai	nd Pr	ogran	nme S	specifi	c Outc	omes		1	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	S	М	S	-	-	-	-	-	S	-	-	L	-	-
CO3	S	L	М		-	-	-	-	-	-	-	-	L	-	-
CO4	S	М	L		-	-	-	-	-	-	-	-	L	-	-
CO5	S	S	М	L	-	-	-	-	-	-	-	L	L	-	-
S- Stro	ng; M-				·	·		•		·	·		•	•	

## **SPARK IGNITION ENGINES**

Mixture requirements – Fuel injection systems – Monopoint, Multipoint & Direct injection – Stages of combustion – Normal and Abnormal combustion – Knock – Factors affecting knock – Combustion chambers.

## **COMPRESSION IGNITION ENGINES**

Diesel Fuel Injection Systems – Stages of combustion – Knocking – Factors affecting knock – Direct and Indirect injection systems – Combustion chambers – Fuel Spray behaviour – Spray structure and spray penetration – Air motion – Introduction to Turbocharging.

## POLLUTANT FORMATION AND CONTROL

Pollutant – Sources – Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters, Selective Catalytic Reduction and Particulate Traps – Methods of measurement – Emission normsand Driving cycles.

## **ALTERNATIVE FUELS**

Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel – Properties, Suitability, Merits and Demerits – Engine Modifications.

## **RECENT TRENDS**

Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers – Common Rail Direct Injection Systems – Hybrid Electric Vehicles – NOx Adsorbers – Onboard Diagnostics.

## Text Books

	Ramalingam. K.K., "Internal Combustion Engine Fundamentals", Scitech Publications,
1	2002.

2 Ganesan, "Internal Combustion Engines", II Edition, TMH, 2002.

## **Reference Books**

- Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons12007.
- Duffy Smith, "Auto Fuel Systems", The Good Heart Willcox Company, Inc., 1987. 3.
  2 Eric Chowenitz, "Automobile Electronics", SAE Publications, 1995

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	Dr.S.Sangeetha	Associate Professor	MECH/ AVIT	sangeethas@avit.ac.in
2	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in

								Cate	egory	L		Т	Р	Cr	edit
21	421P15		NDUS'	трілі	трн		CV		2-PS	3		0	0		3
Prear			NDU5	ΙΑΙΑΙ		BOLO	GI	EU	19	3		U	U	<u> </u>	5
		engine	ering c	oncept	s of fri	ction. i	its effe	cts and	l differ	ent lubri	cation t	heorie	es and type	s used in	1
indust				oneept				••••			• •••••••		is und type		
	quisite														
NIL															
Cours	Course Objectives														
1	1 To understand the concept of tribology.														
2	2 To examine the concepts of various types of wear.														
3	To unde	erstand	and ap	ply the	film lu	ubricat	ion the	eory.							
4	To illus	trate the	e vario	us type	es of lu	bricant	ts for d	lifferen	t appli	cations.					
5															
a	Course Outcomes: On the successful completion of the course, students will be able to														
										udents	will be a	able t			
CO1.		ain the								1			Understa	nd	
CO2.		rate ab		variou	is types	s of we	ar, we	ar mec	nanism	and its			Apply		
CO3.	Exan	nine the	e variou	ıs film	lubrica	ation th	neory.						Apply		
CO4.	Illust	rate ab	out the	variou	is types	s of lub	oricants	5.					Apply		
CO5.	Exan	nine va	rious si	urface	modifi	cations	and b	earing	materi	als.			Apply		
		_		-				~		_					
Mapp	oing with	<u> </u>										DO		DCO	DCO
СО	PO1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO 2	1 PSO 1	PSO 2	PSO 3
							,	0		v	-				
CO1	S	М	L	-	-	-	-	-	-	-	-	-	M	-	L
CO2	S	М	L	-	-	L	-	-	-	-	-	-	M	-	L
CO3	S	М	L	-	-	L	-	-	-	-	-	-	М	-	L
CO4	S	S	М	М	-	L	-	-	-	-	-	-	М	-	L
CO5	S	S	S	М	-	L	-	-	-	-	-	-	М	-	L
	ong; M-	Mediu	m; L-I	LOW											
SYLI	LABUS														
SURI	FACES A	ND F	RICTI	ON											
			-	•		<b>.</b>	-					•	neering su		
													een surfac		
													ristics of 1 olymers-1		
frictio					Such	onp inc	, and a					and F			

WEAR

Wear and Types of Wear-Simple theory of sliding wear mechanism-Abrasive wear-Adhesive wear-Corrosive wear-Surface fatigue wear situations-Wear of ceramics-Wear of polymers-Wear measurements.

## FILM LUBRICATION THEORY

Coefficient of viscosity, Fluid film in simple shear-Viscous flow between very close parallel plates:Tutorials-Lubricant supply, Lubricant flow rate-Cold jacking,Couette flow-Cavitations, Film rupture, oil whirl-Shear stress variation within the film-Lubrication theory by Osborne Reynolds: Tutorials-Pressure fields for full sommerfeld, Half sommerfeld-Reynolds boundary conditions.

#### LUBRICANTS AND LUBRICATION TYPES

Types of Lubricants-Properties of Lubricants-Testing methods-Hydrodynamic Lubrication-Elasto-hydrodynamic Lubrication-Hydrostatic lubrication

#### SURFACE ENGINEERING AND MATERIALS FOR BEARINGS

Classification of Surface modifications and Surface coatings-Surface modifications, Transformation hardening-Surface modifications, surface fusion-Thermo chemical Processes-Surface coatings -Materials for rolling element bearings- Materials for fluid film bearings-Materials for marginally lubricated and dry bearings.

#### **Text Books**

1	Bearing Tribology: priniciples and applications.										
2	Williams.J.A, "Engineering Tribology", Oxford University Press.										
	GwidonStachowiak, Andrew W Batchelor., "Engineering tribology", Elsevier Butterworth – Heinemann,										
3	USA.										
Refere	nce Books										
	Industrial Tribology: Tribosystems, Friction, Wear and Surface Engineering, Lubrication Hardcover,										
1	by Theo Mang, Kirsten Bobzin, Thorsten Bartels										
2	Cameron.A, "Basic Lub	rication Theory",	Longman, U.K.								
			<b>x</b>								
3	Neale M I (Editor) "Tr	ibology Handboo	k", Newnes Butter worth, H	einemann UK							
	e Designers	loology Hulldood									
Course			Demoster and Diama of								
C N			Department/Name of	E 1.1							
S.No	Faculty Name	Designation	the College	Email id							
1	M.Saravanan	Asst Prof	MECH./ AVIT	saravanan@avit.ac.in							
2	J.Satheesbabu	Asso Prof	MECH./ VMKVEC	satheesbabu@vmkvec.edu.in							

										~		_		~ .	•
2442	1D17		EAN N		FAC	ΓURI	NG			Categor		T	P	Cred	lit
3442 Preaml	21P16	5	YSTE	<u>15</u>						EC-PS	3	0	0	3	
		ovide	s basic	know	ledge	in vari	ous to	ols and	l tech	niques i	n lean n	nanuf	acturing	systems.	
Prerequ	uisite														
NIL															
Course	Ohieo	tives													
	v														
	To gain the knowledge and understanding the basic concepts of lean manufacturing process.														
2 '	To understand the various quality improvement methods in lean manufacturing.														
3 '	To lea	rn the	basic c	concep	ots of J	IT and	d VSM	1.							
4	To ana	lyse t	he imp	ortanc	e of Jl	DOK	A and	its role							
5	To und	lerstai	nd the i	mport	ance c	of emp	lovee	involv	ement	and sys	stematic	plan	ning		
Course				•								•			
CO1.						-				pts in le				Under	stand
CO2.	Und	erstan	d, anal	yze an	d desi	gn a si	uitable	e metho	od for	quality	improv	emen	t	Analyz	ze
CO3.	Understand the JIT methodology, Kanban rules and the importance of defining														
CO3.															
04.										e impler				Anary	
CO5.	cultu		•		Ĩ	•				Ĩ				Apply	
Mappir							· · · ·		-					Dao	DGO
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	I PSC	PSO 2	PSO 3
CO1	М	L	S	L	S	L				_			М		
01	IVI	L	5	L	5	L	-	-	-	-	-	-	IVI	-	-
CO2	Μ	L	S	L	S	L	-	-	-	-	-	-	Μ	-	-
CO3	М	L	S	L	S	L	-	-	S	-	-	-	S	-	-
CO4	М	L	S	L	S	L	_	_	S	_	_	_	S		
							_	T			_	-		-	-
CO5	Μ	L	S	L	S	L	-	L	S	-	-	-	S	-	-
S- Stro	0.	Medi	um; L	-Low											
SYLLA															
INTRO Objectiv				oturin	r korre	minai	100	tradition	nol V	Ve 1000 -	nanufac	turin	a Oriair	of lean	
product															
image o	f lean	produ	ction –	Custo	omer f						2				
STABI															
Standar standaro		in w	the ork–El		lean		tem–5 standar	5S rdized		m–Tota ork–Cha		roduc :o	tive define	Mainter standa	nance– ardized
work–N															
JUST I	N TIN	ſE													
Introduc	ction -	JIT sy	/stem-l	Princip	oles an	d elen	nents o	of JIT -	- Kan	ıban rule	es – Exp	bande	d role o	f conveya	ance

– Produ	- Production leveling - Pull and Push systems - Process Mapping and Value stream mapping											
JIDOK	A (AUTOMATION	N WITH A HUMA	AN TOUCH)									
Jidoka				tems – Inspection systems and								
zone co	ntrol – Types and us	e of Poka-Yoke sy	stems – Implementati	ion of Jidoka.								
		NT AND SYSTE	MATIC PLANNING	J.								
METH	ODOLOGY											
Involvement – Activities to support involvement – Quality circle activity – Kaizen												
training		Programmes		ing System (systematic planning								
	ology) – Phases of H	Ioshin Planning – I	Lean culture									
Text Bo												
	Pascal Dennis, Lean Production Simplified: A Plain-Language Guide to the											
1				on), Productivity Press, New York.								
	Mike Rother and John Shook, Learning to See: Value Stream Mapping to Add Value and											
2	Eliminate MUDA,	, Lean Enterprise I	nstitute.									
Referer	nce Books											
	Jeffrey Liker, the	Toyota Way: Fourt	een Management Pri	nciples from the World's Greatest								
1	Manufacturer, Mc	Graw Hill.										
			A: Combining Six S	IGMA Qualities with Lean Production								
2	Speed, McGraw H	lill.										
Course	Designers											
			<b>Department</b> /									
			Name of the									
S.No	Faculty Name	Designation	College	Email id								
		Associate										
1	J.Senthil	Professor	MECH/AVIT	jsenthil@avit.ac.in								
		Associate										
2	S.Duraithilagar	Professor	MECH/VMKVEC	Cduraithilagar@vmkvec.edu.in								

		Category	L	Т	Р	Credit
34421P13	INDUSTRIAL ENGINEERING		3	0	0	3

#### Preamble

This course deals with productivity measurements, method study techniques, work measurement, production planning and control and industrial Legislation.

## Prerequisite

## NIL

## **Course Objectives**

1	To understand the importance of work study methods and its importance in various fields.										
2	To develop the skills of selection of a plant and also material handle	ing equipment required.									
3	To learn PPC and its functions.										
4	To learn the skills of purchasing materials and their management.										
5											
Cour	Course Outcomes: On the successful completion of the course, students will be able to										
CO	. Evaluate the work methods through work measurement	Understand									
CO2	2. Establish the efficient work system	Apply									
COS	Identify the suitable forecasting techniques for given applications	Apply									
CO4	Prepare the charts, diagrams and production plan.	Apply									
COS	Describe the theory in industrial engineering and their applications.	Apply									
Марр	Mapping with Programme Outcomes and Programme Specific Outcomes										

mappi			8												
		РО	PO1	PO1	PO1	PSO	PSO	PSO							
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	-	-	-	-	-	-	_	-	-	-	-	-	-	-
000	a			·	a										q
CO3	S	M	Μ	L	S	-	-	-	-	-	-	-	M	-	S
CO4	S	М	М	L	-	-	-	-	-	-	-	-	М	-	М
CO5	S	S	S	S	S	-	-	_	S	М	_	_	S	_	S

S- Strong; M-Medium; L-Low

#### WORK MEASUREMENT AND WORK STUDY

Evolution and importance of industrial engineering–Production-Classification-Productivity-Factors influencing productivity-quality route to productivity- Introduction to Work measurement and its Techniques-Work study-Definition-Procedure and benefits of work study-Charting techniques-Time study-Stop watch time study-Motion study-Work sampling procedurecollection of data-Method study.

#### PLANT LAYOUT AND MATERIAL HANDLING

Plant location and site location-factors influencing the location-Plant layout-Types, needs, factors influencing the plant layout-Plant layout procedure-Material handling-scope and principles of material handling-Types of Material Handling equipment-Factors influencing material handling-Methods of material handling.

#### PRODUCTION PLANNING AND CONTROL

Introduction-Objectives and Functions of PPC-Forecasting-Sales Forecasting Techniques-Types of Forecasting-Routing-Objectives and procedure of routing-Scheduling-Master Production Schedule- purpose and preparation of schedules-Scheduling techniques like CPM and PERT-Dispatching-Dispatch Procedure-Centralized and Decentralized dispatching-Tool dispatching

#### MATERIAL MANAGEMENT

Procurement of materials-codification of materials-Inventory control-Objectives of inventory control-EBQ & EOQ values-Inventory models-ABC analysis-Material requirements planning(MRP)-Enterprise resource planning(ERP)-supply chain management(SCM)-Inspection and quality control-SQC-control charts-Sampling procedures-Benchmarking

#### INDUSTRIAL LEGISLATION AND MANAGEMENT CONCEPTS9 Hours

Importance and necessity of labour acts-principles of labour legislation-various acts-Industrial Ownership and various types-Functions of management-Manpower Planning-Recruitment and Selection-Break EvenAnalysis-Managerial applications of breakeven point-Decision making -Techniques of decision making.

## Text Books:

1	Khan, M.I, "Industrial Engineering", New Age International, 2nd Edition, 2009.
	Kapoor N.D, " <b>Handbook of Industrial Law</b> ", sultan Chand & sons, 14th revised edition 2013.

#### **Reference Books:**

1	Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai and Sons, 2008.
2	Samuel Eilon, " <b>Elements of Production Planning and Control</b> ", Universal Publishing Corporation, Bombay, 1994.

## 3 Panneerselvam R, "**Production and Operations Management**", PHI, New Delhi, 2006.

Sl.No	Faculty Name	Designation	Department/Name of the College	Email id
		Assistant		
1	B.Selva Babu	Professor	MECH/AVIT	selvababu@avit.ac.in
		Associate		
2	S.Duraithilagar	Professor	MECH/VMKVEC	duraithilagar@vmkvec.edu.in

		Category	L	Т	Р	Credit
34421P12	HYDRAULICS AND PNEUMATIC SYSTEMS	EC-PS	3	0	0	3

## PREAMBLE

Today, Industries are increasingly demanding process automation in all sectors. Automation results into better quality, increased production and reduced costs. The controlling parameters like motion, Speed, Position and torque are paramount in raising productivity and quality and reducing energy and equipment costs in all industries. Electric drives share most of industrial machine control applications. The variable speed drives which controls speed of a.c/d.c motors are indispensable controlling elements in automation systems. Such drives contains various high performance motors, power electronic converters and digital control systems. With wide options which are open to engineers for selecting proper drive system, one can look forward for a highly efficient and reliable drive for every application in industry.

## PREREQUISITE

NIL

COURSE OBJECTIVES														
1 To understand about basics of fluid power systems fundamentals														
2 To acquire knowledge about components used in hydraulic and pneumatic systems														
3 To familiarize about the various types of valves and actuators														
4 To design hydraulic circuits for different applications	To design hydraulic circuits for different applications													
To design pneumatic circuits for different applications														
Course Outcomes On the successful completion of the course, students will be able to														
<b>CO1.</b> Understand the different drive systems and identify which is suitable for specific application.	Underst	and												
<b>CO2.</b> Understand the working of different components in fluid power system.	Underst	and												
<b>CO3.</b> Understand about the utilization of cylinders, accumulators, valves and various control components.	Underst	and												
CO4. Design a feasible hydraulic circuit for a given application.	Appl	У												
<b>CO5</b> . Design a feasible pneumatic circuit for a given application.	Appl	У												
1APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUT	<b>COMES</b>													
PO         PO<	PSO2	PSO 3												
CO1 S M M L M L	-	-												
CO2 S M M L M L	-	-												
CO3 S M M L M L	-	-												
CO4 S S S M L M L	-	-												
CO5 S S S M L M L	-	-												
- Strong; M-Medium; L-Low														

#### FLUID POWER SYSTEMS AND FUNDAMENTALS

Introduction to fluid power, Advantages and Applications of fluid power system. Basic Laws in Fluid power system, Types of fluid power systems, Properties of fluids – General types of fluids – Fluid power symbols. Basic Laws in Fluid power system. Low cost automation.

#### HYDRAULIC SYSTEM & PNEUMATIC SYSTEMS COMPONENTS

Pump classification – Gear pump, Vane Pump, Piston pump, construction and working of pumps– Variable displacement pumps. Pneumatic Components: Compressors-types. Filter, Regulator, Lubricator Unit, Muffler VALVES AND ACTUATORS

Construction of Control Components: Director control valve -3/2 way valve, 4/2 way valve,

Shuttle valve ,check valve – pressure control valve –pressure reducing valve, sequence valve-Flow control valve.. Fluid Power Actuators: Linear hydraulic actuators – Types of hydraulic cylinders – Single acting, Double acting special cylinders like Telescopic, Cushioning mechanism, Construction of single acting and double acting cylinder.

#### DESIGN OF HYDRAULIC CIRCUITS

Accumulators and Intensifiers: Types of accumulators – Accumulators circuits, intensifier – Intensifier circuit. Circuits: Reciprocating- Regenerative - Quick return – Sequencing – Synchronizing - Safety circuits -Press – Planer.

#### DESIGN OF PNEUMATIC CIRCUITS

Fluid Power Circuit Design: Speed control circuits, synchronizing circuit, Sequential circuit design for two and three cylinder using cascade method. Pneumo-hydraulic circuit. Electro pneumatic circuit, Fluid power circuits- failure and troubleshooting.

#### Text Books:

- 1. Anthony Esposito "Fluid Power with Applications"- Pearson Education 2013
- 2. Srinivasan "Hydraulic and Pneumatic Controls"- TMH 2011.
- 3. Andrew Parr "Hydraulics and Pneumatics "- Jaico Publishing House

#### **Reference Books:**

1. Thomson, "Introduction to Fluid power"- Prentice Hall - 2004.

- 2. Majumdar S.R. "Oil Hydraulics Principles and maintenance"- Tata McGraw-Hill.
- 3. Majumdar S.R. "Pneumatic systems Principles and maintenance"- Tata McGraw Hill.

	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.S.Natarajan	Asso.Prof	MECH/ VMKVEC	natarajanshree@gmail.com
2	Dr.D.Bubesh Kumar	Asso.Prof	MECH/ VMKVEC	bubeshkumar@avit.ac.in

		FA	ILUR	E ANA	LYSI	SOF		Cat	egory	L	,	Т	Р	Cre	edit
3442			ATERI			501		EC	C-PS	3		0	0		3
Preambl		ore fail	ures of	matari	als and	091164	es of fa	ilura	topics	include	tunas	of failure	in com	nonente	and
quipmer					iis and	cause	28 01 12	inure,	topics	menuae	types	JI Tallule	in comj	Jonents	anu
Prerequi	isite														
NIL															
Course (	•														
1 T	o study	y the fu	Indame	ntals of	failure	e anal	ysis.								
2 T	o study	y introc	luction	to failu	re anal	lysis.									
3 T	o study	y the ca	uses of	failure	in cor	npone	ents.								
4 T	o study	y the ty	pes of	failure	in con	nponer	nts.								
5 T	o stud	v the m	ethods	and equ	ipmer	nts for	failure	e analy	vsis.						
-					Ţ			•							
Course (												e able to			
CO1.			portanc on of fai			nalysi	s for a	utomo	tive co	ompone	nts and			Apply	
CO2.	Identi	fy the f	ailure r	node id	entific	ation	metho	ds and	Corro	sion fai	lures.			Apply	
<b>CO</b> 2	<b>F</b> 1	• .1		C C '1									TT	1	1
CO3.			causes c											ndersta	
CO4.	Sumn	narize t	he type	s of fail	ures ir	n com	ponent	s.					U	ndersta	nd
CO5.	Identi	fv the r	nethods	s and ec	minme	ents fo	r failu	re ana	lvsis					Apply	
Mapping	g with PO	Progra	amme (	Jutcon	nes an PO	d Prog PO	gramn PO	ne Sp PO	ecific ( PO	Outcon PO1	nes PO1		PSO	PSO	PSO
COs	1	PO2	PO3	PO4	5	6	7	8	9	0	1	PO12	1	2	3
CO1	S	М	М	-	-	М	-	-	-	-	-	-	L	-	-
CO2	S	М	М			L							L		
				-	-		-	-	-	-	-	-		-	-
CO3	S	М	M	-	-	Μ	-	-	-	-	-	-	L	-	-
CO4	S	L	L	-	-	L	-	-	-	-	-	-	L	-	-
CO5	S	М	М	-	-	L	-	-	-	-	-	-	L	-	-
			n; L-L	OW											

## FUNDAMENTALS OF FAILURE ANALYSIS

Importance of failure analysis for automotive components, Steps in typical failure analysis: Collection of background data (review documentation and speak with appropriate individuals), Selection of failed and un failed samples for examination, Preliminary examination of the failed part, Non-destructive evaluation, Mechanical testing, Macroscopic examination and analysis, Microscopic examination and analysis, Determination of failure mode, Chemical analysis, Fracture mechanics considerations, Full scale testing under service conditions, Analysis of the evidence, Formulation of conclusions, Recommendations to prevent reoccurrence, Sample preparation methods for failure analysis, Selection of locations/samples For failure analysis.

#### INTRODUCTION TO FAILURE ANALYSIS

Failure mode identification methods, Failure mechanisms: Fatigue failures, fractography, effect of variables: part shape, type of loading, stress concentration, metallurgical factors, etc. Wear failures, adhesive, abrasive, erosive, corrosive wear. Corrosion failures, types of corrosion: uniform, pitting, selective leaching,

intergranular, crevice, etc. Elevated temperature failures, creep, thermal fatigue, micro structural instability, and oxidation.

#### CAUSES OF FAILURE IN COMPONENTS

Misuse or Abuse, Assembly errors, Manufacturing defects, Improper maintenance, Fastener failure, Design errors, Improper material, Improper heat treatments, Unforeseen operating conditions, Inadequate quality assurance, Inadequate environmental protection/control, Casting discontinuities. Data compilation and identification of root cause.

## TYPES OF FAILURES IN COMPONENTS

Fatigue failures, Corrosion failures, Stress corrosion cracking, Ductile and brittle fractures, Hydrogen embrittlement, Liquid metal embrittlement, Creep and stress rupture.

#### METHODS AND EQUIPMENTS FOR FAILURE ANALYSIS

Selection of suitable testing methods for failure analysis, Selection of metallurgical equipments for Failure Analysis, SEM-EDAX.

Text Books
------------

1	"Understanding How Components Fail" by Donald J. Wulpi; ASM International Publication.
2	"Analysis of Metallurgical Failures: by Vito J. Colangelo; Francis A. Heiser Wiley Publication
_	
3	ASM Handbook Vol.11 - Failure Analysis and Prevention, ASM International Publication, 1995.

#### **Reference Books**

1	"Metallurgy of Failure Analysis" by A K. Das; by McGraw-Hill Professional Publication.
---	----------------------------------------------------------------------------------------

2 Metallurgical Failure Analysis by Charlie R. Brooks; Ashok Choudury; McGraw-Hill Publication.

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	C.Thiagarajan	Assistant Professor (G-II)	MECH/AVIT	cthiagarajan@avit.ac.in
2	Dr.S.Venkatesan	Professor	MECH/VMKVEC	venkatesan@vmkvec.edu.in

		<b>FT IN</b>		IFN	татс	S OF PI	DINC	r	0	Categor	y I	Ĺ	T		redit	
344	21P11		GINE			OFT		J		EC-PS	•	3	0 (		3	
Prear												0			U	
	tudents c	-	0				•	0		vledge	on fu	nda	menta	als of <b>j</b>	pipin	g
engin	eering, pi	ipe h	ydrau	lics,	piping	g suppo	rts and	d desig	gn.							
Prere	equisite															
NIL																
Cours	se Objec	tives	5													
1	To unde	erstai	nd the	imp	ortanc	e of pi	ping e	nginee	ering.							
			stand the importance of piping engineering.													
2	To enab	ole st	e student to learn the application of flanges and valves.													
3	To unde	nderstand about process mechanical equipments.														
4	To gain	kno	wledg	e ab	out va	rious ni	ne sun	norte								
5	To enab	ole st	udents	s to l	earn a	bout va	rious t	ypes o	f stress	analys	sis.					
Cour	se Outco	mes	: On t	he s	uccess	sful cor	npleti	on of	the cou	irse, s	tuden	ts w	ill be	able	to	
CO1		Dis	scuss t	he b	asic co	oncepts	of pip	oing en	igineeri	ng.			Unde	erstand	l	
CO2	2.	Dis	scuss t	he a	pplica	tion of	flange	s and	valves.				Unde	erstand	1	
		Ap	ply the	e cor	ncept o	of vario	us pro	cess n	nechani	cal						
CO3	5.		iipmei		-		-						Appl	у		
CO4	l	То	agin 1	mou	ladaa	about		nina	unnort	-			Annl	* 7		
												Appl				
C05													Anal	yze		
Map	oping wit	h Pr	ograr	nme	Outc	omes a	nd Pr	ogran	nme Sp	ecific	Outc	ome	es		I	
		-		-								P			P	
		P O	РО	P O						РО	PO1	0 1	PO	) PS	S O	PSO
	COs	1	2	3	PO4	PO5	PO6	<b>PO7</b>	PO8	9	0	1	12		2	3
(	CO1	М	L	_	-	-	-	_	-	_	-	-	-	-	_	-
(	CO2	S	M	L	-	-	-	-	-	-	-	-	-	L	-	-
(	CO3	S	М	L	-	-	-	-	-	-	-	-	-	М	-	-
(	CO4	S	S	М	L	-	-	-	_	_	М	-	-	М	-	-
	CO5	S	S	S	М	S	_	_	_	_	S	_	_	L	_	_

## S- Strong; M-Medium; L-Low

## SYLLABUS

## INTRODUCTION

Introduction to Piping Responsibilities of Piping Engineer and Designer - Scope of PipingInput and Outputs - General: Process Diagrams (PFD, UFD, P&ID, Line List etc) -Piping Fundamentals Definition, Application Codes and Standards.

## FLANGES AND VALVES

Introduction to Flanges and Valves – Application and advantages of Flanges - Pipe Fittings - Pipe Flanges – Valves -Piping Special Items

## PROCESS MECHANICAL EQUIPMENTS

Process Mechanical Equipments – Static equipments & Rotary equipments Layouts - Preparation of Plot Plan - Preparation of Equipment Layouts - Preparation of Piping General Arrangement Drawings - Preparation of Cross Sectional Drawings - Piping Isometric Drawings & Material Take off

## PIPE SUPPORTS

Pipe Supports: Support Types - Support Selection, Support Location, Support Span Calculation - Typical Unit Conversion - Materials: Preparation of Piping Material Specification - Valve Material Specification - Familiarity with ASME B31.3 Pipe Wall thickness Calculations.

## STRESS ANALYSIS

Preparation of Special Items Datasheets: Pressure Design of Miter Bends – Single & Multiple Miters - Pressure Design of Blanks - Branch reinforcement calculations - Overview of Technical Queries and Technical Bid Evaluations

Stress Analysis: Types of stresses, Significance of forces and moments - Introduction to Stress Analysis - Expansion Loop types, Bellows Types

## Text Books

1

G.K.Sahu, Fundamentals of piping design, New Age International
Publishers

## **Reference Books**

1	Peter Smith, R.W.Zappe, Valve Selection Hand Book, Elsevier Science
2	Peter Smith, The fundamentals of piping design, Elsevier Science

S.No	Faculty Name	Designation	Department/ College	Email id
1	M.Saravanan	Assistant Professor	MECH/AVIT	saravanan@avit.ac.in
2	J.Rabi	Assoc.Professor	MECH/VMKVEC	jrabi@vmkvec.edu.in

			RRE					gory	L		Т	Р	Cr	edit	
34421P04	EN	GINE	ERI	NG			EC	-PS	3		0	0		3	
Preamble															
This course re							-		-	•	-		-	-	
per customer	-												ed appr	oach,	
importance of	-	•	<b>U</b>	produ	ct des	ign, 1	reliabi	ility, i	maintai	nabilit	y and				
economics of j	proau	ct des	lgn.												
Prerequisite NIL															
Course Objec	tives														
	Study the benefits of concurrent engineering, life-cycle design of the products, structure and														
	organization and implementation process of the CE.														
	Learn about the design of the product as per the customer requirements and also understand														
	the co-operation/ coordination required between the different departments like marketing,														
2 design a	design and the latest softwares available so far.														
	Study the role of design for manufacturing in concurrent engineering, different DFM														
	methods, creative design methods and computer based approach to DFM.														
	Learn about the importance of quality during the product design and methods used to														
4 evaluate	e the	quality	у.												
5 Learn a	bout	the de	sign o	of the	produ	ct for	reliat	oility,	mainta	inabili	ty and	econon	nics.		
Course Outco	mes:	On the	he suo	cessf	ul con	npleti	ion of	the c	ourse,	stude	nts wi	ll be ab	le to		
						-			e concu						
			0						tructur						
CO1. organ	nizatio	on and	l impl	ement	tation	proce	ess of	the C	E.			Un	derstan	d	
									er the						
									on/ co						
-						<b>.</b>		like n	narketir	ng, des	ign				
					ilable				<u> </u>			Un	derstan	d	
									g in co						
							creativ	ve des	ign me	thods	and	TT	1	1	
•			••		DFM				1 1	•		Un	derstan	a	
					quality e qual		ng th	e pro	duct d	esign	and	Un	derstan	d	
	erstan			esign	of	-	nroc	łuct	for	reliabil	lity	UII	ucistall	u	
			and ec	0		uic	proc	JUCI	101	CHAUI	ury,	Un	derstan	d	
Mapping wit						nd P	rogra	mme	Specif	ic Out	come				
COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2	PSO3	
CO1 S	М	S	L	L		_	-	-	-	-	-	L	-	-	
	171	2	L.	L											
CO2 S	М	S	S	S	М	-	-	-	-	-	-	S	-	-	
	м	c	т	м	м							м			
CO3 S	М	S	L	М	М	-	-	-	-	-	-	M	-	-	
CO4 S	М	S	S	М	М	_	-	_	-	-	-	М	-	-	
	111	3	3	111	111							191			
CO5 S	L	S	М	L		-	-	-	-	-	-	М	-	-	
S- Strong; M-N	<b>Iediu</b> r	n; L-L	ow												

## INTRODUCTION:

Sequential engineering process, Concurrent engineering definition and requirement, meaning of concurrent objectives of CE, benefits of CE, Life cycle design of products, life cycle costs. SUPPORT FOR CE: Classes of support for CE activity, CE organizational, structure CE, team composition and duties, Computer based Support, CE Implementation Process.

## DESIGN PRODUCT FOR CUSTOMER

Industrial Design, Quality Function Deployment, house of quality, Translation process of quality function deployment (QFD). Modeling of Concurrent engineering design- Compatibility approach, Compatibility index, implementation of the Compatibility model, integrating the compatibility Concerns.

## DESIGN FOR MANUFACTURE (DFM)

Introduction, role of DFM in CE, DFM methods, e.g. value engineering, DFM guidelines, design for assembly, creative design methods, product family themes, design axioms, Taguchi design methods, Computer based approach to DFM. Evaluation of manufacturability and assembliability.

## QUALITY BY DESIGN

Quality engineering & methodology for robust product design, parameter and Tolerance design, Quality loss function and signal to noise ratio for designing the quality, experimental approach.

## DESIGN FOR X-ABILITY

Design for reliability, life cycle serviceability design, design for maintainability, design for economics, decomposition in concurrent design, concurrent design case studies.

## Text Books

1	Concurrent Engineering- Kusiak - John Wiley & Sons
-	Concurrent Engineering Ruslak John Whey & Sons

2 Concurrent Engineering- Menon - Chapman & Hall

## **Reference Books**

- Integrated Product Development/Anderson MM and Hein, L.Berlin, SpringerVerlog,1987.
- Design for Concurrent Engineering/ Cleetus, J. Concurrent Engg. Research Centre, Morgantown, WV, 1992.

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
		Assistant		
1	B.Selva Babu	Professor	MECH/AVIT	selvababu@avit.ac.in
		Assistant		
2	S.Raja	Professor	MECH/VMKVEC	raja@vmkvec.edu.in

			E	NGIN	FFR	ING I	PROD	ыст	- Ca	tegor	y :	L	Т	Р	Cre	edit
34	<b>1421</b> ]	P08		ESIG			KOD			C-PS		3	0	0		3
Prea		-														
								ng, re	wardi	ng act	tivity t	hat req	uires m	ultifunc	tional	
coop Prei			nd inte	er-dise	ciplin	ary ski	IIIS.									
NIL	-	15110														
Cou	rse (	Objec	ctives													
1					node	ls in de	evelop	oing n	ew en	ginee	ring pr	oducts	•			
2	То	learn	how	to ide	entify	the cu	stome	r nee	ds and	l integ	grate th	e end-	consum	er into j	process	
3	То	learn	and a	apply	the c	oncept	s and	tools	neces	sary f	or con	cept ge	neration	n and ev	valuatio	n.
4	То	apply	y emb	odime	ent de	esign c	oncep	t in tł	ne pro	cess o	of new	produc	t develo	opment.		
5	То	Unde	erstan	d the	conce	ept of 1	nanuf	acturi	ng pr	ocess	and de	sign th	e produ	ct acco	rdingly	
Cou	5 To Understand the concept of manufacturing process and design the product accordingly. Course Outcomes: On the successful completion of the course, students will be able to															
		Unde	rstand	the c	conce	ptual c						d solu				
C01				al desi	0			1	1		. 1	• • •		Under	rstand	
CO2				odime g desig		inciple	es to ti	ransla	ite the	conce	eptual	ideas t	0	Under	rstand	
CO3		Apply design			ental,	ethica	and	socia	l issue	es dur	ing inn	ovativ	e	Apply	7	
CO4		0				nnovat sign pl		0	ring p	roduc	ts for	ndustr	ial	Apply		
		neeus	using	51000	ist ue	<u>51511 p</u>	moso	piry.						rippij	/	
CO5					•	Design ilure of				e and	to und	erstand	l the	Analy	70	
											Incoifi	o Outo		Anary		
					PO				ogran		specifi	c Outc				
CO	)s	PO1	PO2	PO3	4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	1	М	L	L	L	L	-	-	-	-	-	-	-	М	-	-
CO	2	М	L	L	L	L	-	-	-	-	-	-	-	М	-	-
CO	3	S	S	S	S	S	-	-	-	-	-	-	-	S	-	-
CO	4	S	М	М	М	М	-	-	-	-	-	-	-	М	-	-
CO:	5	S	S	S	S	S	-	_	-	-	-	-	-	М	-	-
S- Stre	ong; ]	M-Me	dium;	L-Lov	V											

## INTRODUCTION

Innovations in Design, Engineering Design Process, Prescriptive and integrative models of design, Design Review and societal considerations.

## IDENTIFICATION OF CUSTOMER NEED

Evaluating Customer requirements and survey on customer needs, Conversion of customer needsinto technical Specifications, Information sources.

## CONCEPT GENERATION AND EVALUATION

Creativity and Problem solving, Brainstorming, Theory of Inventive Problem solving (TRIZ), Functional Decomposition of the problem for innovative concept development, Morphological design, Introduction to Axiomatic Design, Concept evaluation and decision making.

## EMBODIMENT DESIGN

Introduction, Product Architecture, Configuration and Parametric design Concepts, Industrial Design.

## DESIGN FOR MANUFACTURING

Design for Manufacturing, Design for Assembly, Design for Environment, Design for Reliability and Robustness, Introduction to FMEA.

## Text Books

1 Nigel Cross, Engineering Design Methods, John Wiley, 2009.

## **Reference Books**

- 1 George E. Dieter, Engineering Design, McGraw-Hill, 2009.
- 2 Genrich Altshuller, The Innovation Algorithm, Technical Innovation Centre, 20LL.

			Department/Nam	
S.No	Faculty Name	Designation	eof the College	Email id
1	R.Praveen	Asst. Prof – II	MECH/AVIT	praveen@avit.ac.in
		Associate		
2	J.Sathees Babu	Professor	MECH/ VMKVEC	satheesbabu@vmkvec.edu.in

								Ca	itegor	W	L	Т	Р	Cr	edit
3442	1P07	DE	SIGN	OF I	EXPE	RIME	NTS		C-PS	-	3	0	0		3
	ourse the nents. T											to colle al tools			
<b>Prereq</b> Nil															
Course	Object	tives													
1 I	Know a	bout I	Desigr	n of E	xperir	nent.									
2 U	Underst	and th	e met	hodol	ogy fe	or Desig	gn o	f Exp	erime	nt.					
3 I	Familia	rize at	oout c	oncep	ts of o	confoun	nding	g and	ANO	VA.					
4 I	Expose	the co	ncept	s of re	espons	se surfa	ce d	esign.							
5 ]	Го appl	y Tagi	uchi n	nethod	1.										
Course	Outco	mes: (	On th	e suc	cessfu	ıl comp	oletio	on of	the co	ourse,	studen	ts will l	oe able	to	
CO1.	Unde	rstanc	l the p	orincip	oles ai	nd theor	ry of	f desig	gning	experii	ments.		U	ndersta	nd
CO2.	Appl	y basi	c prin	ciples	in the	e desigr	n of	simpl	e expe	erimen	ts.			Apply	
CO3.	Unde	rstanc	l and	use th	e tern	ninology	y of	exper	iment	al desi	gns.		U	ndersta	nd
CO4.		t and rch pr		gn an	appr	opriate	met	thod	of dat	ta coll	ection	for a		Analyze	e
CO5.		y the		* *	oroduc	ct desig	n an	nd dev	elopn	nent fo	or obta	in		Apply	
Mappii	ng with	Prog	ramn	ne Ou	tcom	es and	Pro	gram	me Sp	pecific	Outco	omes	Γ		
COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	S	-	-	-	-	-	-	-	-	-	-	-
CO2	S	М	L	S	-	-	-	-	-	-	-	-	S	-	-
CO3	S	S	S	М	S	-	-	-	-	-	-	-	М	-	-
CO4	М	S	М	М	М	L	-	-	-	-	-	-	М	-	-
CO5	М	М	L	М	L	М	-	-	-	-	-	-	L	-	-
S- Stron	g; M-Me	dium;	L-Lov	V											

## BASICS OF DESIGN OF EXPERIMENTS

Introduction in Design of experiments (DOE) - Fundamental and practical issue in industrial experimentation - Statistical thinking and its role within DOE - Basic principles of DOE and Degrees of freedom - Selection of quality characteristics for industrial experiments - Understanding key interaction in processes - Alternative method for calculating two-order interaction effect - Synergistic interaction versus Antagonistic interaction

## METHODOLOGY FOR DESIGN OF EXPERIMENTS

DOE methodology - Barriers in the successful application of DOE - Practical methodology of DOE and Analytical tools for DOE - Confidence interval for the mean response - Introduction of Screening design - Geometric and non-geometric P-B design - Introduction of full factorial design -  $2^2$ ,  $2^3$ ,  $2^4$  full factorial design

## CONFOUNDING

Introduction and uses of confounding -  $2^3$  factorial experiment with complete confounding - $2^3$  factorial experiment with partial confounding - Confounding in the  $2^n$  series and examples - Confounding of  $3^2$  factorial - Confounding of  $3^3$  factorial and examples - Mixed series and examples - Introduction on ANOVA Analysis

## **RESPONSE SURFACE DESIGN**

Background of response surface design - Creation of response surface design - Central composite design - Box Behnken design - Contour profile of response surface plot - Design table - Analyze the data - Case studies on response surface design - Experiment with random factor

## TAGUCHI METHOD

Taguchi design approach - Orthogonal array, S/N ratio - Smaller is better, Nominal is better and larger is better with simple case studies - Analyze the data, factor effect diagram - Levels of parameters -Confirmation test - Augmented design with simple case studies

#### Text Books

- **1** Jijuantony, "Design of Experiments for Engineers and Scientists", Elsevier.
- 2 Douglas C Montgomery, "Design and Analysis of Experiments", John Wiley & Sons Ltd.

## **Reference Books**

- 1. M N Das, N C Giri, "Design and Analysis of Experiments", New Age International (P)
  Limited, Publishers, 1997.
- Larry B. Barrentine, "An introduction to Design of Experiments A simplified approach", New2 Age International Publishers, 2010.
- 3 William G. Cochran, Gertrude M. Cox, "Experimental Design", John Wiley and sons, Inc.
- 4 Cox C.R, "The theory of Design of Experiments", Chapman and Hall, CRC Press.

S.No.	Faculty Name	Designation	Department/Name of the College	Email id
1		Assistant Professor	MECH/AVIT	vijayakumar@avit.ac.in
2	J.Sathees Babu	Associate Professor	MECH/ VMKVEC	satheesbabu@vmkvec.edu.in

		FL	וחוו	POW	ER	Ca	ategor	ry	L		Т		Р	Cr	redit
34421	P10		STEN				EC-P	S	3		0		0		3
Preamb Fluid Po Ising proneumation Synthetic	ower is ressuriztics wh	ed flu en the	uids. F e fluid	luid p is a ga	ower i as. Hyd	is call draulio	ed hyd c syste	lraulic ms use	s whe e liqui	n the ds suc	fluid i h as p	s a lic etroleu	quid a 1m oil	nd is c s,	allec
ind can														5	
<b>Prerequ</b> NIL	isite														
Course	Objec	tives													
1 7	Fo stud	ly abo	ut the	princij	oles of	main	hydra	ulic a	nd pn	eumat	ic con	npone	nts.		
2	Го desi	gn an	d stud	y abou	t the p	rincip	les of	main	pneun	natic c	ompo	nents.			
3 7	Го lear	n the	metho	dolog	y of ci	rcuit o	diagra	m.							
4	Го desi	gn an	d stud	y abou	t the p	rincip	les of	electro	o-pneu	matic	and hy	ydraul	ic circ	uits.	
5 7	Fo stud	ly and	analy	ze vari	ious ci	rcuits	applic	ation,	,mainte	enance	e and s	afety	aspect	s.	
Course							<b>letion</b> /drauli							e to	
CO1.							haracte		-		-			Unders	tand
							pneun							ondera	una
CO2.	-		-	-			ics des		-					App	ly
CO3.	unde	rstand	the	princ	iples	of ci	ircuit rcuit ponen	opera	tion,	in re	•••			4.00	1.,
	-						-				4.0			App	
CO4.							natic ar aulic a					nlied	to	Арр	Iy
CO5.					•	•	ety asp	-			uns up	pheu	.0	App	lv
Mappin										ific O	utcom	es	•	••	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSC 3
CO1	S	Μ	М	S	S	-	-	-	-	-	-	-	M	-	-
CO2	М	S	М	М	S	-	-	-	-	-	-	-	L	-	-
aca	C	14	N	λf	T										
CO3	S	Μ	М	М	L	-	-	-	-	-	-	-	M	-	-
CO4	М	L	S	L	S	-	-	-	-	-	-	-	М	-	-
CO5	S	M	L n; L-L	М	М	-	-	-	-	-	-	-	L	-	-

#### HYDRAULIC COMPONENTS

Introduction to fluid power system-Pascal's Law-Hydraulic fluids-Hydraulic pumps-Gear, Vane and Piston pumps-Pump Performance-Characteristics and Selection-actuators-valves-pressure control-flow control and direction control valves-Hydraulic accessories-Hydraulic Accumulator.

#### PNEUMATIC COMPONENTS

Introduction to Pneumatics-Compressors-types-Air treatment-FRL unit-Air dryer-Control valves-Logic valves-Time delay valve and quick exhaust valve-Pneumatic Sensors-types-characteristics and applications.

#### FLUID POWER CIRCUITS

Circuit Design Methodology-Sequencing circuits-Overlapping signals-Cascade method-KV Map method-Industrial Hydraulic circuits-Double pump circuits-Speed control Circuits-Regenerative circuits-Safety circuits-Synchronizing circuits-Accumulator circuits.

#### ELECTRO - PNUEMATICS AND HYDRAULICS

Relay, Switches-Solenoid-Solenoid operated valves-Timer-Counter-Servo and proportional control-Microcontroller and PLC based control-Design of electro-pneumatic and hydraulic circuits.

#### APPLICATION, MAINTENANCE AND TROUBLE SHOOTING

Development of hydraulic / pneumatic circuits applied to machine tools-Presses-Material handling systems-Automotive systems-Packaging industries-Manufacturing automation- Maintenance and trouble shooting of Fluid Power circuits-Safety aspects involved.

#### Text Books

I CAL	DOOKS
1	Anthony "Esposito, Fluid Power with applications", Prentice Hall international-1997.
2	Majumdar.S.R, "Oil Hydraulics", Tata McGraw Hill, 2002.
3	Majumdar S.R, "Pneumatic systems-principles and maintenance", Tata McGraw Hill 1995.

#### **Reference Books**

2

Dr.S.Natarajan

Neieren	ICE DOOKS			
	John Pippenger, Tyler "	Hicks, Industrial H	Iydraulics", McGrav	w Hill International
1	Edition, 1980.			
2	Andrew Parr, "Hydrauli	cs and pneumatics	", Jaico Publishing	House, 2003.
3	FESTO, "Fundamentals	of Pneumatics", V	ol I, II, III.	
Course	Designers			
S.No	Faculty Name	Designation	Department	Email id
		Assistant		
1	S.Ashok Kumar	Professor	MECH/ AVIT	ashokkumar@avit.ac.in
			MECH/	

VMKVEC

natarajans@vmkvec.edu.in

Asso.Prof

																~
									C	ategory	y			Т	Р	С
3	4421P	217	MF	EMS A	ND NF	EMS			E	C-PS		3		0	0	3
PREA	MB	LE														
The co	ourse	reviev	vs the	e variou	ıs appl	icatio	ns of	MEM	IS AN	ND NE	EMS ar	nd its a	appli	icat	ions ir	L
sensor	s and	actua	tors.													
PREF	REQU	JISIT	E: N	ΊL												
COUI	RSE	OBJE	ECTI	VES												
1 T	'o stuc	ly the	fund	amenta	ls of N	/IEMS	and	NEM	S.							
2 T	'o gaiı	n knov	wledg	ge on fa	abricati	ion of	MEN	AS.								
3 T	'o stuc	ly on	Micro	o Senso	ors.											
4 T	'o stuc	lv on	Micro	o actua	tors.											
				syster		Quan	tum N	Mach	nice							
												1	•11	1	. 1. 1 4	
			,	n the s			-				,					
CO1.	The s	tuden	t will	unders	stand th	ne var	ious a	applic	ation	s of N	EMS a	nd Mł	EMS		Inderst	and
CO2.	The	studer	nt wil	l under	stand t	the Va	rious	fabri	catio	n of M	EMS			U	Inderst	tand
CO3.	The	studer	nt wil	l learn	the wo	orking	of va	arious	micr	o sens	ors			A	nalyz	2
CO4.	The	studer	nt wil	l know	how t	o desi	gn th	e wor	king	of mic	ro actu	ators		A	Apply	
CO5.	The	studei	nt wil	l under	rstand	the na	nosys	stems	and c	quantu	m mec	hanics	5	ι	Jnderst	tand
Mappi	ng wit	h Pro	gramı	ne Out	comes a	and Pr	<u> </u>	1	<u> </u>			<b>D</b> 04	De	10	DGO	Dao
COs	PO1	PO2	PO3	PO4	PO5	PO6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS 1	50	PSO 2	PSO 3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	Ν	1	-	-
CO2	S	-	-	-	-	_	-	-	-	-	-	-	N	1	-	-
CO3		S	S	L	L	_	_	_	_	_	_	_	S		_	-
CO4	s	S	S	L	L								N			
CU4	3	3	3	L	L	-	-	-	-	-	-	-	IV	1	-	
CO5	S	Μ	Μ	М	S	-	-	-	-	-	-	-	Ν	1	-	-
	<u> </u>		ium	L- Lov	V											
SYLL OVED				RODU	ICTIO	N										
				ng and			o and	Nano	scale	system	ns Intro	duction	1 to I	Des	ign of	
		-									~					

MEMS and NEMS, Overview of Nano and Micro electromechanical Systems, Applications of

Micro and Nano electro mechanical systems, Micro electromechanical systems, devices and

structures Definitions, Materials for MEMS: Silicon, silicon compounds, polymers, metals

## MEMS FABRICATION TECHNOLOGIES

Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface

Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials

## MICRO SENSORS

MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these Micro sensors. Case study: Piezo-resistive pressure sensor

## MICRO ACTUATORS

Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps. Case study: Comb drive actuators

## NANOSYSTEMS AND QUANTUM MECHANICS

Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics: Shrodinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.

## Text Books:

1. Marc Madou, "Fundamentals of Micro fabrication", CRC press.

2. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers.

## **Reference:**

1. Tai Ran Hsu , "MEMS and Microsystems Design and Manufacture" ,Tata McGraw Hill.

2. Chang Liu, "Foundations of MEMS", Pearson education India limited.

Cours	e Designers			
			Department /	
S.	Name of the		Nameof the	
No.	Faculty	Designation	College	Mail ID
		Associate		
1	Dr.D.Bubesh Kumar	Professor	MECH/ AVIT	bubeshkumar@avit.ac.in
			MECH/	
2	Dr.S.Natarajan	Asso.Prof	VMKVEC	natarajans@vmkvec.edu.in

		ретра				TION	N		Catego	ory	L	Т	P	Cre	dit			
34421P		PETRO ENGIN			JDUC		N		EC-P	S	3	0	0	3				
Preamble: The studen and operation	its con													ineerin	ıg			
Prerequisi	ite: Ni	il																
Course Ol	ojectiv	ves																
1 To	under	stand oil	well	drilling	g engii	neering	g and o	opera	tions.									
2 То	get fa	miliarize	ed with	n field	equip	ment p	oractic	es, d	ifficultie	es and	action	is to b	e take	n.				
		fundame																
				•						0	0	0						
	-	nowledge student	-															
Course O									nurse, si	tuden	ts will	be ab	le to					
CO1.						•			enginee				Jnder	stand				
		Apply								0								
CO2.		calcula		-			-		lis and			A	Apply					
CO3.		To coir	Imon	ladaa	ahaut	Casim	and		ntation									
		•							entation			F	Apply					
CO4.		Apply	the co	ncept (	of usin	ig of d	rilling	fluic	ls			A	Apply					
CO6		Analyz	the the	liffere	nt dril	ling flu	uids					A	Analyz	ze				
Mapping	with P	rogram	me O	utcom	es an	d Prog	gramn	1e Sj P	pecific (	Dutco	mes		1	1	T			
								Р 0										
COs		P 1 O2	PO 3	PO 4	РО 5	PO 6	PO 7	8	PO9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03			
COs	PO		5		5	U	/	0	109	10		14		02	03			
CO1	M	L	-	-	-	-	-	-	-	-	-	-	-	-	-			
CO2	S	М	L	-	-	<u> M - M</u>								Μ				
CO3	S	S	М	L	-	-	-	-	-	М	-	-	М	-	М			
CO4		<u>SSSMML-L</u>																
CO5	S	S	S	М	S	-	-	-	-	S	-	-	L	-	L			
5- Strong;	M-M	edium;	L-LO	W														

## DRILLING RIG

Rotary / top drive drilling for oil and natural gas, introduction to hardware system, power generation system, Hoisting, Rotary and drilling fluid circulation system, Rig selection, onshore offshore rigs, onshore and offshore drilling operations, Horse power calculations for draw-works and rotary advantages and disadvantages of top drive system.

## DRILLING OPERATIONS AND DIFFICULTIES

Down hole drilling problems and solutions, factors affecting rate of penetration, drill off test, bit section, IADC classification of bit, dull bit gradation, circulation system, mud pumps, numerical related to mud pumps of circulation system, problems concerned with drilling fluid and drill pipe stuck up, geometry of a stuck pipe. Hole problems (lost circulation, kick etc) well control equipment BOP.

## DRILLING TECHNIQUES AND FISHING

Introduction to directional, horizontal multilateral drilling techniques. Types of well, coring operations, Fishing tools and operations. Terminology used in directional wells and basic mathematics used in directional wells (DMS to Dec. Deg, co-ordinate system).

## CASING AND CEMENTATION

Casing and Cementation, Functions, types, API grades properties of casing, Threads and couplings, Functions, classification of cement, Strength retrogenion, Cement additives, Methods of cementation, Equipment accessories, Field problems pertaining to cementation job, Cement slurry calculations.

## DRILLING FLUIDS

Drilling fluid, Functions, Types, compositions, Properties of mud, Field test, Rheology, Additives and contamination, Selection of drilling fluids and mud, Conditioning equipments, Mud calculations, Hydrostatic pressure, Volume, Weight related calculations during drilling.

## Text Books

1 Gatlin C.; Petroleum Engineering, Drilling and Well Completions, Prentice Hall.

## **Reference Books**

- 1 Rabia H.; Oil Well Drilling Engineering, Graham Trotman Ltd., London.
- 2 Azar, J. J., G. Robello Samuel; Drilling Engineering, Penn Well.

		Designatio	Department /	
S.No	Faculty Name	n	College	Email id
		Assistant	Mech /	
1	V.K.Krishnan	Professor	VMKVEC	vkkrishnanme@yahoo.com
		Assistant		
2	P.Kumaran	professor	MECH/AVIT	kumaranp@avit.ac.in

## OPEN ELECTIVE-INNOVATION, ENTREPRENEURSHIP, SKILL DEVELOPMENT COURSES

		ENGINEERING STARTUPS	Category	L	Т	Р	Credit		
		AND ENTREPRENEURIAL							
341210		MANAGEMENT	OE-IE	3	0	0	3		
PREAMBLE	E:								
A startup me	eans compar	ny initiated by individual innovator	or entrepreneurs	to sear	ch for a	repea	table and		
scalable busi	iness model.	More specifically, a startup is a new	ly emerged busine	ess ven	ture that	aims	to developa		
viable busine	ess model to	meet a marketplace needs or wants	n an optimum ma	nner.					
PREREQUI	SITE: Not Re	equired							
COURSE OI	BJECTIVES	:							
1. 7	Го understan	d the basics of Startups Managemen	t and components.						
2. 7	Го analyze tł	ne startups fund management practic	es						
3. 7	Fo practice the	ne various kinds of stocks and emplo	yment considerati	ons in s	startups.				
4. 7	Fo apply the	importance of intellectual property r	ights and its proce	dures.					
		e entrepreneurial mindset and cultur	e.						
COURSE O	UTCOMES:								
After success	sful completi	on of the course, students will be able	to						
CO1: Expl	ain the conc	ept of engineering startups, objective	es and functions an	d its co	mponer	its.	Understand		
CO2: Anal	yze the start	ups funding issues and remuneration	practices in startu	ps busi	ness.		Analyze		
CO3: Analyze the various kinds of stocks and employment opportunities and consideration in									
startups bus	siness.								
CO4: Compare and contrast the various forms of intellectual property protection and practice. Analy									
CO5: Expl	ore the entre	preneurial mindset and culture that h	as been developin	g in			Evaluate		
com	panies of all	sizes and industries.							
	WITH PRO								

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	М	М	S	-	М	-	М	-	L	L
CO2	S	S	М	М	М	L	-	-	-	-	-	М	L	L	-
CO3	S	S	S	М	М	М	-	-	-	-	-	М	L	-	М
CO4	S	S	S	М	М	М	-	-	-	-	-	М	-	М	L
CO5	S	S	-	М	М	М	-	-	-	-	-	М	М	М	М

## S- Strong; M-Medium; L-Low

## SYLLABUS:

**Elements of a successful Startup:** Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan -

specific problems and challenge in startup.

**Funding Issues and Remuneration Practices:** Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up: Salaries – Equity Ownership – Other compensation – Employment Contracts

**Stock Ownership & startup Employment Considerations:** Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations: Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

**Protecting Intellectual Property:** Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

## **Startup Capital Requirements and Legal Environment:**

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures.

## **Text Book:**

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

## **Reference Books:**

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

S.No	Name of the Faculty	Designation	Department	Mail ID	
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in	
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in	

					LDOG				7	Categ	gory	L	Т	P	Credit
3	41210	02		NTEL AIGHT		UAL	PROI	PERTY		OE-	IE	3	0	0	3
PREAN	<b>IBLE:</b>											11			
The cou	rse is d	esigned	d to int	roduce	fundan	nental	aspects	of Inte	llectua	l proper	ty Righ	ts to stu	dents wł	no are	going to
play a m	ajor ro	le in de	evelopn	nent ar	nd mana	agemer	nt of in	novativ	e proje	ects in ir	dustries	5.			
PRERE	QUIS	TE: N	ot Req	uired											
COURS	SE OB.	JECTI	VES:												
1.	To int	roduce	funda	menta	l aspec	ets of I	Intellec	ctual pr	ropert	y Right	s.				
2.	To dis	semina	ate kno	owledg	ge on p	atents	and co	opyrigł	nts.						
3.	To dis	semina	ate kno	wledg	ge on ti	adem	arks, E	Design	and G	eograp	hical In	dication	n (GI).		
					·			Ū		0 1				varen	ess about
			s in IP					~,,							
					te on I	مرزداء	tion of	fIDDe	and A	Iternate	Disput	te Reso	lution		
COURS				Jwicuz		Lgisia				norman	Dispu		iunon.		
				<b>f</b> 4 h .				11 h							
After su			-						ole to						<b>T 1</b>
CO1: U	Jnderst	and the	e impor	tant of	intelle	ctual p	roperty	rights						l	Jnderstan
CO2: A	Apply f	or the p	oatents											1	Apply
CO3: U	ndersta	and and	l apply	for the	copyri	ghts								I	Jnderstan
CO4: (	Jnderst	and the	e impor	tant of	tradem	arks								1	Apply
CO5: A	Appreci	ate the	import	ance o	f IPR a	nd its r	elated	issues						I	Jnderstan
MAPP	ING V	VITH	PROG	RAN	IME (	DUTC	OME	S AND	PRO	GRAN	IME S	PECIE	IC OU	тсо	MES
											_				
COs CO1	PO1 L	PO2	PO3	PO4	PO5	PO6 L	PO7 S	PO8 L	PO9	PO10 L	PO11	PO12 L	PSO1 L	PSO2	2 PSO3
	L	S	S	M	M	L	-	-	-	-	-	L	M	L	-
CO2			L	M	M	L	-	-	-	-	-	L	M	L	-
CO2 CO3	L	S	-		1						1		· ·		
	L L	S S	S	S	М	L	-	-	-	-	-	L	L	L	-

# SYLLABUS:

# **Unit 1 - Overview of Intellectual Property**

Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India : Genesis and development – IPR in abroad - Major International Instruments concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention, 1967, the Patent Co-operation Treaty, 1970, the TRIPS Agreement, 1994.

# Unit 2 - Patents & Copyright

**Patents** - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application -Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and license, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

**Copyright** - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and license of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights

# Unit 3 – Trademarks, Design and Geographical Indication (GI)

**Trademarks:** Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

**Design:** Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

**Geographical Indication (GI):** Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

# Unit 4 - Plant Varieties, Layout Design and Indian National Intellectual Property Policy

**Plant Variety Protection:** Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

**Layout Design Protection:** Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

**Indian National Intellectual Property Policy:** India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

# UNIT – V: Legislation of IPRs and Alternate Dispute Resolution

**Legislation of IPRs:** The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration

- Effective Mechanism for Business Issues.

**Text Books:** 

1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

2. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

# **Reference Book**:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

s	5.No	Name of the Faculty	Designation	Department	Mail ID
1	-	P. S. Balaganapathy	Associate Professor	Management	dydirectormanagementstudies@avit.ac.in
2		A. Mani	Associate Professor	Management	mani@vmkvec.edu.in

#### INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION

Category	L	Т	Р	Credit
OE-IE	3	0	0	3

#### PREAMBLE

34121004

commercialization of innovation and new products in fast-paced, high-tech markets and matchingtechnological innovation to market opportunities.

# **PREREQUISITE -** Not Required

# **COURSE OBJECTIVES**

	To make students understand multiple-perspective approach in organization to capture knowledge and creativity to develop successful products and services for Volatile, Uncertain, Complex and
1	Ambiguous (VUCA) world.
2	Inculcate a disruptive thought process to generate ideas for concurrent and futuristic problems of society in general and markets in particular which focus on commercialization.
3	Improved understanding of organizational best practices to transform exciting technology into successful products and services.
4	Critically assess and evaluate innovation policies and practices in organizations especially from a cultural and leadership point of view.
5	Explain why innovation is essential to organizational strategy – especially in a global environment.
COUR	RSE OUTCOMES
On the	successful completion of the course, students will be able to

On the successful completion of the course, students will be able to	
CO1: Understand the role of innovation in gaining and maintaining competitive advantage	Understand
CO2: Integrate the innovation basis and its role in decision making especially under uncertainty	Apply
CO3: Analyze business challenges involving innovation management	Apply
CO4: Having problem solving ability – solving social issues and business problems	Apply
CO5: Comprehend the different sources of innovation	Apply

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	Р	Р	Р	Р	Р	Р	Р	РО				
COs	01	02	03	<b>O4</b>	05	<b>O6</b>	07	8	PO9	PO10	PO11	P012
<b>CO1</b>	М	-	-	-	-	М	S	S	-	М	-	-
CO2	S	S	S	М	М	М	-	-	-	-	-	-
CO3	S	S	S	М	М	М	-	-	-	-	-	-
CO4	S	S	S	М	М	М	-	-	-	-	-	-
CO5	S	S	S	М	М	М	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

Pre-launch, during launch and Post launch

preparations; SYLLABUS:

**Introduction to Innovation Management** - Innovation – What it is? Why it Matters? - Innovation as a Core Business Process – system thinking for innovation – Framework for System Thinking - system thinking tools

**Creating New Products and Services** - Product and Service Innovation – Exploiting Open Innovation and Collaboration – The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

**Capturing Innovation Outcome** - New Venture – Benefits of Innovation, and Learning from Innovation – Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

**New Product Brand Development and Pricing Strategies** - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

**The Product offer** Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

# Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and

Organizational Change, 5th edition, Wiley.

# **Reference Books:**

Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.
 Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
_				
2			Management Studies	

								Ca	tegory	L	Т	Р	Credi
<u>34121</u>		SO	CIAL	ENTRE	EPREN	EURSH	IP	0	E-IE	3	0	0	3
PREAM		ourchin	involv	as tha c	raativity	imagin	ation	and inno	vation ofta	n associated	with		
entreprei	-	-	mvorv		leativity	y, iinagin	ation	ina mno	valion one		witti		
PRERE			t Requi	red									
	-		-										
COURS													
1	-				worki	ng know	ledge	of the c	oncepts, c	opportunities	and o	challe	enges of
1		entrepre monstra		•	ocial ar	ntranrana	urchin	in creat	ing innova	tive respon	ses to c	ritic	al social
2									arming, etc		565 10 1	inte	ii sociai
										derstanding	of the	con	text and
3	domai	n of soc	ial entr	epreneu	ırship.			-					
						professio	onally	for mean	ingful emp	ployment by	reflect	ting c	on the
4		of socia											
5	00			e group	of soci	al entrep	reneur	s.					
COURS	E OU'I	COME	ES										
On the	success	ful com	pletion	of the c	course, s	students v	will be	able to					
										from across	a		
			tional s	tructure	es from	traditiona	al non	profits to	social ent	erprises to			1
tradition			nationa	of a hur		vice erec	nizoti		and ante			Un	derstand
						sice orga		on using	social entr	repreneurial		Ap	nlv
			•		-			rtup met	hods for p	lanning.		- <b>1</b>	<u></u>
						g social c				8,		Ap	ply
CO4: C	ompare	e fundin	g optio	ns for se	ocial ch	ange ven	tures.					Ap	ply
									ssing persi	stent social			
problen	ns parti	cularly t	to those	who a	re marg	inalized o	or poo	r.				Ap	ply
MAPPI	NG WI	TH PR	OGRA	MME	OUTC	OMES A	ND P	ROGRA	AMME SF	PECIFIC O	UTCO	MES	5
	Р	Р	Р	Р	Р	Р	Р	РО					
COs	01	<b>O2</b>	03	04	05	06	07	8	PO9	PO10	PO	11	P012
CO1	М	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	М	-	-	-	-			-
CO3	S	S	S	М	М	М	-	-	-	-	-		-
CO4	S	S	S	М	М	М	-	-	-	-	-		-
CO5	S	S	S	М	М	М	-	-	-	-	-		-
S- Stron		ledium	; L-Lo	W									
SYLLA		-	• •		0						-		
ocial ei	ntrepre	neursh	<b>ip</b> – dir	nensior	ns of so	cial entre	prenei	ırship –	social chai	nge theories	– equi	libriu	im and

complexity – theory of social emergence

**Social entrepreneurs** – mindset, characteristics and competencies – developing a social venture sustainability model – feasibility study – planning – marketing challenges for social ventures

**Microfinance**– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

**Angel Investors & Venture Capitalists** – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

**Corporate entrepreneurship** – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

# Text Book:

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

# **Reference Books:**

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

		NIEW V	TENT	DF DI	A NINITE	NG ANI	n	Ca	tegory	L	Т	Р	Credit
34121		MANA				IG AIU		OF	C-IE	3	0	0	3
PREAM			021122					02			Ŭ	Ū	
					ices for	the entr	epreneu	ur to plar	n, launch, a	and operate a	a newv	entur	e
and creat	tion of	a busine	ess plan										
PRERE	QUISI	TE - No	ot Requi	ired									
COURS	E OBJ	ECTIV	'ES										
1	An op	portuni	ty for se	elf-analy	ysis, and	d how th	nis relat	es to suc	cess in an	entrepreneu	rial env	viron	ment.
2	Inform	nation a	nd unde	erstandi	ng nece	essary to	launch	and gro	w an entre	preneurial v	enture.		
3	A real	istic pre	eview of	f ownin	g and o	perating	an ent	repreneu	rial ventur	e.			
		-	eur mus	t under	stand th	e divers	ity, em	otional ii	nvolvemen	t, and work	load ne	ecessa	ary to
4	succee												
5	The o	pportun	ity to de	evelop a	a busine	ss plan.							
COURS	E OUI	COM	ES										
On the	success	ful com	pletion	of the c	course, s	students	will be	e able to					
	-	the conc	cept of r	new ver	nture pla	anning, o	objectiv	ves and f	unctions a	nd its			
compor		(1 1	· 1	•	1		· ·	· · ·		· ·			derstand
									n startups			Ap	ply
whethe				Tai idea		point wi	lere yo	u can inte	elligently a	ind decide		Ap	nlv
				ne diffe	rent for	ms entre	epreneu	rial envi	ronment ir	terms of the	eir		<u>Jiy</u>
key diff					101101		preneu		ronnent n		011	Ap	ply
CO5: E	Explore	the busi	ness pla	an and F	ousiness	model	canvas	for your	idea.			Ap	
			*							ECIFIC O	UTCO		
	Р	Р	Р	Р	Р	Р	Р	PO					
COs	01	02	03	04	05	06	07	8	PO9	PO10	PO	11	P012
CO1	М	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	М	-	-	-	-	-		-
CO3	S	S	S	М	М	М	-	-	-	-	-	-	-
CO4	S	S	S	М	М	М	-	-	-	-	-	-	-
CO5	S	S	S	М	М	М	_	_	_	_			_

# S- Strong; M-Medium; L-Low

### SYLLABUS:

**STARTING NEW VENTURE:** Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

**METHODS TO INITIATE VENTURES:** Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising -

How a franchise works and franchise law - Evaluating franchising opportunity.

**THE SEARCH FOR ENTREPRENEURIAL CAPITAL:** The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

**THE MARKETING ASPECTS OF NEW VENTURE:** Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

**BUSINESS PLAN PREPARATION FOR NEW VENTURE:** Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

# **Text Book:**

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

# **Reference Books:**

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

FINANCE AND ACCOUNTING	Category	L	Т	Р	Credit
34121003 FOR ENGINEERS	OE-IE	3	0	0	3

#### **PREAMBLE:**

Engineers are in a position to do Decision Making during every activity in the industry. The activities ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance and Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpretation through data analysis and reporting in every transaction helps the organization to do decision making to run the organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources to do cost and Financial decisions with optimum resources for the betterment of the organization.

#### **PREREQUISITE:** Not Required

#### **COURSE OBJECTIVES:**

1. To understand the concepts and conventions to prepare Income Statement, and Balance Sheet.

2. To apply the various methods to claim depreciation.

3. To practice fundamental investment decision through capital budgeting techniques.

4. To analyze cost-volume profit analysis for decision making and analyze standard costing techniques.

5. To estimate the working capital requirements for day-to-day activities and handling inventories with economic ordering quantities.

#### **COURSE OUTCOMES:**

After successful completion of the course, students will be able to

CO1: Understand the importance of recording, book keeping and reporting of the business	
transaction.	Understand
CO2: Identify and Apply suitable method for charging depreciation on fixed assets.	Apply
CO3: Analyze the various methods of capital budgeting techniques for investment decision.	Analyze
CO4: Justify the scope of cost-volume-profit analysis, standard costing, and marginal	
costing techniques for decision making.	Analyze
CO5: Estimation of working capital requirements of the organization.	Evaluate

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	М	L	S	М	-	S	-	М	М	L	М	L	М
CO2	L	-	-	L	М	-	L	L	-	-	L	М	L	L	-
CO3	-	М	-	М	L	-	-	L	S	М	-	L	-	L	М
CO4	L	L	-	S	-	-	L	-	-	L	М	L	М	L	М
CO5	L	-	L	S	L	-	-	М	М	L	-	L	М	М	-
S- Strong; M-Medium; L-Low															

# SYLLABUS:

**Introduction:** Business Environment – Book Keeping and Accounting – Accounting Concepts and Conventions – Double entry system - Preparation of journal, ledger and Trial balance – Final Accounts.

**Deprecation:** Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance Method and Annuity Method.

**Capital Budgeting Decisions:** Meaning – Nature & Importance of Investment Decisions – Types - Financial statement analysis and interpretation - Types of Analysis - Objectives - Tools of Analysis - Ratio Analysis: Objectives, Uses and Limitations - Classification of Ratios: Liquidity, Profitability, Financial and Turnover Ratios - Funds Flow Analysis and Cash Flow Analysis: Sources and Uses of Funds, Preparation of Funds Flow statement, Uses and Limitations: Pay Back Period – Accounting Rate of Return – NPV – IRR - Profitability Index.

**Marginal Costing:** Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

**Working Capital Management:** – Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management – Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

## **Text Book**

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

# **Reference Book**

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

S.No	Name of the Faculty	Designation	Department	Mail ID
1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in
2	Dr. Rajeshkumar	Assistant Professor	Management Studies	rajesh.mba@avit.ac.in

# OPEN ELECTIVE-EMERGING AREA COURSES

										Ca	ategory		T	P (	Credit
3532	21001		F	RIOSEI	NSORS	AND '	TRANS	SDUCE	RS	0	E-EA	3	0	0	3
PREAN			-									U	V	•	0
	the course is designed to make the student acquire conceptual knowledge of the transducers and biological components and for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The														
	ed for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The inciples of biosensors that are currently deployed in the clinical side are introduced.														
<u> </u>	REREQUISITE – Nil														
COURS	DURSE OBJECTIVES														
	1         To use the basic concepts of transducers, electrodes and its classification.														
2															
3					of biolo		ompone	ents.							
4	Toem	ploy th	e know	ledge i	n electro	ochemi	cal and	optical	biosens	sors.					
5	To ou	tline the	e variou	ıs biolo	gical co	ompone	nts usir	ng biose	nsors.						
COUR	SE OU	тсом	IES												
	success			n of the	course,	student	ts will t	be able	0				•		
CO1.	Describ	be the w	vorking	princip	les of t	ransduc	ers.						Und	erstand	
CO2.	Explain	n the va	rious ty	pes of	electroc	les.							Und	erstand	
CO3.	Utilize	various	s FET s	ensors	for reco	rding o	f biolog	gical con	nponen	its.			App	ly	
CO4.	Disting	uish va	rious b	iosenso	rs like e	electroc	hemica	l and op	otical bi	osensors	•		Ana	yze	
CO5.	Analyz	e the bi	ologica	l comp	onents	using bi	iosenso	rs in va	rious ap	plicatior	ıs.		Ana	yze	
MAPPI	NG WI	TH PR	OGRA	MME	OUTC	OMES	AND	PROG	RAMM	IE SPEC	IFIC O	UTCOM	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L		М		М			L			М		М	
CO2	М	L		М		М			L			М		М	
CO3	S	М	L	S		S	М	М	М			М	М	М	М
CO4	S	S	L	S		S	М	М	S			М	М	М	S
CO5	CO5 S S L S S M M S S M M S														
S- Stro	S- Strong; M-Medium; L-Low														
SYLLA	BUS														

**INTRODUCTION:** General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

#### TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

#### **BIO POTENTIAL ELECTRODES:**

Half cell potential, Types of Electrodes – Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

# **BIOSENSORS:**

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

# **APPLICATIONS OF BIOSENSORS:**

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

#### **TEXT BOOKS:**

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

#### **REFERENCES:**

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications, 2008.

COURS	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	Prabhakaran.bme@avit.ac.in
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in

# 

		DDU					CAT			Cate	egory	L	Т	P C	Credit
3532	1003			LES OI			CAL			OE	-EA	3	0	0	3
	<b>REAMBLE</b> To enable the students to develop knowledge of principles, design and applications of the Biomedical Instruments.														
PRER	EQUIS	ITE – I	NIL												
COUR	SE OB	JECTI	VES												
1	To kn	ow abo	ut bioel	ectric s	ignals, o	electro	des and	its type	es.						
2	To kn	ow the	various	Biopot	ential r	ecordin	ig meth	ods.							
3	To stu	dy abo	ut patie	nt moni	toring c	concept	and va	rious P	hysiolog	gical mea	asuremen	its metho	ds.		
4	To stu	dy the	princip	le of op	eration	blood f	low me	ter, blo	od cells	counter.	1				
5	To stu	dy abo	ut bio c	hemica	l measu	rement	s and d	etails th	e conce	ept of bio	telemetr	y and pat	ient sa	fety.	
COUR	SE OU	тсом	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able t	to						
CO1.	Explain	the dif	fferent	Bio sigi	nal or bi	opoten	tial.						Und	erstand	
CO2.	Discuss	s the wo	orking p	orincipl	es of dia	agnosti	c and th	ierapeu	tic equi	pments.			Und	erstand	
CO3.	Examir	ne the v	arious i	nstrum	ents like	e as EC	G, EM	G, EEG	, X-ray	machine	•		App	ly	
CO4.	Illustra	ate med	ical ins	trument	ts based	on pri	nciples	and app	olication	n used in	hospital.		Ana	lyze	
CO5.	Analyz	e and c	alibrate	fundar	nental b	oiomedi	cal inst	rument	ation us	ed in hos	spital.		Ana	lyze	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (	DUTCON	MES	1	I
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М			-								L	М		
CO2	М								L			L	М		
CO3	S	S	М	S	М				М			М	М	Μ	S

# S- Strong; M-Medium; L-Low

М

S

S

S

# SYLLABUS

CO4

CO5

#### **BIOELECTRIC SIGNALS AND ELECTRODES**

М

Μ

L

L

--

Μ

--

--

М

Μ

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes.

L

L

S

S

L

L

S

S

---

--

S

S

S

S

Μ

Μ

#### **BIO AMPLIFIER AND BIOMEDICAL RECORDERS**

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

#### PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

#### **BLOOD FLOW METERS, BLOOD CELL COUNTERS**

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

#### **BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY**

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

#### **TEXT BOOKS:**

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2nd Edition, 1997.

#### **REFERENCES:**

- 1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

COUR	SE DESIGNERS	1		
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran.bme@avit.ac.in
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
4	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in

		Category	L	Т	Р	Credit
38121002	INTRODUCTION TO BIOFUELS	OE-EA	3	0	0	3
PREAMBLE		·				

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feedstocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

**PREREQUISITE** – NIL

**COURSE OBJECTIVES** 

1 To understand the different types and differences between existing energy resources.

2 To understand the improcurement, utilization and their impacts on society and environment.

To gain knowledge about the existing different biofuels and the methods of production from different 3 sources.

4 To introduce the techonologies involved in the production, characterization of biofuels.

To impacrt the knowledge and applications of biofuel in various sectors and their beneficial aspects to the society.

# **COURSE OUTCOMES**

5

After the successful completion of the course, learner will be able to

CO1. U	CO1. Understand the existing and emerging biomass to energy technologies														Remember
CO2. U	CO2. Understand the concept of 1 st generation, 2 nd generation and advance biofuels														Understand
CO3. A	CO3. Appraise the techno-economic analyses of biofuel conversion technologies														Understand
	CO4. To articulate the concept of a biorefinery system and be able to develop major unit operations of an integrated biorefinery													it	Apply
CO5. I	CO5. Illustrate the environmental implications														Apply
MAPF	PING	WIT	H PR	OGR	AMM	IE OU	JTCC	<b>MES</b>	S AND	PROC	GRAM	ME SI	PECIFI	IC OU	TCOMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	L	-	М	-	S	L	-	-	-	-	S	-	L
CO2	-	S	S	-	М	-	L	-	-	-	-	-	-	S	L
CO3	S	М	-	М	-	М	-	L	L	-	-	-	S	-	L
CO4	-	S	М	-	М	L	L	-	-	-	-	-	-	S	М
CO5	-	-	-	-	-	-	-	S	М	-	-	-	-	-	L

S- Strong; M-Medium; L-Low

# SYLLABUS

# **OVERVIEW OF BIOFUELS**

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economic sustainability of biofuels.

# BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

# BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

# **BIOMETHANE AND BIOHYDROGEN**

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

# **OTHER BIOFUELS**

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

# **TEXT BOOKS:**

**1.** Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:** 

 Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech, 2011

	Name of the			
S.No	Faculty	Designation	Department	Mail ID
		Assistant Professor –		
1	Dr.A.Balachandar	Gr-II	Biotechnology	balachandar.biotech@avit.ac.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in

		Category	L	Т	Р	Credit
	FOOD AND NUTRITION TECHNOLOGY		2	0	0	2
38121001	TECHNOLOGI	OE-EA	3	U	U	3

#### PREAMBLE

The course aims to enable the students to understand the physicochemical, nutritional, microbiological and sensory aspects, To familiarize the students about the processing and preservation techniques. To emphasize the importance of food safety, food quality, food plant sanitation, food laws and regulations, food engineering and packaging in food industry.

PRI	PREREQUISITE – NIL															
CO	URSI	E OI	BJEC	<b>FIVE</b> S	5											
1	1 Understand the tradition food processing techniques and the basics concept of food biochemistry.															
2																
	Demonstrate the product development technique, quality and contaminant check.															
3	3 To articulate their technical knowledge for industrial purpose.															
4																
5																
CO				OME												
	.1		-	1	1	6					1.1					
Afte	er the	e suc	cessfi	ul con	npleti	on of t	he co	urse, l	earne	r will b	be able	to				
CO	<u>1: Re</u>	ecall	the pi	rocess	ing te	chniq	ues pr	actice	d in o	lden da	ays and	the bi	ologica	l proce	ss	Remember
	2. Illu conta			meth	ods fo	or anin	nal pr	oduct	devel	opmen	it, quali	ty cont	rol and	l also so	creen	Understand
				techni	ques i	n scal	ing u	p for i	ndusti	rial nee	eds					Apply
CO	4. In	terpi	ret and	d Trou	ıblesh	oot in	strum	ents t	o mai	ntain a	ccuracy	y				Apply
CO	5. De	evelo	op star	ndards	s for fo	ood ad	lditive	es								Apply
	DDI					0.0			G AND		CDAN			COL	<b>CO</b> 1	
MA	PPIN	NG V	VITH	PROG	JRAN	1ME (	JUTC	OME	S ANI	D PRO	GRAM	IME SI	<b>'ECIFI</b>	C OUT	COM	
CO	s I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO	l s	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2 -		М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO	3 г		М	S	М	L	-	-	-	-	-	-	-	М	L	-
CO	1 N	M	S	S	М	L	-	-	-	-	-	-	-	S	S	-
CO			S	S	М	М	-	-	-	-	-	-	М	L	S	-
S-S	trong	;; М-	Mediu	ım; L-1	Low											
SVI	SYLLABUS															
INT	ROI	DUC	TION	TO F	OOD	BIOT	ECHI	NOLC	GY							

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

**METHODS IN FOOD BIOTECHNOLOGY:** Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

# **BIOTECHNOLOGY METHODS IN FOOD PROCESSING:**

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

# HURDLE TECHNOLOGY:

Principles and applications, Hurdle effect in fermented foods, shelf stable products, intermediate moisture foods, application of hurdle technology

# FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

# TEXT BOOKS:

1. Potter, Norman. M. Food Science, 5th Ed. Springer US

2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.

3. B. Srilakshmi., (2002) Food Science, New Age Publishers.

# **REFERENCES:**

1. Meyer, (2004). Food Chemistry. New Age

2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	<u>nirmala@vmkvec.edu.in</u>

										ategory		L	Т	Р	Credit
3422	1001		DIS	SASTE	R RISI	Z MAN	AGEN	<b>IENT</b>		DE-EA		3	0	0	3
Pream	ble	la wit									I			·	5
structur		Hazaro	d Asses	sment j	procedu	re in In	dia. Th	is course					ect agains f mitigatin		
Prereq	uisite														
NIL															
Course	Objecti	ives													
1	To Und	erstan	d basic	concep	ots in D	isaster l	Manage	ement.							
2	To Und	erstan	d Defi	nitions	and Ter	minolo	gies use	ed in Dis	saster N	Aanagem	nent.				
3	To Und	erstan	d the C	Challeng	ges pose	ed by D	isasters	•							
4	To unde			cts of D	isasters										
	SE OU			tion of	the cou	rse stu	dents w	vill be ab	le to						
-			-			-				l and Ma	arine				
Disast	ers, Atm	osphe	eric Dis	asters,	Geologi	ical, Ma	ass Mov	vement a	und Lai	nd Disast	ters, Win	ıd			
and W	ater Driv	ven D	isasters	8.									Understa	nd	
CO2. ]	Identify	the po	otential	deficie	ncies of	existin	g build	ings for	Earthq	uake dis	aster and	l			
	st suitabl												Understa	nd	
	Derive th Juake dis		le lines	for the	precau	tionary	measur	es and r	ehabili	tation me	easures f	or	Apply		
CO4.]	Derive th	ne pro	tection	measu	es agai	nst floo	ds. cvc	lone, lan	nd slide	s			Apply		
		p					,-j	,,		-					
CO5.1	Understa	and the	e effect	s of dis	asters o	n built	structu	res in Ind	dia				Understa	nd	
MAPI	PING W	ITH	PROG	RAMN	1E OU	тсом	ES AN	D PRO	GRAN	AME SP	PECIFIC	COUTO			
COS CO1	PO 1 M	PO2	PO3	PO4 L	PO5	PO6	PO7	PO8	PO9	PO10 -	PO11 -	PO12	PSO1 L	PSO2	PSO3
CO2	M	М	L	L	-	М	-	-	-	-	_	-	L	-	-
CO3	S	М	S	М	-	L	-	М	-	-	-	-	М	L	-
CO4	S	М	S	-	L	-	-	-	-	-	-	-	М	L	-
CO5	L	L	-	L	-	-	-	-	-	-	-	-	L	-	-
S-Stro	ong; M-N	Mediu	m; L-L	OW											

# SYLLABUS

**INTRODUCTION:** Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

**RISK ASSESSMENT AND VULNERABILITY ANALYSIS:** Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment ;Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

**DISASTER MANAGEMENT MECHANISM:** Concepts of risk management and crisis management ; Disaster management cycle ;Response and Recovery ; Development, Prevention, Mitigation and Preparedness; Planning for relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster

**DISASTER RESPONSE:** Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management ;Minimum Standards of Relief; Managing Relief; Funding.

**DISASTER MANAGEMENT IN INDIA:** Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans, , Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

# **TEXT BOOKS:**

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

# **REFERENCES:**

- 1. Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

Course	Designers			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	Civil / AVIT	isparaxavier.civil@avit.ac.in

										Catego	orv	L	Т	Р	Credit
3422	1002	м	NICIP	AL SO	LID W	ASTE	MANA	GEMI	ENT	OE-EA		3	0	0	3
Pream		1120				110 111					-	•	Ŭ		
Structur	e is a	n arran	gement	and or	ganizati	ion of i	nterrela	ated ele	ments i	in a mate	erial obje	ect or sy	ystem, or	the object	ct or
system	so org	anized.	Materi	al struc	tures in	clude n	nan-ma	de obie	cts sucl	h as build	dings and	d machi	nes and n	atural ob	iects
such as	Ū							5			U				,
Prerequ			Sumono	,			<b>u</b> 15.								
-	Nil														
Course	Objec	etives													
1.	The	on-site/	off-site	proces	sing of	the sam	e and the	he dispo	osal me	thods.					
2.	The	student	is expe	cted to	know a	bout the	e variou	is effec	ts and d	lisposal o	options fo	or the m	unicipal s	solid wast	e.
3.			on and								1		•		
4.			processi												
4. Course			process	ing invo	Jiveu III	site.									
On the s			npletio	n of the	course,	studen	ts will l	be able	to						
CO1.	To kn	ow abo	out the t	ypes of	waste	& Sour	ces						Analyze		
CO2	To St	udv the	on site	Storag	e & Pro	cessing	r						Apply		
								to					Apply		
			out the c					le							
			proces				5						Apply		
CO5.	To kno	ow abo	ut the so	olid wa	ste disp	osal							Apply		
Mapp	ing wi	th Prog	gramm	e Outco	omes ai	nd Prog	gramm	e Speci	fic Out	comes	[	1			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	-	-	-	-	<b>S</b>
CO2	S	М	L	S	-	-	-	-	-	-	-	-	-	М	S
CO3	S	Μ	Μ	S	-	-	-	-	-	-	-	-	-	М	S
CO4	S	М	М	М	-	-	-	-	-	-	-	-	-	М	S
CO5	S	М	Μ	-	-	-	-	-	-	-	-	L	-	-	S
S-Str	ong; N	1-Medi	um; L-	Low											

#### SYLLABUS

#### SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization– public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

#### **ON-SITE STORAGE & PROCESSING**

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

#### **COLLECTION AND TRANSFER**

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

#### **OFF-SITE PROCESSING**

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions- cradle to grave management concept, Prevailing laws of hazardous waste management- Risk assessment.

#### DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

#### Text Books

1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002.

2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.

3. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest

publication, (1992).

#### **Reference Books**

1. R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes – problems and Solutions", Lewis

Publishers, 1997, Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries",

INSDOC, 1993.

 Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002). Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development.

3.Government of India, New Delhi, (2000).

4. NPTEL – Municipal Soild Waste Management by Prof. Ajay Kalamdhad – IIT Guwahati.

Cours	e Designers			
S.No	Name of the Faculty	Designation	Department	Mail ID
				subathra@avit.ac.in
1	Mrs.P.Subathra	Assistant Professor	Civil / AVIT	
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.com

								-			Category	L	Т	P C	Credit
	350210			MENTA IGENC		ARTI	FICIA	L			OE-EA	3	0	0	3
PREAN											OE-EA	5	U	U	0
											about Art				
	•	•	ent, Kn	owledge	e Repre	sentatio	on and	Game	playing	. Thus,	this syllab	ous focus	es on to	know a	bout AI
and its c PRERE			T.												
COURS	<u> </u>														
1.	To intro	duce th	he hasic	, princir	les tec	hniques	and a	nnlicati	ons of 4	Artificia	l Intellige	nce			
						<u> </u>					U				
2.	To nave	KIIOW	ledge of	generi	² proble	sin-sorv	ing met	linous in	Anne		ligence.				
3.	To desi	gn soft	ware ag	ents to	solve a	problen	n.								
4.	Apply t	he knov	wledge	of algo	ithms t	o solve	arithme	etic pro	blems.						
5.	Assemt	ole an e	fficient	code fo	r engin	eering p	oroblem	ıs.							
COURS	SE OUT	COM	ES												
	success			of the	course	student	s will h	e able t	0						
	5400055			i oi tiite	<u>course</u> ,	<u>student</u>	5 1111 0	<u>e usie i</u>	0						
CO1:. I	dentify t	he diff	erent ag	gent and	its type	es to sol	ve the	problen	ıs			Understa	nd		
CO2: ki	now abo	ut the p	oroblem	n solving	g techni	que in A	Artificia	al Intell	igence.			Apply			
<b>CO3:</b> C	onstruct	the no	rmal fo	rm and	represe	nt the k	nowled	ge.				Apply			
<b>CO4</b> : to	know a	bout ex	tensior	n of con	dition p	robabil	ity and	how to	apply in	n the rea	al time				
environi	ment.											Apply			
СО5: Т	o lean al	bout In	formati	on Retr	ieval an	d Speed	ch Reco	gnition	L			Understa	nd		
MAPPI	NG WI	TH PR	ROGRA	MME	OUTC	OMES	AND I	PROGI	RAMM	E SPE	CIFIC OU	JTCOMI	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	М	-	-	-	-	-	_	М	S	М	-
CO2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	М
CO3	М		S	М	М	-	-	-	-	-	-	М	S	-	М
CO4	S	М	М	М	М	-	-	-	_	-	-	М	S	М	М
CO5	S	М	М	М	М	-	-	-	-	-	-	М	S	М	-
S- Stron	ng; M-N		ı; L-Lo	W											

#### INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system - Production system – Characteristics – Problem Characteristics?

#### HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

#### **KNOWLEDGE REPRESENTATION**

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

# **REPRESENTING KNOWLEDGE USING RULES**

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

#### TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

#### REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE D	ESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in
2.	Dr.R.Jayachandran	Professor	CSE	rjaichandran@avit.ac.in

		IN	TROD	исти	N TO	INTEL	NFT (	ЭF		(	Category	y L	Т	P	Credit
350	21003		HNGS					JI			OE-EA	3	0	0	3
PREAN	<b>IBLE</b>									I		1		I	
Introduc	tion to	IoT for	statisti	cal dat	a manij	oulation	and a	nalysis.	It was	inspired	l by and	is most	compa	tible wi	h the
statistica	al langu	age.													
PRERE	QUISI	TE													
NIL															
COURS	SE OBJ	ECTIV	'ES												
1	To lea	rn Intro	duction	n to IoT											
2	To Stu	ıdy met	hodolog	gy of Io	T.										
							. –								
3	To De	velop I	oT appl	ications	s using .	Arduin	o and Ir	ntel Edi	tion.						
COURS	SE OUT	COM	ES												
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0						
				cs in In	troducti	on to I	oT in t	erms of	constru	ucts, con	trol				
stateme	nts, stri	ng func	tions									Understa	and		
СО2: Т	o Unde	rstand t	he use	of Intro	duction	to IoT	funda	mentals	5.			Understa	and &	Apply	
<b>CO3:</b> L	earn to	apply I	ntroduc	tion to	IoT for	Comm	unicati	ng Sequ	uential l	Process		Understa	and &	Apply	
								-		cal pers	nective	Understa			
							10 101	1101110	i statisti	eur pers	Sective				
CO5 To												Understa		Apply	
								1				UTCOM		_	
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1		-
CO1	S	S	М	М	L	S	S	М	S	L	S	-	S	M	S
CO2												М	M	М	S
CO3	M	S	М	М	М	S	S	М	S	M	M	-	M	-	S
<b>CO4</b>												М	M	S	М
CO5	S	S	S	S	М	S	S	S	S	Μ	S	S	M	Μ	М
S- Stro	ong; M-	Mediu	m; L-L	ow											

# SYLLABUS UNIT I -INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

# UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network **UNIT III – Network & Communication aspects** 

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination UNIT IV – Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

# UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

# TEXT BOOKS

1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"

2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" **REFERENCES** 

1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in

										Cat		Ţ	Т	D	Cre
2502	1001			CVD							egory		T	P	dit
3502 PREAM	1001 /BLE			CYB	ER SI	LCUR				OE-	EA	3	0	0	3
			need for	Cvber	Secur	itv in r	eal tim	e and t	o study	v technic	ues invo	lved in i	t.		
PRERE				- )					J						
COURS															
1.			stand th						and is	sues.					
2.	To s	study	various	cyber	crimes	and leg	gal rem	nedies.							
3.	Тоа	apply	various	privac	y and s	security	/.								
4.			E-Com												
5.				c secui	ity asp	ects re	lated to	o Comp	outer a	nd Mobi	les.				
COURS							1		1.1						
On the s												Unders	tand		
CO1: A associate			rstand t	he con	cept of	Cyber	securi	ty and	issues	and chal	lenges	Unders	land		
CO2: A										edies and	d as to	Apply			
CO3: A media a	ble to	appro dersta	eciate v nd the 1	through available platforms and proceduresate various privacy and security concerns on online Social the reporting procedure of inappropriate content,Apply											
underlyi	ng leg	gal as	pects ar	nd best	practic	es for	the use	of Soc	cial me	dia platf	orms.				
CO4: A payment		unde	rstand t	he basi	c conc	epts re	lated to	E-Co	mmerc	e and di	gital	Apply			
CO5: A Mobiles		o unde	erstand	the bas	ic secu	rity as	pects re	elated t	o Com	puter an	ıd	Apply			
		VITH	PROC	GRAM	ME O	UTCO	MES	AND F	ROG	RAMM	E SPEC	IFIC OU	UTCO	MES	
	Р	Р	Р	Р	Р	Р	Р	Р	Р						P S
	Ο	0	0	0	0	0	0	0	0	РО	PO1	PO1	PS	PS	0
COs	1	2	3	4	5	6	7	8	9	10	1	2	01	02	3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	М	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	М	-	-	-	-	-	-	-	М	М	М
CO4	s	М	М	М		-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	S	-	-	-	-	-	-	-	М	М	S
S- Stron SYLLA	U/	-Med	ium; L	-Low											

#### INTRODUCTION TO CYBER SECURITY

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

#### CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

#### SOCIAL MEDIA OVERVIEW AND SECURITY

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

#### E - C O M M E R C E AND DIGITAL PAYMENTS

9 hours

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

#### DIGITAL DEVICES S E C U R I T Y , TOOLS AND TECHNOLOGIES FOR CYBER SECURITY 9 hours

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

# REFERENCES

1. Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010.

2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7.

Fundamentals of Network Security by E. Maiwald, McGraw Hill

COU	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
		Assistant professor G-		
1.	Dr.R.Jaichandran	II	CSE	rjaichandran@avit.ac.in

9 hours

9 hours

		DESI	GN O	F ELE	CTRC	DNIC		Cate	gory	]	_	Т	Р	Cro	edit
34721	001		IPME		• • • • •			OE	-EA	,	3	0	0		3
PREA															
												ctronics			
			-				0			0	0	om a			d into
				lesign a	and pro	totypin	ig and	ending	up in a	a manufa	acturable	e physic	al proto	type.	
PRER	EQUI	SITE -	-Nil												
COUR	SE O	BJEC	<b>FIVES</b>												
1	To un	derstar	nd the	various	Conce	pt of I	ndustri	al Desi	gn pro	cess.					
										ethodolo					
					Ŭ				•	uct desi	0				
4	To un	derstar	nd the ]	Knowle	edge re	garding	g the de	esign o	f produ	ict pack	aging an	id worki	ng envi	ronmen	t.
5															
COUR	SE O	UTCO	MES												
On the	succes	ssful co	omplet	ion of t	he cou	rse, stu	dents v	will be	able to	)					
CO1. V	visuali	ze the	concep	t for p	roduct	design	with re	espect t	o ergo	nomics	and aest	hetics.		Remer	nber
CO2. A	nalyz	e, desig	gn and	impler	nent co	ontrol p	anels o	of elect	ronic e	quipme	nt			Apply	
			ity in t	he desi	gn of s	ystem	by forr	nulatin	g archi	itecture	with pro	per plac	ement	Apply	
of com															
CO4. A	Apply t	the con	cept of	f visual	comm	unicati	ion tecl	hnique	s in pro	oduct de	sign.			Apply	
CO5. A	Apply t	he pro	cess of	value	analysi	is in ex	isting p	oroduc	t.					Apply	
MAPP	ING	WITH	PRO	GRAM	ME O	UTCO	MES A	AND F	PROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	<b>PO1</b>	PO1	<b>PO1</b>	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	M	L	-	-	S	-	-	L	M	L	-	-	S	-	-
CO2	M	L	-	M	S	-	-	L	M	L	-	- T	S	-	-
CO3 CO4	M S	L	- L	Μ	S S	-	-	L L	M	L L	-	L L	S	- M	M
		M		-		-	-		M		-		S	M	M
CO5         S         M         L         -         S         -         -         M         L         -         L         S         M         M           S- Strong; M-Medium; L-Low         -         -         M         L         L         -         L         S         M         M													3	IvI	IvI

#### **MODULE 1: INTRODUCTION**

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

#### **MODULE 2: PRODUCT PROTOTYPES**

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

#### **MODULE 3: PRODUCT DESIGN AND PLANNING**

Electronic product design and development Methodology, Creativity techniques, brainstorming documentation. Product planning: Defining the task, scheduling the task and its execution. Costing and Pricing of Industrial design,

#### **MODULE 4: ERGONOMICS**

Ergonomics: Ergonomics of electronic equipment, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

#### **MODULE 5: CASE STUDIES**

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

#### **TEXTBOOKS:**

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

#### **REFERENCE BOOKS:**

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", &Hall. London. Flurschiem C H,

"Industrial Design and Engineering Design", Council, London and Springer Verlag, 1983

COU	COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Department	Mail ID										
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in										
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in										
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in										

	INTRODUCTION TO INDUSTRY 4.0	Category	L	Т	Р	Credit
	AND INDUSTRIAL INTERNET OF					
34721002	THINGS	OE-EA	3	0	0	3

#### PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

#### PREREQUISITE

## Basic knowledge of computer and internet COURSE OBJECTIVES

000	
	Industry 4.0 concerns the transformation of industrial processes through the integration of modern
1	technologies such as sensors, communication, and computational processing.
	Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing,
	Machine Learning, and Data Analytics are considered to be the different drivers necessary for the
2	transformation.
	Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various
3	existing industrial systems.
4	IIoT links the automation system with enterprise, planning and product lifecycle.
5	Real case studies.
COU	IRSE OUTCOMES

On the successful completion of the course, students will be able to	
CO1. Apply & Analyzing the transformation of industrial process by	
various techniques.	Analyze
CO2. Evaluate the transformation technologies are considered to be the	
different drivers.	Apply
CO3. Existing industrial systems will adopt the applications of IIoT.	Apply
CO4. Intensive contributions over automation system with enterprise,	
planning and product life cycle	Analyze
CO5. Analyze of various Real time case studies.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO 1	<b>PO</b> 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
CO2	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO3	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO4	S	S	s	М	М	_	_	_	_	_	_	М	S	М	М
CO5	S	S	S	S	М	_	_	_	_	_	_	M	S	M	M
	S- Strong; M-Medium; L-Low														

#### INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGS

Introduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

#### INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT: Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

#### **II0T COMMUNICATION**

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

#### IIoT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, Industrial IoT- Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

#### **APPLICATIONS & REAL TIME CASE STUDIES**

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

#### **TEXT BOOKS:**

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

#### **REFERENCE BOOKS:**

- 1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016
- 2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L.K.Hema	Prof.&Head/ECE	ECE	hodece@avit.ac.in
2	Dr.T.Muthumanickam	Professor	ECE	hodece@vmkvec.edu.in

											~	_	_		-
2167	1001		CDFL		WFD (	TINIT	атіл	N SYSTI	FMS		Category DE-EA	y L 3		P C	redit 3
3462 PREAN			GKLI	INPU	WER (	JENER	AHO	N 31311	LIVIS		JE-EA	3	U	)	3
		ents the	various	source	s of rer	newable	e energ	y includii	ng wind,	solar, a	nd biom	ass as p	otential	sources	of energy
and inv	estigates	the co	ontributio	on they	can m	nake to	the en	ergy pro	file of th	he nation	n. The t	echnolo	gy used	l to harn	ess these
		e presei	nted. Di	scussio	ns of e	conomi	c, envi	ronment,	politics	and soci	ial policy	y are in	tegral c	omponen	ts
of the co	ourse.	PT. NI	т												
	SE OBJI														
				4				and areat	in al-1 a d	1					
								and susta		leveloph	nent.				
						<u> </u>		ironment							
3 I	Learn ba	sics of	various	types of	f renew	able an	d clean	energy t	echnolog	gies.					
	Serve as			nced co	urses ir	renew	able en	ergy.							
	SE OUT														
On the s	successfu	ll comp	oletion of	f the co	urse, st	udents	will be	able to							
CO1: F	Explain r	enewał	ole energ	gy sourc	ces & s	ystems.								Understa	nd
CO2:	Apply e	ngineeı	ring tecl	hniques	to bu	ild sol	ar, win	d, tidal,	geother	mal, bio	fuel, fu	el cell,			
Hydrog	gen, and	sterling	g engine											Apply	
CO3: 4	Analyze	and ev	aluate t	he imp	lication	of ren	ewable	energy.	Concept	ts in sol	ving nui	nerical			
problei	ns pertai	ining to	o solar ra	diation	geome	try and	wind e	energy sys	stems.					Analyz	e
CO4: I	Demonst	rate sel	f -learni	ng capa	bility t	o desig	n & est	ablish rei	newable	energy s	vstems.			Analyz	e
								f solar P				odiesel		J	
system		enpen	incincs t	<b>u</b> bb <b>u</b> b	s une p	••••••	unee o	i bonun i	, 501ui	literina	i una or	oureser		Apply	
		ITH PI	ROGRA	MME	ουτα	COME	S AND	PROGR	AMME	SPECI	FIC OI	TCON	IES	Арргу	
COS	PO1	PO2	PO3			PO6	<b>PO7</b>	<b>PO8</b>	PO9		PO11	PO12	PSO1	PSO2	PSO3
CO1	S	_	_	_	М	-	L	L	_	_	-	_	М	_	-
CO2	S	М	S	L	M	_	L	M	_	М	-	_	-	_	_
CO2	S	101			M		L	M	M		-	_	L		
		-	-	-		-	-	IVI	IVI	-	-	-		-	-
CO4	S	-	-	-	М	-	L	-	-	-	-	Μ	-	-	-
CO5	S	М	S	L	М	-	L	М	-	М	М	-	Μ	L	-
CO6	S	-	-	-	М	-	L	L	-	-	-	-	-	-	-
S-Stro	ng; M-M	ledium	; L-Low	,											

#### ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

#### ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

#### **RENEWABLE SOURCES OF ENERGY**

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

#### BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

#### OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

#### **TEXTBOOKS:**

- 1. Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 2. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.

#### **REFERENCE BOOKS:**

- 1. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 2. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

COURS	E DESIGNERS		•	
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

												Catego		L	Τ	Р	С	
346210	002	IND	USTR	RIAL I	ORIVI	ES AN	D AU	TOM	ATIO	N		OE-EA	A	3	0	0	3	
Preamble																		
To introdu	ce foun	datior	on th	e princ	iples o	of driv	es & a	utoma	tion an	d their	eleme	nts with	the i	mple	ement	ation		
PREREQ					•													
	COURSE OBJECTIVES																	
1		To explore the various AC,DC & Special Machine Drives for industrial Application.																
2		To s	To study about the various Open loop and closed loop control schemes for drives.															
3		To k	To know about hardware implementation of the controllers using PLC.															
4		To s	To study the concepts of Distributed Control System.															
5		To understand the implementation of SCADA and DCS.																
COURS	COURSE OUTCOMES																	
On succe	essful c	omple	tion o	f the c	ourse.	the st	udent	s will	be abl	e to								
		To u	ndersta	and wo	orking	princi	ples of				motors	, differe	nces,					
CO	1			ics and											Understand			
СО	2			ie knov various	-				otors, ł	neating	effects	and bra	aking		Apply			
															Apply Understand			
CO	3			control					se of y	various	DI Ce i	to Autom	nation		Unde	erstan	a	
CO	4			indust		ig usii		and u	.se 01 v	anous	I LC3		lation	L	Unde	erstan	ıd	
~~				-	•		and da	ta acqu	isition	method	and u	se the same	me in	ı				
CO	5	· ·		tomatic			lamor	ta and	uso of	Uumar	Maak	ine Interf	facino		Unde	erstan	ıd	
CO	6					U				of Aut			lacing	5	Unde	erstan	ıd	
Mapping	g with I	Progra	mme	outco	mes ar	nd Pro	gram	me Sp	ecific	Outco	mes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PS	503	
CO1	S	S	L	-		S	S	-		L	-	-	-		_		L	
CO2	М	-	М	-	S	L	М	-	М	L	-	-	L	,	-		-	
CO3	М	_	М	_	S	L	М	_		L	_	-	-		М		_	

CO4	S	-	S	-	S	М	М	L	-	L	М	-	-	-	L
CO5	S	М	S	S	S	М	S	-	М	L	L	М	-	L	М

#### INTRODUCTION

Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

#### INDUSTRIAL DRIVES

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

#### PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logicRelays- Features of PLC- Advantages of PLC over relay logic – Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

#### DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS – Functional elements of DCS – Elements of local control unit -Interfaces-Types of information displays – Architecture of anyone commercial DCS – Advantages of DCS -Selection of DCS – List of various DCS and their manufactures.

#### SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

#### TEXTBOOK

- 1. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 2. FrankD.petruzellaprogrammable logic controlsthird edition TATA mc graw-hill edition 2010.
- 3. M.S.Berde, Electric Motor Drives Khanna publishers.2008

#### REFERENCES

- 1. Pradheepkumarsrivastava, Programmable logic controllers with applications', BPB publications.2004.
- 2. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 3. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 4. R.SrinivasanSpecial electrical Machines lakshmi publication.2012
- 5. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 6. Andrew Parr, Industrial drives, Butterworth Heineaman

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.Chitra	Professor	EEE/AVIT	chitra@avit.ac.in
2	Dr.R.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in

									Categ	ory	L	Т	I	2	Credit
		BIOM													
36921	001	STRU	CTU	RE AI	ND FU	JNCI	ION	01	E-EA		3	0	(	)	3
PREAN															
			-		-				-		•				wledge
about th					a hea	lthy li	festyle	e, free c	of sick	ness and	d a gen	eral awa	areness	about h	ygiene.
PRER COUF				VIL IS											
COUR	ISE C	DJEC	, 1 I V E	20											
1	To g	ive an	overv	iew of	impo	rtance	of bio	omoleci	ules.						
2	To elaborate the structure of proteins and nucleic acids and its role in disease.														
3	To enumerate the role of carbohydrates and their cellular function in physiology and pathology.														
	To enumerate the role of carbonydrates and their centurar function in physiology and pathology.														
4	To enumerate the role of lipids and their cellular function in physiology and pathology.														
5	Tol	oriefly	chole	storol	and its	rola	in disc	2222							
COUR															
				-											
After t	he suc	cessfu	l com	pletio	n of th	e coui	se, lea	arner wi	ill be a	able to					
CO1 I	Relate	the ba	sics of	f biom	olecul	es in	and ar	ound hi	m				Und	erstand	
										a and n	valaia	aaida			
002.0	Under	stand u	ne strt	icture	01 010	molec	ules s	uch as	protein	ns and n	ucieic	acius	Und	erstand	
CO3. I	Discov	ver the	role o	f carb	ohydra	ates in	healt	hy and	diseas	ed cond	itions		App	ly	
CO4. I	Relate	disfun	ctioni	ng of	lipids	with c	lisease	e					Ana	lyse	
CO5. 0	Critici	ze the i	role of	f chole	esterol	in dis	eases						Eval	uate	
									ND PR	ROGRA	MME	SPEC			MES
COS	PO1	PO2		PO4		PO6		PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	-	-	L	-	-	-	-	-	-	-	L	-
CO2	S	М	S	-	-	М	-	-	-	-	-	-	-	L	-
CO3	М	L	М	М	-	S	-	-	-	-	-	-	-	L	-
CO4	L	L	L	L	S	L	-	-	S	-	-	М	L	М	М
CO5 S- Stro	S		L		-	М	-	-	-	-	-	S	S	М	-
3- 3tr	ong; I	vi-ivied	uum;	L-L0	w										

#### PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

#### NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

#### CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

#### FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and non-essential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

#### CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

#### TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

- 3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.
- 4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

S.No	Name of the			
	Faculty	Designation	Department	Mail ID

1	Dr.P.David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in
-	5	rissistant protessor		
			Pharmaceutical	
2	Ms.S.Sowmiya	Assistant Professor	Engineering	sowmiya.vmkvec@vmrf.edu.in

			Category	L	Т	Р	Credit									
3	6921002	PHARMACOGENOMICS	OE-EA	3	0	0 0 3										
	AMBLE			-		, °										
		s involves the study of the relationship between	een an individ	ual's gen	etic m	akeu	p and his									
or he	r response to a	a drug. Pharmacogenetics, a component of p	harmacogeno	mics, is t	he stuc	ly of	the									
relati	onship betwee	en a single gene and its response to a drug.														
PRE	REQUISITE	- NIL														
	DURSE OBJECTIVES															
1	Discuss about the basic knowledge about pharmacogenomics and drug design using genomic															
2		v individualization of drug therapy can be ac ng unwanted drug effects.	hieved based	on a pers	on's ge	enetio	c makeup									
		Pharmacogenomics studies on how genetic d various drugs.	ifferences bet	ween ind	ividua	ls car	n affect									
3	responses to	various drugs.														
4	Formulate or	n medicine skills acquired by the student an	d his action in	differen	t patho	logie	es.									
	Develop acq	uire knowledge about the influence of genet	ic alterations of	on the the	erapeut	ic ef	fect and									
5	adverse react	tions of the drugs, from a perspective of ind	ividualized the	erapy.												
CO	URSE OUTC	COMES														
Afte	er the successf	ul completion of the course, learner will be	able to													
CO	O1.Recognize the effect of genetic differences between individuals in the outcome of Remember															
CO	2. Describe the	e role of single nucleotide polymorphism as	a biomarker fo	or the	ı	Unde	rstand									
CO	3. Utilize and 1	manage the new genomics based tools as the	ey become ava	ilable as	1	Unde	rstand									
CO4	. Examine the a	applications of genomics principles in drug acti	on and toxicolo	gy		Anal	yze									
CO5	5. Validation of	case studies related to pharmacogenomics			1	Analy	CO5. Validation of case studies related to pharmacogenomics Analyze									

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L	
CO2	Μ	Μ	Μ	Μ	L	-	-	-	Μ	-	L	L	L	L	-
CO3	S	S	S	S	L	-	-	-	Μ	-	L	L	L	L	-
CO4	CO4 M M M M M S - L L M L -														
CO5	L	L	L	L	S	-	-	-	Μ	-	Μ	Μ	S	М	-
S-St	S- Strong: M-Medium: L-Low														

#### S- Strong; M-Medium; L-Lov

#### SYLLABUS

#### PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

#### HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

#### ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

#### GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket.

#### **PHARMACOGENOMICS – CASE STUDIES**

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs, chemotherapeutic agents for cancer treatment.

#### **TEXT BOOKS**

- Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

#### REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

S.No.	Name of the Faculty	Designation	Department	Mail ID
			Pharmaceutical	
1	Ms. R. Jaishri	Assistant Professor	Engineering	jaishri@vmkvec.edu.in

# MANDATORY COURSES

Course Code	<b>Course Title</b>	Category	L	Т	Р	С
34121Z81	YOGA AND MEDITATION	AC	0	0		0

#### **OBJECTIVES:**

Yoga is derived from a Sanskrit word 'yuj' which loosely means 'union.' It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes you realize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

#### **COURSE CONTENT**

- Surya namaskar,Padmasana, Uttakatasana
- Surya pranayama, BrahmariPranayama
- Anjalimudra, Mahamudra, Chin Mudra
- Kapalabathikriya,Bhastrika, Tratakkriya
- Simple Meditation, YogaBreath awareness meditation,.

#### **OUTCOMES :**

- It incorporates breathing exercises, meditation and poses designed to encourage relaxation and reduce stress.
- Practicing yoga is said to come with many benefits for both mental and physical health.
- Yoga is known for its ability to ease stress and promote relaxation.
- Many people begin practicing yoga as a way to cope with feelings of anxiety.
- Could Improve Heart Health
- Improves Quality of Life.
- Could Promote Sleep Quality.
- Improves Flexibility and Balance.
- Could Help Improve Breathing.
- Promotes Healthy Eating Habits.
- Can Increase Strength.

#### **TEXT BOOK:**

YogacharyaSundaram, Sundra Yoga Therapy, Asana Publications, 2009

#### **REFERENCES:**

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri MathiNilayam, 2012.
- 2. Dr.AnandaBalayogiBhavanani, A Primer of Yoga Theory, Dhivyananda Creations, 2008.
- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.
- 4. Dr.AsanaAndiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Dr.JohnB.Nayagam, *MudumaikkuMutrupulliVaikkumMuthiraigal*, SaaruPrabha Publications, 2010.

Course Code	Course Title	category	L	Т	Р	С
24121704	INDIAN CONSTITUTION		0	0	2	0
34121Z84		AC	U	U	2	U

#### **Course Objectives:**

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.

3 To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.

5 To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

#### **Course Content**

#### UNIT I

#### The Constitution - Introduction

The Historical background and making of the Indian Constitution – Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties – Directive Principles State Policy

#### UNIT II –Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha UNIT III –Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

#### **UNIT IV – Local Government**

The New system of Panchayat, Municipalities and Co-Operative Societies

#### **UNIT V – Elections**

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

#### **TEXTBOOKS AND REFERENCE BOOKS:**

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008 2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

#### Total Hours: 30 hours

#### Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. <u>http://www.legislative.gov.in/constitution-of-india</u>
- 3. <u>https://www.sci.gov.in/constitution</u>

4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/

#### Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW SCHOOL OF
		ADMINISTRATIVE AND ADJUDICATORY	INDIA UNIVERSITY
		PROCESS	

COURSE DE	CSIGNER			
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID
1	Dr.Sudheer	Professor	AV School of Law	Sudheersurya18@gmail.com

Course Code	Course Title	Category	L	Т	Р	С
	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE					
34121Z83		AC	0	0	2	0

#### **Course Objectives:**

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.
   To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

#### **Course Outcomes:**

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

#### UNIT-I:

**Introduction to traditional knowledge:** Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

#### UNIT-2:

**Protection of traditional knowledge:** The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

#### UNIT-3:

**Legal framework and TK:** The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

#### UNIT-4:

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

#### UNIT-5:

**Traditional Knowledge in Different Sectors:** Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation

and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

#### **Text Books:**

1. Traditional Knowledge System in India, by Amit Jha, 2009.

#### Reference Books:

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

#### Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

34121Z82					Equity n to all				C	ategory AC	y L 0	Т 0	P 2	Credit 0
Gender Equity	is the	e provi	sion of	fairnes	s and j	ustice i	n the d	istributi	ion of t	penefits	and re	sponsi	bilities	between
Men, Women,	Trans	gender	, and C	Gender	non-bin	ary ind	ividuals	. Gend	er equi	ty is in	nportant	becau	se, his	storically,
societies around	d the	world	have d	eemed	female	s, trans	gender	people,	and no	binar	y peopl	e as "	weaker	" or less
important than	males	s. Gend	ler equi	ty emp	hasizes	respect	ting ind	ividual	s witho	ut disci	riminati	on, reg	gardles	s of their
gender. There	are le	egal pr	ovision	s that	address	issues	like in	nequalit	ties that	t limit	a perso	on's a	bility	to access
opportunities to	achie	eve bett	ter healt	h, educ	ation, a	nd ecor	nomic o	pportun	ity base	ed on th	eir geno	der.		
PREREQUISI	TE: N	NIL												
COURSE OBJ	IECT	IVES												
To s	ensiti	ze the s	students	regard	ing the	issues c	of gende	r and th	ne gende	er inequ	alities p	prevale	ent in s	ociety.
	aise a	nd deve	elop soc	cial con	sciousn	ess abo	ut gend	er equit	y amon	g the st	udents.			
To b	ouild a	ı dialog	ue and	bring a	fresh p	erspecti	ve on tr	ansgen	der and	gender	non-co	nformi	ng ind	ividuals.
4				_			o help th		_					
5 To h	elp th	ne stude	ents und	erstand	the var	ious leg	gal prov	isions t	hat are a	availab	le in ou	r socie	y.	
COURSE OUT	ГCON	MES												
On the successf	ful con	mpletio	n of the	course	e, studer	nts will	be able	to						
CO1.Understan	d the	importa	ance of	gender	equity					U	ndersta	nd		
CO2.Initiate the	e awai	reness a	and reco	ognize t	he socia	al respo	nsibility	with r	egards t		1			
gender equity. CO3.To develo	op a s	ense of	f inclus	iveness	and to	lerance	toward	s vario	us gend		pply			
without any dise	crimi	nation.								А	pply			
CO4. To evalua		e social	issues a	and app	ly suita	ble gen	der-rela	ted regu	ulations					
for inclusive liv	mg.									E	valuate			
CO5.To identify various instituti		analyz	e the ex	isting g	gender i	nequalit	ty probl	ems fac	ed in		nalyse			
MAPPING WI	TH F	PROGI	RAMM	E OUI	ſCOMI	ES ANI	D PRO	GRAM	ME SP	ECIFI	C OUT	COM	ES	
	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO	1 PSC	D2 PSO3
CO1 S	M	L	-	-	S	S	S	-	_	-	S			-
CO2 S	М	М	-	-	S	S	S	-	-	-	S	-	-	-

CO3	S	L	Μ	_	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	Μ	-	S	S	S	-	-	-	S	-	-	-
S- Stro	S- Strong; M-Medium; L-Low														

#### **UNIT -I INTRODUCTION TO GENDER AND SEX**

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – Gender Stereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

#### UNIT –II - GENDER BIAS

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

#### UNIT -III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS

**Gender Sensitization** -Need and Objective - Gender Sensitivity Training at Workplace – Gender Sensitization in Judiciary - Gender Sensitization in School Curriculum.

#### **UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN**

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The Immoral Traffic Prevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

#### UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

#### TEXT BOOKS

#### 6 hrs

6 hrs

#### 6 hrs

6hrs

#### **6hrs**

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

#### **REFERENCES:**

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, and Exploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6. Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur, 2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COURSE DESIGNERS		
S.No.	Name of the Faculty	Mail ID
	Gnana Sanga Mithra.S	
1.		sangamithra@avil.edu.in
	Aarthy.G	
2.		aarthy@avil.edu.in