

Faculty of Engineering and Technology

Programme: M.E – Manufacturing Engineering – FULL TIME

CHOICE BASED CREDIT SYSTEM (CBCS)

Curriculum & Syllabus

(Semester I to IV)

Regulations 2021

VINAYAKA MISSION'S RESEARCH FOUNDATION, DEEMED TO BE UNIVERSITY, SALEM

Department of Mechanical Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

	The graduates will execute their professional skills and knowledge acquired
PEO 1	in the field of manufacturing engineering and management of the resources
	The graduates will provide the innovative solutions to the problems arising
PEO 2	in production to implement the green manufacturing
	The graduate will execute the work with professional ethics, team work,
PEO 3	develop quality products and will follow human values in their life.
	The graduates will be able to develop innovative products and to become
PEO 4	entrepreneur.
	The graduates will involve in continuous learning and will be able to
PEO 5	execute consultancy services.

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Mechanical Engineering graduates will be able:

PSO.1	To work independently as well as in team to formulate, design, execute							
PSU.1	solutions for engineering problems and also analyze, synthesize technical							
	data for application to product, process, system design & development							
	To understand & contribute towards social, environmental issues,							
PSO.2	following professional ethics and codes of conduct and embrace lifelong							
	learning for continuous improvement							
PSO.3	To develop expertise towards use of modern engineering tools, careers in							
130.3	industries and research and demonstrate entrepreneurial skill							

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

VINAYAKA MISSION'S RESEARCH FOUNDATION

(DEEMED TO BE UNIVERSITY), SALEM

CURRICULUM FOR REGULATION-2021

Credit Requirement for the Course Categories

M.E/M. Tech-Manufacturing Engineering

SI. No.	Category of Courses	Types of Courses	Suggested Breakup of Credits (min-max)
		Mathematics/Applied Mathematics	3
1.	A. Foundation Courses	Research Methodology and IPR	2
2.	B. Program Core Courses	Core Courses	32
	0 51 (:	Program electives	15
3.	C. Elective Courses	Open electives (Courses on emerging areas)	3
	D. Employability Enhancement	Project work phase I	6
	Courses and	Project work phase II	12
	courses for presentation of	Internship	1
	Technical skills		
4.	related to the specialization	Technical Seminar	1
5.	E. Mandatory Courses/Audit Courses	 Any two courses on: 1. English for Research Paper Writing 2. Disaster Mitigation and Management 3. Value Education 4. Constitution of India 5. Pedagogy Studies 6. Personality Development Through Life Enlighten Skills 	Zero Credit
	Total credits	to be earned for the award of M.E /M.Tech degree	75

M.E/M.TECH-MANUFACTURING ENGINEERING-SEMESTER I TO IV A. Foundation Courses Credits-(5) COURSE OFFERING SL. NO CODE **COURSE** DEPT. CATEGORY L T P \mathbf{C} **PREREQUISITE** APPLIED PROBABILITY AND 40221B01 STATISTICS MATH FC-BS 2 0 3 1 NIL RESEARCH METHODOLOGY 40221H01 AND IPR MECH FC-HS 2 0 0 2 NIL B. Programme Core Courses Credits-(32) COURSE OFFERING SL. NO CODE DEPT. CATEGORY T P \mathbf{C} **PREREQUISITE COURSE** L ADVANCES IN MANUFACTURING 40221C01 TECHNOLOGY 3 MECH CC 0 0 3 NIL ADVANCED MATERIALS 40221C04 TECHNOLOGY MECH CC 3 0 0 3 2 NIL ADVANCED METALLURGY 40221C83 LAB MECH CC 0 0 4 2 NIL ADVANCES IN CASTING AND 40221C03 WELDING MECH CC 3 0 0 3 NIL ADVANCES IN METROLOGY AND 40221C05 INSPECTION MECH CC 3 0 0 3 NIL AUTOMATION AND 40221C84 METAL FORMINGLAB MECH CC0 0 2 4 NIL 2 40221C81 CIM LAB MECH CC 0 0 4 NIL COMPUTER INTEGRATED MECH CC3 0 3 40221C02 MANUFACTURING SYSTEMS 0 NIL METAL CUTTING THEORY 40221C06 AND PRACTICE MECH CC 3 0 0 3 9 NIL 10 40221C07 METAL FORMING PROCESSES MECH CC 3 0 0 3 NIL MODELLING AND 40221C82 ANALYSIS LAB MECH 0 0 2 11 CC4 NIL OPTIMIZATION TECHNIQUES 40221C08 IN MANUFACTURING MECH 3 0 3 CC 0 NIL C. Elective Courses Credits-(18) Program Electives Courses Credits – (15) SL. COURSE **OFFERING** NO CODE **COURSE** DEPT. CATEGORY T P \mathbf{C} PREREQUISITE L DESIGN FOR MANUFACTURE MECH EC-PS 40221P09 AND ASSEMBLY 3 0 0 3 NIL FLUID POWER AUTOMATION 0 3 40221P01 MECH EC-PS 3 0 NIL

3	40221P10	MICRO MANUFACTURING	MECH	EC-PS	3	0	0	3	NIL
		OUALITY AND RELIABILITY							
4	40221P11	ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
		FINITE ELEMENT							
		METHODS FOR							
5	40221P12	MANUFACTURING ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
<u>J</u>	40221112	ENGINEERING	WILCIT	EC-15	3	U	0	J	NIL
6	40221P13	INDUSTRIAL ERGONOMICS	MECH	EC-PS	3	0	0	3	NIL
0	40221113	INDESTRINE ERGONOMICS	MECH	ECTS		0	0	3	TVIL
7	40221P02	LEAN MANUFACTURING	MECH	EC-PS	3	0	0	3	NIL
,	102211 02				-				TVIE
		MATERIALS MANAGEMENT							
8	40221P14	AND LOGISTICS	MECH	EC-PS	3	0	0	3	NIL
		MEMS AND							
9	40221P04	NANOTECHNOLOGY	MECH	EC-PS	3	0	0	3	NIL
		NON-DESTRUCTIVE TESTING							
10	40221P05	AND EVALUATION	MECH	EC-PS	3	0	0	3	NIL
11	40001505	ROBOT DESIGN &	MECH	EC Do	2	•	_	2	3 ***
11	40221P06	PROGRAMMING	MECH	EC-PS	3	0	0	3	NIL
10	40221D07	A DDITTIVE MANUE A CITUDING	MECH	EC DC	2	0		2	NIII
12	40221P07	ADDITIVE MANUFACTURING	MECH	EC-PS	3	0	0	3	NIL
10	40221D15	COMPOSITE	MECH	EC DC	3	0	0	2	NIII
13	40221P15	MATERIALS	MECH	EC-PS	3	0	0	3	NIL
		COMPUTER AIDED PRODUCT							
14	40221P16	DESIGN	MECH	EC-PS	3	0	0	3	NIL
		EMERGING							
15	40221P17	MATERIALS	MECH	EC-PS	3	0	0	3	NIL
		MANUFACTURING							
16	40221P03	MANAGEMENT	MECH	EC-PS	3	0	0	3	NIL
		MANUFACTURING SYSTEM							
17	40221P18	SIMULATION	MECH	EC-PS	3	0	0	3	NIL
		MATERIALS TESTING AND							
		CHARACTERIZATION							
18	40221P08	TECHNIQUES	MECH	EC-PS	3	0	0	3	NIL
19	40221P19	MECHATRONICS	MECH	EC-PS	3	0	0	3	NIL
		NAMO CEDITORIDES							
		NANO STRUCTURED MATERIALS AND							
20	40221P20		MECH	EC-PS	3	0	0	3	NIL
-									
2.	10001==:	PROCESS PLANNING AND	MEGH	EG PG			_		
21	40221P21	COST ESTIMATION	MECH	EC-PS	3	0	0	3	NIL
		PRODUCT DESIGN AND							
22	40221P22	DEVELOPMENT	MECH	EC-PS	3	0	0	3	NIL
23	40221B22	PRODUCT LIFECYCLE MANAGEMENT	MECH	EC-PS	3	0	0	3	NIII
	140221123	MANAGEMEN I	MECH	EC-P3	ا	U	U	3	NIL

SL.	COURSE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE
110	CODE	BIOMEDICAL	DEI I.	CHILGORI		-	-		TREADQUISTE
1	43421001	PRODUCT DESIGN AND DEVELOPMENT	BME	OE-EA	3	0	0	3	NIL
2	48121002	WASTE TO ENERGY	BTE	OE-EA	3	0	0	3	NIL
3	41421002	SUSTAINABLE BUILT ENVIRONMENT	CIVIL	OE-EA	3	0	0	3	NIL
4	45121002	ADVANCED CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL
5	43321001	BIO MEMS	ECE	OE-EA	3	0	0	3	NIL
6	44721001	SOLAR AND ENERGY STORAGE SYSTEMS	EEE	OE-EA	3	0	0	3	NIL
7	44121001	OPERATIONS RESEARCH	MATH	OE-EA	3	0	0	3	NIL
8	40221001	PROJECT MANAGEMENT FOR ENGINEERING BUSINESS AND TECHNOLOGY	MANAG	OE-EA	3	0	0	3	NIL
D. En	nployabili	ity Enhancement Courses a Specialization Credits-(20)							
		Specialization Credits-(20)							
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE
1	40221RP1	PROJECT WORK PHASE I	МЕСН	EE-P	0	0	12	6	NIL
_	40221 DD2	DD O IECTE WORK DILAGE H	MEGH	EE D			2.4	10	NH.
2	40221RP2	PROJECT WORK PHASE II	MECH	EE-P	0	0	24	12	NIL
3	40221I81	INTERNSHIP	МЕСН	EE-I	3	WEE	KS	1	NIL
4	40221S81	TECHNICAL SEMINAR	МЕСН	EE-S	0	0	2	1	NIL

E. M	landatory C	ourses/Audit Courses-(Z	Zero Credits)							
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE	
		ENGLISH FOR								
		RESEARCH PAPER								
1	44121Z01	WRITING	ENG	AC	0	0	2	0	NIL	
2	44121Z02	DISASTER MITIGATION AND MANAGEMENT	CIVIL	AC	0	0	2	0	NIL	
3	44121Z03	VALUE EDUCATION	HS	AC	0	0	2	0	NIL	
4	44121Z04	CONSTITUTION OF INDIA	LAW	AC	0	0	2	0	NIL	
5	44121Z05	PEDAGOGY STUDIES	HS	AC	0	0	2	0	NIL	
		PERSONALITY								
		DEVELOPMENT								
		THROUGH LIFE								
6	44121Z06	ENLIGHTEN SKILLS	ENG	AC	0	0	2	0	NIL	

FOUNDATION COURSES

		A 1	PPLIE	n dd	ND A DI	II ITV	AND			Catego	ry	L	Т	P	Credit
402	21B01		TATIS		JDADI	LLII I	AND			FC-B	S	2	1	0	3
PREAD		l												<u> </u>	
	which and ris	form t k mode	he basi	is for n	nany ot	her are	as in t	he matl	hematic	al science	es inclu	ding sta	tistics, m	odern o	s statistical ptimization othesis and
PRERI	EQUIS	ITE													
Nil															
COUR	SE OB	JECT	IVES												
1		ndersta butions		basics	of rand	lom va	riables	with e	mphas	is on the	standaı	rd discre	ete and c	ontinuc	us
2	To in	troduce	e the co	oncepts	of san	npling	distrib	utions a	and the	test stat	istics.				
3	To paraly		an un	derstar	nding (of the	statisti	ical m	ethods	and co	ncepts 1	by whic	ch real l	ife pro	blems are
4	To tra	ain the	studen	ts in de	esign ex	xperim	ents an	ıd use t	hese co	oncepts	for resea	arch.			
5			nd the			_									
COUR								- J = = = :							
On the	success	ful cor	npletio	n of th	e cours	se, stud	ents w	ill be a	ble to						
CO1. A		•	e the p	erform	nance i	n term	s of pro	obabili	ties an	d distrib	outions a	chieved	l by the	App	lv
CO2. A	ware o	f vario	iic tect	etatieti	cs for 1	he sam	nles							App	-
								narima	nte ae v	well as t	o analy	ze and i	ntarnrat	7100	1 y
data.	evelop	an au	inty to	appry s		ai tests	s III ex	permie	ins as v	well as t	O anaryz	ze anu i	interpret	App	ly
CO4 . u	se the c	concept	ts in de	sign of	exper	iments	in real	life pr	oblems	S				App	ly
CO5. P	erform	explor	atory a	analysis	s of mu	ıltivari	ate dat	a, such	as mu	ltivariate	e norma	l density	у,		
calculat	ing des	scriptiv	e statis	stics, te	sting f	or mul	tivariat	te norn	nality.					App	ly
MAPP	ING W	ITH F	ROG	RAMN	IE OU	TCON	MES A	ND P	ROGR	AMME	SPEC	IFIC O	UTCOM	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	L				M				M			
CO2	S	S	M	L				M				M			
CO3	S	S	M	L				M				M			
CO4	S	S	S	L				M				M			

M

M

M

S

S

CO5

M

S- Strong; M-Medium; L-Low

SYLLABUS

RANDOM VARIABLES

Random variables — Probability function - Standard Distributions - Binomial, Poisson, Geometric, Uniform, Exponential, Normal distributions and their applications.

ESTIMATION THEORY

Sampling distributions – Estimation of parameters (consistent and unbiased) – Point and interval estimates for population proportions, mean and variance - Maximum likelihood estimate method - Method of moments - Curve fitting by principle of least squares – Regression lines.

TESTING OF HYPOTHESIS

Hypothesis testing – Small samples/Large Samples – Tests concerning proportion, means, standard deviations – Tests based on chi square – Non-parametric test – Sign test, Wilcoxon signed rank test, Mann-Whitney test, Run test, Kolmogorov – Smirnov test, Spearman's and Kendall's test.

DESIGN OF EXPERIMENT: Experimental design – Analysis of variance – Methods for one, two factor models,

- -2^k Factorial Design Confounding in Factorial Design Fractional Factorial Design Response Surface Methods
- Central Composite Design

MULTIVARIATE ANALYSIS Random vectors and matrices – Mean vectors and covariance matrices – Multivariate normal density and its properties – Principal components - Population principal components – Principal components from standardized variables

TEXT BOOKS:

- 1. S.P. Gupta, "Statistical Methods", Sultan Chand & Sons, New Delhi, 45th Revised Edition (2017)
- 2. Douglas C. Montgomery and George C. Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).

REFERENCES:

- 1. S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi(2015).
- 2. I.R. Miller, J.E. Freund and R. Johnson, "Probability and Statistics for Engineers", 8th Edition, (2015).

COURSE DESIGNERS

S.No	Name of the Faculty	the Faculty Designation Department Mail I				
1	Dr. P.Sasikala	Professor	Mathematics	sasikala@vmkvec.edu.in		
2.	Dr. M.Thamizhsudar	Asso. Professor	Mathematics	thamizhsudar@avit.ac.in		

Course Code	Course Title	Category	L	Т	P	С
	RESEARCH METHODOLOGY					
40221H01	METHODOLOGY AND IPR	FC-HS	2	0	0	2

Course Outcomes:

At the end of this course, students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information.
- 3. Follow research ethics.
- 4. Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis, the need of information about Intellectual Property Right to be promoted among students in general & Engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT I- RESEARCH PROBLEM AND SCOPE FOR SOLUTION

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT II- FORMAT

Effective literature studies approaches, analysis, Plagiarism, Research ethics. Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT III- PROCESS AND DEVELOPMENT

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, patenting under PCT.

UNIT IV- PATENT RIGHTS

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT V- NEW DEVELOPMENTS IN IPR

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

TEXT BOOKS

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students" Juta Publishers,1996.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction", Juta Publishers, 2004.
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

REFERENCES

- 1. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 2. Mayall, "Industrial Design", McGraw Hill, 1992.
- 3. Niebel, "Product Design", McGraw Hill, 1974.
- 4. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 5. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 6. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Course	Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1				
2				

PROGRAM CORE COURSES

		ADV MAU						Ca	tegor	'v]	L	Т	P	Cre	edit
40221		TEC							CC		3	0	0	3	·
Preamb		ILC:	111101	LOG								•	<u> </u>		,
new mat	To ex	pose	the stu	ıdents	in the	e art o	f man	ufacti	uring	new pr	oducts	due to t	he dev	elopme	nt of
Prerequ	isite														
Nil															
Course	Object	tives													
1 T	o infor	o inform the students about the various alternative manufacturing processes available.													
		develop an attitude to look for the unconventional manufacturing process to machine.													
		make them to understand and appreciate the latest manufacturing process for micro rication and devices.													
4 T	o prod	uce us	seful r	esear	ch out	put in	macl	hining	of va	rious r	nateria	ls.			
5 T	o intro	duce	studer	nts the	basic	es of /1	rapid	protot	yping	and it	s appli	cations i	n vario	ous field	ls.
Course	Outco	mes: (On th	e suc	ressfu	l com	nletic	on of 1	the co	nirse. s	tuden	ts will h	e able 1	to	
Course										newer i					
CO1	proce				- F							6	Under	rstand	
CO2	To ga		owled	lge in	the ap	plica	tion o	f wire	cut E	DM ar	nd relat	ive	Apply	7	
CO3		nalyze lemeri					ning p	rocess	s and t	to stud	y its m	erits	Analy	ze	
CO4		e fami oulk m			e vario	ous ap	plicat	tions o	of surf	ace mo	odifica	tion	Apply	<i>I</i>	
CO5		evelop ology		vledge	e in th	e app	licatio	on of r	nicro	fabrica	tion		Analy	ze	
Mappin	g with	Prog	ramn	ne Ou	tcom	es and	l Prog	gramı	me Sp	ecific	Outco	mes	T	T	Т
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
													3.4		
CO1	S	M	M	-	-	M	-	-	-	-	-	-	M	-	-
CO2	S	S	M	M	-	M	-	-	-	-	-	-	M	-	-
CO3	S	M	M	M	-	M	-	-	-	-	-	-	M	-	-
CO4	S	S	M	M	-	M	-	-	-	-	-	-	M	-	-
CO5	S	S	S	S	-	S	-	-	-	-	-	-	S	-	-
S- Strong	; M-Me	dium;	L-Lov	v											

NEWER MACHINING PROCESSES - I

(Non thermal energy) – Abrasive machining – water jet machining – ultrasonic machining – chemical machining – electro chemical machining – construction working principle – steps -types – process parameters – derivations – problems, merits, demerits and applications.

NEWER MACHINING PROCESS - II

Wire cut EDM - Electro chemical machining – ECG - Electric discharge machining – construction – principle – types – control - circuits – tool design – merits, demerits & applications.

NEWER MACHINING PROCESS - III

Laser beam machining – Electron beam machining – Plasma arc machining – Ion beam machining – construction working principle types – process parameter – derivations –problems, merits, demerits and applications.

FABRICATION OF MICRO DEVICES

Semiconductors – films and film depurification – Oxidation - diffusion – ion implantation — etching – metallization – bonding – surface and bulk machining – LIGA Process – Solidfree form fabrication

MICROFABRICATION TECHNOLOGY

Wafer preparation – monolithic processing – moulding – PCB board hybrid & mcmtechnology – programmable devices & ASIC – electronic material and processing–stereolithography SAW devices, Surface Mount Technology.

Text Books

- 1. Advanced Machining Processes by V. K. Jain, Allied Publications, 2007.
- 2. Manufacturing Engineering and Technology by Kalpakijian, Addison Wesley, 1995.

Reference Books

- 1.Serope kelpekijian & stevan r. schmid- manufacturing process engg material 2003.
- 2. Micro senors Mems & smart devices- Julian W. Hardner, 2002.
- 3. Nario Taniguchi Nano technology Oxford University Press 1996.
- 4. Brahem T. Smith, Advanced machining I.F.S. UK 1989.
- 5. Jaeger R.C., Introduction to microelectronic fabrication Addison Wesley, 1988.
- 6. Pandey P.C. & Shan HS Modern Machining Processes, Standard Publishing Co., 1980.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.R.Jayaraman	Assoc. Prof.	MECH/VMKVEC	jayaramanr@vmkvec.edu.in
2	Mr.K.Surendra Babu	Assoc. Prof.	MECH /AVIT	surendrababu@avit.ac.in

1		ADV	VANCED	MATERIA	LS	Cate	egory	L	Т		P	Cre	dit							
402	21C04		CHNOLO		20	C	CC	3	0		0	3								
Pream	Preamble This course to gives thorough knowledge on advanced concepts of material technology.																			
			to gives the	rough knowle	edge on a	advanc	ed co	ncepts o	of mater	rial tech	nologi	es of all								
	ering materials.																			
Prere g Nil	quisite																			
	e Objec	tives																		
1	To impa	art kno	wledge or	elastic, plas	tic and	fractui	red be	ehaviou	ır of en	gineeri	ing ma	terials.								
								,												
2	To unde	erstand	the behav	ior of mater	ials und	er varı	ious I	oads.												
	To unde	erstand	the selec	tion of metal	llic and	non-n	netall	ic mate	erials f	or the v	various	s engine	ering							
3	applicat								110010 1	01 0110	, 61210 60	, v.1.81111	3							
		and ma	ajor types	of special st	eels suc	h as H	ISLA	, TRIP,	Dual	and To	ol stee	ls and c	ast-							
4	irons.																			
5	To stud	v the n	olvmer be	havior and c																
Cour	se Outc	To study the polymer behavior and develop polymer composites. ree Outcomes: On the successful completion of the course, students will be able to																		
0041		omes:	On the su	iccessful coi	mpletio	n of tl	ne co	urse, st	udent		e able	e to								
2041	Unde	omes:	On the su	ccessful con pts of elastic	mpletion , plastic	n of the	ne co vior a	urse, st nd stre	udent ngthen		e able	e to								
	Unde Mech	omes: rstand anism,	On the su the conce , also prop	iccessful coi	mpletion , plastic	n of the	ne co vior a	urse, st	udent ngthen		e able		etand							
CO1	Unde Mech	omes:	On the su the conce , also prop	ccessful con pts of elastic	mpletion , plastic	n of the	ne co vior a	urse, st	udent ngthen		e able	e to Unders	stand							
	Unde Mech metal	omes: rstand anism, lic mat	On the su the conce , also prop terials.	occessful con pts of elastic perties and ap	mpletion , plastic oplication	n of the behave ons of	ne co vior a metal	nd strei	ngthen non	ing	e able									
CO1	Unde Mech metal	omes: rstand anism, lic mat	On the su the conce , also prop terials.	ccessful con pts of elastic	mpletion , plastic oplication under v	behavens of	ne co vior a metal	urse, st nd stren llic and ing con	ngthen non	ing		Unders								
CO1	Unde Mech metal Anal Unde	omes: rstand anism, lic mat yze the rstand	On the su the conce , also prop terials.	pts of elastic perties and ap of materials	mpletion , plastic oplication under v	behavens of	ne co vior a metal	urse, st nd stren llic and ing con	ngthen non	ing	ion	Unders	yze							
CO1	Unde Mech metal Analy Unde proce	omes: rstand anism, lic mat yze the rstand ss. rstand	On the su the conce , also prop terials. behavior the impor	pts of elastic perties and ap of materials tant characte	npletion , plastic oplication under varieties of eristics of	n of the behaviors of arrious of mater	ne convior a metal load load erials	ing con and ma	ngthen non ditions	ing S. selecti	ion	Unders Analy	yze							
CO1 CO2 CO3 CO4	Unde Mech metal Analy Unde proce Unde	omes: rstand anism, lic mat yze the rstand ss. rstand rstand	On the su the conce , also prop terials. behavior the impor the variou the behav	pts of elastic perties and ap of materials tant characters is ferrous all-	under veristics o	n of the behaviors of arrious of mater	ne convior a metal load load erials	ing con and ma	ngthen non ditions	ing S. selecti	ion	Unders Analy Underst Underst	yze tand tand							
CO1 CO2 CO3 CO4 CO5	Unde Mech metal Analy Unde proce Unde Unde glasse	rstand anism, lic material stand ss. rstand rstand rstand es and in the stand	On the su the conce , also prop terials. behavior the impor the variou the behav non-metal	pts of elastic perties and ap of materials tant characte as ferrous all- iour and app lic materials	under varieties of oys and lications	n of the behaviors of arrious of mater as of sn	ne convior a metal load erials	ing con and ma	ngthen non ditions aterials	s. selection	ion	Unders Analy Underst	yze tand tand							
CO1 CO2 CO3 CO4 CO5 Mapp	Unde Mech metal Analy Unde proce Unde Unde glasse	rstand anism, lic material stand ss. rstand rstand rstand es and the Program of t	the conce, also properties. behavior the importing the various the behavior mon-metal gramme (pts of elastic perties and apof materials tant characters are serious alleiour and applic materials outcomes are	under varieties of the control of th	arious of mate their a	load erials applicant r	ing con and ma	ngthen non ditions aterials	s. selections	ion	Unders Analy Underst Underst	yze tand tand							
CO1 CO2 CO3 CO4 CO5 Mapp COs	Unde Mech metal Analy Unde proce Unde Unde glasse	rstand anism, lic material stand anism, lic	On the su the conce , also prop terials. behavior the impor the variou the behav non-metal	pts of elastic perties and ap of materials tant characte as ferrous all- iour and app lic materials	under varieties of oys and lications	n of the behaviors of arrious of mater as of sn	ne convior a metal load erials	ing con and ma	ngthen non ditions aterials	mics,	PSO1	Unders Analy Underst Underst	yze tand tand							
CO1 CO2 CO3 CO4 CO5 Mapp COs CO1	Unde Mech metal Analy Unde proce Unde glasse ping wit	rstand anism, lic material stand anism, lic material standard anism, lic material	the conce also properties. behavior the important the various the behavior the beh	of materials tant characters and applic materials outcomes ar POS PO6	under varieties of the control of th	arious of mate their a	load erials applicant r	ing con and material	ngthen non ditions aterials	mics, PO12 M	PSO1	Underst Underst Underst Underst	and and PSO3							
CO1 CO2 CO3 CO4 CO5 Mapp COs	Unde Mech metal Analy Unde proce Unde Unde glasse	rstand anism, lic material stand anism, lic	the conce, also properties. behavior the importing the various the behavior mon-metal gramme (pts of elastic perties and apof materials tant characters are serious alleiour and applic materials outcomes are	under varieties of the control of th	arious of mate their a	load erials applicant r	ing con and ma	ngthen non ditions aterials	mics,	PSO1	Underst Underst Underst Underst	yze tand tand							

CO5

ELASTIC AND PLASTIC BEHAVIOR

M

S- Strong; M-Medium; L-Low

M

M

L

Elasticity in metals and polymers - Anelastic and visco-elastic behaviour — Mechanism of plastic deformation— Strengthening mechanisms, work hardening, solid solutioning, grain boundary strengthening, precipitation hardening and dispersion strengthening. Effect of temperature, strain and strain rate on plastic behaviour — Super plasticity. — Deformation of non-crystalline materials.

FRACTURE BEHAVIOUR

Griffith's theory, stress intensity factor and fracture toughness – Toughening mechanisms – Ductile, brittle transition in steel – High temperature fracture, creep – Larson Miller parameter – Deformation and fracturemechanism maps – Fatigue, low and high cycle fatigue test, crack initiation and propagation mechanisms. Effect of surface and metallurgical parameters on fatigue – Fracture of non-metallic materials – Failure analysis, sources of failure, procedure of failure analysis.

SELECTION OF MATERIALS

Motivation for selection, cost basis and service requirements – Selection for mechanical properties, strength, toughness, fatigue and creep – Selection for surface durability corrosion and wear resistance – Relationship between materials selection and processing – Case studies in materials selection with relevance to aero, auto, marine, machinery and nuclear applications – Computer aided materials selection.

MODERN METALLIC MATERIALS

Dual phase steels, High strength low alloy (HSLA) steel, Transformation induced plasticity (TRIP) Steel, Maraging steel, Nitrogen steel – Intermetallics, Ni and Ti aluminides – smart materials, shape memory alloys –Metallic glass and nano crystalline materials.

NONMETALLIC MATERIALS

Polymeric materials – Formation of polymer structure – Production techniques of fibers, foams, adhesives and coating – structure, properties and applications of engineering polymers – Advanced structural ceramics, WC, TIC, TaC, Al₂O₃, SiC, Si₃N₄, CBN and diamond – properties, processing and applications.

Text Books

1. Thomas H. Courtney, Mechanical Behavior of Materials, McGraw Hill, 2nd Edition, 2000.

2. George E. Dicter, Mechanical Metallurgy, McGraw Hill, 1998.

Reference Books

- 1. Ashby M.F., Material Selection in Mechanical Design, 3rd Edition, Butter Worth 2005.
- 2. ASM Hand book, Vol.11, Failure Analysis and Prevention, (10th Edition), ASM, 2002.
- 3. Charles, J.A., Crane, F.A.A. and Fumess, J.A.G., Selection and use of engineering materials, (3rd edition), Butterworth-Heiremann, 2001.
- 4. Flinn, R.A., and Trojan, P.K., Engineering Materials and their Applications, (4th Edition) Jaico, 1999.

Course	e Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.S.Arunkumar	Assistant Professor	MECH/VMKVEC	arunkumar@vmkvec.edu.in
		Associate		
2	Dr.D.Bubesh Kumar	Professor	MECH/AVIT	bubeshkumar@avit.ac.in

		Category	L	Т	P	Credit
40221C83	ADVANCED METALLURGY LAB	CC	0	0	4	2

Preamble

The purpose of this course is to study the microstructures of metals and alloys, Understand the type, and effect of heat treatment on properties.

Prerequisite

Nil

Course Objectives

- 1 To demonstrate an advanced and applied knowledge in Physical Metallurgy.
 - To study the microstructures of metals and alloys.
 - To understand the type, and effect of heat treatment on properties and hardness of materials.

Course Outcomes: On the successful completion of the course, students will be able to

	Prepare the specimens and characterize the microstructures of different	
CO1	ferrous and non-ferrous metals.	Apply
CO2	Evaluate the effect of heat treatment on properties of steel.	Evaluate
CO3	To analyze metallurgical problems.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO	PSO	PSO	PS											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	O3
CO1	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-
CO3	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Study and use of metallurgical microscope.
- 2. Study of muffle furnace.
- 3. Study of Recovery, Recrystallization and Grain growth of cold worked materials.
- 4. Metallographic specimen preparation, mechanical polishing, mounting, and etching.
- 5. Identification of Microstructure of different types of cast iron & steel specimens (Minimum 6) and use of specific etchants.
- 6. Identification of Microstructure of non-Ferrous specimens (Minimum 2) and use of specific etchants.
- 7. Heat treatment Normalizing comparison between annealed and un heat treated specimen.

Text Books

1 ADVANCED METALLURGY LAB MANUAL

Reference Books

- 1 William D Callister "Material Science and Engineering", John Wiley and Sons 2005.
- 2 Sydney H.Avner "Introduction to Physical Metallurgy" McGraw Hill Book Company, 1974.

S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	Mr.T.Raja	Assoc.Prof	MECH/VMKVEC	rajat@vmkvec.edu.in
2	Dr.D.Bubesh	Associate	MECH/AVIT	bubeshkumar@avit.ac.in

Kumar	Professor	

		ADV	VANCES	IN CAS	STING AND	,	Categ	gory	L	T	P	Cre	edit
4022	1C03	WE	LDING				(CC	3	0	0		3
Preamb	ole												
		ake the	e students	learn ab	out need adv	ance	in cast	ting a	nd weld	ing tec	hnolog	у.	
Prerequ Vil													
Course	Object	tives											
1 T	o stud	v abou	t solidific	ation pro	ocess of casti	ings a	nd des	sign o	f gating	and ris	sering s	systems	3.
T		y the n			epts and the	_		_				•	
3 T	o stud	To study about the recent casting techniques and about foundry layout.											
4 T	To unde	erstand									esign.		
			l welding	techniqu		ologic	al aspe				esign.		
5 T	o unde	erstand	welding	techniqu	ue and technocteristics of v	ologic weldir	al aspe	ects o	ver weld	ding de		0	
5 T	Outco Know	erstand mes: (about	welding the unique. On the suct solidification.	technique charactecessful ation pro	cteristics of vocess of casti	ologic weldir of the	al aspeng. e course nd desi	ects o	ver weld	ding de	able to	o ply	
5 T	Outco Know riserin	erstand mes: (about ng. about	welding the unique. On the suct solidification.	technique charactecessful ation pro	cteristics of v	ologic weldir of the	al aspeng. e course nd desi	ects o	ver weld	ding de	able to		nd
5 T	Outco Know riserin Know proce	erstand mes: (about ng. about sses fo	the unique to the succession of the metal of a production of the succession of the s	technique charactectes charactectes charactectectectectectectectectectectectectec	cteristics of vocess of casti	ologic weldir of th ngs and	al aspeng. e course nd desirability	rse, st	ver weld	ding dewill be and sting	Ap	ply	
5 T Course CO1 CO2	Outco Know riserii Know proce know Abilit	erstand mes: (/ about ng. / about sses for	I welding to the unique to the metalor a product the recent the re	technique charactecessful ation problems the charactect.	cteristics of vocess of casti	ologic weldin of the ngs and d suita	al aspeng. e cours nd desi ability	ese, strign of varioundr	ver weld udents f gating rious ca	ding dewill be and sting	Ap Un Un	ply derstan	ıd
5 T Course CO1 CO2 CO3 CO4 CO5	Co under Outco Know riserii Know proce know Abilii Abilii	mes: (v about sses for about ty to un ng des	I welding to the unique to the metalor a product the recent the re	technique charactects. Illurgical ct. t casting welding	cteristics of vaccess of castill concepts and techniques a greenique a	ologic welding of the ngs and d suita and all nd tectristics	e courant desirability bout for chnolog	ects o	ver weld udents f gating rious ca y layout aspects	will be and sting over	Ap Un Un	ply derstan derstan	nd nd
5 T Course CO1 CO2 CO3 CO4 CO5	Co under Outco Know riserii Know proce know Abilii Abilii	mes: (v about sses for about ty to un ng des	I welding to the unique to the metalor a product the recent the re	technique charactects. Illurgical ct. t casting welding	cteristics of vaccess of castill concepts and techniques a technique a	ologic welding of the ngs and d suita and all nd tectristics	e courant desirability bout for chnolog	ects o	ver weld udents f gating rious ca y layout aspects	will be and sting over	Ap Un Un	derstan derstan derstan	nd nd
5 TCourse CO1 CO2 CO3 CO4 CO5 Mappin	Co under Outco Know riserin Know proce know Abilit weldi Abilit By with	mes: (v about sses for about ty to un pg des	I welding to the unique to the metalor a product the recent the re	technique charactects the unicutcomes	cteristics of vaccess of castill concepts and techniques a greenique a	ologic welding of the ngs and d suita and all nd tectristics	e courant desirability bout for chnolog	ects o	ver weld udents f gating rious ca y layout aspects	will be and sting over	Ap Un Un	derstan derstan derstan	nd nd
5 T Course CO1 CO2 CO3 CO4 CO5 Mappin	Co under Co under Know risering Know proce know Ability welding with	mes: (vabouting.) about sses for about ty to un ng des	I welding to the unique to the metalor a product the recent enderstand sign.	technique charactects the unicutcomes	cteristics of vectoristics of vectoristics of vectoristics of vectoristics of vectoristics of vectoristics of castillation occasion of castillation occasion	of the ngs and all nd tectistics amme	e courability bout for chnologous of well to Species	ects o	ver weld udents f gating rious ca y layout aspects	will be and sting over	Ap Un Un Un Un	derstan derstan derstan derstan	nd nd

S- Strong; M-Medium; L-Low

S

M

 \mathbf{M}

M

 \mathbf{M}

 \mathbf{M}

L

SYLLABUS

CO4

CO₅

CASTING DESIGN

Heat transfer between metal and mould — Design considerations in casting – Designing for directional solidification and minimum stresses - principles and design of gating and risering.

M

M

CASTING METALLURGY

Solidification of pure metal and alloys – shrinkage in cast metals – progressive and directional solidification —Degasification of the melt-casting defects – Castability of steel, Cast Iron, Al alloys, Babbit alloy and Cu alloy.

RECENT TRENDS IN CASTING AND FOUNDRY LAYOUT

Shell moulding, precision investment casting, CO2 moulding, centrifugal casting, Die casting, Continuous casting, Counter gravity low pressure casting, Squeeze casting and semisolid processes. Layout of mechanized foundry – sand reclamation – material handling in foundry pollution control in foundry — Computer aided design of casting.

WELDING METALLURGY AND DESIGN

Heat affected Zone and its characteristics – Weldability of steels, cast iron, stainless steel, aluminum, Mg, Cu, Zirconium and titanium alloys – Carbon Equivalent of Plain and alloy steels Hydrogen embrittlement – Lamellar tearing – Residual stress – Distortion and its control. Heat transfer and solidification - Analysis of stresses in welded structures – pre and post welding heat treatments – weld joint design – welding defects – Testing of weldment.

RECENT TRENDS IN WELDING

Friction welding, friction stir welding – explosive welding – diffusion bonding – high frequency induction welding – ultrasonic welding – electron beam welding – Laser beam welding – Plasma welding – Electroslag welding- narrow gap, hybrid twin wire active TIG – Tandem MIG- modern brazing and soldering techniques – induction, dip resistance, diffusion processes – Hot gas, wave and vapour phase soldering. Overview of automation of welding in aerospace, nuclear, surface transport vehicles and under water welding.

Text Books

- 1. Jain, P.L., "Principles of Foundry Technology", Tata McGraw Hill, 2003.
- 2. Parmar, R.S., "Welding Processes and Technology", Khanna Publishers, 1997.

Reference Books

- 1. ASM Handbook, Vol 15, Casting, 2004.
- 2. ASM Handbook vol.6, welding Brazing & Soldering, 2003.
- 3. Jain P.L., Principles of Foundry Technology, Tata McGraw Hill Publishers, 2003.
- 4. Carrry B., Modern Welding Technology, Prentice Hall Pvt Ltd., 2002.
- 5. Parmer R.S., Welding Engineering and Technology, Khanna Publishers, 2002.
- 6. Srinivasan N.K., Welding Technology, Khanna Tech Publishers, 2002.
- 7. HEINELOPER & ROSENTHAL, Principles of Metal Casting, Tata McGraw Hill, 2000.
- 8. CORNU.J. Advanced welding systems Volumes I, II and III, JAICO Publishers, 1994.
- 9. IOTROWSKI Robotic welding A guide to selection and application Society of mechanical Engineers, 1987.
- 10. SCHWARIZ, M.M. Source book on innovative welding processes American Society for Metals (OHIO),1981.
- 11. LANCASTER.J.F. Metallurgy of welding George Alien & Unwin Publishers, 1980.

Course	e Designers			
			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
1	Dr.S.Venkatesen	Professor	MECH/VMKVEC	venkatesh@vmkvec.edu.in
		Assistant		
2	Mr.S.Kalyanakumar	Professor Gr II	MECH/AVIT	kalyanakumar@avit.ac.in

		ETRO	CES I			(Catego	ory	L		T		P	Cro	edit	
40221		SPEC	TION				CC		3		0		0	3	3	
Preambl	e To make with ease			-			ning t	o ope	rate a	nd use	e adva	nced	metro	ologica	al	
Prereq u Nil	isite															
Course	Objectiv	es														
1	Under	stand	the va	arious	conc	epts o	f met	rology	y and	meası	ıreme	nts.				
2	Devel	op the	knov	vledge	e on v	arious	s meas	surem	ent m	ethod	s of s	urface	roug	hness	•	
3	Unde	stand	the p	rincip	les of	light	interf	erence	e							
4	Study	vario	us me	asurin	ig too	ls and	laser	gauge	es.							
5	Unde	rstand	the in	nage į	oroces	ssing f	for me	etrolog	gy.							
Course	Outcom	es: O	n the s	succe	ssful (comp	letion	of th	e cou	rse, s	tuden	ts wil	ll be a	ble to)	
CO1	Explain and pre	cision	s of n	netrol	ogy. `								Ur	Understand		
CO2	Analyze			als su	rfaces	and r	oughr	ness b	y con	tact aı	nd nor	1-	Ar	nalyze		
CO3	Analyze interfer			tion c	of inst	rumer	nts and	d mea	suren	nent o	f		Ar	nalyze		
CO4	Apply t	he vai	rious i	nspec	tion n	netho	ds in l	aser t	echni	ques.			Aŗ	ply		
CO5	Apply v Metrolo		s imag	ge pro	cessir	ng sys	tems a	and in	nage t	ransfo	ormati	ion in		ply		
Mappin	g with P	rogra	mme	Outc	omes	and l	Progr	amm	e Spe				,			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	
CO	l S	M	L	L	-	-	-	M	L	L	-	-	S	-	-	
CO2	2 S	S	M	M	-	-	-	L	L	L	-	-	S	-	-	
CO3	s s	S	M	M	-	-	-	M	L	L	-	-	S	-	-	
CO	s s	M	M	M	-	-	-	M	L	L	-	-	S	-	-	
COS	s s	M	L	L	-	-	-	M	L	L	-	-	S	-	-	
S-Strong	g; M-Med	ium; L	-Low													

CONCEPTS OF METROLOGY

Terminologies – Standards of measurement – Errors in measurement – Interchangeability and Selective assembly – Accuracy and Precision – Calibration of instruments – Basics of Dimensional metrology and Form metrology.

MEASUREMENT OF SURFACE ROUGHNESS

Definitions – Types of Surface Texture: Surface Roughness Measurement Methods Comparison, Contact and Non-Contact type roughness measuring devices, 3D Surface Roughness Measurement, NanoLevel Surface Roughness Measurement – Instruments.

INTERFEROMETRY

Introduction, Principles of light interference – Interferometers – Measurement and Calibration – Laser Interferometry.

MEASURING MACHINES AND LASER METROLOGY

Tool Makers Microscope – Microhite – Coordinate Measuring Machines – Applications – Laser Micrometer, Laser Scanning gauge, Computer Aided Inspection techniques - In-process inspection, Machine Vision system- Applications.

IMAGE PROCESSING FOR METROLOGY

Overview, Computer imaging systems, Image Analysis, Preprocessing, Human vision system, Image model, Image enhancement, gray scale models, histogram models, Image Transforms – Examples.

Text	Books
-------------	--------------

- 1 Jain, R.K., "Engineering Metrology", Khanna Publishers, 2008.
 - Rajput, R.K., "Engineering Metrology and Instrumentations", Kataria & Sons Publishers, 2001.
- 3 Gupta, I.C., "A Text Book of engineering metrology", Dhanpat Rai and Sons, 1996.

Reference Books

- Bewoor, A.K. and Kulkarni, V.A., "Metrology and Measurement", Tata Mc Graw-Hill,
- 1 2009.
- Sonka, M., Hlavac, V. and Boyle. R., "Image Processing, Analysis, and Machine Vision", Cengage Engineering, 2007.
- Whitehouse, D.J., "Surface and their measurement", Hermes Penton Ltd, 2004.
- 4 Smith, G.T., "Industrial Metrology", Springer, 2002
- 5 "ASTE Handbook of Industries Metrology", Prentice Hall of India Ltd., 1992.
- 6 Galyer, F.W. and Shot bolt, C.R., "Metrology for engineers", ELBS, 1990.

S.No	Faculty Name	Designation	Department /College	Email id
1		Assistant Professor	MECH/AVIT	mahesh@avit.ac.in
2	Mr.T.Raja		MECH/ VMKVEC	rajat@vmkvec.edu.in

		JTON ETAI				C	Catego	ry	L		T		P	Cre	edit
40221C	84 LA	AB					CC		0		0		4	2	2
Preamble															
	To trair												f meta	ıl forn	ning
rocesses	and to	detern	nine s	ome n	netal	formi	ng pa	ramete	ers for	r a giv	en sh	ape.			
Prerequis Vil	site														
Course O	bjectiv	es													
1	To impart the knowledge of various metal forming processes and manufacturing process.														
2	To de	termir	ne son	ne met	al for	ming	paran	neters	for a	given	shap	e pow	der m	etallu	rgy.
3	To un	To determine some metal forming parameters for a given shape powder metallurgy. To understand the concept of automation.													
4	To impart the knowledge of hydraulics and pneumatics circuits with PLC.														
To learn the automation systems using fluid power control systems.															
Course O	utcom	es: Oı	n the s	succes	sful o	comp	letion	of the	e cou	rse, si	tuden	ts wil	l be a	ble to)
	o impa			knowl	edge	on bu	lk me	tal for	ming	and s	heet r	netal		App	ly
CO2 II	llustrate	e the c	haract	eristic	es of t	he for	ming	and s	hapin	g proc	cesses	S.		App	ly
CO3 A	apply th	e con	cepts	of vari	ious n	netal t	formi	ng pro	cess.					App	ly
	Develop rocedui		for mo	odern	manu	factuı	ring a _l	pplica	tions	using	stand	lard		App	ly
	dentify utomate				f auto	matic	on and	deve	lop a	suitab	ole sys	stem to	0	App	ly
Aapping	with P	rogra	mme	Outco	omes	and I	Progr	amme	e Spe	cific (Outco PO1		PSO	PSO	PSO
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0 0	1	PO1 2	1	2	3
CO1	S	S	S	L	_	_	-	_	_	L	_	_	S	_	_
		5	5							L					
CO2	S	M	S	M	-	-	-	-	-	L	-	-	S	-	-
CO3	S	S	M	M	-	-	-	-	-	M	-	-	S	-	-
											İ	i	Ī	ĺ	1
CO4	S	S	S	M	-	-	-	-	-	M	-	-	S	-	-

S-Strong; M-Medium; L-Low

- 1. Determination of strain hardening exponent
- 2. Construction of formability limit diagram
- 3. Determination of efficiency in water hammer forming
- 4. Determination of extrusion load
- 5. Study on two high rolling process
- 6. Simulation of Hydraulic circuits
- 7. Simulation of electro pneumatic circuits
- 8. Simulation of electro hydraulic circuits
- 9. Simulation of PLC circuits
- 10. Software simulation of fluid power circuits using Automation studio

Text Books

AUTOMATION AND METAL FORMING LAB Manual

S.No	Faculty Name	Designation	Department/ College	Email id
1	Mr.K.Vijayakumar	Assistant Professor	MECH/AVIT	vijayakumar@avit.ac.in
			MECH/	
2	Dr.M.Saravanan	Asst. Professor	VMKVEC	saravanan@vmkvec.edu.in

			Category	L	T	P	Credit	
40221C81		CIM LAB	CC	0	0	4	2	
rereq	This cong softwar	urse provides the in-depth kno e.	owledge about CNC macl	nine, CN	NC pr	ogramn	ning and	
Nil								
ourse	Objective	es						
1	To discuss	s the basics of manual part pro	ogramming for turning and	d millin	g.			
	To practic subroutine	e the methodologies for writings.	ng the CNC program usir	ng canne	ed cyc	cles and	ļ	
		nd write the program using marker and circular pocketing.	irroring, left / right hand ı	adius c	ompe	nsation	concept,	
4	To study a	bout various sensors, transdu	cers and PLC.					
5	To design	2D and 3D modelling of mec	hanical components.					
Course	Outcome	s: On the successful comple	tion of the course, stude	nts will	be al	ole to		
CO1	To stud	ly about various sensors, trans	sducers and PLC.			Und	erstand	
CO2		n the basic knowledge about on the basic knowledge to write the lation.	** •	·		App	ly	
CO3		the knowledge of mirroring ar	nd subroutine concepts to	write th	ne	App	ly	
CO4	the diff	the knowledge of Left hand a ferent types of canned cycles s, boring and threading etc.	•	•		App	ly	
			eling of various mechanic	-a1				

	PO	PSO	PS	PS											
COs	1	2	3	4	5	6	7	8	9	10	11	2	1	O2	03
CO1	L	L	L	L	-	-	1	-	-	-	ı	L	L	L	L
CO2	S	S	M	S	-	-	1	-	M	-	ı	M	L	L	L
CO3	S	S	S	S	-	ı	1	ı	M	-	ı	M	S	M	M
CO4	S	S	S	S	-	ı	1	ı	M	-	ı	M	S	M	M
CO5	S	S	S	S	-	1	1	1	S		ı	S	S	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS:

CAM LABORATORY

- 1. Exercise on CNC Lathe: Plain Turning, Step turning, Taper turning, Threading, Grooving & canned cycle
- 2. Exercise on CNC Milling Machine: Profile Milling, Mirroring, Scaling & canned cycle
- 3. Study of Sensors, Transducers & PLC: Hall-effect sensor, Pressure sensors, Straingauge, PLC, LVDT, Load cell, Angular potentiometer, Torque, Temperature & Optical Transducers.

CAD LABORATORY

2D modeling and 3D modeling of components such as

- 1. Bearing
- 2. Couplings
- 3. Gears
- 4. Sheet metal components
- 5. Jigs, Fixtures and Die assemblies

Text Books

1 | CIM LAB Manual

S.No	Faculty Name	Designation	Department/ College	Email id
1	Dr.M.Saravanan		MECH / VMKVEC	saravanan@vmkvec.edu.in
2	Dr.S.Prakash	Asst. Prof	MECH/AVIT	prakash@avit.ac.in

	COMPLETE	Category	L	Т	P	Credit
	COMPUTER					
	INTEGRATED					
	MANUFACTURING					
40221C02	SYSTEMS	CC	3	0	0	3
1						

Preamble

The students completing this course are expected to understand the nature and role of computers in manufacturing. The course includes computer aided design, Automatic Manufacturing Systems, Group Technology and FMS, computer aided process planning techniques, shop floor control, types of process control and automatic data capture systems. It exposes the students to various current trends followed in the industries.

Prerequisite

Nil

Course Objectives

- 1 To understand the importance of CAD and CAM.
 - 2 To enable student to learn about Automated Manufacturing Systems.
 - 3 To understand about the Group Technology and FMS.
 - 4 To gain knowledge about Process Planning.
 - 5 To enable students to learn about types of process control and automatic data capture.

Course Outcomes: On the successful completion of the course, students will be able to

	Explain the basic concepts of Computer Aided	
CO1	Design and Manufacturing.	Understand
	Explain the basics, working principles of various components of	
CO2	Automated Manufacturing Systems.	Understand
CO3	Apply the concepts of Group technology and FMS.	Apply
CO4	Apply the concepts of process planning techniques.	Apply
	Analyze the functions of various types of process control and	
CO5	automatic data capture.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

										PO	PO		PS	PS	
	PO					PO		PO		1	1	PO1	O	O	PS
COs	1	PO2	PO3	PO4	PO5	6	PO7	8	PO9	0	1	2	1	2	03
CO1	M	L	-	-	-	-	-	1	-	-	-	-	-	-	-
CO2	S	M	L	-	-	ı	-	ı	-	-	1	ı	L	1	L
CO3	S	M	L	-	-	-	-	-	-	-	-	-	M	-	M
CO4	S	S	M	L	-	-	-	-	-	M	-	-	M	-	M
CO5	S	S	S	M	-	-	-	-	-	M	-	-	L	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Introduction to CAD, CAM, CAD/CAM and CIM - Evolution of CIM - CIM wheel and cycle - Production concepts and mathematical models - Simple problems in production models - CIM hardware and software - Major elements of CIM system - Three step process for implementation of CIM - Computers in CIM - Computer networks for manufacturing - The future automated factory - Management of CIM - Impact of CIM on personnel - CIM status.

AUTOMATED MANUFACTURING SYSTEMS

Automated production line – system configurations, work part transfer mechanisms – Fundamentals of Automated assembly system – System configuration, Part delivery at workstations – Design for automated assembly – Overview of material handling equipments – Consideration in material handling system design – The 10 principles of Material handling. Conveyor systems – Types of conveyors – Operations and features.

Automated Guided Vehicle system – Types of vehicles and AGVs applications – Vehicle guidance technology – Vehicle management and safety.

Storage system performance – storage location strategies – Conventional storage methods and equipments – Automated storage/Retrieval system and Carousel storage system

Deadlocks in Automated manufacturing systems – Petrinet models – Applications in Dead lock avoidance.

GROUP TECHNOLOGY AND FMS

Part families – Visual – Parts classification and coding – Production flow analysis – Grouping of parts and Machines by rank order clustering method – Benefits of GT – Case studies.

FMS – Components – workstations – FMS layout configurations – Computer control systems – FMS planning and implementation issues – Architecture of FMS – flow chart showing various operations in FMS – Machine cell design – Composite part concept, Holier method, Key machine concept – Quantitative analysis of FMS – Bottleneck model – Simple and complicated problems – Extended Bottleneck model - sizing the FMS – FMS applications, Benefits.

PROCESS PLANNING

Process planning – Activities in process planning, Informations required. From design to process planning – classification of manufacturing processes – Selection of primary manufacturing processes – selecting among casting process, forming process and machining process. Sequencing of operations according to Anteriorities – various examples – forming of Matrix of Anteriorities – case study.

Typical process sheet – case studies in Manual process planning.

Computer Aided Process Planning — Process planning module and data base — Variant process planning— Two stages in VPP — Generative process planning — Flow chart showing various activities in generative PP — Semi generative process planning.

TYPES OF PROCESS CONTROL AND AUTOMATIC DATA CAPTURE

Introduction to process model formulation – linear feedback control systems – Optimal control –Adaptive control –Sequence control and PLC. Computer process control – Computer process interface

Interface hardware – Computer process monitoring – Direct digital control and Supervisory computercontrol.

Text Books	
	Mikell. P. Groover "Automation, Production Systems and Computer
1	Integrated manufacturing", Pearson Education 2001.
	Radhakrishnan P, Subramanyan. S. and Raju V., "CAD/CAM/CIM", 2nd Edition
2	New AgeInternational (P) Ltd., New Delhi, 2000.
Reference	Books
	Alayudeen and Venkateshwaran "Computer Integrated Manufacturing" PHI

Reference Bo	oks
	Alavudeen and Venkateshwaran, "Computer Integrated Manufacturing", PHI Learning Pvt. Ltd., New Delhi, 2008.
	Kant Vajpayee, S., "Computer Integrated Manufacturing", Prentice Hall of India, New Delhi, 2007.
	James A. Retrg, Herry W. Kraebber, "Computer Integrated Manufacturing", PearsonEducation, Asia, 2001.
	Viswanathan, N., and Narahari, Y., "Performance Modeling and Automated Manufacturing Systems", Prentice Hall of India Pvt. Ltd., 2000.
	Gideon Halevi and Ronald D. Weill, "Principles of Process Planning", Chapman Hall, 1995.

S.No	Faculty Name	Designation	Department/ College	Email id
1		2 1 55t.	MECH/ VMKVEC	saravanan@vmkvec.edu.in
				prakash@avit.ac.in

				~~~	<b></b>				Cat	tegory	L	T	P	C	redit	
4022	1000	THE	EORY													
	1C06	PRA	CTIC	<u> </u>						CC	3	0	0		3	
Prean		make	the s	tuden	ts to f	amili	ar wit	h the	hasic	nrincii	ales of	metal cu	ıtting			
Prere	quisite	make	the s	tuacii	13 10 1	amm	ai wit	ii tiic	basic	princip	<u> </u>	metar et	ittilig.			
Nil																
Cours	e Obje	ctives														
1	To stu	dy the various design considerations for tooling.														
2	To ena	able s	tuden	ts, und	dersta	nd the	eir kn	owled	lge or	n Tooli	ng for	Metal re	moval p	oroce	SS.	
3										pplicat			•			
4	To ga	ain kn	owled	dge In	spect	ion ar	nd Ga	uging	in En	gineer	ing ap	plication	s.			
5	Deve	elop k	nowle	edge i	n tool	ing ar	nd wo	rk ho	lding	device	s.					
Cours	e Outc	omes:	On th	e succ	essful	comp	letion	of the	cours	se, stud	ents wi	ll be able	to			
		To a	ssess	vario	us typ	es of	Tooli	ng in								
CO1			ufacti									Unde	Understand			
			Desigr meter	_			•	_	given	l						
CO2		_	licatio		ieu io	Liigi	neem	ıg				Apply	Apply			
		Тоа	pply 1	the co	ncent	s of N	/letal	castin	g and	Metal						
		Join	ing Pr	ocess	in an				_							
CO3		stan	dard v	alues	•							Apply	У			
CO4			pply tg CM		ncept	s of I	nspec	tion a	nd Ga	uging	by	Apply	lv			
			<u> </u>										/			
CO5		Desi	gn an	d Dev	elop	toolin	g for	Flexi	ble M	anufac	turing	. Apply	У			
Map	ping w	ith Pr	ogram	me O	utcom	es and	l Prog	ramm	e Spe	cific Ou	tcomes	8				
	PO	PO	РО	РО	РО	РО	РО	РО	РО	PO1	PO1		PSO	PS O	PSO	
COs	1	2	3	4	5	6	7	8	9	0	1	PO12	1	2	3	
CO1	S	L	L	L	-	-	-	S	S	S	-	-	S	_	_	
CO2	S	M	M	L	- 1		-	S	S	S	-	-	S	_	<u></u>	
CO3	S	M	M	L	-		-	S	S	S	1	-	S			
CO4	S	М	M	L	_	_	_	S	S	S	-		S	_	_	
	5	171	111						5				5			
CO5		M	M	M	-	-	-	S	S	S	-	-	S	_	-	
S-Stı	ong; N	<b>1-Med</b>	lium;	L-Lov	7											

#### INTRODUCTION

Manufacturing Processes-objectives of manufacturing processes-classification of manufacturing process-Objectives of Tool design-tool design process- Nature and scope of Tool engineering principles of economy for tooling-problems of economy in tooling-planning and tooling for economy Manufacturing principles applicable to process and tool planning-tool control-tool maintenance-tool

Manufacturing principles applicable to process and tool planning-tool control-tool maintenance-t materials and its selection.

#### TOOLING FOR METAL REMOVAL PROCESSES

Traditional machining processes -work and tool holding devices-tool nomenclatures Mechanism of machining-force temperature and tool life of single point tool-multipoint tools -tool design-tool wear special processes-capstan and turret lathe-tooling layout of automats-tooling in NC and CNC machines-tooling for machining centres-CAD in tool design- Jigs and fixtures-design-Non-traditional material removal processes mechanical, electrical thermal and chemical energy processes-principles operation equipment-tooling parameters- Advantages, disadvantages and Applications.

#### TOOLING FOR METAL FORMING PROCESSES

Classification of Forming processes- Types of presses-design of -blanking and piercing dies-simple, compound, combination and progressive dies- Drawing dies - Bending dies-forging dies-plastic moulding dies. Applications of dies.

#### TOOLING FOR METAL CASTING AND METALJOINING PROCESSES

Tools and Equipment for moulding-patterns—pattern allowances — pattern construction-die casting tools-mechanization of foundries. Tooling for Physical joining processes Design of welding fixtures —Arc welding, Gas welding, Resistance welding, laser welding fixtures—Tooling for Soldering and Brazing Tooling for Mechanical joining processes.

#### TOOLING FOR INSPECTION AND GAUGING

Survey of linear and angular measurements-standards of measurement-design and manufacturing of gauges- measurement of form- Inspection bench centre-co-ordinate measuring machine-tooling ir CMM. Applications of CMM.

#### Text Books

- 1. Bhattacharya.A., Metal Cutting Theory and practice, Central Book Publishers, India, 2012.
- 2. Hoffman E.G Fundamentals of tool design SME, 2003.

#### Reference Books

- 1. B L Juneja and G S Sekhon., Fundamentals of Metal Cutting and Machine Tools, 2017.
- 2. Shaw.M.C.Metal cutting principles, Oxford Clare don press, 2012.
- 3. Boothroid D.G. & Knight W.A., Fundamentals of machining and machine tools, Marcel Dekker, Newyork, 2005.

SL.No	Faculty Name	Designation	Department /Name of the College	Email id
1	Mr.C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in
2	Dr.S.Arunkumar	Assistant Professor	MECH/VMKVEC	arunkumar@vmkvec.edu.in

		ETAL				C	Categor	·y	L		T		P	Cre	edit	
40221		ORMING PROCESSES		C	CC		3		0		0	3	3			
Preamble		TO CL	5525			I							•			
		course				expe	cted to	o upgr	ade tl	neir k	nowle	edge o	n vai	rious n	neta	
	techniq	ues and	1 form	abilit	у.											
rerequ	uisite															
Nil	01: 4:															
	Objecti															
1	To apply the theory of plasticity for various types of metal forming process.															
2	To lea	rn the	effect	of fri	ction	and lu	ıbrica	tion in	Meta	al for	ming.					
3	Select	ion of	suitab	le me	tal for	ming	techn	iques.								
4	Calcul	ation o	of forc	e in n	netal f	ormir	na nro	CASS								
5	Evalua	ation of	f diffe	rent n	netho	ds and	l techi	niques	for n	netal :	formi	ng app	olicat	ions.		
Cours	e Outcoi	nes: O	n the	SHCCE	essful	comn	oletion	ı of th	ie con	ırse. s	studei	nts wi	ll be	able to	n.	
Cours	Demons					_								ubic to		
CO1	tempera	ture di	stribu	tion a	nd fri	ction	in me	tal for	ming	proce	esses.			Under	sta	
CO2	A		1	1 1		40.00	1 4 .	41		41.				A1		
CO2	Apply for								-		_			Apply		
CO3	rolling			ces an	iu gco	meun	cai ici	ations	iiips (	mai o	ccui i	ii a		Analy	ze	
					l deary	.i. ~ n.	***		tomas	of do	forma	tion				
	A malver	the ex	Analyze the extrusion and drawing processes in terms of deformation,								HOIIII	ation,		Analy	70	
CO4	_				4 lubrication and defects for various applications.  Analyze the various newer methods and techniques in metal forming									Anary	.iyze	
CO4	lubricat	ion and	d defe	cts for			•		ies in							
	lubricat	ion and the va	d defec	ets for	r metl		•		ies in	meta	1 10111	6		Analy	ze	
CO5	lubricat Analyze process	the va	defections defection designs defect designs des designs design	newe	r metl	nods a	and ted	chniqu						Analy	ze	
CO5 Iappii	Analyze process ng with I	the variation and the variatio	d defectations wer ap	newe	r meth	and P	rogra	chniqu amme	Spec	ific C	Outcon PO	mes PO	PS	PS	PS (	
CO4 CO5 Appin	Analyze process ng with I	the va	d defectations wer ap	newe	r meth	and P	and ted	chniqu amme	Spec	ific C	Outco	mes	PS O	1	PS (	
CO5 Iappii	Analyze process  ng with I	the variation and the variatio	d defectations wer ap	newe	r meth	and P	rogra	chniqu amme	Spec	ific C	Outcon PO	mes PO		PS	PS (	
CO5 <b>[appir</b> COs	Analyze process  ng with H  POI	e the various for new Progra	d defectorious wer approximate PO3	newe oplicar Outco	r methations.	and P	Progra	ehniqu amme PO8	Spec PO9	ific ( PO 1	PO 1	mes PO 1	0	PS O	PS (	
CO5 Aappin COs CO	Analyze process  ng with I  PO1  S  2 S	the variation and the variatio	d defectorious wer approximately PO3	newe oplicar Outco	PO5	and P	Progra PO7	ehniqu PO8	PO9	ific () PO 1 -	PO 1	mes PO 1	M M	PS O	PS (	
CO5 <b>[appir</b> COs	Analyze process ng with I POI S S	e the various for new Progra	d defectorious wer approximate PO3	newe oplicar Outco	r methations.	and P	Progra	ehniqu  PO8	PO9	ific () PO 1	PO 1	mes PO 1	M	PS O	PS (	
CO5 Aappin COs CO	Analyze process  ng with I  POI  S  S  S	the variation and the variatio	d defectorious wer approximately PO3	newe oplicar Outco	PO5	and P	Progra PO7	ehniqu PO8	PO9	ific () PO 1 -	PO 1	mes PO 1	M M	PS O	PS ()	

#### FUNDAMENTALS OF METAL WORKING

Classification of Forming Process, Mechanics of Metal working, Flow Stress determination, Temperature in Metalworking, influence of Friction and Lubrication.

#### **FORGING**

Classification of Forging process, Forging equipments, open and closed die forging, Calculation of forging loads, Forging defects.

#### ROLLING

Classification of Rolling process, Rolling mills, Hot-Rolling, Cold-Rolling, Forces and Geometrical Relationship in rolling, Rolling defects.

#### EXTRUSION AND DRAWING

Classification, Process parameters, equipment used, Lubrication and Defects in extrusion process, Analysis of the extrusion process, Hydrostatic extrusion, extrusion of tubing—Defects—applications. Rod and wire drawing, Analysis of wire drawing, Applications.

#### ADVANCEMENTS IN METAL FORMING

Forming Methods, Shearing and blanking, Bending, Stretch forming, Deep drawing, Forming Limit Criteria, Defects, Explosive forming, Electro hydraulic forming, magnetic pulse forming, super plastic forming, electro forming – fine blanking HERF- LASER beam forming-Application of powder metallurgy in forming.

#### **Text Books**

- Surender Kumar, Technology of Metal Forming Processes, Prentice Hall India Publishers, 2010.
- 2 Nagpal G.R. "Metal forming processes", Khanna publishers, New Delhi, 2004.

#### Reference Books

- Marciniak, Z., Duncan J.L., Hu S.J., 'Mechanics of Sheet Metal Forming', Butterworth-Heinemann An Imprint of Elesevier, 2006.
  - Heinz Tschaetsch, (2005), Metal Forming Practise, Springer Berlin Heidelberg New York.
  - 3 ASM Hand book, Forming and Forging, Ninth edition, Vol 14, 2003.
    - ALTAN.T, SOO-IK-oh, GEGEL, HL Metal forming, fundamentals and
  - 4 Applications, American Society of Metals, Metals Park, Ohio, 1995.
  - 5 Dieter G.E., Mechanical Metallurgy (Revised Edition II) McGraw Hill Co., 1988.

Sl.No	Faculty Name	Designation	Department / College	Email id
		Associate		
1	Mr.J.Senthil	Professor	MECH/AVIT	jsenthil@avit.ac.in
			MECH/	
2	Dr.M.Saravanan	Asst. Professor	VMKVEC	saravanan@vmkvec.edu.in

								Ca	ategor	<b>y</b>	L	Т	P	Cr	edit
4022	1C82			LIN( SIS L		D			CC		0	0	4		2
Preamb		ovide	e hanc	ds-on	expe	rience	e to th	ne stu	dents	in ana	alysis	softwar	e.		
<b>Prereq</b> ı Nil	uisite														
Cours	e Obje	ective	es												
1 L	earn b	asic p	oroce	dure (	of fin	ite ele	emen	t anal	lysis.						
2 U	Jse cor	npute	er as a	a tool	in an	alysis	S.								
3 A	nalysi	s of 1	node	led pa	arts.										
4 A	nalysi	s of c	one ai	nd tw	o-din	nensio	onal p	oroble	ems u	sing s	oftwar	e.			
5 T	o mod	el mu	ılti-di	imens	sional	l heat	trans	fer p	robler	ns usi	ng AN	ISYS.			
Course												ts will b	e able	to	
CO1	Appl diffe	-			epts	to stre	ess ar	nd stra	ain pr	oblem	s for		U	nderst	and
CO2	Solve	e the t	finite	elem	ent p	roblei	ms to	truss	ses, be	eams a	nd fra	mes.		Apply	7
CO3	Appl vesse	•	buck	ling a	analy	sis, S	tress	analy	sis of	f axi-s	ymme	etry		Apply	7
CO4	Appl trans	-			mal (	condu	iction	and	Cond	uctive	heat			Apply	7
CO5	Solve	e line	ar, no	n-lin	ear ai	nd Ha	rmon	ic an	alvsis	probl	ems.			Apply	7
Mappin	•								_	•		mes			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	L	-			-		L	M	S	M
								-	-		-				
CO2	S	S	M	L	S	M	-	-	-	L	-	M	M	M	S
CO3	S	S	S	S	S	M	-	-	M	L	-	L	M	M	S
CO4	S	S	S	M	S	M	-	-	M	L	-	L	M	M	S
CO5	S	S	S	S	S	L	-	-	-	L	-	L	M	M	S
S- Stron	g; M-M	edium	; L-Lo	w											

- 1. Study of analysis and its benefits
- 2. Stress analysis of cantilever and simply supported beam
- 3. Application of distributed loads
- 4. Nonlinear analysis of cantilever beam
- 5. Buckling analysis
- 6. Stress analysis of axi-symmetry vessels
- 7. Static analysis of two-dimensional truss
- 8. Transient thermal conduction
- 9. Conductive heat transfer analysis
- 10. Plane stress bracket
- 11. Modal analysis of simply supported beam
- 12. Harmonic analysis of a cantilever beam

#### Text Books

#### 1 MODELLING AND ANALYSIS LAB MANUAL

#### Reference Books

Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International Edition, 2004.

Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall of India, 2002.

S.No.	Faculty Name	Designation	Department/Name of the College	Email id
		Assistant		
1	Mr.J.Santhosh	Professor	MECH/VMKVEC	santhosh@vmkvec.edu.in
		Assistant		
2	Dr.S.Prakash	Professor	MECH/AVIT	prakash@avit.ac.in

	OPTIMIZATION	Category	L	T	P	Credit					
	TECHNIQUES IN										
40221C08	MANUFACTURING	CC	2	1	0	3					
Preamble											
Optin	nization Techniques is one of the r	nost advance	ed field	ds of	compu	iter science					
which involves use of Mathematics, Statistics, Management, Information Technology and											
Information Sciences in discovering new information and knowledge from large databases and											
optimize Human effort overall in Decision making process.											

S-Strong; M-Medium; L-Low

Prere	quisite														
Nil															
Cours	se Obje	ctives	5												
1	To lea	ırn ba	sic pri	incipl	es of	optim	izatio	n.							
2	To St	ıdy th	e met	hods	of mi	nimiz	ation.								
3	To ap	ply th	e cons	strain	ed opt	timiza	tion t	echni	ques.						
4	To an	alyze	the ur	cons	traine	d opti	mizat	tion te	chniq	ues.					
5	To lea	ırn the	appli	icatio	n of h	eurist	ics in	optin	nizati	on.					
Cours	Course Outcomes: On the successful completion of the course, students will be able to														
CO1	To understand the formulation and classification of optimization														
CO2	2 Solve the problems using the minimization techniques. Apply														
CO3	Appl	y the o	direct	and i	ndirec	et met	hods	in opt	imiza	tion te	chniqu	es.	Арр	oly	
CO4	Solve	e the r	nulti v	variab	le un	constr	ained	optin	nizati	on tecl	niques	S.	Арј	oly	
CO5	Unde	rstand	l the aj	pplica	tion o	f heur	istics	in op	timiza	ation.			Арр	oly	
Mapp	ing wit	h Pro	gram	me O	utcon	nes ar	nd Pro	ogran	nme S	pecific	Outco	omes	T		Τ
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	-	-	-	-	-	-	-	M	S	M
CO2	2 S	S	S	M	M	-	-	-	-	-	-	-	M	M	S
CO3	S	S	S	S	M	-	L	-	M	L	-	-	M	M	S
CO4	S	S	S	S	S	-	L	-	M	L	-	-	M	M	S
COS	S	S	S	S	M	-	L	-	M	L	-	-	M	M	S

#### **SYLLABUS**

# INTRODUCTION TO OPTIMIZATION

Formulation of an optimization problem- Classification of optimization problem – optimization techniques-Classical optimization technique – Single variable optimization – Multi variable optimization algorithms.

# MINIMIZATION METHODS

One dimensional minimization method: unimodal function — elimination methods: unrestricted search, exhaustive search, Dichotomous search, Fibonacci methods, Golden section methods. Interpolation methods: Quadratic and cubic interpolation methods.

# CONSTRAINED OPTIMIZATION TECHNIQUES

Optimization with equality and inequality constraints - Direct methods – Indirect methods using penalty functions, Lagrange multipliers - separable programming and Geometric programming.

# UNCONSTRAINED OPTIMIZATION TECHNIQUES

Multi variable unconstrained optimization techniques: Direct search methods: Random search method, univariate method, pattern search method, steepest descent method and Conjugate gradient method.

# APPLICATIONS OF HEURISTICS IN OPTIMIZATION

Heuristics-Introduction-Multi objective optimization: Genetic algorithms and Simulated Annealing techniques; Neural network & Fuzzy logic principles in optimization.

# Text Books Rao, Singaresu, S., "Engineering Optimization – Theory & Practice", New Age International (P) Limited, New Delhi, 2000. Kalyanamoy Deb, "Optimization for Engineering design algorithms and Examples", Prentice Hall of India Pvt. 1995. Reference Books

Johnson Ray, C., "Optimum design of mechanical elements", Wiley, John & Sons, 1990.

Goldberg, D.E., "Genetic algorithms in search, optimization and machine", Barnen, Addison-Wesley, New York, 1989.

S. No	Faculty Name	Designation	Department/ Name of the College	Email id
1	Mr.J.Santhosh	Assistant Professor	MECH/VMKVEC	santhosh@vmkvec.edu.in
2	Mr.A.Senthilkumar	Asst. Prof.	MECH/AVIT	senthilkumar@avit.ac.in

# PROGRAM ELECTIVE COURSES

	DESIGN FOR MANUFACTURE	Category	L	Т	P	Credit
40221P09	AND ASSEMBLY	EC-PS	3	0	0	3
Preamble						

To make the students learn about product development, design process, principles of assembly and reliability.

# Prerequisite

Nil

# Course Objectives

- 1 To understand the product development cycle.
  - To know the manufacturing issues that must be considered in the mechanical engineering
  - design process.
- 3 To know the principles of assembly to minimize the assembly time.
- To know the effect of manufacturing process and assembly operations on the cost of product.

  To be familiar with tools and methods to facilitate development of manufactural mechanical
- 5 designs.

Course Outcomes: On the successful completion of the course, students will be able to

CO1	Recognize the various product development cycle.	Apply
CO2	Analyzing the manufacturing issues that must be considered in the mechanical engineering design process.	Analyze
CO3	Analyzing the principles of assembly to minimize the assembly time.	Analyze
CO4	Analyzing the effect of manufacturing process and assembly operations on the cost of product.	Analyze
CO5	Recognize familiar with tools and methods to facilitate development of manufactural mechanical designs.	Apply

# Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L	-	-			-	-		S	-	-
CO2	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO3	S	S	S	M	M	-	-	-		-	-	•	S	-	-
CO4	S	S	S	M	M	-	-	-	•	-	-	•	S	-	-
CO5	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

# SYLLABUS

# INTRODUCTION

Introduction Need Identification and Problem Definition, Concept Generation and Evaluation, Embodiment Design, Selection of Materials and Shapes.

# PROPERTIES OF MATERIALS

Properties of Engineering Materials, Selection of Materials – I, Selection of Materials – II, Case Studies – I, Selection of Shapes, Co-selection of Materials and Shapes, Case Studies – II.

# MANUFACTURING PROCESSES

Selection of Manufacturing Processes, Review of Manufacturing Processes, Design for Casting, Design for Bulk Deformation Processes, Design for Sheet Metal Forming Processes, Design for Machining, Design for Powder Metallurgy, Design for Polymer Processing, Co selection of Materials and Processes, Case-Studies – III

# ASSEMBLY

Design for Assembly, Review of Assembly Processes, Design for Welding – I, Design for Welding – II, Design for Brazing and Soldering, Design for Adhesive Bonding, Design for Joining of Polymers, Design for Heat Treatment, Case-Studies - IV

# RELIABILITY

Design for Reliability, Failure Mode and Effect Analysis and Quality, Design for Quality, Design for Reliability, Approach to Robust Design, Design for Optimization.

# Text Books

- 1. M F Ashby and K Johnson, Materials and Design the art and science of material selection in product design, Butterworth-Heinemann, 2003.
- 2. G Dieter, Engineering Design a materials and processing approach, McGraw Hill, NY, 2000.
- 3. M F Ashby, Material Selection in Mechanical Design, Butterworth-Heinemann, 1999.
- 4. K G Swift and J D Booker, Process selection: from design to manufacture, London: Arnold, 1997.

# Reference Books

- 1. James G Bralla, Handbook for Product Design for Manufacture, McGraw Hill, NY, 1998.
- 2. S S Rao, Engineering Optimization: theory and practice, John Wiley, NY, 1996.
- 3. G Boothroyd, P Dewhurst and W Knight, Product design for manufacture and assembly, John Wiley, NY: Marcel Dekkar, 1994.
- 4. Houldcroft, Which Process an introduction to welding and related processes and guide to their selection, Cambridge, Abington Pub., 1990.

S.No	Faculty Name		Department/Name of the College	Email id
1	Mr.T.Raja	Associate Professor	MECH/VMKVEC	rajat@vmkvec.edu.in
2	Mr.C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in

		Category	L	T	P	Credit
40221P01	FLUID POWER AUTOMATION	EC-PS	3	0	0	3

# Preamble

To make the students learn about need for automation, fluid power generating, utilization, controls, regulation elements, hydraulic circuits design and electrical control circuits.

# **Prerequisite**

Ni

# Course Objectives

- 1 Understand the need for automation.
  - 2 To know the fluid power generating and utilizing elements.
  - 3 To know the principles of control and regulation elements.
  - 4 To know the typical industrial hydraulic circuits design.
- 5 To be familiar with electrical control of pneumatic and hydraulic circuits.

# Course Outcomes: On the successful completion of the course, students will be able to

CO1	Recognize the various need for automation.	Apply
CO2	Analyzing the fluid power generating and utilizing elements.	Analyze
CO3	Analyzing the principles of control and regulation elements	Analyze
CO4	Analyzing the typical industrial hydraulic circuits design.	Analyze
CO5	Recognize familiar with electrical control of pneumatic and hydraulic circuits.	Apply

# Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L	-	-	-		-	-		S	-	-
CO2	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO3	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO4	S	S	S	M	M	-	-	-	•	-	-	•	S	-	-
CO5	S	S	S	M	M	-	-	-	•	-	-		S	-	-

S- Strong; M-Medium; L-Low

# SYLLABUS

# INTRODUCTION

Need for Automation, Hydraulic & Pneumatic Comparison – ISO symbols for fluid power elements, Hydraulic, pneumatics – Selection criteria.

# FLUID POWER GENERATING/UTILIZING ELEMENTS

Hydraulic pumps and motor gears, vane, piston pumps-motors-selection and Specification-Drive characteristics - Linear actuator – Types, mounting details, cushioning – power packs – construction. Reservoir capacity, heat dissipation, accumulators – standard circuit symbols, circuit (flow) analysis.

# CONTROL AND REGULATION ELEMENTS

Direction flow and pressure control Valves-Methods of actuation, types, sizing of ports-pressure and temperature compensation, overlapped and underlapped spool valves-operating characteristics-electro hydraulic servo valves-Different types-characteristics and performance.

# CIRCUIT DESIGN

Typical industrial hydraulic circuits-Design methodology – Ladder diagram-cascade, method-truth table-Karnaugh map method-sequencing circuits-combinational and logic circuit.

# ELECTRO PNEUMATICS & ELECTRONIC CONTROL OF HYDRAULIC AND PNEUMATIC CIRCUITS

Electrical control of pneumatic and hydraulic circuits-use of relays, timers, counters, Ladder diagram.

Programmable logic control of Hydraulics Pneumatics circuits, PLC ladder diagram for various circuits, motion controllers, use of field busses in circuits. Electronic drive circuits for various Motors.

# Text Books

- 1. W.Bolton, Mechatronics, Electronic control systems in Mechanical and Electrical Engineering Pearson Education, 2003.
- 2. Antony Esposito, Fluid Power Systems and control Prentice-Hall, 1988.

3. Herbert R. Merritt, Hydraulic control systems, John Wiley & Sons, Newyork, 1967.

# Reference Books

- 1. Peter Rohner, Fluid Power logic circuit design. Mcmelan Prem, 1994.
- 2. E.C.Fitch and J.B.Suryaatmadyn. Introduction to fluid logic, McGraw Hill, 1978.
- 3. Dudbey. A. Peace, Basic Fluid Power, Prentice Hall Inc, 1967.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.R.Venkatesh	Assistant Professor	MECH/VMKVEC	venkatesh@vmkvec.edu.in
2	Mr.A.Elanthirayan	Asst. Professor	MECH/AVIT	aelanthirayan@avit.ac.in

	Ī														
		MIC	RO					Cate	gory	L		T	P	(	Credit
40221	<b>P10</b>	MAN	IUFA	CTU	RIN	3		EC-l	PS	3		0	0		3
Pream	ıble														
	-	Го рге	sent t	he ba	isics (	of mi	cro	machir	ning to	echnol	ogy ar	nd its a	pplic	ations.	
Prerec	quisite	e													
Nil															
Cours				C	1	. 1		11	1	1.1	1	1	C 3 4'		
		arn ab 10logy		ne fu	ndam	ental	as	well as	adva	nced k	nowle	edge of	f M1c	ro mac	nınıng
				sic pi	rincip	les a	nd r	nechan	ism o	f Trad	itional	Micro	nac	chining	and
		olicati		r-	г									8	
3	6														
	To demonstrate the basic principles and applications of different Abrasive based														
	<ul> <li>4 Micro Machining.</li> <li>5 To illustrate the fundaments of MEMS and its techniques.</li> </ul>														
	5 10 mustrate the fundaments of MEMS and its techniques.														
Cours	e Out	come	s: On	the	succe	ssful	COI	mpletio	on of	the co	urse, s	studer	its w	ill be al	ole to
	Expl	ain th	e basi	c nee	d of I	Micro	Na	ıno Ma	nufact	uring	in diffe	erent			
CO1	indu	stries												Unders	tand
CO2	Sum	mariz	e the	tradit	ional	Micr	. N	Vano M	anufa	cturino	r techr	nianes		Unders	tand
CO2								rent me					•	Officers	tana
CO3		o Nar					iiici	iciit iiit	CHain	151115 11	Auva	inccu		Apply	
	Utili	ze the	impo	rtanc	e of A	Abras	ives	s in Mi	cro N	ano N	ano				
CO4	Man	ufactu	ring											Apply	
CO5	Iden	tify th	e nee	d of I	MEM	S in	Mic	ero Nar	no Ma	chinin	σ			Apply	
	•											Onto			
wapp.	ing w	PO	PO		PO	PO		nd Pro PO	_	me Sp PO1			PS		PSO
COs	PO1		3	4	5	6	O	8	9	0	1	2	0	0	3
CO1	S	L	-	-	-	-	-	ı	-	-	-	-	S	-	-
CO2	S	L	_	_	_	_	_]	_	_	_	_	_	S		_
			_												
CO3	S	M	L	-	-	-	-	-	-	-	-	-	S	-	-
CO4	S	M	L	-	-	-	-	-	_	-	_	-	S	_	_
005			т										~		
CO ₅	S	M	L	-	-	-	-	-	-	-	-	-	S	-	-

# S- Strong; M-Medium; L-Low

#### SYLLABUS

# INTRODUCTION TO MICRO MACHINING

Need-evolution- fundamentals and trends in micro technologies- Consequences of the technology and society - challenges to manufacturing technology-evolution of precision in manufacturing, tooling and current scenario - Micro materials, fabrication tools, requirements and applications.

# TRADITIONAL MACHINING

Theory of micro machining – Chip formation – Size effect in micro machining – Micro turning - Micro milling - Micro drilling - Micro machining tool design – Precision Grinding – Partial ductile mode grinding – Ultra precision grinding.

# ADVANCED MICRO MACHINING

Introduction-Classification - Mechanical Micromachining (AJM, USM)-Thermal Micromachining (EDM, LBM, EBM)-Electrochemical and Chemical Micromachining-Ion Beam Machining-Photochemical Etching.

# ABRASIVE BASED MICRO MACHINING

Abrasive Flow Finishing (AFF) - Magnetic Abrasive Finishing (MAF) - Magnetorheological Finishing - Magnetorheological Abrasive Flow Finishing - Elastic Emission Machining (EEM) and Magnetic Float Polishing.

# MEMS

Introduction to MEMS, Definitions and classifications-History – applications - MEMSMarket - Bulk Micro machining - Wet and Dry Etching - Surface Micromachining – Chemical – Vapor Deposition – Lithography - Wafer Bonding.

#### Text Books

- Jain V.K., 'Introduction to Micro machining' Narosa Publishing House, 2011
   Bandyopadhyay. A.K., Nano Materials, New age international publishers, New Delhi, 2008, ISBN:8122422578.
- Reference Books
- Jain V. K., Micro Manufacturing Processes, CRC Press, Taylor & Francis Group, 2012.
  - 2 Bharat Bhushan, Handbook of nanotechnology, springer, Germany, 2010.
  - Mcgeoug.J.A., Micromachining of Engineering Materials, CRC press 2001, ISBN10:0824706447

			,	
Sl.No	Faculty Name		Department/Name of the College	Email id
1	Mr.C.Thangavel	Assoc.Prof	MECH/VMKVEC	thangavel@vmkvec.edu.in
2	Mr.K.Surendrababu	Assoc.Prof	MECH/AVIT	Surendrababu@avit.ac.in

		Category	L	T	P	Credit
	QUALITY AND RELIABILITY					
40221P11	ENGINEERING	EC-PS	3	0	0	3

# Preamble

To expose the students to the various quality control techniques and to understand the importance and concept of reliability.

# **Prerequisite**

Nil

# Course Objectives

- 1 To understand the techniques of quality & process control.
- 2 To understand process control and acceptance sampling procedure and their application.
- 3 To study about the various design process and to learn about taguchi method.
- 4 To learn the concepts of Reliability.
- 5 To analyze the process involved in design for reliability.

# Course Outcomes: On the successful completion of the course, students will be able to

CO1	Understand the various techniques of quality & process control	Understand
	Understand the process control and acceptance of sampling procedure	
CO2	and their application.	Understand
CO3	Analyze the various design process and to learn about taguchi method.	Analyze
CO4	Analyze the various concepts of reliability techniques.	Analyze
CO5	Analyze the various process involved in design for reliability.	Analyze

# Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L		-			-			S		-
CO2	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO3	S	S	S	M	M	-	-	-	-	-	-		S	-	-
CO4	S	S	S	M	M	-	-	-	-	-	-		S	-	-
CO5	S	S	S	M	M	-	-			-	-		S	-	-

S- Strong; M-Medium; L-Low

# **SYLLABUS**

# **OUALITY & STATISTICAL PROCESS CONTROL**

Quality – Definition – Quality Assurance – Variation in process – Factors – process capability – control charts – variables X, R and X, - Attributes P, C and U-Chart tolerance design. Establishing and interpreting controlcharts – charts for variables – Quality rating – Short run SPC.

# ACCEPTANCE SAMPLING

Lot by lot sampling – types – probability of acceptance in single, double, multiple sampling plans – OC curves – Producer's risk and consumer's risk. AQL, LTPD, AOQL, Concepts – standard sampling plans for AQL and LTPD – use of standard sampling plans.

# EXPERIMENTAL DESIGN AND TAGUCHI METHOD

Fundamentals – factorial experiments – random design, Latin square design – Taguchi method – Loss function – experiments – S/N ratio and performance measure – Orthogonal array.

# CONCEPT OF RELIABILITY

Definition – reliability vs quality, reliability function – MTBF, MTTR, availability, bathtub curve – time dependent failure models – distributions – normal, weibull, lognormal – Reliability of system and models – serial, parallel and combined configuration – Markove analysis, load sharing systems, standby systems, covarient models, static models, dynamic models.

# DESIGN FOR RELIABILITY AND MAINTAINABILITY

Reliability design process, system effectiveness, economic analysis and life cycle cost, reliability allocation, design methods, parts and material selection, derating, stress-strength and analysis, failure analysis, identification determination of causes, assessments of effects, computation of criticality index, corrective action, system safety – analysis of down-time – the repair time distribution, stochastic point processes system repair time, reliability under preventive maintenance state dependent system with repair. MTTR – mean system down time, repair vs replacement, replacement models, proactive, preventive, predictive maintenance maintainability and availability, optimization techniques for system reliability with redundancy heuristic methods applied to optimal system reliability.

# Text Books

- 1. Dale H. Besterfield, Carol Besterfield-Michna, Glen H. Besterfield and Mary Besterfield-Sacre, "Total Quality Management", 3rd edition, Pearson Education, 2011.
- 2. B. L. Hanson and P. M. Ghare, "Quality Control & Application", Prentice Hall of India, 2009.
- 3. Srinath L. S., "Reliability Engineering", 4th edition, Affiliated East West Press, 2005.
- 4. Quality Assurance and Total Quality Management (ISO 9000, QS 9000 ISO 14000) by K C Jain and AK Chitale, 3rd edition, Khanna Publishers, 2003.

# Reference Books

- 1. Dhillon, Engineering Maintainability How to design for reliability and easy maintenance, PHI, 2008.
- 2. Amata Mitra "Fundamentals of Quality Control and improvement" Pearson Education, 2002.
- 3. Patrick D To' corner, Practical Reliability Engineering, John-Wiley and Sons Inc, 2002
- 4. David J Smith, Reliability, Maintainability and Risk: Practical Methods for Engineers, Butterworth 2002.
- 5. Charles E Ebling, An Introduction to Reliability and Maintability Engineering, Tata-McGraw Hill, 2000.
- 6. Bester field D.H., "Quality Control" Prentice Hall, 1993.

Sl. No	Faculty Name		Department/Name of the College	Email id
1	Mr.S.Raja	Assistant Professor	MECH/VMKVEC	rajas@vmkvec.edu.in
2	Mr.S.KalyanaKumar	Assistant Professor	MECH/AVIT	kalyanakumar@avit.ac.in

									Cate	GOWY	L	Т	P	Cr	edit
			INITE OR M				THOD NG	<b>DS</b>							
	21P12	$\mathbf{E}$	NGIN	EERI	NG				EC-	PS	3	0	0		3
Pream	Preamble  This course provides to learn the basic concepts of finite element analysis (FEA) of									) of					
solids,											inte cr	cilicit (	anarysi	s (1°L/:	1) 01
Prerec															
Nil															
Course	e Obje	ective	S												
1	Under	stand	finite	elem	ent ar	nalysi	s funda	amen	ıtals a	nd for	nulatio	ons			
										angula ansfer		tangula	ar and o	one-	
3	Formu	ılatioı	n of fi	nite e	lemer	nt met	hods fo	or tw	o din	nensior	al soli	ds.			
												nt of co	de for	one	
4	dimen	siona	lanaly	ysis aı	nd val	idatio	n.				1				
1										•		ransfer,			-
1	and fracture in solids, Finite Element analysis of metal cutting, chip separation criteria, incorporation of strain rate dependency and welding.														
<u> </u>	шсогр	oraire	JII 01 1	sti aiii	rate u	срене	iche y a	ana v	v Cluii	<u>15.</u>					
Course												dents v		able to	
CO1			stand t bering			ncept	ts of fi	nite e	eleme	nt anal	ysis, n	ode and		derstan	d
COA										mecha	nical e	lements		1	
CO2							ar elen				C 1	. 1 1	Apj	piy	
CO3			e and s tures.		proble	ems ir	12-D s	struct	ural s	ystems	s of sol	ids and	Apj	nlv	
					on on	d ahar	rootori	otios	of EE	A alan	nents s	uah as	110	<u> </u>	
CO4		•					metric			A CICII	iciits s	ucii as	App	ply	
										ic heat	condu	ction		Ī	
CO5										t metho		· · · · · · · · · · · · · · · · · · ·	Ap	ply	
Mappi	ng wit	h Pro	gram	me O	utcon	nes ar	nd Pro	gran	nme S	pecific	Outco	mes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	S	S	M	M	-	-	-	-	-	-	-	M	-	-
CO3	S	S	S	S	M	-	L	-	M	L	-	-	S	-	-
CO4	S	S	S	S	S	_	L	_	M	L	1	_	S	_	-
CO5	S	S	S	S	M	_	L	_	M	L	_	_	S	_	_
				. 5	111		יי		1/1				5	<u> </u>	

S-Strong; M-Medium; L-Low

#### **SYLLABUS**

#### INTRODUCTION

Fundamentals – Initial, boundary and eigen value problems – weighted residual, Galerkin and Raleigh Ritz methods - Integration by parts – Basics of variational formulation – Polynomial and Nodal approximation.

# ONE DIMENSIONAL ANALYSIS

Steps in FEM – Discretization. Interpolation, derivation of elements characteristic matrix, shape function, assembly and imposition of boundary conditions-solution and post processing- One dimensional analysis in solid mechanics and heat transfer.

# SHAPE FUNCTIONS AND HIGHER ORDER FORMULATIONS

Shape functions for one and two dimensional elements- Three nodded triangular and four nodded quadrilateral element Global and natural co-ordinates—Nonlinear analysis – Isoparametric elements –Jacobian matrices and transformations – Basics of two-dimensional, plane stress, plane strain andaxisymmetric analysis.

# COMPUTER IMPLEMENTATION

Pre-Processing, mesh generation, elements connecting, boundary conditions, input of material and processing characteristics – Solution and post processing – Overview of application packages – Development of code for one dimensional analysis and validation.

# ANALYSIS OF PRODUCTION PROCESSES

FE analysis of metal casting – special considerations, latent heat incorporation, gap element – Timestepping procedures – Crank – Nicholson algorithm – Prediction of grain structure – Basic concepts of plasticity and fracture – Solid and flow formulation – small incremental deformation formulation – Fracture criteria – FE analysis of metal cutting, chip separation criteria, incorporation of strain rate dependency – FE analysis of welding.

# Text Books

- Hutton, D.V., -Fundamentals of Finite Element Analysis, McGraw Hill, International
- **1** Edition, 2004.
- 2 Seshu P., Textbook of Finite Element Analysis, PHI Learning Pvt. Ltd, 2004.

#### Reference Books

- 1 Zienkiewicz, O.C., —Finite Elements and Approximation, Dover International, 2006.
- 2 Rao, S.S., Finite Element method in engineering, Pergammon press, 2005.
- 3 Reddy, J.N. An Introduction to the Finite Element Method, McGraw Hill, 2005.
  - Lewis R.W. Morgan, K, Thomas, H.R. and Seetharaman, K.N. The Finite Element Method in
- 4 Heat Transfer Analysis, John Wiley, 1994.
- 5 Bathe, K.J., Finite Element procedures in Engineering Analysis, 1990
  - Kobayashi, S, Soo-ik-Oh and Altan, T, Metal Forming and the Finite Element Methods,
- 6 Oxford University Press, 1989.
- 7 Segerlind, L.J., -Applied Finite Element Analysis , John Wiley & Sons, 1984.

			Department	
S.No	Faculty Name	Designation	/College	Email id

	1	Dr.S.Prakash	Assistant Professor	MECH/AVIT	prakash@avit.ac.in
ſ				MECH/	
	2	Mr.T.Raja	Asso.Prof	VMKVEC	rajat@vmkvec.edu.in

		1						T			1			T	
								Cate	egory	L	T	P	1	Cre	dit
4022	21P13	IN	IDUS'	ΓRIA	L <b>ER</b> (	GONO	MICS	EC-	PS	3	0	0		3	
Pream	ble	•						•							
	Ada	pting t	he rec	quiren	nents	of a jol	to the	physi	cal ne	eeds of	the hu	mans w	ho per	form it	
Prereq	uisite														
Nil	•														
Course	Object Object	etives													
1 7	Γ4'	: 41		4:	C		.11		1 .	4 - 1		14			
				_									ivity w	ith accu	ıracy.
2	To enha	ince hi	uman	perfo	rmanc	e, cont	rol fati	gue an	id pre	vent ac	cident	<u>s.</u>		1	
	To incr office.	ease th	ne saf	ety, co	omfor	t and p	erform	ance o	of a pi	oduct o	or an e	nvironi	nent, s	uch as a	an
		oraton	d tha	onviro	nman	tol org	onomic	o incl	udos i	which	lightin	a noise	n and		
	vibratio									WIIICII .	ngnun	g, noise	anu		
										nrevent	ion of	work e	train a	nd othe	ır
	ergonor										1011 01	WOIKS	ıraııı, a	ina otne	<b>1</b>
										rse, stu	dents	will be	ahle 1	<u> </u>	
CO1	Outed	mico.	On u	ic suc	CCBBIC	ii com	piction	OI til	c cou	150, 500	ucits	WIII DC	able (		
	Jnderst	and er	ซดทดเ	nics v	vith h	uman c	omfort	noint	of vi	ew/				Unders	tand
										osures,	whethe	2r		Chacis	tuiiu
	hronic		_	or pro	ncene	m agan	iist daii	gerous	скро	Jaures,	WIICUIN	<i>-</i> 1		Analy	17 <b>0</b>
CO3	mome	or <del>ucu</del>												7 mar	, LC
	Apply tl	he con	cent c	of ergo	nomi	cs desi	on in e	aninm	ent					App	lv
										nperatu	re			7100	ı y
	llumina				_						10,			Unders	tand
										iques li	ke stor	`		Chacis	tuiiu
	vatchtii						-		CCIIII	iques ii	KC StOp	,		App	lv
									Sne	cific O	utcom	PS		7. <b>.</b> pp	<u>.</u>
COs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-	-	-	-	-	-	M	M	-	-
CO2	S	M S	<u>-</u> М	-	-	-	-	-	-		•	S S	M M	-	M
CO4	S	S	1V1	-		S	<u> </u>	S	-	-	-	S	M	-	M
CO5 S S S S M - M															
S- Strong; M-Medium; L-Low															
SYLLABUS															
INTRODUCTION															
Concepts of human factors engineering and ergonomics – Man – machine system and design philosophy –															
Physical work – Heat stress – manual lifting – work posture – repetitive motion.															
J == 2 44	mysical work – Heat suess – manual mung – work posture – repetitive motion.														

ANTHROPOMETRY

Physical dimensions of the human body as a working machine — Motion size relationships — Static and dynamic anthropometry — Anthropometric aids — Design principles — Using anthropometric measures for industrial design — Procedure for anthropometric design.

# DESIGN OF SYSTEMS

Displays – Controls – Workplace – Seating – Work process – Duration and rest periods – Hand tool design – Design of visual displays – Design for shift work.

# ENVIRONMENTAL FACTORS IN DESIGN

Temperature – Humidity – Noise – Illumination – Vibration – Measurement of illumination and contrast – use of photometers – Recommended illumination levels. The ageing eye – Use of indirect (reflected) lighting – cost efficiency of illumination – special purpose lighting for inspection and quality control – Measurement of sound – Noise exposure and hearing loss – Hearing protectors – analysis and reduction of noise – Effects of Noise or performance – annoyance of noise and interference with communication – sources of vibration discomfort.

# WORK PHYSIOLOGY

Provision of energy for muscular work – Role of oxygen physical exertion – Measurement of energy expenditure Respiration – Pulse rate and blood pressure during physical work – Physical work capacity and its evaluation.

#### Text Books

1.E.J. Mccormic, Human factors in engineering design, McGraw Hill 1976.

#### Reference Books

1.Martin Helander, A guide to the ergonomics of manufacturing, East West press, 1996.

2.R.S. Bridger Introduction to Ergonomics, McGraw Hill, 1995.

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
		Associate		
1	Dr.P.Sellamuthu	Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in
2	Mr.J.Senthil	Associate Professor	MECH/AVIT	jsenthil@avit.ac.in

		Category	L	T	P	Credit
40221P02 LEAD	N MANUFACTURING	EC-PS	3	0	0	3

This course provides a technological knowledge for elimination or reduction of waste during manufacturingprocess, thereby saving materials and also contribute for a green environment.

# Prerequisite

Nil

Course	<b>Objectives</b>
Course	Objectives

- To provide knowledge of manufacturing processes with special attention to reduction of waste.
  - To make the students understand the difference between mass production and lean production.
- To develop skills for handling mechanical tools, testers and equipments.
  To develop skills in handling work sequence in different machines.
  To develop skills in elimination of waste using 5S techniques.

Course Outcomes: On successful completion of the course, students will be able to

CO1	To know about mechanical manufacturing processes using powered machines.	Remember
CO2	To differentiate between mass production and lean production.	Understand
CO3	To describe working on machines using optimum conditions.	Apply
CO4	To demonstrate processes used for value creation on finished products.	Apply
CO5	To demonstrate procedures used for avoiding errors and mistakes.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	S	S	-	-	-	-	-	S	S	S
CO2	S	S	-	-	-	S	S	S	-	-	-	-	S	S	S
CO3	S	S	S	-	-	S	S	S	-	-	S	-	S	S	S
CO4	S	S	-	-	S	S	S	S	-	-	S	-	S	S	S
CO5	S	S	-	-	-	S	S	S	-	-	S	-	S	S	S

# S- Strong; M-Medium; L-Low

# CONCEPTS OF LEAN MANUFACTURING

Lean process, 3M concept, Key principles and implications of lean manufacturing, Traditional vs Lean manufacturing characteristics, Roadmap for Lean implementation and Lean benefits, Study of Ford and Toyota production system, JIT manufacturing, Lean building blocks.

#### ADDING VALUE AND REDUCTION OF WASTE

Value creation and waste elimination, Types of waste, Pull production and different models, The Kanban system, Continuous flow and Continuous improvement process, Kaizen - Worker involvement, Design of Kanban quantities, Leveled production, Tools for continuous improvement.

#### JIT, COMPOSITE PART AND CASE STUDIES

JIT with cell manufacturing, Part families, Production flow analysis, Composite part concept, Machine cell design, Quantitative analysis, Case studies, Single piece flow.

# VALUE STREAMING AND SIX SIGMA

The value stream – Benefits and Mapping process. The Current state map— Mapping icons, Mapping steps, VSM exercises, TAKT time calculations. Six Sigma – Definition, Statistical considerations, Variability reduction, Design of experiments, Six Sigma implementation.

# WORK SEQUENCE, MISTAKE PROOFING AND WASTE ELIMINATION

Standardized work – Standard work sequence, Timing and working progress. Quality at source – Automation / JIDOKA, Visual management system, Mistake proofing / Poka-Yoke. 5S technique – Elements and waste elimination through 5S, Advantages and Benefits, 5S Audit. Visual control aids for improvement, Flexible work force.

Text B	ooks									
1			alize Work and Alig Karen Martin, Mike	n Leadership for Organizational Osterling.						
2	Gemba Kaizen: A Commonsense Approach to a Continuous Improvement Strategy, Second EditionHardcover – 2012 by Masaaki Imai.									
3	Rother, M., and Shook, J.,' Learning to See: Value Stream Mapping to Add Value and Eliminate MUDA", Lean Enterprise Institute, 1999.									
4	James P Womack, Daniel T Jones, and Daniel Roos, The Machine that changed the World. The Storyof Lean Production -Harper Perennial edition published 1991.									
5	Ohno, T.," Toyota Production System: Beyond Large-Scale Production", Taylor & Francis, Inc., 1988.									
Refere	nce Books									
1		•		ge Guide to the World's Most vity Press, New York, 2007.						
2	Liker, J., "The Toy Manufacturer", Mo	vota Way: Fourteen cGraw Hill, 2004.	Management Princi	ples from the World's Greatest						
	Michael, L.G., "Le	ean Six SIGMA: Co	ombining Six SIGM	A Quality with Lean Production						
3	Speed", McGraw Hill, 2002.									
Course	e Designers									
S.No	Faculty Name	Designation	Department / Nameof the College	Email id						
1	Dr. Sanjay Singh	Professor	MECH/VMKVEC	sanjay@vmkvec.edu.in						

MECH/AVIT

saravanan@avit.ac.in

Mr.M.Saravanan

Asst. Prof.

		B. # A 757				Catego	rv	L	Т	P	Cra	edit					
4022	1P14		ERIALS M LOGISTIC	IANAGEM 'S	ENT	EC-P		3	0	0		3					
Preamb		ו שווא	LOGISTIC	<u> </u>		BC-I	5	<u> </u>		J		<u> </u>					
				o understar						consid	ered fo	r					
orofitabi	ility and	d tolear	n the need	and import	tance of lo	ogistics in	ı produ	ct flow	•								
Prerequ	iisite																
Nil	011																
Course	Object	ives															
1 T	o ensur	e under	standing o	f the grow	th of the	organizati	on.										
	To gain application knowledge of the surplus capacity of the organization, such as physical facility, man power, etc.																
3 _T	To apply knowledge of application in the utilization of surplus fund of the organization.																
	To gain applicability knowledge in new requirement of the customers.  To analyze ways to increase company's market share and to target new market segment.																
5 T	o analy	ze ways	s to increas	se company	's marke	t share an	d to tar	get nev	v mark	et segn	nent.						
Course	Outcor	nes: O	n the succ	essful com	pletion of	f the cou	rse, stu	dents	will be	able to	0						
CO1 II	ndersta	nd the so	cone of one	rations func	tion in ind	luctrial and	husine	ss Organ	nization	c							
				om its mana				ss organ	iizatioii		erstand						
CO2					<u> </u>												
U	ndersta	nd the sc	cope of Purc	chasing polic	cies, proce	edures and	Seller r	elations	hip.	Und	erstand						
_		nd the St	tores function	on, Material	s handling	g and Netw	ork ana	lysis po	int of	Und	erstand						
VI	icw.									Ond	Cistana	view. Understand					
	Apply demand forecasting, Material Requirement Planning (MRP) & managing materials levels.  Apply																
	11 0		recasting, N	hateriai Req	uirement I	Planning (I	VIKP) &	. manag	ng	App	ly						
CO5 A	naterials pply spe	levels.	pe of inven	tory system						en							
CO5 A	pply speroduct c	levels. ecific typategory	pe of inventand type.	tory system	and Aggre	egate Plann	ning sys	tem for	the give								
CO5 A	pply sporoduct c	levels. ecific typategory Progra	pe of inventand type.	tory system	and Aggre	egate Plann	ning sys	tem for	the give	en							
CO5 A pri Mappin	pply speroduct comparished with	ecific typategory Progra	pe of inventand type.  umme Out  PO3 PO4	comes and	and Aggre	egate Plann	ning sys	tem for	the give	en App		PSO					
CO5 A pr Mappin COs CO1	pply speroduct cong with	ecific typategory Progra PO2 F M	pe of inventand type.  nmme Out  PO3 PO4  M L	comes and PO5 PO6 L -	PO7 F	egate Plann  mme Spec  PO8 PO9	eific O	tem for	the give	App PS01 S	PSO2	-					
CO5 A pri Mappin	pply speroduct comparished with	ecific typategory Progra PO2 F M S	pe of inventand type.  umme Out  PO3 PO4	comes and	and Aggre	egate Plann mme Spec	ning sys	tem for	the give	en App	ly	PSO -					

S- Strong; M-Medium; L-Low

# **SYLLABUS**

# INTRODUCTION

Introduction to materials management – Objectives – Functions – Operating Cycle – Value analysis – Make or buy decisions.

# MANAGEMENT OF PURCHASE

Purchasing policies and procedures – Selection of sources of supply – Vendor development – Vendor evaluation and rating – Methods of purchasing – Imports – Buyer – Seller relationship – Negotiations.

# MANAGEMENT OF STORES AND LOGISTICS

Stores function – Location – Layout – Stock taking – Materials handling – Transportation – Insurance – Codification – Inventory pricing – stores management – safety – warehousing – Distribution linearprogramming – Traveling Salesman problems – Network analysis – Logistics Management.

# **MATERIALS PLANNING**

Forecasting – Materials requirements planning – Quantity – Periodic – Deterministic models – Finite production.

# INVENTORY MANAGEMENT

ABC analysis – Aggregate planning – Lot size under constraints – Just in Time (JIT) system.

# Text Books

- 1. Dr.R. Kesavan, C.Elanchezian and B.Vijaya Ramnath, Production Planning and Control, Anuratha Publications, Chennai, 2008.
- 2. G. Reghuram, N. Rangaraj, Logistics and supply chain management cases and concepts, Macmillan India Ltd., 2006.
- 3. Gopalakrishnan.P, Handbook of Materials Management, Prentice Hall of India, 2005.

# Reference Books

- 1. Guptha P.K. and Heera, Operations Research, Suttan Chand & Sons, 2007.
- 2. Lamer Lee and Donald W.Dobler, Purchasing and Material Management, Text and cases, Tata McGraw Hill, 2006.
- 3. Dr. R. Kesavan, C.Elanchezian and T.SundarSelwyn, Engineering Management Eswar Press 2005.

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	Mr.S.Duraithilagar	Associate Professor	MECH/VMKVEC	duraithilagar@vmkvec.edu.in
2	Dr.D.Bubesh Kumar	Associate Professor	MECH/AVIT	bubeshkumar@avit.ac.in

MEMS AND	Category	L	Т	P	Credit
40221P04 NANOTECHNOLOGY	EC-PS	3	0	0	3

#### Preamble

This course to gives thorough knowledge about the trends in latest manufacturing technologies of MicroElectro Mechanical Systems and also measuring systems to nano scale in Nano Technology. The fabrication processes for development of MEMS devices and systems, also to impart knowledge to the students about nano materials and various nano measurements techniques.

# **Prerequisite**

Nil

# Course Objectives

- To understand the broad knowledge of the history, over view, applications and future directions of MEMS
- 2 To understand the various materials and fabrication techniques about MEMS.
- 3 Identify the suitable applications for sensors and actuators in MEMS.
  - Develop the thorough knowledge of the Nano structures and fabrication process in Nano
- 4 Technology.
  - To understand the advanced characterization techniques of Nano materials in Nano
- Technology.

Course Outcomes: On the successful completion of the course, students will be able to

	Select suitable materials and fabrication process for MEMS	
CO2	technology.	Apply
CO3	Select for suitable applications in sensors and actuators in MEMS.	Apply
CO4	Understand the Nano materials and structures in Nano Technology.	Understand
	Select the suitable characterizations techniques of Nano materials and	
CO5	Nano Technology.	Apply

**Mapping with Programme Outcomes and Programme Specific Outcomes** 

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-		-	-	-	-		M	M	-	
CO2	S	M	-	-	-	-	-	-	-	-	-	S	M	-	M
CO3	S	S	M	-		•	•	-	-	•	-	S	M	•	M
CO4	$\mathbf{S}$	S	-	-	-	S	-	S	-	-	-	S	M	-	M
CO5	S	S	-	-	S	-	-	-	-	-	-	S	M	-	M

S- Strong; M-Medium; L-Low

# SYLLABUS

# INTRODUCTION OF MEMS AND MICROSYSTEMS

Unique characteristics of MEMS, Microsystems Technology- An Overview, typical MEMS and Microsystem Products. Scaling laws in miniaturization- Application of MEMS and Microsystems-Future Directions of MEMS.

# MATERIALS AND FABRICATION PROCESSES

Structure of silicon and other materials, - Mechanical properties of Si, Silicon Compounds silicon piezo resistors, Galium arsenide, quartz, polymers for MEMS. Silicon wafer processing - Bulk micromachining and Surface micromachining, Wafer-bonding. Thin-film deposition, Lithography, wet etching and dry etching. LIGA and other moulding techniques- Soft lithography and polymer processing- Thick-film processing; Low temperature co-fired ceramic processing- Smart material processing.

# MICRO SENSORS AND MICRO-ACTUATORS

Micro sensors - Basic principles and working of micro sensors- Acoustic wave micro sensors. Bio- medical micro sensors- Bio-sensors- Chemical micro sensors - Optical Sensors - Pressure micro sensors- Thermal micro sensors-acceleration micro sensors; Micro actuators - Basic principles and working of micro actuators- Electrostatic micro actuators- Piezoelectric micro actuators- Thermal micro actuators- SMA micro actuators- Electromagnetic micro actuators, micro valves, micro pumps.

# SCIENCE OF NANO MATERIALS

Classification of nano structures – effect of the nanometer length scale effects of nano scale dimensions on various properties – structural, thermal, chemical, mechanical, magnetic, optical and electronic properties – effect of nanoscale dimensions on biological systems. Fabrication methods – Nanoparticles, Sol-Gel Synthesis, Inert Gas Condensation, High energy Ball Milling, Plasma Synthesis, Electro deposition and other techniques. Synthesis of Carbon nano tubes – Solid carbon source-based production techniques – Gaseous carbon source-based production techniques. Top down processes – bottom up process.

# CHARACTERIZATION OF NANO MATERIALS

Nano-processing systems – Nano measuring systems – characterization – analytical imaging techniques – microscopy techniques, electron microscopy scanning electron microscopy, transmission electron microscopy, scanning tunneling microscopy, atomic force microscopy, diffraction techniques – spectroscopy techniques – Raman spectroscopy, 3D surface analysis – Mechanical, Magnetic and thermal properties – Nano positioning systems.

# Text Books

- 1. Fahrner W.R., Nanotechnology and Nanoelectronics, Springer (India) Private Ltd., 2011.
- 2. Tai Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata-McGraw Hill, New Delhi, 2002.
- 3. Mohamed Gad-el-Hak, MEMS Handbook, CRC press, 2006, ISBN: 8493-9138-5

#### Reference Books

- 1. Yang Leng, Materials Characterization: Introduction to Microscopic and SpectroscopicMethods, John Wiley & Sons, 2013.
- 2. Guozhong Cao, "Nanostructures and Nanomaterials: Synthesis, Properties, and Applications", World Scientific Publishing Private, Ltd., 2011.
- 3. Carl. C Koch, "Nanostructured Materials: Processing, Properties and Potential Applications", William Andrew Publishing Norwich, 2006.
- 4. Zhong Lin Wang, "Characterization of Nanophase Materials", Wiley-VCH, 2004.
- 5. Charles P Poole, Frank J Owens, Introduction to Nano technology, John Wiley and Sons, 2003.
- 6. Norio Taniguchi, Nano Technology, Oxford University Press, New York, 2003.
- 7. Mark Madou, Fundamentals of Microfabrication, CRC Press, New York, 1997.
- 8. Julian W. Hardner Micro Sensors, Principles and Applications, CRC Press 1993.

0 0 0 0 0 0				
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.S.Arunkumar	Assistant Professor	MECH/VMKVEC	arunkumar@vmkvec.edu.in
1	DI.S.Alulikullal	Assistant 1 Tolessol	IVILCII/ VIVIIX V LC	arunkumar @ vink vcc.cdu.m
2	Dr.D.Bubesh Kumar	Associate Professor	MECH/AVIT	bubeshkumar@avit.ac.in

			Г							
		NON-DESTRUCTIVE TESTING	Category	L	T	P	Credit			
4022	21P05	AND EVALUATION	EC-PS	3	0	0	3			
Pream		ress the importance of NDT in engine	neering.							
Prereq	uisite									
Nil										
Course	Course Objectives									
		rt knowledge on visual inspection &								
		rstand the behavior of eddy current t								
		rstand the selection of magnetic part				hy.				
		the thorough knowledge of ultrason								
5	To unde	rstand the case studies, comparison a	and selectio	n of NI	OT met	hods.				
Course	Outcor	mes: On the successful completion	of the cour	se, stu	dents v	will be able	e to			
CO1	Under Testin	rstand the concepts of elastic, visual i	nspection &	Liquid	Penetra	nt	Understand			
CO2	Analy	ze the behavior of eddy current testing	g & acoustic	emissio	n.		Analyze			
CO3	Select	for suitable applications in magnetic	particle test	ing & th	nermogr	aphy.	Apply			
CO4	Under	estand the ultrasonic testing & radiogra	phy.				Understand			
CO5	Select	case studies, comparison and selection	of NDT met	hods.			Apply			

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-	-	-	-	•	-	M	M	-	-
CO2	S	M	-	-	-	-	-	-	-	-	-	S	M	-	M
CO3	S	S	M	-		-	-	-	-	-	-	S	M	-	M
CO4	S	S	-		-	S	-	S	-	-	-	S	M	-	M
CO5	S	S			S	-	-		-	-	-	S	M	-	M

S- Strong; M-Medium; L-Low

# **SYLLABUS**

# NON-DESTRUCTIVE TESTING: AN INTRODUCTION, VISUAL INSPECTION & LIQUID PENETRANT TESTING

Introduction to various non-destructive methods, Comparison of Destructive and Nondestructive Tests, Visual Inspection, Optical aids used for visual inspection, Applications. Physical principles, procedure for penetrant testing, Penetrant testing materials, Penetrant testing methods-water washable, Post – Emulsification methods, Applications.

# EDDY CURRENT TESTING & ACOUSTIC EMISSION

Principles, Instrumentation for ECT, Absolute, differential probes, Techniques – High sensitivity techniques, Multi frequency, Phased array ECT, Applications. Principle of AET, Instrumentation, Applications - testing of metal pressure vessels, Fatigue crack detection in aerospace structures.

# MAGNETIC PARTICLE TESTING & THERMOGRAPHY

Principle of MPT, procedure used for testing a component, Equipment used for MPT, Magnetizing techniques, Applications. Principle of Thermography, Infrared Radiometry, Active thermography measurements, Applications – Imaging entrapped water under an epoxy coating, Detection of carbon fiber contaminants.

# ULTRASONIC TESTING & RADIOGRAPHY

Principle, Ultrasonic transducers, Ultrasonic Flaw Detection Equipment, Modes of display A- scan, B-Scan, C-Scan, Applications, Inspection Methods - Normal Incident Pulse-Echo Inspection, Normal Incident Throughtransmission Testing, Angle Beam Pulse-Echo testing, Applications of Normal Beam Inspection in detecting fatigue cracks, Inclusions, Slag, Porosity and Intergranular cracks. Principle of Radiography, Effect of radiation on Film, Radiographic imaging, Inspection Techniques- Single wall single image, Double wall Penetration Multiwall Penetration technique, Real Time Radiography.

# CASE STUDIES, COMPARISON AND SELECTION OF NDT METHODS

Case studies on defects in cast, rolled, extruded, welded and heat-treated components. Comparison and selection of various NDT techniques. Codes, standards, specification and procedures.

#### Text Books

1. Baldev Raj, Jeyakumar, T., Thavasimuthu, M., "Practical Non Destructive Testing" Narosa publishing house, New Delhi, 2002

# Reference Books

- 1. Peter J. Shull "Non-Destructive Evaluation: Theory, Techniques and Application" Marcel Dekker, Inc., New York, 2002.
- 2. Krautkramer. J., "Ultra Sonic Testing of Materials", 1st Edition, Springer Verlag Publication, New York, 1996.
- 3. www.ndt.net

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Mr.M.Senthil Kumar	Assistant Professor	MECH/VMKVEC	senthil@vmkvec.edu.in
2	Mr.S.Ashok Kumar	Assistant Professor	MECH/AVIT	ashokkumar@avit.ac.in

	ROBOT DESIGN &	Category	L	T	P	Credit
40221P06	PROGRAMMING	EC-PS	3	0	0	3
n 11						

#### Preamble

This course provides and creates a base for the students to develop concepts of Robotics.

#### **Prerequisite**

Nil

# Course Objectives

- 1 To understand importance and anatomy of the robot.
  - To provide an in-depth study of robot kinematics and dynamics.
  - 3 To develop skills for robot programming.
  - 4 To develop criticizing skills for robot programming and AI.
  - 5 To analysis sensors and actuators in robotic applications.

# Course Outcomes: On the successful completion of the course, students will be able to

	To get knowledge of the mechanical structures of robots and grippers also will	
CO1	learn about basic terminology of the robots.	Remember
CO2	To understand the kinematic and dynamic characteristics of the robot.	Understand
CO3	Able to programming the robots using different techniques	Apply
CO4	To apply the programming with the robots.	Apply
CO5	To analysis the different actuators and sensors for the robotic applications.	Analyze

# **Mapping with Programme Outcomes and Programme Specific Outcomes**

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L	-	-	-	-	-	-	-	S	-	-
CO2	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO3	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO4	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO5	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

# **SYLLABUS**

# INTRODUCTION

History of robots, Classification of robots, Present status and future trends. Basic components of robotic system. Basic terminology- Accuracy, Repeatability, Resolution, Degree of freedom. Mechanisms and transmission, End effectors, Grippers-different methods of gripping, Mechanical grippers-Slider crank mechanism, Screw type, Cam type gripper, Magnetic grippers, Vacuum grippers, Air operated grippers; Specifications of robot.

# KINEMATICS AND DYNAMICS OF ROBOTS

2D, 3D Transformation, Scaling, Rotation, Translation, and Homogeneous coordinates, multiple transformations, Simple problems. Matrix representation, Forward and Reverse Kinematics of Three Degree of Freedom, Homogeneous Transformations, Inverse kinematics of Robot, Robot Arm dynamics, D-H representation of robots, Basics of Trajectory Planning.

# ROBOT PROGRAMMING

Robot Programming-Introduction-Types- Flex Pendant- Lead through programming, Coordinate systems of Robot, Robot controller- major components, functions-Wrist Mechanism-Interpolation-Interlock commands operating mode of robot, Jogging-Types, Robot specifications- Motion commands, end effectors and sensors commands.

# VAL LANGUAGE

Robot Languages-Classifications, Structures- VAL language commands motion control, hand control, program control, pick and place applications, palletizing applications using VAL, Robot welding application using VAL program-WAIT, SIGNAL and DELAY command for communications using simple applications. VAL-II programming-basic commands, applications- Simple problem using conditional statements-Simple pick and place applications-Production rate calculations using robot.

# ROBOT SENSORS AND ACTUATORS

Design of Robots – characteristics of actuating systems, comparison, microprocessors control of electric motors, magnetostrictive actuators, shape memory type metals, sensors, position, velocity, force, temperature, pressure sensors – Contact and non-contact sensors, infrared sensors, RCC, vision sensors.

# Text Books

- 1. Groover, M.P., Weiss, M., Nagel, R.N., Odrey, N.G. and Dutta, A., 2012. Industrial robotics:technology, programming, and applications. McGraw-Hill.
- 2. Fu, K.S., Gonzalez, R. and Lee, C.G., 1987. Robotics: Control Sensing. Vis. Tata McGraw-Hill Education.

# Reference Books

- 1. Siciliano, B., Khatib, O. and Kröger, T. eds., 2008. Springer handbook of robotics (Vol. 200). Berlin: springer.
- 2. Saeed.B.Niku, 'Introduction to Robotics, Analysis, system, Applications', Pearson educations, 2002.
- 3. Wesley E Snyder R, 'Industrial Robots, Computer Interfacing and Control', Prentice Hall International Edition, 1988.
- 4. Gordon Mair, 'Industrial Robotics', Prentice Hall (U.K.) 1988.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.S.Natarajan	Associate Professor	MECH/VMKVEC	natarajans@vmkvec.edu.in
2	•			kalyanakumar@avit.ac.in

40004707	ADDI						egory		L		T		P	Cre	
40221P07	MAN	UFA(	CTUR	<u>ung</u>		E	C-PS		3		0		0	3	3
Preamble To manufacturi	educa										dge ii	n the f	ield o	f addi	tive
<b>Prerequisit</b> Nil	e														
Course Ob	jectives	5													
1		erstanc nviror												tation	s and
2	Deve	lop a	comp	rehens	sive u	nders	tandin	ıg of f	undar	nenta	l addi	tive m	anufa	cturir	ıg.
3		ify so			nporta	int res	search	chall	enges	asso	ciated	with	AM a	nd its	data
4		t a de	_					_		for C	AD a	nd CA	M		
5	Fabri	cate 3	D me	chani	cal ob	jects	using	a vari	ety of	3D p	rintin	g tech	nolog	gies.	
Course Out	tcomes	: On t	he su	ccessf	ul co	mplet	ion o	f the o	cours	e, stu	dents	will b	e abl	e to	
	Unders liquid a deposit	nd sol	lid bas	sed ad	ditive	manı	ıfactu	ring s					Una	dersta	nd
1	Underst bowder aser sir	and the	ne ope l addit	rating	princ	iples,	capa	bilitie					d	dersta	
	Describ manufa				and th	ne app	olicati	on of	a rang	ge of a	additiv	ve	Арј	oly	
	Selectic a 3d pri			zation	of cor	rect (	CAD 1	forma	ts in t	he ma	ınufac	ture o	of App	oly	
	Describ techniq		-			-			suital	ole ad	ditive		Apj	oly	
Mapping w	ith Pro	gram	me O	utcor	nes ar	nd Pr	ograr	nme S	Specif	fic Oı	ıtcom	es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO2	M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO3	M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO4	M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO5	M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
S-Strong; M	-Mediui	n; L-L	ow												

#### **SYLLABUS**

#### Introduction

Need - Development of AM systems – AM process chain - Impact of AM on Product Development - Virtual Prototyping- Rapid Tooling – RP to AM -Classification of AM processes-Benefits- Applications

# Reverse Engineering and CAD modelling

Basic concept- Digitization techniques – Model reconstruction – Data Processing for Rapid Prototyping: CAD model preparation, Data requirements – Geometric modelling techniques: Wire frame, surface and solid modelling – data formats - Data interfacing, Part orientation and support generation, Support structure design, Model Slicing, Tool path generation-Software for AM- Case studies.

# Liquid based and solid based Additive Manufacturing systems

Stereolithography Apparatus (SLA): Principle, pre-build process, part-building and post-build processes, photo polymerization of SL resins, part quality and process planning, recoating issues, materials, advantages, limitations and applications.

Solid Ground Curing (SGC): working principle, process, strengths, weaknesses and applications. Fused deposition Modelling (FDM): Principle, details of processes, process variables, types, products, materials and applications. Laminated Object Manufacturing (LOM): Working Principles, details of processes, products, materials, advantages, limitations and applications - Case studies

# Powder based Additive Manufacturing systems

Selective Laser Sintering (SLS): Principle, process, Indirect and direct SLS- powder structures, materials, post processing, surface deviation and accuracy, Applications. Laser Engineered Net Shaping (LENS): Processes, materials, products, advantages, limitations and applications— Case Studies.

# Other Additive Manufacturing systems

Three dimensional Printing (3DP): Principle, basic process, Physics of 3DP, types of printing, process capabilities, material system. Solid based, Liquid based and powder based 3DP systems, strength and weakness, Applications and case studies. Shape Deposition Manufacturing (SDM), Ballastic Particle Manufacturing (BPM), Selective Laser Melting, Electron Beam Melting.

# Text Books

- Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2011.
- Hilton, P.D. and Jacobs, P.F., Rapid Tooling: Technologies and Industrial Applications, CRC press, 2005.

# Reference Books

Chua, C.K., Leong K.F. and Lim C.S., "Rapid prototyping: Principles and applications", second edition, World Scientific Publishers, 2010.

2	Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.											
3	Kamrani, A.K. and Nasr, E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.											
4 Course	Gebhardt, A., "Rapid prototyping", Hanser Gardener Publications, 2003.  rse Designers											
S.No	Faculty Name	Designation	Departm ent/ College	Emailid								
1	Dr.S.Sangeetha	Associate Professor	MECH/AVIT	sangeethas@avit.ac.in								
2	Dr.S.Natarajan	Associate Professor	MECH / VMKVEC	natarajans@vmkvec.edu.in								

		Category	L	T	P	C
40221P15	COMPOSITE MATERIALS	EC-PS	3	0	0	3

#### **PREAMBLE**

This course reviews the various composite materials their processing techniques and their behaviors, and to develop models and their applications in aerospace, automotive and medical fields.

# **PREREQUISITE**

Nil

# COURSE OBJECTIVES

- 1 To study about fiber reinforced plastics.
- 2 To study the manufacturing processes of the composite materials.
- 3 To study about macro mechanical behavior of FRP.
- 4 To study about micromechanical behavior of composite materials.
- 5 To study about material models of composites.

# COURSE OUTCOMES

# On the successful completion of the course, students will be able to

CO1	Know the types of reinforcements and fibers used in composite materials.	Understand
CO2	Know the various manufacturing techniques in composite manufacturing.	Understand
CO3	Ability to test the macro mechanical behavior of fiber reinforced plastics.	Analyze
CO4	Ability to test the Micro mechanical behavior of fiber reinforced plastics.	Analyze
CO5	To make models for solving the composite material manufacturing.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

ee Je Je															
	РО	РО	РО			PO	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
COS	1	2	3	PO4	PO5	6	7	8	9	0	1	2	1	2	3
CO1	S	ı	L	-	-	M	S	ı	ı	-	-	-	L	-	1
CO2	S	_	L	_	-	L	S	_	_	-	-	-	L	-	•
CO3	S	S	S	S	L	L	S	_	_	-	-	-	L	-	-
CO4	S	S	S	S	L	L	S	-	-	-	-	-	L	-	-
CO5	S	S	S	S	S	L	_	_	_	-	-	-	L	-	-

# S- Strong M-Medium L- Low

# SYLLABUS

# FIBRE REINFORCED PLASTICS (FRP)

Definition; Types; General properties and characteristics; Reinforcing materials – particles, fibers,

whiskers; Properties of reinforcing materials; Matrix materials; Additives; Properties of FRP materials; Applications.

# MANUFACTURING PROCESSES

Open mold processes – Hand layup, Spray up, Vacuum bag, Pressure bag & autoclave, Centrifugal casting, Filament winding; Closed mold processes – Compression molding, Resin transfer molding (RTM), Injection molding, Pultrusion; SMC & DMC products, etc.

# MACROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Design variables; Selection of fiber-matrix and manufacturing process; Effects of mechanical, thermal, electrical and environmental properties, Fiber orientation, Symmetric and asymmetric structure; Effects of unidirectional continuous and short fibers; Lamination theory; Failure theories.

# MICROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Strengthening methods, Elasticity of fibre composites, Plasticity and fracture of composites, Crack propagation in fibre composites, Failure under compressive loads.

# MATERIAL MODELS

Law of Mixtures, Shear lag model, Laminated plate model, Eshelby's models, Other models.

#### **Text Books**

- 1. Krishnan K Chawla, Composite Materials: Science and Engineering, International Edition, Springer, 2012, ISBN:978-0-387-74364-6.
- 2. Mallick, P.K. and Newman. S., Composite Materials Technology, Hanser Publishers, 2003.

# Reference Books

- 1. Mallick P.K., Fiber Reinforced Composites: Materials, Manufacturing and Design, CRC press, New Delhi, 2010, ISBN:0849342058.
- 2. Harold Belofsky, Plastics, Product Design and Process Engineering, Hanser Publishers, 2002.
- 3. Seamour, E.B. Modern Plastics Technology, Prentice Hall, 2002.

Sl.No.	Name of the Faculty		Department / Name of the College	Mail ID
		Associate		
1	Dr.D.BubeshKumar	Professor	MECH/AVIT	bubeshkumar@avit.ac.in
2	Dr.S.Natarajan	Associate Professor	MECH/VMKVEC	natarajans@vmkvec.edu.in

40001D	COM						ategor		L		T		P	Cre	
40221P	16 PROI	JUCI	DES	IGN		E	CC-PS		3		0		0	3	•
Preamb	le To intr	oduce	the c	omnu	ıter ai	ded m	odeli	na an	d vari	OHE CO	ncen	te of r	roduc	et deci	αn
Prerequ		oduci	o tile t	ompu	iter an	ucu II	IOUCII	ng am	u vaii	ous co	леср	13 OI J	nouuc	et ucsi	gn.
Nil															
Course	Objectiv	es													
1	To K	To Know about computer aided modelling & software.													
2	To U	To Understand various computer graphics and model.													
3	To K	now a	bout	comp	uter p	roduc	et desi	gn an	d mar	agem	ent.				
4	To ur	derst	and d	lesign	tools	and to	echnic	ques.							
5	Unde	rstanc	d the c	oncep	ot of p	roduc	t deve	elopm	ent &	desig	gn tecl	nniqu	es.		
Course Outcomes: On the successful completion of the course, students will be able to															
Course	<u> </u>			<u>succes</u>	35141		1001011	01 111		100, 0		100 111			
CO1	Describ	e the	new e	ngine	ering	desig	n and	vario	us pha	ises ir	volve	ed.	Ur	ndersta	and
CO2	Learn v					urfac	e mod	leling	techn	iques	used	for	Ur	ndersta	and
CO3	Have kr	nowle	dge al	out p	roduc	t desi	gn an	d desi	gn ma	anage	ment.		Ap	ply	
CO4	Have kr	owle	dge al	out v	arious	s proc	duct n	nodels	s and o	differe	ent me	etric	Ap	ply	
	Underst	and c	onten	norar	v issu	es and	d their	rimns	act on	nrovi	ded				
CO5	solution			-	•					Provi			Un	ndersta	and
Mappin	g with P	rogra	mme	Outc	omes	and l	Progr	amm	e Spe				1		ı
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	S	S	L	_	-	_	M	L	L	_	_	S	_	_
				ப						L			5		
CO2	S	S	S	M	-	-	-	M	L	L	-	-	L	-	-
CO3	S	S	L	L	-	-	-	M	L	L	-	-	S	-	-
CO4	L	S	S	M	-	-	-	M	L	L	-	-	L	-	-
COS	S	L	L	M	-	-	-	M	L	L	-	-	S	-	-
S-Strong	;; M-Medi	um; L	-Low												

# **SYLLABUS**

# INTRODUCTION

Introduction to Engineering Design – Various phases of systematic design – sequential engineering and concurrent engineering – Computer hardware & Peripherals – software packages for design and drafting. Concept of CAD as drafting and designing facility, desirable features of CAD package, drawing.

# COMPUTER GRAPHICS AND IT'S APPLICATIONS

Computer graphics – applications – principals of interactive computer graphics – 2D 3D transformations – projections – curves - Geometric Modeling – types, Graphics standards –assembly modeling – use of software packages.

# PRODUCT DESIGN CONCEPTS AND PRODUCT DATA MANAGEMENT

Understanding customer needs — Product function modeling — Function trees and function structures— Product tear down methods — Bench marking — Product portfolio — concept generation and selection — Product Data Management — concepts — Collaborative product design—manufacturing planning factor — Customization factor — Product life cycle Management.

# PRODUCT DESIGN TOOLS & TECHNIQUES

Product modeling – types of product models; product development process tools – TRIZ – Altshuller's inventive principles – Modeling of product metrics – Design for reliability – design for manufacturability – machining, casting, and metal forming – design for assembly and disassembly.

# PRODUCT ARCHITECTURE AND DESIGN TECHNIQUES

Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions. DOE-Taguchi method of DOE - Quality loss functions - Design for product life cycle.

# Text Books

- 1 Biren Prasad, "Concurrent Engineering Fundamentals Vol.11", Prentice Hall, 1997.
- 2 Ibrahim Zeid, "CAD/CAM theory and Practice", Tata McGraw Hill, 1991.

# Reference Books

3

McGraw Hill,1990.

Kevin Otto, Kristin Wood, "Product Design", Pearson Education, 2000.
 James G.Bralla, "Handbook of Product Design for Manufacturing", McGraw Hill, 1994
 David F.Rogers.J, Alan Adams, "Mathematical Elements for Computer Graphics",

Course Designers												
S.No	Faculty Name	Designation	Department/ College	Email id								
D.110	•		conege	Linan id								
	Mr.G.Antony	Assistant										
1	Casmir	Professor	MECH/AVIT	antonycasmir@avit.ac.in								
		Associate	MECH/									
2	Dr.S.Natarajan	Professor	VMKVEC	natarajans@vmkvec.edu.in								

40221P17		EN	1ERG	INC			Category			L	T 0	P 0	Cı	redit 3	
			IEKG ATER				EC			3					
Pream			C .1	1 .	. •		1 ,	1 .		. 1	.1				
nanuf										rstana plicatio		perties,	proces	sing,	
Prereq	uisite														
Vil															
Course	Obje	ectives													
1	To un	dersta	nd the	classi	ficatio	n of er	nginee	ring m	ateria	ls and t	heir rele	evant app	lication	ıs.	
2	To understand the powder metallurgy concepts, process techniques, applications.														
3	To un	dersta	nd the	basics	s in co	mposit	es, fat	oricatio	on met	thods, t	ypes an	d applica	tions.		
4	To un	dersta	nd the	variou	ıs forn	ns of s	mart N	/ateria	als, ap	plicatio	ns.				
5	To un	dersta	nd the	variou	ıs type	s of N	ano-m	nateria	l's, pro	oductio	n & app	olications			
Course	e Outc	omes	On tl	ne suc	cessfu	l comi	oletio	ı of th	e coui	se, stu	dents v	vill be ab	le to		
CO1										ications					
~~.									_	_					
CO2	Kno	ow the	conce	pts of	powde	er Met	allurg	y and i	ts tech	ıniques	•				
CO3	To	know 1	the dif	ferent	types	of con	nposite	es.							
					J1		1								
CO4	То	unders	tand tl	he con	cepts o	of sma	rt mat	erials.							
CO5										pplicati	ons. itcome	g			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1		PSO	PSO	PSO
COs	1	2	3	4	5	6	7	8	9	0	1	PO12	1	2	3
CO1	S	L	L	L	M	M	-	-	-	-	-	-	L	_	_
CO2	S	L	L	L	M	M	-	-	-	-	-	-	L	-	-
CO3	S	L	M	M	M	L	-		-	-	-	1	L	-	
	S	L	M	L	М	M	_	_	_	_	_	_	L	_	_
CO4									1	<b> </b>				1	
CO4	ט														

#### ENGINEERING MATERIALS – CONVENTIONAL

Classification of engineering materials- Metallic materials-ferrous materials-steel & cast iron and non-ferrous materials – aluminium and copper. Non-Metallic materials – glasses, ceramics, Polymer and plastics – their characteristics and unique properties- Material for structural applications - Lightweight structural materials for automobiles and aero plane applications.

## POWDER METALLURGY – POWDER SYNTHESIS

Powder Metallurgy – Near net shaping process methods and principles - chemical methods – electrochemical methods - atomization – mechanical alloying – rapid solidification – processing – Nano size powders. Powder physical and chemical characterization – process characteristics - applications.

#### COMPOSITE MATERIALS

Composites – Types of composites - Naturally occurring, synthetic & engineered composites - MMC – CMC – PMC - Fibre and whisker reinforced composites (continuous and discontinuous) - particulate composites layered or sheet composites, composite coating or thin fibre, inter metallic composites - properties and characteristics of composites.

## SMART MATERIALS

Introduction to intelligent/smart materials, shape memory alloys-types, Nitinol-origin, properties, martensitic transformation, Memorization process- applications-medical, satellite.

#### NANO MATERIALS

Nanomaterials-Definition, Classification of Nanostructured materials, causes of interest in nanomaterials, applications of nanomaterials. Processes for producing ultrafine powders-mechanical grinding, wet chemical synthesis of nanomaterials. Gas phase synthesis of Nano materials, gas condensation processes, chemical vapour condensation, laser ablation.

#### Text Books

- 1. Budinski, Kenneth G, Budinski, Michael K, Engineering Materials: Properties and Selection, 9thEdition, 2009.
- 2. A.K.Bandhopadyay, Nanomaterials-New Age International (P) Ltd., Publishers, 2009.
- 3. M.V.Gandhi., Thomson Smart Materials and Structures, Chapman and Hall, United Kingdom, 1992.

## Reference Books

- 1. Srinivasan.K, Composite Materials: Production, Properties, Testing and Applications, Narosa Publishing House, New Delhi, 2018.
- 2. Ramesh K.T, Nanomaterials: Mechanics and Mechanisms, Springer Verlag, EPZ, Paperback edition, 2010.
- 3. Angelo P.C., Subramanian R., Powder Metallurgy, Science, Technology and Applications, Prentice Hall of India, New Delhi 2008.

a.v.			Department/ Name of the	
S.No	Faculty Name	Designation	College	Email id
		Assistant Professor		
1	Mr.C.Thiagarajan	(G-II)	MECH/AVIT	cthiagarajan@avit.ac.in
		Assistant		
2	Mr.M.Senthil Kumar	Professor	MECH/VMKVEC	senthil@vmkvec.edu.in

				<u> </u>		
		Category	$\mathbf{L}$	T	P	Credit
	MANUFACTURING					
40221P03	MANAGEMENT	EC-PS	3	0	0	3
Preamble	·	•		•		
To i	ntroduce the concepts of manufacturing n	nanagement and	various	manuf	acturing	g management
functions to t	he students.	_				-
Prerequisite						
Nil						
Course Object	tives					
1 To s	elect the plant location, material handling sys	tem and constru	ct the pla	ant layo	ıt.	
2 Ton	nake use of the work study and work measuremen	ent.				

5 Apply the principles of marketing management.

Course Outcomes: On the successful completion of the course, students will be able to

To develop an ability to forecast the demand and to create work sheet.

To identify the Project network analysis.

Course	Outcomes: On the successful completion of the course, students will be able to	
~~.		
CO1	Select the plant layout and Identify the appropriate material handling system.	Apply
~~~		
CO2	Illustrate method study and value analysis.	Understand
CO3	Demonstrate market research and sales promotion techniques.	Understand
	Apply the knowledge to develop Process planning, scheduling and project	
CO4	management.	Apply
CO5	Apply the skills in develop project network and construct critical path.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
CO1	S	M	M	M	L	1	1	1	S	L	L	-	M	ı	L
CO2	S	S	S	S	L	1	1	-	M	L	L	-	M	1	L
CO3	S	S	M	S	L	-	-	_	S	M	M	_	M	-	L
CO4	S	S	M	S	L	-	-	_	M	L	L	_	M	1	L
CO5	S	S	S	S	L	-	-	-	M	L	L	_	M	-	L

S-Strong; M-Medium; L-Low

Syllabus

3

4

PLANT ENGINEERING AND FACILITY PLANNING

Plant location – Factors affecting plant location – Techniques – Plant layout - principles - Types – Comparison of layouts – Materials handling – Principles – Factors affecting selection of Materials handling system – Types of materials handling systems – Techniques. Facility planning – Factors affecting selection of plant location, Factor rating analysis: Break event, Load distance model, closeness ratings.

WORK STUDY

Method study – Principles of motion economy – steps in method study – Tool and Techniques – Work measurement – Purpose – stop watch time study – Production studies – work sampling – Ergonomics – Value analysis.

PROCESS PLANNING AND FORECASTING

Process planning – Aims of process planning – steps to prepare the detailed work sheets for manufacturing a given component – Break even analysis – Forecasting – Purpose of forecasting – Methods of forecasting – Time series – Regression and Correlation – Exponential smoothing – Forecast errors.

PRODUCTION PLANNING & CONTROL, SCHEDULING AND PROJECT MANAGEMENT

Steps in PPC process mapping, preparation of process mapping and feedback control for effective monitoring. Aggregate production planning, production planning strategies, Disaggregating the aggregate plan, Materials Requirement Planning (MRP), MRP-II, Supply chain management, Operation scheduling, prioritization. Scheduling – Priority rules scheduling – sequencing – Johnson's algorithm for job sequencing – n job M machine problems – Project Network analysis – PERT/CPM – Critical path –Floats – Resource leveling – Queuing analysis.

PERSONNEL AND MARKETING MANAGEMENT

Principles of Management – Functions of personnel management – Recruitment – Training – Motivation – Communication – conflicts – Industrial relations – Trade Union – Functions of marketing – Sales promotionmethods – Advertising – Product packaging – Distribution channels – Market research and techniques.

Text Books

- 1 Pannererselvam, R "Production and Operations Management", 3rd Edition, PHI, 2012.
 - Dr. R. Kesavan, C. Elanchezian and B. Vijayaramnath, Production Planning and Control, Anuratha Publications, Chennai 2008.
- 3 Martand T. Telsang, Production Management, S.Chand & Co., 2007.

Reference Books

- 1 Chary, SN, "Production and Operations Management", 4th Edition, SIE, TMH, 2009.
 - KanishkaBedi, "Production and Operations Management", 2nd Edition, Oxford Higher
- **2** Education, 2007.
- Lee. J. Krajewski, L. P. Ritzman, & M. K. Malhothra, "Operations Management Process and Value Chains", 8th Edition, PHI/Pearson Education, 2007.
- Chase. RB, N. J. Aquilano, & F. R. Jacobs, "Operations Management For Competitive Advantage", 11th Edition, SIE, TMH, 2007.
- Course Designers

Course	Designers			
			Department /Name of	
S.No	Faculty Name	Designation	theCollege	Email id
1	Mr.A.Imthiyas	AssistantProfessor	MECH/ AVIT	imthiyas@avit.ac.in
2	Mr.M.Senthil kumar	AssistantProfessor	MECH/VMKVEC	senthil@vmkvec.edu.in

	SY	STE	M	URIN	NG		Categor		L		T		P		edit
40221	P18 SI	MUL	ATIO	N		E	C-PS		3		0		0	3	3
Preambl	To train	n the s	studen	ts vari	ious ra	andor	n num	nber g	enera	tion te	echnic	ques, i	ts use	e in	
Prerequ Nil	isite														
Course	Objectiv	es													
1	Definorgan			of sin	nulatio	on mo	odelin	g and	replic	eating	the p	ractica	al situ	ations	in
2	Gener	ate ra	ndom	numb	ers ar	nd ran	ıdom '	variate	es usi	ng dif	ferent	techr	niques	S	
3	Desig	n and	devel	op sin	nulatio	on mo	odel us	sing h	eurist	ic me	thods	•			
4	Analy	sis of	Simu	lation	mode	ls usi	ng inp	out an	alyze	r, and	outpu	ıt ana	lyzer.		
5	Expla														
Course	Outcom	es: O	n the	succes	ssful (comp	<u>letion</u>	of th	e cou	rse, s	<u>tuden</u>	ts wil	ll be a	ible to)
CO1	Explain manufa		_		-	-	of tec	chnolo	gy				Uı	ndersta	and
CO2	Describ and mo			-	ortant	eleme	ents o	f discı	rete e	vent s	imula	tion	Aı	nalyze	
CO3	Design	and e	valuat	e a gi	ven m	anufa	cturir	ng sys	tem u	sing s	imula	ition.	Aı	nalyze	
CO4	Genera	te ran	dom n	umbe	rs and	varia	ants to	exec	ute a	simula	ation 1	model	l. Aı	nalyze	
CO5	Evaluat manufa	1		networ	ks an	d algo	orithm	s in th	ne cor	ntext o	of		Ev	aluate	;
Mappi	ng with]	Progr	amm	e Out	come	s and	Prog	ramn	ne Sp	ecific PO1	Outc PO1	omes PO1	PSO	PSO	PSO
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3
CO1	. S	S	S	L	-	-	-	-	L	L	-	-	S	-	-
CO2	S	S	S	S	-	-	-	-	L	L	-	-	S	-	-
CO3	S	S	S	M	-	-	-	-	L	L	-	-	S	-	-
CO4	S	S	S	S	-	-	-	-	L	L	-	-	S	-	-
COS	L	L	S	L	-	-	-	-	L	L	-	-	S	-	-
S-Strong	g; M-Medi	ium; L	-Low												

INTRODUCTION

Basic concept of system – elements of manufacturing system – concept of simulation – simulation as a decision-making tool – types of simulation – system modeling – types of modeling.

RANDOM NUMBERS

Probability and statistical concepts of simulation – Pseudo random numbers – methods of generating random numbers – discrete and continuous distribution – testing of random numbers – sampling – simple, random and simulated.

DESIGN OF SIMULATION EXPERIMENTS

Problem formulation – data collection and reduction – time flow mechanical – key variables – logic flow chart starting condition – run size – experimental design consideration – output analysis, interpretation and validation –application of simulation in engineering industry.

ANALYSIS OF SIMULATION DATA

Input Modelling: Data collection, Identification and distribution with data, parameter estimation, Goodness of fittests, Selection of input models without data, Multivariate and time series analysis. Verification and Validation of Model – Model Building, Verification, Calibration and Validation of Models.

QUEUING POLICIES, ALGORITHMS AND CASE STUDIES

Introduction to basic Single – pass heuristics, meta-heuristics and applications – Application of Geneticalgorithms and Ant colony-based algorithms in Discrete event simulation models with simple examples.

Text	Book	S
------	------	---

- 1 Geoffrey Gordon, "System Simulation", 2nd Edition, Prentice Hall, India, 2020.
- Jerry Banks & John S. Carson, Barry L Nelson, "Discrete event system simulation", Prentice Hall, 2000.

Reference Books

- Pidd, M, "Computer Simulation in Management Science", Fifth edition, John Wiley & Sons, Inc.2016.
- Narsingh Deo, "System Simulation with Digital Computer", Fifth edition, Prentice Hall, 2014.
- 3 Law A.M, "Simulation Modelling and Analysis", Fifth edition, Tata Mc Graw Hill,2014.
- 4 Schriber T.J., "Simulation using GPSS", John Wiley, 2002.
- Fishwick P.A., "Imulation Model Design and Execution: Building Digital Worlds" New Jersey: Prentice Hall Int" 1 Inc., India, 1995.

Sl.No	Faculty Name	Designation	Department/ College	Emailid
	Dr.M.Saravana	Assistant		
1	Kumar	Professor	MECH/AVIT	saravanakumar@avit.ac.in

ſ					
		Mr.M.Senthil	Assistant		
	2	Kumar	Professor	MECH/VMKVEC	senthil@vmkvec.edu.in

	MA AN		IALS T	TESTI	NG	Cates	gory		L		T		P	Cro	edit
	CH	IARA(CTERI		ON										_
40221P0	8 TE	CHNI	QUES			EC-	·PS		3		0		0	3	3
Preamble Th	is cour	se aim	ns to ir	npart k	cnowle	edge o	n vari	ous tec	chniau	es of 1	nateria	al chai	acteri	zation.	
Prerequisi				F					1						
Nil															
Course Ob	piectiv	es													
	•		ion of	f the o	course	the s	tudent	s are	expec	ted to	be k	nowle	dgeab	le in	
1			ıre eva												
2		completion of the course the students are expected to be knowledgeable in electron coscopy.													
	On co	completion of the course the students are expected to be knowledgeable in chemical analysis.													
3				C .1		.1	. 1			. 1 .	1 1	1	1 1:		
4			tion of testing			the s	studen	ts are	expec	ted to	be k	nowle	dgeab.	le in s	static
_		•				the st	udents	are e	xpecte	d to b	e kno	wledg	eable	in dyı	namic
5	mecha	anical	empletion of the course the students are expected to be knowledgeable in dynamic unical testing methods.												
Course Ou	ıtcom	es: O	n the	succe	ssful	comp	letion	of th	e cou	rse, s	tuden	ts wil	ll be a	ble to)
CO1	Interp	ret vai	rious n	nateria	ıls cha	racteri	zation	techn	iques.				Ur	nderst	and
	Unde	rstand	the pri	inciple	and o	perati	on of a	charac	terizati	ion ea	uinme	nt and			
CO2			_	_		_			ood im	_	_			derst	and
CO3	Unde	rstand	the co	ncept (of che	mical	and th	ermal	analys	is.			Aŗ	ply	
CO4	Unde	rstand	the pri	inciple	of me	echani	cal tes	ting –	static '	Tests.			Ar	ply	
CO5									dynan				Ar	nalyze	:
Mapping v	with P	rogra	mme	Outc	omes	ana	Progr	amm	e Spe						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	S	S	L	-	_	_	M	L	L	_	_	S	_	_
CO2	S	S	S	L	-	-	-	M	L	L			S	-	-
CO3	S	S	S	M	-	-	-	M	L	L			S	-	-
CO4	S	S	S	M	-	-	-	M	L	L			S	_	-
CO5	S	S	S	M	-	_	_	M	L	L			S	_	_
S-Strong; N	M-Medi														

Micro and Crystal Structure Analysis

Principles of Optical Microscopy – Specimen Preparation Techniques – Polishing and Etching – Polarization Techniques – Quantitative Metallography – Estimation of grain size – ASTM grain size numbers – Microstructure of Engineering Materials - Elements of Crystallography – X- ray Diffraction, Bragg's law – Techniques of X-ray Crystallography, Debye ,Scherer camera – Geiger Diffractometeranalysis of Diffraction patterns – Inter planer spacing – Identification of Crystal Structure, Elements of Electron Diffraction.

Electron Microscopy

Scanning Electron Microscopy (SEM) - Introduction, Instrumentation, Contrast formation, Operational variables, Specimen preparation, imaging modes, Applications, Limitations.

Chemical and Thermal Analysis

Basic Principles, Practice and Applications of X-Ray Spectrometry, Wave Dispersive X-Ray Spectrometry, Auger Spectroscopy, Secondary Ion Mass Spectroscopy, Fourier Transform Infra-Red Spectroscopy (FTIR)- Proton Induced X-Ray Emission Spectroscopy, Differential Thermal Analysis, Thermo Gravity metric Analysis (TGA), Differential Scanning Calorimetry (DSC).

Mechanical Testing – Static Tests

Codes and standards for testing metallic and composite materials. Hardness — Brinell, Vickers, Rockwell and Micro Hardness Test, Tensile Test — Stress — Strain plot — Proof Stress, Torsion Test - Ductility Measurement — Impact Test — Charpy & Izod — DWTT - Fracture Toughness Test.

Mechanical Testing – Dynamic Tests

Fatigue – Low & High Cycle Fatigues, Rotating Beam & Plate Bending HCF tests – S-N curve – LCF tests – Crack Growth studies – Creep Tests – LM parameters – AE Tests modal analysis - Applications of Dynamic Tests.

Text Books

2

- Culity B.D., Stock S.R& Stock S., Elements of X ray Diffraction, (3rd Edition). Prentice Hall, 2001.
- 2 Dieter G.E., Mechanical Metallurgy, (3rd Edition), ISBN: 0070168938, McGraw Hill, 1988.

Reference Books

- 1 Davis J. R., Tensile Testing, 2nd Edition, ASM International, 2004.
 - Morita.S, Wiesendanger.R, and Meyer.E, —Non-contact Atomic Force Microscopy Springer, 2002
- Goldsten, I.J., Dale. E., Echin. N.P. & Joy D.C., Scanning Electron Microscopy & X rayMicro
- 3 Analysis, (2nd Edition), ISBN 0306441756, Plenum Publishing Corp., 2000.
- Newby J., Metals Hand Book- Metallography & Micro Structures, (9th Edition), ASM
- 4 International, 1989

Grundy P.J. and Jones G.A., Electron Microscopy in the Study of Materials, Edward Arnold Limited, 1976.

S.No	Faculty Name	Designation	Department/ College	Email id
1	Mr.S.Ashokkumar	Assistant Professor(Gr-II)	MECH/AVIT	ashokkumar@avit.ac.in
2	N.A. N.A. C 141-11-11-11-11-11-11-11-11-11-11-11-11-	Assistant		
2	Mr.M.Senthilkumar	Professor	MECH/VMKVEC	senthil@vmkvec.edu.in

		- ~		·	<u> </u>	Categ			<u>L</u>		T		P	Cre	
40221P		ECH.	ATRO	ONICS	S	EC-	·PS		3		0		0	3	3
Preamble of concept	This syll												ıpart tl	ne sou	rce
Prerequi Nil	site														
Course C	bjectiv	es													
1	To pro	vide o	vervie	w of n	eed ar	nd ben	efits o	f mech	atroni	cs in r	nanuf	acturir	ıg.		
2	To provide overview of need and benefits of mechatronics in manufacturing. To know the basic working principle of sensors and transducers of use formanufacturing systems.														
2	To know the basic working principle of drives and actuators of use formanufacturing														
3	systems. To know the features, modules and interfaces of microcontrollers andmicroprocessors.														
4	To know the features, modules and interfaces of microcontrollers and microprocessors.														
5	To gain	the kr	nowled	lge of 1	necha	tronic	syster	ms in d	lesign	proces	ss and	case s	tudies		
Course C	utcom	es: Oı	n the	succes	sful (comp	letion	of the	e cou	rse, st	tuden	ts wil	l be a	ble to)
	Infer the	lmow	ladga	to stud	v tho	maaha	tronia	e in m	onufoc	turino					
\sim \sim \sim	systems		leuge	io stud	y tile	Шесна	uronic	5 111 1116	anurac	turing	,		Un	dersta	nd
	Identify		loot th	o conc	ore on	d trong	ducor	e bosov	d on th	10					
	applicat		elect til	ie seiis	ors an	u trans	saucei	s base	a on u	ie			Ap	ply	
CO3	Identify	the pri	inciple	es and t	functi	ons of	drives	and a	ctuato	rs.			Ap	ply	
CO4	Distingu	iish be	tween	micro	proces	ssor an	nd mici	rocont	rollers	and it	sfunct	ions	An	alyze	
CO5	Summar	ize the	e vario	us stag	ges of	design	in me	echatro	nics s	ystems	S.		Un	dersta	nd
Mapping	with P	rogra	mme	Outco	omes	and l	Progr	amme	e Spe	cific (Outco	mes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1	PSO 1	PSO 2	PSC 3
	101	102	103	104	103	100	107	1 00	107	U	1		1	4	3
CO1	S	M	M	L	S	-	-	-	-	-	-	S	S	-	-
CO2	M	M	M	L	M	-	_	-	M	-	-	_	S	-	_
CO3	L	L	M	L	-	-	-	-	-	-	-	-	S	-	-
												ĺ	1	1	1
CO4	S	S	M	L	-	M	-	-	-	-	-	-	S	-	-

S-Strong; M-Medium; L-Low

Introduction

Introduction to Mechatronics-systems – Mechatronics approach to modern engineering and design – History of Mechatronics-Scope and Significance of Mechatronics systems-Elements of Mechatronics systems—Subsystems of Mechatronics -Emerging areas of Mechatronics-Classification of Manufacturing based on Mechatronics-Need and benefits of Mechatronics in Manufacturing.

Sensors and Transducers

Introduction – Performance Terminology – Potentiometers – Strain gauges – LVDT – Eddy current sensor – Hall effect sensor – Resistive Transducers – Inductive Transducers-Capacitance Transducers – Digital transducers – Temperature sensors – Optical sensors – Piezo electric sensor-Ultrasonic sensors – Proximity sensors – Chemical and Gas Sensors-Signal processing techniques.

Drives and Actuators

Classification of actuators-Role of Linear and Rotary Actuators – Electrical actuators – Servo motors and Stepper motors -Piezoelectric actuators-Solenoids-D.C. Motors–Function of Drives-Solid state relays-MechanicalSwitching Devices-Interfacing with microcontroller through H-bridge Circuits.

Microprocessors and Microcontrollers

Introduction – Requirement for Processor – Comparison of 8085 Microprocessor and 8051 Microcontrollers–8051 Microcontrollers Architecture, PIC Microcontrollers (16f xxx) series – Assembly language programming-Instruction sets, Instruction format, Addressing modes, Basic programing-Interfacing-Sensors, Keyboards, LCD, LED, A/D and D/A Converters-Actuators – Embedded Systems RS 232 serial communication interface, classification of memories.

Mechatronic Systems

Design Process-Stages of design in mechatronics systems – Traditional and Mechatronics design concepts – Case studies – Pick and place robots, Automatic car parking system, Automatic camera, Automatic washing machine, Engine management system, Machinery automation.

Text Books

- Vijayaraghavan G.K., Balasundaram M S, Ramachandran K P, Mechatronics: Integrated Mechanical Electronic Systems, Wiley, 2008.
 - 2 R.K.Rajput, A Text Book of Mechatronics, Chand &Co, 2007.

Reference Books

- Bolton W, Mechatronics: Electronic control systems in mechanical and electrical engineering, 6thedition, Pearson Education Limited, 2015.
 - BenoBenhabib, Manufacturing, design, production, automation and integration, Marcel Dekker, 2003.
 - 3 Mazidi M A and Mazidi J G, 8051 Microcontroller and Embedded Systems, 2002.
 - 4 Devadas shetty, Richard A. Kolk, "Mechatronics System Design", PWS Publishing Company, 2001.

S.No	Faculty Name	Designation	Depa rtme nt/ Colle ge	Email id
1	B.Selva Babu	Assistant Professor	MECH/AVIT	selvababu@avit.ac.in

Dr.M.Saravanan	Assistant Professor	MECH/VMKVEC	saravanan@vmkvec.edu.in

		16.T A	NIO					Ca	tegory	7	L	$_{\mathbf{T}}$	P	Cro	edit
4022	1 P2 0	ST M	ATER	TURE RIALS CATIO	AND	1			C-PS		3	0	0		3
reambl					110				0 1 0			<u> </u>			-
rerequi	To dev	elop th	ne kno	wledge	e of st	udents	in na	no-stru	ictured	l mater	ials.				
Vil	SILC														
Course (Objecti	ves													
Т		ctive o		course	is to	make t	he stu	dents 1	familia	r with	the diff	erent me	thods of	synthes	sis for
2 T	o motiv	ate the	e stude	ents to	under	stand t	he evo	olutior	n of na	no-mat	erials i	n the scie	entific er	a.	
3 T	o under	stand	differe	ent pro	cessin	g metl	nods a	nd pro	perties	s of nar	no-mate	erials.			
4 T	o explo	re kno	wledg	e abou	it the o	liffere	nt nan	oporus	s mate	rials.					
5 T	o provi	de the	variou	ıs appl	icatio	ns of n	ano-m	nateria	ls for f	uture e	nginee	ring appl	ications		
7	.	0	41		e 1	1		e 41		4 1	4 •11		4		
ourse (be able	to		
CO1	mater					materi	iais, ty	/pes, v	arrous	Structi	ires of	iano	Under	stand	
CO2				rious s approa		sis pro	cess c	of nanc	-mate	rials, n	ethods	and	Under	stand	
CO3				rious p ano-m			roach	metho	ds and	l techni	ques in	volved	Under	stand	
CO4	Appli	cation	s and t	ypes o	of vario	ous na	no por	us ma	terials				Apply		
CO5	Analy	ze the	vario	us nan	o-mate	erials a	and its	princi	iple an	d desig	n.		Analy		
Aappin g	g with I	Progra	mme	Outco	mes a	ınd Pr	ograr	nme S	pecifi	c Outc	omes				
COs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
				_											
CO1	M	-	1	-	L	S		-	-	-	-	-	-	-	
CO2	S	-	-	-	M	M	-	-	-	-	-	-	-	-	
CO3	S	-	-	-	M	M	-	-	-	-	-	-	-	-	
CO4	S	-	1	-	M	M	-	-	-	-	-	-	-	-	
CO5	S	-	M	-	L	M	-	-	-	-	-	-	M	-	M
- Stron	g; M-M	lediun	n; L-L	ωw											
YLLAI	BUS														
NTROI	DUCTI	ON T	O NA	NO ST	ruc	TURI	ED M	ATER	RIALS						

0D, 1D, 2D structures –Size Effects –Fraction of Surface Atoms –specific Surface Energy and Surface Stress –Effect on the Lattice Parameter –Phonon Density of States–the General Methods available for the Synthesisof Nano strutures –precipitative –reactive –hydrothermal/solvo thermal methods –suitability of such methods for scaling –potential Uses.

BULK SYNTHESIS AND CHEMICAL APPROACHES

Top down and bottom up approaches—Mechanical alloying and mechanical ball milling- Mechano chemical process, Inert gas condensation technique – Arc plasma and laser ablation, Sol gel processing-Solvo thermal, hydrothermal, precipitation, Spray pyrolysis, Electro spraying and spin coating routes, Self-assembly, self-assembled monolayers (SAMs). Langmuir-Blodgett (LB) films, micro emulsion polymerization- templated synthesis, pulsed electrochemical deposition.

PHYSICAL APPROACHES

Vapor deposition and different types of epitaxial growth techniques (CVD, MOCVD, MBE, ALD)- pulsed laser deposition, Magnetron sputtering - lithography: Photo/UV/EB/FIB techniques, Dip pen nanolithography, Etching process: Dry and Wet etching, micro contact printing.

NANOPOROUS MATERIALS

Zeolites, mesoporous materials, nanomembranes - Carbon nanotubes and graphene - Core shell and hybrid nanocomposites.

APPLICATION OF NANOMATERIALS

Overview of nanomaterials properties and their applications, Molecular Electronics and Nanoelectronics – Nanobots- Biological Applications – Quantum Devices – Nanomechanics - Photonics- Nano structures as single electron transistor –principle and design.

Text Books

- Bhusan, Bharat (Ed), "Springer Handbook of Nanotechnology", 2nd Edition, 2007.
 - Guozhong Cao, "Nanostructures and Nanomaterials, synthesis, properties and applications"
- 2 Imperial College Press, 2004.
 - Carl C. Koch (ed.)," Nanostructured Materials", Processing, Properties and Potential
- 3 Applications, Noves Publications, Norwich, New York, U.S.A.

Reference Books

- 1 Modern Physics Beiser 6th edition 2009.
- 2 Quantum Physics Theory and application, Ajoy Ghatak, Springer 2004.
- 3 Quantum Mechanics Bransden and Joachen 2nd edition 2000.
- 4 Principles of Quantum Mechanics 2nd ed. R. Shankar 2000.
- 5 Quantum Mechanics Vol 1&2 Cohen-Tannoudji,1997.
 - Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd Edition by Eisberg, Robert;
- 6 Resnick, Robert, 1985.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Mr.A.Senthilkumar	Asst. Professor	MECH/AVIT	senthilkumar@avit.ac.in
		Asst.		
2	Dr.M.Saravanan	Professor	MECH/VMKVEC	saravanan@vmkvec.edu.in

	PROG AND			NNIN	IG -	Categ	gory		L		T		P	Cre	edit
40221P	21 ESTI					EC-l	PS		3		0		0	3	3
Preambl	le														
nroggg n	To intro	duce t	he pro	cess p	lannin	g conc	epts to	o mak	e cost	estima	ation f	or vari	ous pr	oducts	afte
process p Prerequ															
Nil	115166														
	Objectiv	/es													
1	To introduce the process planning concepts to make estimation for various products, process planning and its approaches.														
2	To impart the Knowledge about the job order and techniques involved in shop floor.														
3	To introduce the cost estimation concept to analysis the expense and determination of other cost.														
4	To impart knowledge on cost estimation of a product by considering various manufacturing processes.														
5	To fa	cilitate	estim	ation	of time	e for m	achini	ing, w	elding	, forgi	ng and	d allied	l proce	esses.	
Course	Outcom	es: O	n the	succe	ssful	comp	letion	of th	e cou	rse, s	tuden	ts wil	l be a	ble to)
CO1	Select the prepare	•						arious	indust	rial pr	oducts	5,	Un	dersta	nd
CO2	Comput	e the jo	ob ord	er cost	t for d	ifferen	t type	of sho	p floo	r.			Ap	ply	
CO3	Identify deprecia				conc	ept – C	Overhe	ad Co	st, Exp	pense	&		Ap	ply	
CO4	Calculat methods						chinin	g opei	ations	, appl	y appr	opriate		ply	
CO5	Identify welding							ı total	cost o	f the p	roduc	t -	Ap	ply	
Mappin	g with P	rogra	mme	Outc	omes	and I	Progr	amm	e Spe	cific (Outco	mes			
COs	PO		BO2	DO 4	DO 5	BO C	D05	BO C	BOO	PO1	PO1	PO1	PSO	PSO	PSO
	1	PO2		PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3
CO	1 S	M	L	-	-	-	-	-	-	-	L	L	S	-	L
CO	2 S	M	L	-	-	L	-	-	-	-	L	L	S	-	L
CO	3 S	M	M	L	-	L	-	-	-	-	M	M	S	-	L
CO.		1										1			
CO ₄	4 S	M	M	M	-	L	-	-	-	-	S	M	S	-	L

S-Strong; M-Medium; L-Low

INTRODUCTION TO PROCESS PLANNING

Introduction- methods of process planning-Drawing Interpretation-Material evaluation – steps inprocess selection-. Production equipment and tooling selection—Types of chart techniques.

INTRODUCTION TO COST ESTIMATION

Estimation of Different Types of Jobs - Cost estimation: Importance and aims of cost estimation - functions of estimation - difference between estimating and costing - importance of preparing realistic estimates - estimating procedure. Elements of cost, Objectives.

COST ESTIMATION CONCEPT

Elements of costs - ladder of cost - determination of material cost - labour cost - expenses. Analysis of overhead expenses, Distribution of overhead costs – depreciation - causes of depreciation - methods of calculating depreciation.

MACHINING COST ESTIMATION

Estimation of machining time, Calculation of machining time for lathe operations-estimation of drilling time on drilling machine - estimation of time for shaping, planning, milling and grinding.

PRODUCTION COST ESTIMATION

Costing for metal forming and fabrication processes, Estimation of cost in welding- Estimation in forging shop - cost estimation of foundry work.

Text Books

- Banga T. R. and Sharma S. C. "Mechanical Estimating and Costing including Contracting"

 1 -Khanna Publishers 2011.
 - 2 Sinha.B.P., "Mechanical Estimating and Costing", Tata McGraw-Hill, Publishing Co.2002.

Reference Books

- Russell R.S and Tailor B.W, "Operations Management", 4th Edition, PHI, 2003.
 - Peter scalon, "Process planning, Design/Manufacture Interface", Elsevier science technology Books, Dec 2002
 - 3 Chitale A.V. and Gupta R.C., "Product Design and Manufacturing", 2nd Edition, PHI, 2002.
 - Mikell P. Groover, "Automation, Production, Systems and Computer Integrated Manufacturing", Pearson Education 2001.
 - Ostwalal P.F. and Munez J., "Manufacturing Processes and systems", 9th Edition, John Wiley, 1998.

C No	Eagulty Name	Designation	Department/	Email id
S.No	FacultyName	Designation	College	Eman id
		Assistant		
		Professor		
4			L	
1	Dr.S.Prakash	(Gr II)	MECH/AVIT	prakash@avit.ac.in
			MECH/	
2	Dr.M.Saravanan	Asst. Professor	VMKVEC	saravanan@vmkvec.edu.in

			T DES	SIGN		Cate	egory		L		T		P	Cr	edit
40221P22	AN DE		PME	NT		E	C-PS		3		0		0		3
Preamble								L							
		rstand	the app	lication	of pro	duct de	esign	method	ls to d	evelo	p a pro	oduct	•		
Prerequisi Nil	te														
Course Ob															
1 co	ncep	t selec	tion.		gain kı		•		-		-			-	
	enal		stude	nts to	unders	tand t	he pr	oduct	archi	tectur	e and	l syst	em le	evel d	esign
3 To	o mak	te the s	student	s to fai	miliariz	ze witl	h the	indust	rial d	esign	proce	ess.			
To	enal	ole the	studer		ndersta						_		emen	ts of	
4 ec	onon	nic ana	lysis.												
5 To	und	erstand	d the ba	ackgro	und in	manag	ging p	produc	t dev	elopn	nent p	rojec	ts.		
Course Ou	tcom	es: Oı	n the s	uccess	ful con	npleti	on of	the co	ourse	, stud	lents	will l	be ab	le to	
CO1 Exp	olain	the bas	sic prod	duct de	velopn	nent p	roces	SS.					Un	dersta	nd
CO2 Rec	all tl	ne desi	gn pro	cess fo	r prodi	uct de	velop	ment.					Un	dersta	nd
CO3 App	oly th	e indu	strial o	design	proces	s and	manu	factur	ing C	ost.			Ap	ply	
CO4 Ana	alvze	the de	sign pr	inciple	es of pr	ototyr	oing a	nd Ec	onom	ic An	alvsi	S.	Ana	alyze	
CO5 Ana											<u>)</u>	-		alyze	
Mapping v	vith P	rngra	mme (Dutcor	nes an	d Pro	oran	ıme Sı	necifi	c Ou	tcom	PS	•		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO9	PO1 0	PO1 1	PO1	PSO 1	PSO 2	PSO 3
CO1	S	S	S	L	-	_	_	M	L	L		-	S		
COI	۵	S	S	L		-	-	171	L	L	_	<u>-</u>	S .	-	
CO2	S	S	S	M	-	-	-	M	L	L			S	-	-
СОЗ	S	S	S	M	-	-	-	M	L	L			S	-	-
CO4	S	S	S	M	-	-	-	M	L	L			S	-	-
CO5	S	S	S	M	-	-	-	M	L	L			S	-	-
S-Strong; M	1-Med	lium; L	-Low												

PRODUCT DEVELOPMENT AND CONCEPT SELECTION

Significance of product design, product design and development process, sequential engineering design method, the challenges of product development – Product development organizations-Identifying the customer needs – Establishing the product specifications – concept generation – Concept selection.

PRODUCT ARCHITECTURE

Concept Testing, Response and Interpretation. Product Architecture, Implication of the architecture – Establishing the architecture Platform planning, System level design issues. Embodiment design, Modelling.

INDUSTRIAL AND MANUFACTURING DESIGN

Need for industrial design – Impact of industrial design – Industrial design process. Assessing the quality of industrial design- Human Engineering consideration - Estimate the manufacturing cost – Reduce the component cost – Reduce the assembly cost – Reduce the support cost – Impact of DFM decisions on other factors.

PROTOTYPING AND ECONOMIC ANALYSIS

Principles of prototyping – Planning for prototypes - Elements of economic analysis – Base case financial model – Sensitivity analysis – Influence of the quantitative factors.

MANAGING PRODUCT DEVELOPMENT PROJECTS

Sequential, parallel and coupled tasks - Baseline project planning - Project Budget Project execution - Project evaluation- patents- patent search-patent laws International code for patents.

Text Books

- Ken Hurst, Engineering Design Principles, Elsevier Science and TechnologyBooks, 2014.
- **2** G. E. Dieter, Engineering Design, McGraw Hill International, 2013.

Reference Books

- Karl Ulrich and Steven Eppinger, "Product Design and Development", 5th edition, 2016.
 Karal .T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW-HILL International Editions. 2003.
- Charles Gevirtz, Developing New products with TQM, McGraw Hill International editions, 1994.
- S.Rosenthal, Effective product design and development, Irwin 1992.

Course	Designers			
S.No	Faculty Name	Designation	Department/ College	Emailid
1	Mr.S.Sathiyaraj	Assistant Professor G-II	MECH/AVIT	sathiyaraj@avit.ac.in
2	Dr.M.Saravanan	Asst. Professor	MECH/ VMKVEC	saravanan@vmkvec.edu.in

	PROD		T			Cat	tegory		L		T		P	Cre	edit
40221P23	LIFE(MANA					EC-			3		0		0	3	3
Preamble										•					
	To un	dersta	nd the	e various	PL	M app	roach	es for	indust	rial ap	plicati	ons.			
Prerequis Vil	ite														
Course Ol															
1	To im PLM	-		est knov	vleo	dge, p	rincip	les, st	rategi	ies, pr	actice	es, and	l appl	icatio	ns in
2	To pr	ovide	an in	-depth u	nde	erstan	ding o	f vari	ous a	pplica	tions	and so	olutio	ns of I	PLM
3				cepts for				-							
4	To bu PLM:			ual four s.	ndat	ion o	f PLM	I, alor	ng wit	h the	latest	indus	try vi	ews o	n
5	To pr	esent	frame	works v	vhic	ch pro	vide e	cono	mic ju	ıstific	ations	for P	LM p	roject	s.
Course O	ıtcome	.c. Ωι	, tha	success	ful 4	comn	lation	of th	A CO11	rca c	tudon	te wil	l ha a	hle to	
Course Of	utcome	.s. OI	i tiic i	Successi	ui	comp	iction	or un	e cou	150, 5	tuucn	its wii	li be a	ibic to	,
CO1 U	Understand product data, information, structures and PLM concepts. Understand							and							
-	Apply PLM systems in organization verticals including production, after														
CO2 sa	les,sale	s and 1	narke	ing, and	sub	contra	cting.							Appl	y
	Apply anufact		oncept	s of e –	Ma	nufact	uring i	in Indı	ıstrial	secto	rs and	Digita	ો	Appl	.y
							•								
A_1	oply an	d desi	gn the	various	stra	ategies	for p	rocess	and 1	oroduc	et data				<u> </u>
1 -	oply an anagem		gn the	various	stra	ategies	for p	rocess	and 1	produc	et data			App	
CO4 ms	anagem	ent.												App	
CO4 ma	anagem	ent.		various ons, prod									te	App.	ly
CO4 ma	anagem onfigure	ent. e organ	nisatio	ons, prod	luct	struct	ures, v	workfl	ow, p	roject	s andr	equisi	te		ly
CO4 ma	anagem onfigure	ent. e organ	nisatio	ons, prod	nes	struct	ures, v	workfl	ow, p	roject:	s andr	equisi omes		Appl	ly y
CO4 ma	anagem onfigure	ent. e organ	nisatio	ons, prod	luct nes	struct	ures, v	workfl	ow, p	roject	s andr	equisi	PSO 1		ly y
CO4 mass	onfigure sks in P	ent. e orga LM. rogra	nisatio	ons, prod	nes	struct	Progr	workfl	ow, p	cific (s andr	equisi mes	PSO	Appl	ly y
CO4 mis	onfigure sks in P with P	ent. e orga LM. rogra	mme	Outcon	nes P O 5	struct and I	Progr	workfl	ow, p	cific (Outco	equisi emes PO1	PSO 1	Appl PSO 2	PSC 3
CO4 mis	onfiguresks in P with P	ent. e orga LM. rogra PO2 S	mme PO3	Outcon PO4 S	mes P O 5	struct and l	Progr	workfl	e Spe	cific (Outco	equisi emes PO1	PSO 1	Appl PSO 2	PSC 3
CO4 mis	onfiguresks in P with P PO1 S	e orga LM. rogra	mme PO3 S	Outcon P04 S	nes P O 5 S	and I	Progr PO7 S	workfl amm P08 - S	ow, p e Spe P09 M S	cific (PO1 0 L	PO1	equisi emes PO1 2	PSO 1 S	Appl PSO 2	PSO 3

S-Strong; M-Medium; L-Low

FUNDAMENTALS OF PLM

Product data or Product information, Product lifecycle management concept, Information models and product structures-Information model, The product information (data) model, The product model, Reasons for the deployment of PLM systems.

ENTERPRISE SOLUTION WITH PLM

Use of product lifecycle management systems in different organization verticals, Product Development and Engineering, Impact of Manufacturing with PLM Challenges of product management in Engineering and Manufacturing Industry, Life cycle thinking.

PLM FOR E-MANUFACTURING

Significance of product management, Collaborative Manufacturing, Integration of the PLM system with other applications: Different ways to integrate PLM systems, Transfer file, Database integration, System roles, ERP, Optimization of ERP for PLM and CAD.

TECHNOLOGY FORECASTING

Future mapping, invocating rates of technological change, methods of technology forecasting such as relevance trees, morphological methods and mission flow diagram, combining forecast of different technologies, uses in manufacture alternative.

PLM SOLUTIONS

Human resources in product lifecycle, Methods, Techniques, Phases of product lifecycle and corresponding technologies, Enterprise information, knowledge and IP, Change Process, Product Structure & Configuration, Project, Engineering Process, Information Standards, Vendors of PLM Systems and Components.

Text Books

- 1 Jaya Krishna S, Product Lifecycle Management: Concepts and cases, ICFAI Publications 2011.
- 2 Michael Grieves, "Product Life Cycle Management", Tata McGraw Hill, 2006.

Reference Books

- John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", Springer Publisher, 2011 (2nd Edition).
 - Antti Saaksvuori and Anselmi Immonen, "Product Lifecycle Management", Springer
 - Publisher, 2008 (3rd Edition).
 - Fabio Giudice, Guido La Rosa, Product Design for the environment-A life cycle approach,
 - 3 Taylor & Francis 2006.
 - Ivica Crnkovic, Ulf Asklund and Annita Persson Dahlqvist, "Implementing and Integrating
 Product Data Management and Software Configuration Management", Artech House Publishers, 2003.

S.No	Faculty Name	Designation	Department/ College	Email id
1	Mr.R.Praveen	Assistant Professor	MECH/AVIT	praveen@avit.ac.in
2	Mr.J.Sathees Babu	Associate Professor	MECH/VMKVEC	satheesbabu@vmkvec.edu.in

OPEN ELECTIVE COURSES

	BIOMEDICAL PRODUCT DESIGN AND	Category	L	Т	P	Credit
43421001	DEVELOPMENT	OE-EA	3	0	0	3

PREAMBLE

The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

PREREQUISITE

Nil

COURSE OBJECTIVES

	To understand the global trends and development methodologies of various types of products and
1	services.
	To conceptualize, prototype and develop product management plan for a new product based on the type
	of the new product and development methodology integrating the hardware, software, controls,
2	electronics and mechanical systems.
	To understand requirement engineering and know how to collect, analyze and arrive at requirements for
3	new product development and convert them in to design specification.
	To understand system modeling for system, sub-system and their interfaces and arrive at the optimum
4	system specification and characteristics.
	To develop documentation, test specifications and coordinate with various teams to validate and sustain
5	up to the EoL (End of Life) support activities for engineering customer.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1 Define, formulate and analyze a problem for the product design.	Analyze
CO2 Obtain the domain knowledge of product development and regulatory requirements for the	
design of prototype.	Apply
CO3 Explain the process of manufacturing, testing and validation for scalable product	
development.	Apply
CO4 Gain knowledge of the Innovation & Product Development process in the Business	
Context.	Apply
CO5 Discuss the economics in product development and business strategies for turnover from	
commercialization.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	L			1	M				M	S	L	M
CO2	S	S	M	L				M				M	S	L	M
CO3	S	S	M	L				M				M	S	L	M
CO4	S	S	S	L				M				M	S	L	M
CO5	S	S	S	L		-		M	-			M	S	L	M

S- Strong; M-Medium; L-Low

SYLLABUS

PRODUCT DESIGN

Definition, History and Modern Practice – Designs; Design and Product Life Cycle; Design Process; What is a medical device, Challenges in medical device, Understanding the innovation cycle, Good Design Practice. Understanding, analyzing and validating user needs, Screening Needs, Technical Requirements, Concept Generation – Innovation Survey Questionnaire, Morphological Matrix, QFD, Concept Analysis and validation, Concept Modelling, Concept Screening & Validation.

PRODUCT DEVELOPMENT AND REGULATORY

Breakthrough Products, Platform Products, Front End of Innovations / Fuzzy Front End, Generic Product Development Process (Concept Development, System Design, Detailed Design, Test & Refinement, Production Ramp-up), Variants of Development Processes (Market Pull, Technology Push, Platform, Process-Intensive, Customized, High-Risk, Quick Build, Complex Systems), Good Documentation Practice, Prototyping Specifications, Prototyping, Medical Device standards, Quality management systems, Medical Device Classification, Design of Clinical Trials, Design Control & Regulatory Requirements, Documentation in Medical Devices, Regulatory pathways.

CALABLE PRODUCT DEVELOPMENT

Design for manufacturing, Design for assembly, Design for Serviceability, Design for usability, Medical Device Verification & Validation, Product Testing & Regulatory compliance, Clinical trial & validation, Device Certification.

MANUFACTURING AND BUSINESS STRATEGIES

Lean Manufacturing – Toyota Production System, Good Manufacturing Practices, Framework for Product Strategy – Core Strategic Vision (CSV), Characteristics of good CSV, Opportunity Identification Process & Generating Opportunities, Quality of Opportunities – Real-Win-Worth It (3M RWW), Product Planning Process, Technology S-Curve, Evaluating and Prioritizing Projects, Product-Process Change Matrix, Resource Planning, Total Available Market (Segmentation, Targeting & Positioning), Served Available Market, Product Platform Strategy, Market Platform Plan (Product Platform Management, Product Line Strategy).

PRODUCT ECONOMICS AND MARKET INFUSIONS

Economics/Finance in Product Development (Sales Forecasting – ATAR Model/ Bases Model, Pricing the product, Cash flow in Product Development, Categorizing the costs, Structuring Manufacturing Costs, Prototyping Costs, Development Costs, Cost Volume Profit Analysis, Breakeven Analysis, Common Return Metrics – Payback/ NPV/ IRR, Common Comparison Metrics – WACC/ RRR/ MARR). Business Model Canvas, Marketing Channels, Sales Models, Post Commercialization Surveillance, End of Life support.

REFERENCES:

- 1. Jones, J.C., Design Methods, John Wiley, 1981.
- 2. Cross, N., Engineering Design Methods, John Wiley, 1994.
- 3. Pahl, G., and Beitz, W., Engineering Design, Design Council, 1984.
- 4. Michael E. McGrath, Product Strategy for High-Technology Companies, 2nd Edition, McGraw Hill.
- 5. Ulrich, K.T., and Eppinger, S.D., Product Design and Development, Tata McGraw Hill, India.
- 6. Ehrelspiel. K, and Lindemann U Cost-Efficient Design, Springer, 2007.
- 7. Paul H king, Richard C. Fries, Arthur T. Johnson, Design of Biomedical Devices and Systems. Third edition, ISBN 9781466569133.
- 8. Peter J. Ogrodnik, Medical Device Design: Innovation from Concept to Market, Academic Press Inc; Edition (2012), ISBN-10:0123919428.
- 9. Stefanos Zenios, Josh Makower, Paul Yock, Todd J. Brinton, Uday N. Kumar, Lyn Denend, Thomas M. Krummel, Biodesign: The Process of Innovating Medical Technologies, Cambridbge University press; Edition (2009), ISBN-10:0521517427.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor & Head	BME & ECE	hodbme@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Dr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

						Credit
		Category	L	T	P	
48121002	WASTE TO ENERGY	OE-EA	3	0	0	3

PREAMBLE

This course is to provide insights into waste management options by reducing the waste destined for disposal and encouraging the use of waste as a resource for alternate energy production.

PREREQUISITE

Nil

COURSE OBJECTIVES

000101	0202011126
1	To enable students to understand of the concept of Waste to Energy.
2	To link legal, technical and management principles for production of energy form waste.
3	To learn about the best available technologies for waste to energy.
4	To analyze of case studies for understanding success and failures.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Understand the knowledge about the operations of Waste to Energy Plants.	Understand					
CO2: Analyze the various aspects of Waste to Energy Management Systems.	Analyze					
CO3: Carry out Techno-economic feasibility for Waste to Energy Plants						
CO4: Evaluate planning and operations of Waste to Energy plants.	Evaluate					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO1 1	PO1 2	PSO 1	PS O2	PSO3
CO1	M	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	M	M	L	L	-	M	-	-	-	-	-	-	L	-	-
CO3	S	M	S	M	-	L	_	M	-	-	-	-	M	L	-
CO4	S	M	S	-	L	-	-	-	-	-	-	-	M	L	-
CO5	L	L	_	L	_	_	_	_	_	_	_	_	L	_	_

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

The Principles of Waste Management and Waste Utilization. Waste Management Hierarchy and 3R Principle of Reduce, Reuse and Recycle. Waste as a Resource and Alternate Energy source.

WASTE SOURCES & CHARACTERIZATION

Waste production in different sectors such as domestic, industrial, agriculture, postconsumer, waste etc. Classification of waste – agro based, forest residues, domestic waste, industrial waste (hazardous and non-hazardous). Characterization of waste for energy utilization. Waste Selection criteria.

TECHNOLOGIES FOR WASTE TO ENERGY

Biochemical Conversion – Energy production from organic waste through anaerobic digestion and fermentation. Thermo-chemical Conversion – Combustion, Incineration and heat recovery, Pyrolysis, Gasification; Plasma Arc Technology and other newer technologies.

WASTE TO ENERGY OPTIONS

Landfill gas, collection and recovery. Refuse Derived Fuel (RDF) – fluff, briquettes, pellets. Alternate Fuel Resource (AFR) – production and use in Cement plants, Thermal power plants and Industrial boilers. Conversion of wastes to fuel resources for other useful energy applications Energy from Plastic Wastes – Non-recyclable plastic wastes for energy recovery. Energy Recovery from wastes and optimization of its use, benchmarking and standardization. Energy Analysis.

CASE STUDIES - WASTE TO ENERGY PLANTS

Success/failures of waste to energy Global Best Practices in Waste to energy production distribution and use. Indian Scenario on Waste to Energy production distribution and use in India. Success and Failures of Indian Waste to Energy plants. Role of the Government in promoting 'Waste to Energy'. Waste activities – collection, segregation, transportation and storage requirements. Location and Siting of 'Waste to Energy' plants. Industry Specific Applications – In-house use – sugar, distillery, pharmaceuticals, Pulp and paper, refinery and petrochemical industry and any other industry. Centralized and Decentralized Energy production, distribution and use. Comparison of Centralized and decentralized systems and its operations.

REFERENCES

- 1. Lee, James M., "Biochemical Engineering." PHI, 1st Edition, 1992. Yeh W.K., Yang H.C., James R.M., "Enzyme Technologies: Metagenomics, Biocatalysis and Biosynsthesis", Wiley- Blackwell, 1st Edition, 2010. Blanch H.W., Clark D. S., "Biochemical Engineering", Marcel Dekker, Inc. 2nd Edition, 1997.
- 2. Palmer, Trevor. "Enzymes: Biochemistry, Biotechnology, Clinical Chemistry." 2nd Edition, East West Press, 2008.

\sim	T
CONTINC	Lacionarc
Course	Designers

S.No.	Name of the faculty	Designation	Department	Mail ID
1	Dr.R.Kirubakaran	Assistant Professor	Biotechnology	kirubakaran@vmkvec.edu.in
2	Dr.M.Sridevi	Professor	Biotechnology	hodbte@vmkvec.edu.in

	CYCCE A DA A DA E DAVIA E	CATEGORY	L	Т	P	CREDIT
41421002	SUSTAINABLE BUILT ENVIRONMENT	OE-EA	3	0	0	3

PREAMBLE

Approaches towards energy saving methods through utilization of sustainable materials. Energy management by monitoring of CO2 consumption and emission in buildings.

PREREQUISITE

Nil

COURSE OBJECTIVES

- 1 Explaining the role of sustainable architecture to avoid soil erosion & pollution control measures.
- 2 Efficiency of waste management with respect to water balance and water efficiency.
- 3 Impart knowledge on green concepts in design, construction & operation of buildings.
- 4 Intending the exposure to the latest Green Building trends & technologies to the students.
- 5 To learn about the importance and Need of Indoor air quality management.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Understand the importance of site selection in achieving sustainable environment.	Understand
CO2. Applying the efficient water balance concept to achieve the water efficiency.	Apply
CO3. Applying the energy efficiency methods to achieve energy efficiency in building.	Apply
CO4. Analyzing the sustainable building materials in achieving energy efficiency in	
building.	Analyze

CO5. Analyzing the Internal air quality with respect to the Indian Codes and its Standards. various expression systems.

Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3
CO1	S	L	M	L	_	S	-	M	-	-	_	-	L	L	L
CO2	S	M	L	L	-	S	L	-	-	-	-	-	M	L	
CO3	S	M	M	L	-	S	-	-		-	-	-	S	L	
CO4	S	L	S	L	-	S	-	-	M	-	-	-	-	-	M
CO5	L	M	L	L	-	M	-	-	L	-	-	-		-	M

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT I

INTRODUCTION TO GREEN BUILDING DESIGN:

Universal Design: Key accessibility issues and Design guidelines - Integrated Approach for Green Building design: Factors for Site selection, Understanding the importance of Site Ecology & Site Analysis - Microclimate: Factors affecting microclimate & heat Islands - Strategies to handle heat island in built environment, Designing Green Spaces and Enhancing Biodiversity in built environment.

UNIT II

WATER RESOURCE AND WASTEWATER MANAGEMENT

Rainwater harvesting and utilization, Groundwater recharge techniques: Designconsiderations - Water Balance and approach for water efficiency: 3R Approach for water efficiency - Efficiency towards waste water management - Wastewater treatment & reuse, wastewater treatment technologies.

UNIT III

ENERGY EFFICEINCY IN SUSTAINABLE BUILDINGS

Introduction, Performance Evaluation and Approach for Energy Efficiency in Buildings - Energy Efficiency Standards & Codes: ECBC 2017 & EPI, ASHRAE 90.1, ASHRAE 62.1, ASHRAE 55, ASHARE 170, ISHRAE 1001, Star labelling for appliances - Efficient Building Envelope: Heating loads in buildings, Building orientation and form, Envelope Heat Transfer & Material Specifications.

UNIT IV

SUSTAINABLE BUILDING MATERIALS

Attributes of Sustainable Building Materials: Recycled content, Regional material, Renewable material, Embodied energy, Embodied carbon, Material performance, Recyclability, Elimination of hazardous materials - Waste management during construction & post-occupancy: Segregation strategies, Types of waste management – organic, inorganic, e-waste, hazardous waste.

UNIT V

INDOOR ENVIRONMENTAL QUALITY

Indoor Air quality: Codes and Standards, Fresh air requirements, Design considerations - Approach for improving Indoor air quality: Measures to reduce sick building syndrome, Demand control ventilation, CO2 monitoring in buildings, Air quality monitoring - Enhancing occupants Comfort, Health and Wellbeing: Thermal Comfort, Visual Comfort, Acoustics, Ergonomics, Olfactory Comfort.

TEXT BOOKS:

- 1. Guide on Green BuiltEnvironment, IGBC, 2021.
- 2. IGBC Green Homes ratingsystem, IGBC, 2019.
- **3.** IGBC Green New Buildingsrating system, IGBC, 2016.

REFERENCES:

- 1. ECBC, Bureau of Energy Efficiency, 2017.
- 2. National Building Code, Bureau of Indian Standards, Bureau of Indian Standards, 2016.
- 3. ASHRAE 90.1, 62.1, 55, ASHRAE, 2010.

COURSE DESIGNERS

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.S.P.Sangeetha	Professor	Civil	sangeetha@avit.ac.in

											Catagowy	L	Т	P	Credit
15	12100	,	A T	NY A NI	TED C	voed	CECTI) TTX/		_	Category		0	0	
-	MBLE		Al	DVAN(EDC	Y BEK	SECUI	KIII			OE-EA	3	U	U	3
	To understand the need for Cyber Security in real time and to study techniques involved in it.														
	EQUIS		eeu 101	Cybei	Secur	ity III I	zai tiiii	e and t	o study	tecinii	ques mvc	nveu III I	ι.		
Nil	EQUIS														
	SE OB.	IECT	IVES												
1.				sic tern	ninolog	ies relat	ted to c	vber sec	curity a	nd curre	nt cyber s	ecurity th	reat la	ndscan	e.
2.												courty th	ireat ta	павецр	<u>. </u>
	To understand the legal framework that exist in India for subarcrimes and panalties and punishments for such														
3.	crimes.														
4.															
5.			d the m							•					
COUR	SE OU	TCOM	IES												
On th	e succe	essful	comple	tion of	the co	urse, st	udents	will be	e able t	0					
COL	able to	under	stand th	ne hasid	termi	nologie	e relat	ed to c	vher se	curity s	and curre	Unders	tand		
	security				terrin.	noiogic	is iciai	cu io c	your sc	curity a	ina curre				
				•								Annly			
	Able to	_	-	ndersta	nding o	of the c	yberat	tacks tl	nat targ	et com	puters,	Apply			
	es and p														
	able to														
	nalties														
	ions of									d in oth	er	Apply			
countri	ies and	legal	and eth	ical asp	ects re	elated t	o new	techno	logies.						
CO4	Able to	get in	sight in	nto the	Data P	rotectio	on Bill	2019	and dat	a priva	cy and	Apply			
	y issue	_	_					,2017	and dut	a piiva	oy una				
Securit	y issue	5 TOTAL	ca to b	ociai iii	icaia pi	atrom						Apply			
~~=												Appry			
	Able to														
MAPP											ECIFIC C				2 222
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS	
COs CO1	1 M	2 M	3 M	4 M	5	6	7	8	9	0	1	2	01 M	2	3 M
CO2	M M	M	M M	M M	M	-	-	-	-	-	-	-	M M	M M	M
CO3	M	M	S	M	M	-	-	_	-	-	-	-	M	M	M
CO4	S	M	M	M		-	-	-	-	-	-	-	M	M	S
CO5	S	M	M	M	S	-	-	-	-	-	-	-	M	M	S
S- Str	ong; M	-Medi	um; L-	Low											

OVERVIEW OF CYBER SECURITY

9 hours

Cyber security increasing threat landscape, Cyber security terminologies- Cyberspace, attack, attack vector, attack surface, threat, risk, vulnerability, exploit, exploitation, hacker., Non-state actors, Cyber terrorism, Protection of end user machine, Critical IT and National Critical Infrastructure, Cyberwarfare, Case Studies.

CYBERCRIMES 9 hours

Cybercrimes targeting Computer systems and Mobiles- data diddling attacks, spyware, logic bombs, DoS, DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- email scams, Phishing, Vishing, Smishing, Online job fraud, Online sextortion, Debit/ credit card fraud, Online payment fraud, Cyberbullying, website defacement, Cybersquatting, Pharming, Cyber espionage, Cryptojacking, Darknet- illegal trades, drug trafficking, human trafficking., Social Media Scams & Frauds- impersonation, identity theft, job scams, misinformation, fake newscyber crime against persons - cyber grooming, child pornography, cyber stalking., Social Engineering attacks, Cyber Police stations, Crime reporting procedure, Case studies.

CYBER LAW 9 hours

Cybercrime and legal landscape around the world, IT Act, 2000 and its amendments. Limitations of IT Act, 2000. Cybercrime and punishments, Cyber Laws and Legal and ethical aspects related to new technologies- AI/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.

DATA PRIVACY AND DATA SECURITY

hours

Defining data, meta-data, big data, nonpersonal data. Data protection, Data privacy and data security, Personal Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenges, Data protection regulations of other countries- General Data Protection Regulations (GDPR),2016 Personal Information Protection and Electronic Documents Act (PIPEDA)., Social media- data privacy and security issues

CYBER SECURITY MANAGEMENT, COMPLIANCE AND GOVERNANCE

9 HOURS

Cyber security Plan- cyber security policy, cyber crises management plan., Business continuity, Risk assessment, Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy and strategy.

REFERENCES

- 1. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina God bole, Wiley India Pvt. Ltd.
- 2. Information Warfare and Security by Dorothy F. Denning, Addison Wesley.
- 3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform.
- 4. Data Privacy Principles and Practice by Natraj Venkataramanan and Ashwin Shriram, CRC Press.
- 5. Information Security Governance, Guidance for Information Security Managers by W. Krag Brothy, 1st Edition, Wiley Publication.
- 6. Auditing IT Infrastructures for Compliance by Martin Weiss, Michael G. Solomon, 2nd Edition, Jones Bartlett Learning.

COUR	COURSE DESIGNERS										
Sl.No	Name of the Faculty	Designation	Department	Mail ID							
		Assistant Professor									
1	Dr.R.Jaichandran	G-II	CSE	rjaichandran@avit.ac.in							
2	Mr.B.Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in							

		Category	L	T	P	Credit
43321001	BIO MEMS	OE-EA	3	0	0	3

PREAMBLE

The rapid development of the integrated circuit (IC) industry has led to the emergence of microelectronics process engineering as a new advanced discipline. The combination of MEMS and integrated intelligence has been put forward as a disruptive technology. Gives brief knowledge about applications of Bio-MEMS technology for therapeutics and diagnostics.

PREREQUISITE

Nil

- 1	
COUR	SE OBJECTIVES
1	To train the students in the design aspects of Bio MEMS devices and Systems.
2	To learn the basic principles of BioMEMS/Microfluidic device manufacturing.
	To make the students aware of applications in various medical specialists especially the Comparison of
3	conventions methods and Bio MEMS usage.
4	To Classify the different mechanisms of micro sensors and actuators.

COURSE OUTCOMES	
On the successful completion of the course, students will be able to	
CO1 Understand the Micro fluidic Principles and study its applications.	Understand
CO2 Explain the principles and applications of Micro Total Analysis.	Understand
CO3 Discuss and realize the MEMS applications in Bio Medical Engineering	Understand
CO4 Classifying the principles of Micro Actuators and Drug Delivery system	
	Apply
CO5 Utilizing the concept of MEMS with biological applications	Analyze

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	S	L	L	L	L	-	-	-	ı	_	-	-	ı	_	-
CO2	S	L	L	L	M	-	-	-	-	-	-	-	-	-	-
CO3	S	L	M	L	M	-	-	-	1	-	_	_	1	L	_
CO4	S	M	M	L	M	-	-	-	-	-	-	L	L	L	-
CO5	S	S	M	L	M	-	-	-	-	-	_	L	L	L	-
S- Stro	ng; M-	Mediu	ım; L-	Low											

Unit I

Introduction-The driving force behind Biomedical Applications – Biocompatibility - Reliability Considerations-Regularity Considerations – Organizations - Education of Bio MEMS-Silicon Micro fabrication-Soft Fabrication techniques

Unit II

Micro fluidic Principles- Introduction-Transport Processes- Electro kinetic Phenomena-Micro valves –Micro mixers- Micro pumps.

Unit III

SENSOR PRINCIPLES and MICRO SENSORS: Introduction-Fabrication-Basic Sensors-Optical fibers-Piezo electricity and SAW devices-Electrochemical detection-Applications in Medicine

Unit IV

MICRO ACTUATORS and DRUG DELIVERY: Introduction-Activation Methods-Micro actuators for Micro fluidics-equivalent circuit representation-Drug Delivery

Unit V

MICRO TOTAL ANALYSIS: Lab on Chip-Capillary Electrophoresis Arrays-cell, molecule and Particle Handling-Surface Modification-Microsphere-Cell based Bioassay Systems Detection and Measurement Methods-Emerging Bio MEMS Technology-Packaging, Power, Data and RF Safety-Biocompatibility, Standards

Text Books/ References Books

- 1. Steven S. Saliterman, Fundamentals of Bio MEMS and Medical Micro devices, Wiley Interscience, 2006.
- 2. Albert Folch, Introduction to Bio MEMS, CRC Press, 2012
- 3. Gerald A. Urban, Bio MEMS, Springer, 2006
- 4. Wanjun wang, steven A. Soper, Bio MEMS, 2006.
- 5. M. J. Madou, "Fundamentals of Micro fabrication",2002.
- 6. G.T. A. Kovacs, "Micro machined Transducers Sourcebook", 1998.

COUR	COURSE DESIGNERS										
S.No	Name of the Faculty Designation Department Mail ID										
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in							
2	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in							

		SOL	AR AN	ID EN	ERGY S	STOR	AGE		CATE	GORY		T	P		C
44721	1001	SYST	TEMS						OI	E-EA	3	0	0		3
PREAN	MRLF.														
			th the	genera	l concep	t of Sc	olar an	d Energ	y Stor	age Sy	stems	, and in	nprove	ment.	
PRERI Nil	EQUIS	SITE													
COUR	SE OE	BJECT	IVES												
1.	T	o expla	in basi	ics of s	olar pho	tovolta	aic sys	tems ar	ıd ener	gy sto	rage s	ystem.			
2.	Т	To understand the concepts and various components of stand-alone system.													
3.	Т	To gain the sound knowledge about grid connected PV system.													
4.	Т	o know	the de	esign o	f various	PV-ir	nterco	nnected	systen	1S.					
5.	Т	o provi	de the	knowl	edge abo	ut the	vario	ıs appli	cations	of sol	ar sys	tem.			
COUR	SE OU	JTCO	MES												
On the	e succe	ssful co	omplet	ion of	the cour	se, stu	dents	will be	able to						
CO1: I	Descril	be the l	oasics (of sola	r system.	•								Unders	stand
CO2:]	Recogn	nize the	e conce	epts of	standalo	ne PV	syste	m.						Anal	yze
CO3: 1	Design	the gri	id conr	nected	system f	or vari	ious ap	plication	ons.					Anal	yze
CO4: S	Select	the suit	able st	torage	system fo	or part	icular	applica	tions.					Anal	ysis
CO5: 1	Recogn	nize the	e vario	us annl	ications	of sol	ar syst	em.						Crea	ate
					mes an				ific ou	tcome	e S		L		
wappi						D 0.6	D05	DOG	DOA	DO10	DO11	DO12	PSO1	PSO2	PSO3
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POH	POIZ	P501	1001	1000
	PO1 S	PO2 M	PO3	PO4 -	PO5 M	PO6 S	S	M M	PO9 -	PO10 -	POII L	- -	M	-	M
cos															
COS CO1	S	M	-	-	M	S	S	M	-	-	L	-	M	-	M
COS CO1 CO2	S S	M S	-	-	M M	S S	S S	M M	-	-	L L	-	M L	-	M L

S-STRONG, M-MEDIUM, L-LOW

INTRODUCTION

Characteristics of sunlight: the sun and its radiation, Solar radiation, Direct and diffusion radiation, greenhouse effect, solar isolation data and estimation-semiconductors and P-N junctions: semiconductors and types, absorption of light, recombination and PN junctions –behavior of solar cells – cell properties: efficiency and losses, Top contact design, Laser grooved, Buried contact solar cell – PV cell interconnection: Module and circuit design, Environmental and thermal protection.

STAND-ALONE PV SYSTEM

Solar modules – storage systems: Types, applications, requirements, efficiency, Lead acid batteries – power conditioning and regulation: Diodes, Regulators, Inverters- Balance of system components - protection – standalone PV systems design – sizing: Reliability maps, sizing for high reliability, existing methods.

GRID CONNECTED PV SYSTEMS

PV systems in buildings – Utility applications for photo voltaic – design issues for central power stations – safety– Economic aspect – Efficiency and performance - International PV programs – Integration of PV and Wind –Indian Specific Standard for Integration.

ENERGY STORAGE SYSTEMS

Impact of intermittent generation: Wind, gas and coal integration, impacts of cycling, PSCO case studies – Battery energy storage – solar thermal energy storage – pumped hydroelectric energy storage.

APPLICATIONS

Water pumping – battery chargers – solar car – direct-drive applications –Space – Telecommunications.

Total Hours = 45

Text book(s):

- 1. Solar Energy S.P. Sukhatme, Tata McGraw Hill, 2017.
- 2. Stuart R. Wenham, Martin A. Green, Muriel E. Watt and Richard Corkish, "Applied Photovoltaics", 2011.

Reference(s):

- 1. Frank S. Barnes & Jonah G. Levine, "Large Energy storage Systems Handbook", CRC Press, 2017.
- 2. S. Sumathi, "Solar PV and Wind Energy Conversion Systems (Green Energy and Technology)", L. Ashok Kumar, P. Surekha, 2015.
- 3.https://nptel.ac.in/courses/112/105/112105051/
- 4.https://nptel.ac.in/content/storage2/courses/108103009/download/M9.pdf

COURSE DESIGNERS

Sl.No	Name of the faculty	Designation	Department	Mail-id
1	Mr.A.Balamurugan	AP	EEE	balamurugan@vmkvec.edu.in
2	Mr.V.Rattan Kumar	AP(Gr-II)	EEE	rattankumar@avit.ac.in

Operations Research

CategoryLTPCreditOE-EA2103

44121001

Preamble

Operations Research is the study of optimization techniques. It is applied in decision theory. Rapid development and invention of new techniques occurred since the World War II essentially, because of the necessary to win the war with the limited resources available. It is applied for solving Inventory control problems, Maintenance and Replacement problems, Sequencing and Scheduling problems, Assignment of Jobs to applicants, Transportation problems, Network problems and Decision models. Entire subject is useful for all resource managers of various fields.

Prerequisite

Nil

Course Objectives

- 1. Develop linear programming problems and find solutions of LPP and apply in management decisions.
- **2.** To acquire knowledge of linear programming, assignment and transportation problems.
- 3. Techniques of PERT, CPM and sequencing.
- 4. Detailed knowledge of Inventory control.
- 5. Decision theory and Game theory techniques.

Course Outcomes

On the successful completion of the course, students will be able to

on the successful completion of the course, students will be used to	
CO1.Formulate the LPP. Conceptualize the feasible region.	
Solve the LPP with two variables using graphical method and	Understand&
By simplex method.	Apply
CO2. Become familiar with the types of problems that can be solved by	
applying a transportation model. Be able to identify the special	
features of the assignment problem.	Apply
CO3. Solve network problems using CPM and PERT techniques and	
apply sequencing model.	Apply
CO4. Determine the order quantity. Determine the reorder point and	
safety stock for inventory systems. Design a continuous or periodic	
review inventory control system.	Apply
CO5. Apply replacement models. To make decisions in a competitive	
Environment it is a very common and important one.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	M	L		S			S				
CO2	S	M	L		S			S				
CO3	S	M	L		S			S				
CO4	S	S	L		M			S				
CO5	S	S	L		M			S				

SYLLABUS

LINEAR PROGRAMMING

Linear programming problem – Graphical method - Simplex method – Big M method – Duality principle.

TRANSPORTATION MODEL

Transportations problem – Assignment problem – Under Assignment -Travelling salesman problem

NETWORK MODEL

Project Network – CPM and PERT Networks – Critical path scheduling – Sequencing Models.

INVENTORY MODELS

Inventory Model – Economic Order Quantity Model – Purchasing Model (with and without shortages) – Manufacturing Model (with and without shortages) - Stochastic Inventory Model (Stock in discrete and continuous units).

DECISION MODEL

Decision Model – Game theory – Two Person Zero sum game – Algebraic solutions Graphical solutions – Replacement model – Model based on Service life – Economic life single / multivariable search technique.

Text Books

- 1. H.A.Taha, "Operations Research", Prentice Hall of India, 1999, Six Edition.
- 2. KantiSwarup, P.K. Gupta, Man Mohan, Sultan Chand & Sons, New Delhi (2010)

Reference Books

- 1. Sundarasen.V, Ganapathysubramaniyam . K.S. Ganesan.K. "Operations Research", A.R. Publications.
- 2. Premkumar Gupta, Hira, "Operations Research" Chand & company New Delhi.

Assessment Pattern/Assessment Methods

Dlaamia Catagory	Continuo	us Assessm	Towning I Everying tion	
Bloom's Category	1 2		3	Terminal Examination
Remember	20	10	10	0
Understand	20	30	30	30
Apply	60	60	60	70
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Course Designers:

S.No	Name of the Faculty	Mail ID
1	V.T.Lakshmi	lak_msc@yahoo.co.in
2	S.Punitha	puni.jeeju80@gmail.com

	PROJECT MANAGEMENT	Category	L	Т	P	Credit
40221001	FOR ENGINEERING BUSINESS AND TECHNOLOGY	OE-EA	3	0	0	3
PREAMBLE						
Engineering Pro	ject Management is a type of Project	et Management, foc	uses so	olely o	n eng	ineering and
Management. Si	milar to other Project Management it	possess standard me	ethodol	ogies a	and pr	ocesses with

Engineering Project Management is a type of Project Management, focuses solely on engineering and Management. Similar to other Project Management it possess standard methodologies and processes with engineering background. It enables to get into the field of Project Management. These skills can provide critical benefits such as improved efficiency, enhanced effectiveness, success replication, perfect leadership and communication, and complete view of the project in the aspect of time and cost.

and communication, and complete view of the project in the aspect of time and c	cost.
PREREQUISITE	
Not Required	
COURSE OBJECTIVES:	
To understand the importance of Project Management.	
2. To understand the Project management Techniques.	
3. To understand the statistical process control.	
4. To impart the various Project management tools and software.	
5. To understand the Project management and resource utilization.	
COURSE OUTCOMES:	
After successful completion of the course, students will be able to	
CO1: Understand the importance of Project Management and Business.	Understand
CO2: Explain the required tools to implement Project Techniques.	Apply
CO3: Analyze various Project constraints with help of project tools.	Analyze
CO4: Evaluating various Project Techniques.	Analyze
,, ,	

CO5: Put forward the Project management in a different organization milieu.

Evaluate

MAPPI	NG W	ITH P	ROGR	AMM	E OUT	COM	ES AN	D PRC	GRA	MME SI	PECIFI	C OUT	COMES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	M	-	-	M	S	-	M	M	-	-
CO2	S	S	M	-	M	M	S	M	S	S	-	-	M	S	M
CO3	S	M	M	M	S	-	M	M	1	M	-	M	S	M	-
CO4	M	-	S	ı	M			S	S			M	-	S	-
CO5	M	M	-	-	M	M	M	S		S	M	S	M	-	S

SYLLABUS:

INTRODUCTION

Project Management concept-Attributes as a project-Project life cycle-The Project Management process-Benefits of Project Management- Needs, Identification-Project selection-preparing a request for proposal-Soliciting proposals-Proposed solutions- Proposal Marketing-Bid/No-Bid Decision-Developing Winning Proposal-Proposal preparation-Proposal contents-Pricing Consideration-Proposal Submission and Follow-up - Customer evaluation as proposals-Types of contracts-Contract provisions.

PROJECT PLANNING

Project Planning-Project Planning Objective-Work Break-down structure-Responsibility Matrix-Defining activities-Developing the network plan-Planning for Information system development- -Scheduling-activity duration estimates-project start and finish times-Schedule calculation-Scheduling for information systems development.

PROJECT CONTROL PROCESS

Schedule control-Project control process-Effects of actual schedule performance - Incorporating project changes into schedule-Updating the project schedule-Approaches to schedule control-Schedule control for information system development – Resource consideration-Constrained Planning-Planned resources utilization – Resources levelling- Limited scheduling-Project Management software – Cost Planning and Performance - Project cost Estimates-Project Budgeting-Determining actual cost-Determining the value of work performed-Cost performance analysis-Cost forecasting-Cost control-Managing Cash Flow.

RISK AND FEASIBILITY

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process- Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept-Improvement Needs- FMEA – Stages of FMEA.

PROJECT MANAGER SKILLS AND ABILITIES

Project Manager-Responsibilities of the Project Manager-Skills at the Project Manager - Developing the skill needed to be a Project Manager-Delegation-Managing Change – Project Team-Project Team development and Effectiveness- Ethical Behaviour conflict on project-problem solving-Time Management-Project Communication and Personal Communication-Effective listening-Meetings-Presentation-Report-Project documentation and Controlling changes-Types of project organization- Matrix organization.

TEXT BOOKS:

- 1. Samuel J.Mantel JR., Jack R.Meredith, Project Management, Wiley India, Edition 2006.
- 2. Santakki.V.C., Project Management, Himalaya Publishing House, Edition 2006.

REFERENCES:

1. Project Management, Jack Gido and James P Clements, (Edition 2009) Cenage Learning India pvt Ltd., New Delhi.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id	
1	B. Rajnarayanan	Assistant Professor	Management Studies	rajsachin.narayanan@gmail.com	
2	Dr. V.Sheelamary	Asso.Professor	Management Studies	sheelamary@avit.ac.in	

											Category	L	T	P	C
	1RP1			PRO	<u>JECT</u>	WOR	K PH	ASE I			EE-P	0	0	12	6
PREAN															
_	•	-				-				_	the know	_		e princ	ciples
or Comj future.	puter S	cience	and E	ngmeer	ing pra	actices,	, so as	to parti	icipate	and mai	nage main	projec	lS III		
PRERE		ITE													
r keke Nil	QUIS	IIL													
	SE OR	JECT	IVES												
To import the practical knowledge to the students and also to make them to carry out the technical														ical	
1	1 procedures in their project work.														
	To provide an exposure to the students to refer, read and review the research articles,														
2	journals and conference proceedings relevant to their project work and placing this as their beginning stage for their final presentation.														
3	To understand and gain the knowledge of the principles of engineering practices.														
4											eas and on		twar	e.	
5											neering pi				
COURS		-					,			<u> </u>	<u> </u>	J			
On the	succes	ssful co	mpleti	on of t	he cou	rse, stu	idents v	will be	able to)					
											ed journal	ls and			
							ic of re				/ 1	•	Ana	alyze	
2. Use tools		nt exp	erimen	tal tech	iniques	differ/	ent sof	tware /	comp	ıtational	/analytica	1	App	alv	
3. Desi		Ldovol	on on o	vnorin	ontol o	of up/	aguinn	ant/ta	at ria						
										nclusion	s from the		Alla	alyze	
		analyz	_	-	,, oquip					101051011			Ana	alyze	
5. Wor	k in a 1	researc	h envii	onmer	nt or in	an ind	ustrial	enviro	nment.				Ap	ply	
MAPPI	NG W	TH F	PROG	RAMN	1E OU	TCON	MES A	ND PI	ROGR	AMME	SPECIF	IC OU	TCC	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO	1 I	PSO2	PSO3
CO1	S	M	L	L	S	M	_	_	S	_	S	M		M	M
CO2	S	S	M	M	S	M	-	-	S	-	M	S		S	S
CO3	L	M	L	L	M	M	-	-	M	-	L	M		M	M
CO4	S	S	M	L	S	M	-	_	S	-	S	M		M	M
CO5	S	S	S	S	S	S	M	M	M	M	S	M		M	M

The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M.E/M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

COURSE DESIGNERS

000	102 2 20101 (210			
			Department/	
S.No	Name of the Faculty	Designation	College	Mail ID
		Professor		
1	Dr.N.Rajan	& HoD	MECH/VMKVEC	rajan@vmkvec.edu.in
		Associate		
2	Mr.C.Thiagarajan	Professor	MECH/AVIT	cthiagarajan@avit.ac.in

		PR	OJEC	'T			Cat	egory		L	Т		P	Credit	
402	21RP		OBL C		E II		El	E -P		0	0	2	24	12	
Prere Nil	quisi	te													
Cour	se Ob	jective	2												
. 1	To solve the identified problem based on the formulated methodology.														
2	To develop skills to analyze and discuss the test results, and make conclusions.														
Cour	Course Outcomes: On the successful completion of the course, students will be able to														
										-	osition enginee				
CO1	de	esign a	nd fin	d bette	er solu	tions t	o it.						Create		
Марр	oing v	vith Pr	ogran	nme C	Outcor	nes ai	nd Pr	ogran	ıme S	pecific	Outco	mes			
	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	M	M	M	M	M	S	S	S	M	S	M	M
S-Str	ong; N	I-Medi	ım; L-l	Low		•							•		•

SYLLABUS

The student should continue the phase I work on the selected topic as per the formulated methodology under the same supervisor. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report submitted and the viva-voce examination by a panel of examiners including one external examiner.

Course Designers

			Departme	
S.No	Faculty Name	Designation	nt/College	Email id
		Associate		
1	Mr.A.Elanthirayan	Professor	MECH/AVIT	elanthirayan@avit.ac.in
		Assistant		
2	Mr.J.Santhosh	Professor	MECH/VMKVEC	santhosh@vmkvec.edu.in

MANDATORY/ AUDIT COURSES

COURSE						
CODE	COURSE TITLE	CATEGORY	\mathbf{L}	T	P	C
	ENGLISH FOR RESEARCH					
44121Z01	PAPER WRITING	AC	0	0	2	0

PREAMBLE

Since the Research Papers are to be presented /published in English, students should be aware of the Research Methodology and Ethics.

PREREQUISITE

Nil

Course Objectives:

Course Outcomes:

- 1. Understand the research problem formulation.
- 2. Need to analyze research-related information.
- 3. Evaluate and Follow research ethic.

5. Understand the format of a thesis.

- 4. Acquire the knowledge of compiling the research documents.
- 5. Acquire the knowledge of submitting a refined thesis.

Students are able to: 1. Identify the research gap. 2. Interpret the research analysis. 3. Understand the ethical values in organizing a research paper. 4. Understand how a technical report can be organized. Apply

Apply

	PING COM		H PR	OGR	AMN	IE OU	JTCO	MES	AND	PRO	GRA	MME	SPE	CIFIC	
CO S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2	PSO3
CO 1	-	-	-	L	L	-	-	-	-	L	L	L	M	-	-
CO 2	-	S	-	M	M	-	L	L	-	-	-	-	-	-	-
CO 3	-	M	-	L	L	L	-	-	-	S	-	-	-	-	-
CO 4	-	L	-	M	-	-	-	-	-	L	-	-	-	-	-
CO 5	-	M	-	S	-	-	-	S	-	-	-	-	-	-	-
S- St	S- Strong; M-Medium; L-Low														

Syllabus

Unit I Research

Meaning of research problem - Sources of research problem- Criteria Characteristics of agood research problem - Errors in selecting a research problem - Scope and objectives of research problem

Unit II Data Analysis

Approaches of investigation of solutions for research problem - data collection, analysis, interpretation - Necessary instrumentations

Unit III Plagiarism

Effective literature Reviews - approaches, analysis Plagiarism – Definition of Plagiarism – Consequences of Plagiarism – Unintentional Plagiarism – Forms of Plagiarism - Related Issues - Research ethics

Unit IV Research Paper Format

Effective technical writing, how to write reports, Paper Developing a Research Proposal

Unit V Format

Format of research proposal – Margin – Text Formatting - Heading and Title – Page Numbers – Tables and Illustrations – Corrections and Insertions – Binding – Bibliography

Total: 45 Periods

TEXT BOOK

References

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction forscience & engineering students".
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction".
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guidefor beginners".

COURSE DESIGNERS								
COURSE		NAME OF THE						
INSTRUCTOR	DESIGNATION	INSTITUTION	MAIL ID					
Dr. Premkishor	Assistant Professor	AVIT	prem.english@avit.ac.in					
Dr.Jennifer G								
Joseph	HoD-H&S	AVIT	jennifer@avit.ac.in					

								Ca	itegor	y	L	Т		P	Cr	edit
4	41217	202			MITIG AGEMI		N	A	\mathbb{C}		0	0		2	0	
PREA	MBLI	E	•									•	1		I.	
PRER	EQUI	SITE														
NIL																
COU	RSE ()BJEC	TIVES	;												
	1	To study	y about	the Disa	ster Mar	nageme	ent Cyc	eles.								
,	2	To Stud	y about	the Disa	ıster Coı	nmuni	ty and	planni	ng.							
,	3	To Unde	erstand	the Chal	lenges p	osed b	y Disas	sters to	the co	ommui	nity.					
	4	To study	y about	coping c	oncepts	for bot	th natu	ral and	l mann	nade d	isaster	s.				
,	5	To stud	dy abou	t strengt	hening t	echniq	ues for	struct	ural an	d non	structu	ral me	asures.			
COUR	RSE O	UTCO	MES													
On the	succes	ssful co	mpletic	on of the	course	, stude	ents w	ill be	able to)						
CO1. U	ndersta	nding D	isasters	, man-m	ade Haz	ards an	d Vulr	erabil	ities.			Ur	derstand	d and A	Apply	
CO2. U	Indersta	anding d	isaster 1	nanagen	nent me	chanisr	n.					Ap	ply			
CO3. T	o gain	knowled	lge abou	ıt organi	zations	involve	ed in di	saster	comm	unity.		Ap	ply			
CO4. To	o build	skills to	respond	d to disa	sters.							Ap	ply			
		nding ca	pacity l	ouilding	concept	s and p	lannin	g of di	saster							
manage													derstand			
MAPP	PING V	WITH I	PROG	RAMN	IE OUT	ΓCOM	IES A	ND P	ROG		ME S		IFIC O	UTC PS		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		11	PO 12	PSO1		PS O3	PS O4
CO1	L	L	L	L	L	L	M	L	L	M	L	M	M	L	L	M
CO2	M	M	L	L	M	L	S	L	L	M	M	S	S	L	L	S
CO3	S	M	L	L	M	L	M	L	L	M	S	S	M	L	L	S
CO4	M	M	L	L	M	L	M	L	L	S	S	S	S	L	L	M
CO5																
S-Stro	ng; M	-Mediu	m; L-l	Low												

SYLLABUS

UNIT I INTRODUCTION

Overview of Disaster Management – Distinguishing between an emergency and a Disaster situation. Disaster Management Cycle – Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans- Phase I: Mitigation, and strategies; hazard Identification and vulnerability analysis. Disaster Mitigation and Infrastructure, impact of disasters on development programmes, vulnerabilities caused by development, developing a draft country-level disaster and development policy Phase II: Preparedness, Disaster Risk Reduction (DRR), Emergency Operation Plan (EOP) Phases III and IV: Response and recovery, Response aims, Response Activities, Modern and traditional responses to disasters, Disaster Recovery, and Plan

UNIT II DISASTER PLANNING

Disaster Planning-Disaster Response Personnel and duties, Community Mitigation Goals, Pre-Disaster Mitigation Plan, Personnel Training, Volunteer Assistance, School-based Programmes, Hazardous Materials, Ways of storing and safely handling hazardous materials, Coping with Exposure

UNIT III DISASTER COMMUNITY

Disaster Community-Community-based Initiatives in Disaster management, need for Community-Based Approach, categories of involved organizations: Government, Nongovernment organizations (NGOs), Regional and International Organizations, Panchayaths, Community Workers, National And Local Disaster Managers, Policy Makers, Grass-Roots Workers, Methods Of Dissemination Of Information, Community-Based Action Plan, Advantages/Disadvantages Of The Community Based Approach

UNIT IV COPING WITH DISASTER

Coping Strategies; alternative adjustment processes - Changing Concepts of disaster management - Industrial Safety Plan; Safety norms and survival kits - Mass media and disaster management

UNIT V CAPACITY BUILDING

Concept - Structural and Nonstructural Measures Capacity Assessment; Strengthening Capacity for Reducing Risk - Counter-Disaster Resources and their utility in Disaster Management - Legislative Support at the state and national levels

TEXT BOOKS:

- 1. Manual on Disaster Management, National Disaster Management, Agency Govt of India.
- 2. Ayaz, "Disaster Management: Through the New Millennium", Anmol Publications. (2009)
- 3. Dave, P. K. "Emergency Medical Services and Disaster Management: A Holistic Approach", New Delhi: Jaypee Brothers Medical Publishers (P) Ltd., 2009
- 4. Disaster Management by Mrinalini Pandey Wiley 2014.
- 5. Goel, S. L., "Disaster Management", New Delhi: Deep & Deep Publication Pvt. Ltd. ,2008

REFERENCE BOOKS:

- 1. Narayan, B. "Disaster Management", New Delhi: A.P.H. Publishing Corporation, 2009
- 2. Kumar, N. "Disaster Management". New Delhi: Alfa Publications. ,2009
- 3. Ghosh, G. K., "Disaster Management", New Delhi: A.P.H Publishing Corporation.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
		Assistant		
1	MrsJ.Srija	Professor - I	AVIT	srija.civil@avit.ac.in

		Category								
44121	Z03 VALUE EDUCATION	AC	0	0	2	0				
PREAMBLE										
The cou	The course highlights the importance of values and ethics for human life and organization.									
PRERI Nil	EQUISITE									
COUR	RSE OBJECTIVES									
1	To understand value of education and self- development.									
2	To inculcate good values in students to make them patrio	tic with humanity.								
3	To groom the personality with positive thinking with universal brotherhood and religious tolerance.									
4	To impart the value of true friendship and happiness.									
5	To enhance the character and competence for developing	into self-control per	rson.							
COUR	SE OUTCOMES									
On the	successful completion of the course, students will be able	to								
CO1. I	Identify the value of education and self- development with	work ethics.		Rem	ember					
	CO2. Interpret sense of duties with good values in students to make them patriotic with humanity. Understand									
CO3. Explain the integration, scientific attitude, overall personality with labor dignity. Understand										
CO4. D	CO4. Discuss the value of true friendship and happiness. Understand									
CO5. P	CO5. Paraphrase the character and competence for developing into self-control person. Understand									

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3
CO1	L	L	ı	1	ı	ı	1	S	1	L	ı	ı	ı	ı	-
CO2	L	L	1	1	1	1	1	M	1	-	1	1	1	-	-
CO3	L	L	M	-	-	-	-	M	-	-	1	L	L	L	-
CO4	L	S	-	-	-	-	-	M	_	-	-	-	-	-	-
CO5	L	S	M	-	-	1	-	M	-	L	1	1	L	L	-

SYLLABUS

Unit I

Values and self-development –Social values and individual attitudes, Work ethics, Indian vision of humanism, Moraland non- moral valuation. Standards and principles, value judgements

Unit II

Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, Concentration, Truthfulness, Cleanliness, Honesty, Humanity. Power of faith, National Unity, Patriotism, Love for nature, Discipline

Unit III

Personality and Behavior Development - Soul and Scientific attitude, Positive Thinking. Integrity and discipline., Punctuality, Love and Kindness, avoid fault Thinking, Free from anger, Dignity of labor, Universal brotherhood and religious tolerance

Unit IV

True friendship, Happiness Vs suffering, love for truth, Aware of self-destructive habits, Association and Cooperation, doing best for saving nature

Unit V

Character and Competence –Holy books vs Blind faith, Self-management and good health, Science of reincarnation, Equality, Nonviolence, Humility, Role of Women, all religions and same message, mind your Mind, Self-control, Honesty, Studying effectively

Text Books/ References Books:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, NewDelhi

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID

Course Code	Course Title	Category	L	Т	P	С
44121Z04	CONSTITUTION OF INDIA	AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

- 1 To understand the nature and the Philosophy of the Constitution.
- 2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.
- 3 To analyse Panchayat Raj institutions as a tool of decentralization.
- 4 To understand and analyse the three wings of the state in the contemporary scenario.
- 5 To analyse Role of Adjudicatory Process.
- 6 To understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution – Features of the Indian Constitution – Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties – Directive Principles State Policy

UNIT II –Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III –Government of the States

The Governor -Role and Powers - Chief Minister and Council of Ministers- State Legislature

UNIT IV - Local Government

The New system of Panchayats, Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

Total Hours: 30 hours

- 2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)
- 3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. http://www.legislative.gov.in/constitution-of-india

- 3. https://www.sci.gov.in/constitution
- **4.** https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/ **Alternative NPTEL/SWAYAM Course:**

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
		CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW
		ADMINISTRATIVE AND ADJUDICATORY	SCHOOL OF INDIA
1	12910600	PROCESS	UNIVERSITY

COURSE	COURSE DESIGNER								
	NAME OF								
	THE		NAME OF THE						
S.NO	FACULTY	DESIGNATION	INSTITUTION	MAIL ID					
1	Dr.Sudheer	Principal	AV School of Law	Sudheersurya18@gmail.com					

		Category				
44121Z	05 PEDAGOGY STUDIES	AC	0	0	2	0
PREAM	IBLE					
The cour	rse is designed to provide pedagogical practices towards acad	demic, resea	rch activi	ties and	l profes	ssional
developn	ments.					
PRERE	QUISITE					
Nil						
COURS	E OBJECTIVES					
1 7	Γο provide theories and methodologies related to curriculum dev	elonment an	d researc	h frames	work	
	To familiarize with pedagogical practices in formal and informal					
	Γο identify evidence on the effectiveness of the pedagogical prac-	ctices for enh	ancing te	aching a	and lear	rning
3 r	methods					
4 7	To understand the learning and resource barriers while handling	large classes				
5 7	Γο identify critical evidence gaps to guide the development					
COURS	E OUTCOMES					
On the su	uccessful completion of the course, students will be able to					
	ntify theories and methodologies related to curriculum developn	nent and rese	arch			
framewo	rk			Reme	mber	
CO2.Inte	erpret pedagogical practices in formaland informal classrooms i	n developing	3			
countries	3			Unde	rstand	
CO3.Dra	aw a chart on the effectiveness of the pedagogical practices for en	nhancing tea	ching			
and learn	ning methods			App	ly	
G0 4 F						
CO4.Exp	plore the learning and resource barriers while handling large class	sses		Ana	lyze	

Analyze

CO5.Examine critical evidence gaps to guide the development

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	-	-	-	-	-	-	L	-	-	-	-	-
CO2	L	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	L	M	-	-	-	-	-	-	-	-	L	L	L	-
CO4	L	S	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	L	S	M	-	-	-	-	-	-	L	-	-	L	L	-

SYLLABUS

Unit I

Introduction and Methodology, Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions, Overview of methodology and searching.

Unit II

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.

Unit III

Evidence on the effectiveness of pedagogical practices, Methodology for the in-depth stage: quality assessment of included studies, How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy, Theory of change, Strength and nature of the body of evidence for effective pedagogical practices, Pedagogic theory and pedagogical approaches, Teachers' attitudes and beliefs and Pedagogic strategies.

Unit IV

Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit V

Research gaps and future directions, Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

Text Books/ References Books:

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2):245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36(3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project(MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

COURSE DESIGNERS										
Sl.No	Name of the Faculty Designation Department Mail ID									

PERSONALITY DEVELOPMENT	Category	L	T	P	Credit			
44121Z06 THROUGH LIFE ENLIGHTEN SKILLS	AC	0	0	2	0			
PREAMBLE			•					
The main objective of the course is to develop the personality and ac	hieve the high	est goal ir	life so	as to le	ead the			
nation with mankind and prosperity.								
PREREQUISITE								
Nil								
COURSE OBJECTIVES								
1 To learn to achieve the highest goal happily.								
2 To become a person with stable mind, pleasing personality and	d determination	1.						
To awaken wisdom in students.								
COURSE OUTCOMES								
On the successful completion of the course, students will be able to								
CO1. Classify the development of versatile personality of students.		Ţ	Jndersta	nd				
CO2. Extract the information from Bhagwad-Geeta to lead the nation and mankind with peace and prosperity. Understand								
CO3. Paraphrase the information from Neetishatakam to develop inter-personality skills. Understand								
CO4. Articulate the highest goal in life.		Ā	Apply					

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
cos	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO 1	PSO 2	PSO3
CO1	L	M	-	-	-	-	-	-		-	-	-	-	-	S
CO2	L	M	-	-	M	-	-	-	M	-	-	-	-	-	S
CO3	L	M	-	-	M	-	-	-	M	-	-	-	-	-	S
CO4	L	M	1	-	M	-	-	-	M	-	-	-	-	-	S

SYLLABUS

Unit I

Neetisatakam-Holistic development of personality, Verses- 19,20,21,22 (wisdom), Verses- 29,31,32 (pride & heroism), Verses- 26,28,63,65 (virtue)

Unit II

Approach to day to day work and duties, Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48, Chapter 3-Verses 13, 21,27, 35, Chapter 6-Verses 5,13,17,23, 35, Chapter 18-Verses 45, 46, 48.

Unit III

Statements of basic knowledge, Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68, Chapter 12 -Verses 13, 14,15,16,17, 18, Personality of Role model.

Unit IV

Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39, Chapter18-Verses 37,38,63

Unit V

Verses- 52,53,59 (dont's), Verses- 71,73,75,78 (do's)

Text Books/ References Books:

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

COURSE DESIGNERS

Sl.No	Name of the Faculty	Designation	Department	Mail ID